
THE TREE DIAGRAMS FORMULA

OWEN BIESEL AND PETER MANNISTO

Abstract. In this paper, we derive a generalization of Kirchhoff’s matrix-tree

theorem, applicable to directed graphs with boundary. As a corollary, we ex-
tend a foundational result of connected electrical networks, that every principal
proper submatrix of K has positive determinant, to the case of directed elec-
trical networks. We close with a brief discussion of connections on networks,

and show that nonprincipal subdeterminants of K are nonzero polynomials in
the conductivities iff the corresponding connection exists in the graph.
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1. Directed Electrical Networks

The determinant of a square matrix M is perhaps its most important related
quantity, and it is of perennial concern to decide when the determinant vanishes.
In the study of electrical networks, one of the first questions along these lines is
whether the interior-interior part of a Kirchhoff matrix is nonsingular. When M
is indeed derived in this way from an (undirected) electrical network, the following
result is known from the study of discrete harmonic functions:

Proposition 1.1 (Lemma 3.8 from [CuMo00]). Let K be the Kirchhoff matrix
of an undirected electrical network with conductivities in R+. Suppose that every
interior vertex admits a path to some boundary vertex. Then the determinant of
M = K(I; I) is strictly positive.

The hypothesis that every interior vertex have a path connecting it to the bound-
ary rules out the possibility that there be an isolated interior component of the
graph, in which case M would be block diagonal, and one of the blocks would
have vanishing row sums and hence be singular. We will use methods unrelated to
discrete harmonic analysis to prove a generalization of Proposition 1.1 to electrical
networks whose Kirchhoff matrices no longer are required to be symmetric. This
requires loosening the definition of electrical network to what we will refer to in this
paper as a directed electrical network, which we define after the required notions
of directed graph, and directed graph with boundary.
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Definition 1.2.

• A directed graph consists of the following structure:
– A set V of vertices.
– A set E of (directed) edges
– Two maps s : E → V and t : E → V , associating to each edge its

source and target vertex, respectively. If e is an edge with s(e) = i
and t(e) = j, we write e : i → j and say e is an edge from i to j.

• A directed graph with boundary consists of a directed graph (V,E, s, t) to-
gether with a subset ∂V ⊆ V of the vertex set called boundary vertices.
The remaining vertices V \ ∂V are called interior vertices, and the set of
interior vertices is usually denoted I.

• A directed electrical network consists of a directed graph with boundary
(V,E, s, t, ∂V ) and an assignment to each edge e ∈ E of a nonzero weight
(or conductivity) γ(e), chosen from a fixed commutative ring R.

We can also extend the definition of Kirchhoff matrix to the case of directed
electrical networks:

Definition 1.3. The Kirchhoff matrix associated to a directed electrical network
is a square matrix, with a row and column for each vertex. The entries are given
as follows:

Kij = −
∑
e:i→j

γ(e) if i ̸= j,

Kii =
∑

e:i→j ̸=i

γ(e).

K is often presented as a block matrix, according to the partition of vertices into
boundary and interior.

Remark 1.4. The above definition allows a directed graph to contain self-loops
(an edge from a vertex to itself) or parallel edges (a collection of edges whose source
vertices are all the same, as are their target vertices). Even if we desired to avoid
them, self-loops and parallel edges can arise naturally when certain operations are
applied to directed graphs without them, so it is reasonable to allow them in from
the beginning. However, in the following discussion of electrical networks, it will
always be safe to mentally delete self-loops, and to combine parallel edges into a
single edge whose weight is the sum of the weights of the edges it replaces, since
these operations do not change the network’s Kirchhoff matrix. In addition, one
can choose to consider the lack of any edge at all from i to j as being morally the
same as a single edge i → j with weight 0, but we will stick to the convention that
edges may only have nonzero weights.

The only remaining part of Proposition 1.1 to generalize is the concept of path:

Definition 1.5. If v and w are vertices of a directed graph, then a directed path
from v to w consists of a finite sequence of distinct vertices v = v0, v1, . . . , vn = w
and an edge ek : vk → vk+1 for each 0 ≤ k < n.

We can now state our generalization of Proposition 1.1:
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K =



a+ b −a 0 0 −b 0 0
0 0 0 0 0 0 0
0 0 c 0 0 0 −c
0 0 0 0 0 0 0
0 0 0 −d d+ e+ f −e− f 0
0 −g 0 0 0 g + h −h
0 0 −i −j −k 0 i+ j + k


Figure 1. An electrical network and its Kirchhoff matrix. The
vertices are ordered clockwise from the upper left: first the solid
boundary vertices, then the open interior vertices.

Figure 2. A directed path from an interior vertex to a boundary vertex.

Proposition 1.6. Let K be the Kirchhoff matrix of a directed electrical network
with conductivities in R+. Suppose that every interior vertex admits a directed path
to some boundary vertex. Then the determinant of M = K(I; I) is strictly positive.

We will prove Proposition 1.6 using methods unrelated to discrete harmonic
analysis, as a corollary of a more general result, called the tree diagram formula.

Remark 1.7. The proof in [CuMo00] of Proposition 1.1 can be extended to show
that for an undirected electrical network with conductivities in the set C+ = {z ∈
C : Re(z) > 0}, the determinant of M is nonzero. However, for directed networks
with conductivities in C+, the determinant of M can vanish. This suggests that
any proof of Proposition 1.6 cannot be too similar to the proof in [CuMo00], or else
it would apply to conductivities in C+ as well.
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2. The Tree Diagrams Formula

We begin with the notion of a tree diagram:

Definition 2.1. A tree diagram T on a finite directed graph with boundary G is
a subset of the edges of G satisfying any of the following equivalent conditions:

• T comprises a single edge out of each interior vertex, and the subgraph
consisting of edges in T has no directed cycles.

• T comprises a single edge out of each interior vertex, and every interior
vertex admits a directed path to the boundary using only edges from T .

• The subgraph of G consisting of edges in T is a disjoint union of trees,
each containing exactly one boundary vertex, and edges directed toward
the boundary.

The set of tree diagrams on G is written T(G). If G has the structure of a directed
electrical network, then we define the weight w(T ) of a tree diagram T as the
product of the weights of all edges in T .

Figure 3. Three tree diagrams on the same directed graph with boundary.

Remark 2.2. It is easy to see that the three conditions defining a tree diagram are
equivalent, because each is equivalent to this statement, ostensibly stronger than
all three:

• T is a set of edges comprising one edge out of each interior vertex, the
subgraph consisting of edges in T has no (undirected) cycles, and every
interior vertex admits a unique path to the boundary using edges in T .

However, it is useful to use the weaker forms as definitions. The first definition
is the one we will use in proving the tree diagrams formula below, but the second
definition will be helpful later for demonstrating the existence of tree diagrams.
And the third definition was the first used by the authors, and the one that gave
tree diagrams their name.
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Figure 4. This choice of edge out of each interior vertex does not
produce a tree diagram: Some edges form a cycle, leaving many
interior vertices without a path to the boundary.

Theorem 2.3 (The Tree Diagrams Formula). Let G be a directed electrical network,
and K its Kirchhoff matrix. Then the determinant of K(I; I) is the sum of the
weights of all tree diagrams:

detK(I; I) =
∑

T∈T(G)

w(T ).

To prove Theorem 2.3, we use a method of induction based on graph opera-
tions called edge removals. There are two types of edge removals: deletion and
contraction.

Definition 2.4. If e ∈ E is an edge of a directed graph G = (V,E, s, t), we can
delete e to get a smaller directed graph G−e by taking the subgraph of G consisting
of all edges except e. In other words, let E′ = E\{e}; then G−e = (V,E′, s|E′ , t|E′).

If G is a directed graph with boundary ∂V , then the boundary of G is also ∂V .
If G is an electrical network with weight function γ : E → R, then G − e is an
electrical network with weight function γ|E′ .

Edge deletion is a simple form of edge removal, but there is a slightly more
elaborate version called contraction:

Figure 5. An edge, the deletion of that edge, and the contraction
of that edge.



6 OWEN BIESEL AND PETER MANNISTO

Definition 2.5. If e : v → w is an edge of a directed graph G = (V,E, s, t),
then we can contract e in two steps to form a smaller graph G/e: First identify
vertices v and w, and then delete the resulting self-loop e. In other words, let
V ′ = V/(v ∼ w) and p : V → V ′ the projection, and E′ = E \ {e} as before; then
G/e = (V ′, E′, p ◦ s|E′ , p ◦ t|E′).

If G is a directed graph with boundary ∂V , then G has boundary p(∂V ). If G
is an electrical network with weight function γ : E → R, then G/e is an electrical
network with weight function γ|E′ .

Next we have a pair of lemmas describing the relationship between tree diagrams
and edge removals:

Lemma 2.6. Let T be a set of edges in a finite directed graph with boundary G,
and let e be an edge of G. If e /∈ T , then T is a tree diagram on G iff T is a tree
diagram on G− e.

Proof. Suppose e /∈ T . Then the subgraph consisting of edges in T is contained in
G − e, and is acyclic in G iff it is acyclic in G − e, and comprises an edge out of
each interior vertex in G iff it does in G− e. So T is a tree diagram on G iff it is a
tree diagram on G− e. �

The next lemma is similar, but a little stricter in its hypotheses and more fiddly
in its proof.

Lemma 2.7. Let T be a set of edges in a finite directed graph with boundary G,
and let T contain an edge e. If T is a tree diagram on G, then T \ {e} is a tree
diagram on G/e. If T \ {e} is a tree diagram on G/e, and in addition e is an edge
from an interior vertex to a boundary vertex, then T is a tree diagram on G.

Proof. Let T be a tree diagram on G containing e. We must check that T ′ = T \{e}
is a tree diagram on G/e.

First, suppose for contradiction that some edge f of T ′ has a boundary vertex
w as its source in G/e. Then f is in T , so the source of f is an interior vertex v in
G. Hence e must have been an edge from v to w. But then e and f would be two
distinct edges in T with the same source. Therefore edges of T ′ can only lead out
of interior vertices in G/e.

Now suppose for contradiction that two edges in T ′ have the same source in G/e.
Then their sources cannot be the same in G, so those two vertices must be the
source and target of e. But then two edges in T would have the same source in G,
a contradiction. Hence the sources in G/e of the edges in T ′ are all distinct.

We have therefore established that each edge of T ′ leads out of distinct interior
vertices of G/e - is every interior vertex of G/e the source of an edge in T ′? Each
interior vertex i of G/e is the image of an interior vertex j of G. There is a unique
edge in T whose source in G is j, and this edge will be the desired edge out of
i in G/e unless that edge is e. Supposing that vertex i is the vertex created by
contracting e, we find that since i is assumed to be an interior vertex of G/e, the
target of e in G must be an interior vertex. Hence it is the source of an edge f ∈ T ,
and the source of f in G/e is vertex i as desired. Thus every interior vertex of G/e
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is the source of a unique edge of T ′.

Is the subgraph of G/e given by the edges of T ′ acyclic? Suppose a cycle C exists
among the edges of T ′. Unless it used the vertex at the contracted edge e, it would
lift immediately to a cycle C among the edges in T on G. So suppose C does use
the contraction vertex; then C lifts to a path in G from t(e) to s(e). (C cannot lift
to a cycle containing s(e) or t(e), and it cannot lift to a path from s(e) to t(e) or
else T would contain two edges out of s(e).) Then C ∪ {e} is a cycle in G among
the edges of T , a contradiction. Therefore T ′ is a tree diagram on G/e.

Now suppose T ′ is a tree diagram on G/e, and that e is an edge from an inte-
rior vertex to a boundary vertex. We show that T is a tree diagram on G. The
edges of T ′ lead out of every interior vertex of G except the source of e. Therefore
T = T ′ ∪ {e} comprises edges out of every interior vertex of G. And T is acyclic:
any cycle among edges in T cannot use e, or else T would contain an edge out of
the boundary vertex t(e), so that cycle would also be contained in T ′. Therefore T
is a tree diagram. �

Corollary 2.8. If e is an edge of a finite directed graph with boundary G, and
e leads from an interior vertex to a boundary vertex, then there is a canonical
correspondence between T(G) and the disjoint union of T(G− e) and T(G/e).

Corollary 2.9. If e is an edge of a finite directed electrical network G, and e leads
from an interior vertex to a boundary vertex, then ∑

T∈T(G)

w(T )

 =

 ∑
T∈T(G−e)

w(T )

+ γ(e)

 ∑
T ′∈T(G/e)

w(T ′)

 .

Proof. Each tree diagram T on G either contains e or it does not. If not, then T
corresponds to a tree diagram on G− e with the same weight. If T does contain e,
then T corresponds to a tree diagram T ′ = T \ {e} on G/e, and w(T ) = γ(e)w(T ′).

�

Now we change tack and consider the effect onK(I; I) when we delete or contract
an interior-to-boundary edge e.

Lemma 2.10. Let G be a directed electrical network, and let e : i → j be an edge
of G with i ∈ I and j ∈ ∂V . Let KG be the Kirchhoff matrix of G, and let KG−e

be the Kirchhoff matrix of G− e. Then

KG−e(I; I) = KG(I; I)− γ(e) (δii) ,

where (δii) is the |I|-sized diagonal matrix with a 1 for the (i, i) entry and 0 every-
where else.

Proof. The only off-diagonal entry of KG that changes is the (i, j) entry, but this is
outside K(I; I). However, the diagonal entry at (i, i) is the sum of weights of edges
from i to vertices j ̸= i, so when we delete e this entry decreases by γ(e). �

Lemma 2.11. Let G be a directed electrical network, and let e : i → j be an edge
of G with i ∈ I and j ∈ ∂V . Let KG be the Kirchhoff matrix of G, and let KG/e be
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the Kirchhoff matrix of G/e, and let I ′ be the set of interior vertices of G/e. Then
vertices in I ′ correspond naturally to vertices in I \ {i}, and

KG/e(I
′; I ′) = KG(I \ {i}; I \ {i}) ⊂ KG(I; I).

Proof. First we note that I ′ does biject naturally with I \ {i}: the only difference
between the vertex sets of G and G/e is that i has become amalgamated with j and
made a boundary vertex; the rest of the interior vertices have remained undisturbed.
Now all that remains to show is that if k and ℓ are interior vertices of G/e, then
(KG/e)kℓ = (KG)kℓ. If k ̸= ℓ, this entry is the total weight of edges k → ℓ, which
does not change when we contract e. If k = ℓ, then this entry is the total weight
of edges out of k to other vertices, which also does not change when we contract e.
So KG/e(I

′; I ′) is indeed the principal submatrix of KG(I; I) indexed by vertices in
I \ {i}. �

Corollary 2.12. If e is an edge of a finite directed electrical network G, and e
leads from an interior vertex to a boundary vertex, then(

detKG(I; I)
)
=
(
detKG−e(I; I)

)
+ γ(e)

(
detKG/e(I

′; I ′)
)
,

where KG, KG−e, and KG/e are the Kirchhoff matrices of G, G − e, and G/e,
respectively, and I ′ is the set of interior vertices of G/e.

Proof. We will expand the determinant of KG(I; I), first by using linearity of the
determinant in rows. Specifically, write the ith row of KG(I; I) as a sum of two
row vectors: a row vector equal to KG(i; I) except missing the γ(e) term in the
ith entry, and a row vector consisting of all zeroes except for a γ(e) in the ith
entry. Then the determinant of KG(I; I) is the sum of the determinants of the two
matrices we get by substituting these two row vectors for the ith row of KG(I; I).
Call these two matrices K ′ and K ′′, so that detK(I; I) = detK ′ + detK ′′.

We can note immediately that K ′ = KG−e(I; I) by Lemma 2.10, since K ′ dif-
fers from KG(I; I) only in that γ(e) has been subtracted from the (i, i) entry. Now
compute the determinant of K ′′ with cofactor expansion along the ith row: every
one of these entries is zero except the (i, i) entry, so we obtain

detK ′′ = γ(e) detK ′′(I \ {i}; I \ {i})
= γ(e) detKG(I \ {i}; I \ {i}),

since K ′′ and KG(I; I) only differ in the ith row,

= γ(e) detKG/e(I
′; I ′) by Lemma 2.11.

Therefore

detKG(I; I) = detK ′ + detK ′′ = detKG−e(I; I) + γ(e) detKG/e(I
′; I ′).

�

We are now ready to prove the tree diagrams formula, Theorem 2.3. Comparing
Corollaries 2.9 and 2.12, we see that most of the work in proving the theorem is
already done; all that remains is to compile the corollaries into a proof by induction.
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Proof of Theorem 2.3. Suppose we wish to show that all finite directed electrical
networks have some property P . We know that P holds for any network with no
interior-to-boundary edges. We also know that for any interior-to-boundary edge
e, if P holds for G − e and G/e, then P holds for G. Then P holds for all finite
directed electrical networks; we prove it by induction on the number of edges of
G. Suppose that P holds for all electrical networks with fewer edges than G. If G
has no interior-to-boundary edges, then P holds for G. Otherwise, G contains an
interior-to-boundary edge e. The networks G/e and G − e both have fewer edges
than G, so P holds for them, and hence holds for G as well.

Now we note that this argument applies to the property

(1) detKG(I; I) =
∑

T∈T(G)

w(T ).

This is true for graphs with no interior-to-boundary edges: if such a G has any
interior vertices, then there are no tree diagrams on G, and KG(I; I) has vanishing
row sums so its determinant vanishes. If G has no interior vertices at all, then there
is just one tree diagram on G (namely, T = ∅ with weight w(T ) = 1), and K(I; I)
is the unique zero-by-zero matrix, whose determinant is 1. And if (1) holds for
G− e and G/e, then

detKG(I; I) =
(
detKG−e(I; I)

)
+ γ(e)

(
detKG/e(I

′; I ′)
)

by Corollary 2.12

=

 ∑
T∈T(G−e)

w(T )

+ γ(e)

 ∑
T ′∈T(G/e)

w(T ′)

 by assumption

=
∑

T∈T(G)

w(T ) by Corollary 2.9,

so (1) holds for G. Therefore, by the argument above, (1) holds for all finite directed
electrical networks. �

We need just one more technical lemma to prove Proposition 1.6:

Lemma 2.13. If G is a finite directed graph with boundary, and every interior
vertex of G has a directed path to the boundary, then there is at least one tree
diagram on G.

Proof. We proceed by induction on the number of interior vertices of G. If G has
no interior vertices, then the T = ∅ is a tree diagram on G. Now suppose G has
n interior vertices. Choose one, and choose a path from it to the boundary. Then
the end of this path is an interior-boundary edge e. Now G/e has n − 1 interior
vertices, so G/e has a tree diagram T by the induction hypothesis. Then T ∪ {e}
is a tree diagram on G by Lemma 2.7. �

Proof of Proposition 1.6. Suppose G is an electrical network with conductivities in
R+, and that every interior vertex has a directed path to the boundary. Then by
the tree diagrams formula, we have

detK(I; I) =
∑

T∈T(G)

w(T ).
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By Lemma 2.13, T(G) is nonempty, and since the weight of every edge is a positive
real number, each term in the sum is positive. Therefore detK(I; I) > 0. �

A similar result, which is useful for questions of generic recoverability (see, for
example, [BiMa10]), follows:

Lemma 2.14. Suppose G is a directed graph with boundary, for which every inte-
rior vertex has a directed path to the boundary, and make G an electrical network
by weighting each edge with a distinct indeterminate conductivity. Then detK(I; I)
is a nonzero polynomial in the conductivities. Furthermore, this result extends to
the case of undirected networks.

Proof. The key is that the weight of the tree diagram determines the edges used,
if every conductivity is a distinct indeterminate, so no terms in

∑
T∈T(G) w(T ) can

cancel. In the undirected case, where for every edge i → j there is an edge j → i
with the same conductivity, this is harder to see, because it is conceivable that
distinct tree diagrams could use the same edges, but directed differently. However,
this does not happen: if we know which undirected edges are used, then they form
a set of trees and each edge must be directed toward the boundary. Hence every
tree diagram uses a different set of conductivities, and so the weights are all distinct
and cannot cancel. �

3. Another proof of the Tree Diagrams Formula

There is another proof of the tree diagrams formula based on loop partitions. In
this section, we will fix an electrical network G, and attempt to compute detM =
K(I; I) in terms of tree diagrams. We will also assume that G has no self-loops,
since they do not contribute to K and will never be used by any tree diagram. Sim-
ilarly, we will assume that G has no parallel edges, replacing any such collection by
a single edge as in Remark 1.4. We have already observed that this simplification
does not change K. Furthermore, if an edge in a tree diagram is replaced by an
edge parallel to it, the result is still a tree diagram, so the sum of weights of all tree
diagrams will not change when we make this modification. Therefore it will suffice
to show that the tree diagrams formula holds for simple networks, i.e. networks
whose underlying directed graphs have no parallel edges or self-loops.

First we review a different graphical interpretation of determinants; for more infor-
mation, see [BiMa10].

Definition 3.1. If M is any square matrix, we can construct its associated graph
GM , which is a weighted directed graph given as follows:

• The vertices of GM correspond to the row (or column) indices of M .
• If Mij is nonzero, there is a unique edge e : i → j, with weight w(e) = Mij .
Otherwise, there is no edge i → j.

Remark 3.2. If G is an electrical network, we can take M = K(I; I) and consider
the associated graph GM . This new directed graph GM is not the same as the old
directed graph G. However, if G is simple, we can obtain GM from G as follows:
First, take the subgraph of G consisting of interior vertices and edges between
them. Then negate the weight of every edge. Last, at each vertex i attach a self-
loop whose weight is the sum of weights of edges in G out of i. To avoid confusion,
if e is an interior-interior edge of G, we will always refer to the conductivity in the
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electrical network as γ(e), and the weight in the associated graph as w(e), so that
w(e) = −γ(e).

Figure 6. A simple electrical network G and its associated graph GM .

Definition 3.3. If G is a directed graph, a loop partition L on G is a permutation
σL of the vertices of G , together with edge i → σL(i) in G for every vertex i of G .
The set of loop partitions on G is denoted L (G ).

We can now relate determinants to loop partitions:

Proposition 3.4 (Proposition 3.4 from [BiMa10]). If M is a square matrix, then

detM =
∑

L∈L (GM )

sign(σL)
∏
e∈L

w(e).

Proof. If M is an n× n matrix, this is just a restatement of the equation

detM =
∑
σ∈Sn

sign(σ)
∏

1≤j≤n

Mjσ(j). �

Figure 7. Three loop partitions on GM .



12 OWEN BIESEL AND PETER MANNISTO

To use Proposition 3.4, we must relate loop partitions on GM to some sort of dia-
grams on G. The appropriate type of diagram is called an “almost-tree diagram”, so
named because in this derivation, they almost appear in the tree diagrams formula.

Definition 3.5. If G is a directed graph with boundary, an almost-tree diagram
on G is a choice, for each interior vertex i, of an edge in G out of i. The set of
almost-tree diagrams on G is denoted AT(G). If G is an electrical network with
conductivities γ, then the weight of an almost-tree diagram T is w(T ) =

∏
e∈T γ(e).

Figure 8. This collection of edges is not a tree diagram, but it is
an almost-tree diagram that contains one cycle.

Thus the tree diagrams on G are exactly those almost-tree diagrams which con-
tain no cycles in G. Speaking of cycles, we can make this easy observation:

Lemma 3.6. Loop partitions on GM correspond to sets of disjoint cycles among
the interior vertices in G.

Proof. Given any loop partition L on GM , we can decompose L into a disjoint
union of cycles on GM . Then the proper cycles of L, i.e. those cycles which are not
self-loops, correspond to cycles among interior vertices in G. Conversely, if we have
any set of disjoint cycles among interior vertices in G, those correspond to a set of
proper cycles containing some of the vertices in GM . We can complete this set to a
loop partition on GM with a self-loop at each unused vertex. �

If L is a loop partition on G , denote the set of proper cycles of L by C (L).
Similarly, if T is an almost-tree diagram on G, denote the set of cycles in T by
C (T ). (So that in particular T is a tree diagram iff C (T ) = ∅.) Now we are ready
to relate loop partitions and almost-tree diagrams:

Lemma 3.7. If L is a loop partition on GM , then∏
e∈L

w(e) = (−1)s
∑

T∈AT(G)
C (L)⊆C (T )

w(T ),

where s is the number of odd proper cycles in L.
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Proof. First split the product into factors for those edges in proper cycles of L, and
those edges which are self-loops:

∏
e∈L

w(e) =

 ∏
C∈C (L)

∏
e∈C

w(e)

 ∏
i in GM

e:i→i is in L

w(e)

=

 ∏
C∈C (L)

∏
e∈C

−γ(e)

 ∏
i in GM

e:i→i is in L

 ∑
e′∈G

s(e′)=i

γ(e′)

 ,

where we have expressed weights of edges in GM in terms of conductivities of
edges in G. Now note that each proper odd cycle of L contributes an odd number
of factors of (−1), hence an overall sign change, while each proper even cycle of
L contributes an even number of factors of (−1), hence no overall sign change.
Therefore we can let s be the number of odd proper cycles of L, and so

= (−1)s

 ∏
C∈C (L)

∏
e∈C

γ(e)

 ∏
i in GM

e:i→i is in L

 ∑
e′∈G

s(e′)=i

γ(e′)

 .

Now expand the product of sums; we can interpret each resulting term as a choice
of edge out of i in G for each self-loop at i in L, together with all the edges in
proper cycles of L. These choices correspond to almost-tree diagrams that contain
the proper cycles of L, and each term is the weight of such a diagram. Therefore∏

e∈L

w(e) = (−1)s
∑

w(T ),

where the sum is over almost-tree diagrams containing the proper cycles of L. �

Corollary 3.8. If L is a loop partition on GM , then

sign(σL)
∏
e∈L

w(e) = (−1)|C (L)|
∑

T∈AT(G)
C (L)⊆C (T )

w(T ),

where |C (L)| is the number of proper cycles in L.

Proof. If L is a loop partition, then sign(σL) = (−1)t, where t is the number of
even cycles of L. Then

sign(σL)
∏
e∈L

w(e) = (−1)t(−1)s
∑

w(T ) by Lemma 3.7

= (−1)s+t
∑

w(T ).

But s + t is the number of cycles in L which are either proper odd cycles or even
cycles, which is just the total number of proper cycles |C (L)|. �
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Figure 9. A loop partition on GM , and set of almost-tree dia-
grams corresponding to it.

Corollary 3.9. If G is a simple directed electrical network and M = K(I; I), then

detM =
∑
C

(−1)|C |
∑

T∈AT(G)
C⊆C (T )

w(T )

 ,

where C ranges over all sets of disjoint cycles among interior vertices of G.

Proof. According to Lemma 3.6, we may replace the sum over C by a sum over loop
partitions on GM , with C = C (L). Then the desired equation is the one obtained
from Proposition 3.4 by plugging in Corollary 3.8. �

We have almost achieved our goal: we have expressed detM as a sum of weights
of almost-tree diagrams, counted with signs and multiplicities. All that remains is
to count, for each almost-tree diagram T , the total number of times w(T ) appears
in Corollary 3.9.
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Second proof of Theorem 2.3. Suppose T is an almost-tree diagram, and consider
the contribution of w(T ) to

detM =
∑
C

(−1)|C |
∑

T∈AT(G)
C⊆C (T )

w(T )

 ,

which we can alternatively express as

=
∑
k∈N

(−1)k
∑

C :|C |=k

∑
T∈AT(G)
C⊆C (T )

w(T )



=
∑

T∈AT(G)

w(T )−
∑

cycles C

 ∑
T∈AT(G)

C⊆T

w(T )

+
∑

disjoint cycles
C,C′

 ∑
T∈AT(G)
C,C′⊆T

w(T )

− . . . .

Suppose T contains n cycles. Then T is counted once in the (k = 0) sum, but
n times in the (k = 1) sum (once for each cycle C with C ⊆ T ). Similarly, T
is counted

(
n
2

)
times in the (k = 2) sum, once for each pair of cycles C and C ′

contained in T . Therefore the coefficient of w(T ) in the total expression is(
n

0

)
−
(
n

1

)
+

(
n

2

)
− . . . = (1− 1)n = 0n

=

{
0 if n > 0

1 if n = 0
.

Therefore the coefficient of w(T ) in the total sum is 0 if T contains any cycles, and
1 if T is acyclic. That is, the only diagrams that remain are the tree diagrams, and
they are each counted once:

detM =
∑

T∈T(G)

w(T ). �

4. Connections and Tree Diagrams

If K is the Kirchhoff matrix of a directed electrical network G, the tree diagrams
formula allows us to compute the determinant of any principal submatrix K(J ; J)
of K, by regarding vertices J as the interior and summing the weights of the result-
ing tree diagrams. But what about the determinants of square submatrices of K
which are not principal? We can answer through a combination of the determinant-
connection formula and the tree diagrams formula.

First, we identify the square submatrix of K whose determinant we wish to com-
pute. Such a submatrix can always be written as K(S+ J ;T + J) where S, T , and
J are disjoint sets of vertices. Since K and its subdeterminants do not depend on
the choice of which vertices are boundary and which are interior, we will assume
that J = I is the interior of G. Then the important new diagram to consider is
called a connection:
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Definition 4.1. If G is a directed graph with boundary, whose interior is I, and
S and T are disjoint subsets of the boundary vertices, a connection C from S to T
(through I) is a bijection τC : S → T , and for every s ∈ S a path s → τ(s) ∈ T ,
such that:

• The paths are disjoint, i.e. every vertex of G is used in at most one path.
• In each path s → t, all vertices used (except s and t) belong to I.

The set of all connections from S to T is denoted C (S, T ).

Then the determinant-connection formula follows:

Theorem 4.2 (Theorem 3.5 from [BiMa10]). Let G be a directed electrical network
with conductivities γ, with Kirchhoff matrix K and interior vertices I. If S and T
are disjoint subsets of the boundary vertices, both of size k, then

detK(S + I;T + I) = (−1)k
∑

C∈C (S,T )

sign(τC)

(∏
e∈C

γ(e)

)
detK(I/∈C ; I/∈C),

where I/∈C are those vertices of I not used in any of the paths in C.

Proof. See [BiMa10]. �
We can use the tree-diagrams formula to expand the determinant ofK(I/∈C ; I/∈C),

and interpret the resulting terms as weights of certain diagrams. To build such a
diagram, we first choose a connection from S to T using some vertices of I. Then
for the remaining vertices, we choose a single edge out of each so that each vertex
has a path either to the boundary of G or to a vertex used in the connection S → T .
This diagram contains a tree diagram on G: Each interior vertex is either used in
the connection, in which case it has a unique edge out of it (the next edge in the
path), or it is not used in the connection and we have chosen an edge out of it.
And each interior vertex has a path to the boundary of G: either it is used in the
connection and has a path to a vertex in T , or it is not used, and then has a path
directly to the boundary or by way of the vertices in the connection. The only
reason the diagram is not a tree diagram is that the first edges along the paths
S → T are edges out of boundary vertices. Since these diagrams are somewhat like
trees and somewhat like paths, we call them “hedge diagrams”.

Definition 4.3. Let G be a directed graph with boundary, and S and T disjoint
sets of boundary vertices. A hedge diagram H from S to T consists of the following:

• A set of edges forming a tree diagram on G.
• A bijection τH : S → T .
• For each vertex s ∈ S, a choice of edge out of s such that H contains a
path s → τH(s).

The set of hedge diagrams from S to T is denoted H (S, T ).

Then according to the above discussion, we can apply the tree diagrams formula
to Theorem 4.2 to obtain:

Corollary 4.4. Let G be a directed electrical network with conductivities γ, with
Kirchhoff matrix K. If S and T are disjoint subsets of the boundary vertices, both
of size k, then

detK(S + I;T + I) = (−1)k
∑

H∈H (S,T )

sign(τH)

(∏
e∈H

γ(e)

)
.
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t t2

s1

s2

1

Figure 10. A hedge diagram from S = {s1, s2} to T = {t1, t2}.

In addition, we have a small result analogous to Lemma 2.14.

Lemma 4.5. Suppose G is a directed graph with boundary, for which every interior
vertex has a directed path to the boundary, and make G an electrical network by
weighting each edge with a distinct indeterminate conductivity. If S and T are
equally-sized subsets of the boundary of G, and there is a connection S → T in G,
then detK(S+I;T+I) is a nonzero polynomial in the conductivities. Furthermore,
this result extends to the case of undirected networks.

Proof. The existence of hedge diagrams is guaranteed by the assumptions: First
choose any connection C : S → T and any tree diagram U on G. Then letting U/∈C

consist of those edges of U whose sources are vertices not used in C, we have a
hedge diagram H = C ∪U/∈C . Furthermore, as in the proof of Lemma 2.14, if every
conductivity is a distinct indeterminate then the weights of the hedge diagrams will
be distinct monomials and cannot cancel. And again, no two hedge diagrams can
differ only in the directions of the edges used: H will contain a unique connection
S → T , and the edges of it are all directed toward T , and the rest of the edges are
directed toward the connection or the graph’s boundary. So even if opposite edges
have the same indeterminate conductivity, no two weights of hedge diagrams will
cancel. �
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