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Abstract

This paper explores the recovery of networks that have voltage or
current sources at interior nodes of the network. The setup assumes
that we are given a network with one of these problems and are only
allowed to make measurements and set voltages at boundary nodes.
The response matrix can be found for every network with a single volt-
age source or a single current source. If the original network is critical
and does not have any Y −∆ connections, then the Kirchoff matrix and
the original network can be recovered using traditional methods. An
attempt is made to identify the malfunctioning node once the network
is recovered, but the present method does not guarantee a solution.
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1 Introduction

In this paper we will consider electrical networks that are not functioning
properly. The electrical network will be malfunctioning because an interior
node will be stuck at some constant voltage or current, which can be thought
of as the node being attached to a voltage or current source. In the cases we
will consider, we will not know the graph, which node is malfunctioning, nor
what the constant voltage or current is at the malfunctioning interior node,
but we will have access to the network and will be able to set the boundary
voltages and make current measurements at the boundary nodes.

The questions we want to answer are:

1. Can we determine whether the malfunctioning node is a voltage or
current source? Can we identify the voltage or current of the malfunc-
tioning node?

2. Can we recover the original graph if there is one malfunctioning node?
If yes, can we also determine which node is the malfunctioning node?

3. Can we do these if there are multiple interior nodes that are malfunc-
tioning?

2 Preliminaries

This is a somewhat practical question. It is not uncommon to have some
circuit where some wires are touching that are not supposed to be. Many
circuits require voltage sources, usually batteries, within a circuit in order
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for certain chips to operate, and it is easy for wires to touch when there is a
circuit with a large amount of components put into a small box. However,
any useful circuit would have components other than resistors, and we are
only considering resistor networks.

Definition 1. The leakage current is defined to be the net amount of current
through the boundary nodes. If there are m boundary nodes, the voltage at
the boundary nodes is uB, and the current at boundary node i is φi, then the

leakage current, L, is: L(uB) =
m∑
i=1

φi.

A special case that will come up is when there are m boundary nodes and
a single interior node, called νβ, that does not follow Kirchoff’s law. The net
current flowing through the network is always zero, so in this case another
formula for the leakage current is L(uB) = −φ

In the study of electrical networks the Kirchoff matrix, K, and the re-
sponse matrix, Λ, are often used. The Kirchoff matrix gives the conductance
of wires connecting each pair of nodes in the network. The response matrix
is then created by taking the Schur complement of K with respect to the
interior nodes, Λ = K/K(I; I), where I = ν1, . . . , νn is the set of interior
nodes. The response matrix can also be created by first taking the Schur
complement of K with respect to some of the interior nodes, and then taking
the Schur complement of the result with respect to the rest of the interior
nodes. The order,the number of interior nodes, or the number of times the
Schur complement is taken does not matter as long as the each interior node
is Schur complemented out once in the process. The entries of the response
matrix can be calculated by setting the voltage at one boundary node to be
one and the rest to be zero and measuring the result. If the response matrix
if found this way, then K can be found by using recovery methods.

In this paper we will use the matrix Ξ to represent one such matrix
intermediary to the Kirchoff and the response matrix. Ξ will usually represent
what results from taking the Schur complement of K with respect to all of
the interior nodes except for one. Sometimes multiple interior nodes will
be included in Ξ. It should be clear by the context how many nodes, and
which nodes, are included in Ξ. Sometimes the notation ΞJ will be used to
denote that the set of interior nodes J have been included in Ξ, so ΞJ =
K/K(I − J ; I − J). Once Ξ is known, Λ can be found by taking the Schur
complement of Ξ with respect to the remaining interior nodes. Also the
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values of Ξ can be measured in a similar way to the response matrix, except
that the interior nodes of Ξ must also be treated and measured the same
way.

3 Identifying whether a malfunctioning node

is at constant current or constant voltage

Having a voltage source within a network is different than having a current
source. A current source will provide a constant current regardless to what
it is connected to. In contrast, the current provided by a voltage source
varies depending on its connections, but its voltage will be constant. In
both cases Kirchoff’s law is not followed. It is simple to determine whether
a malfunctioning network has an interior current source, interior voltage
source, or neither. This can be done by measuring the net current at the
boundary nodes after setting all boundary voltages to 0 and also after setting
all boundary voltages to 1. If the net current out the boundary nodes is zero
for both cases, then the network is functioning properly. If it is the same for
both cases and nonzero, then there is a current source inside the network. If
it is different for both cases, then there is an interior voltage source.

The same method will work if there are multiple current sources or mul-
tiple voltage sources in the network. However, we may not be able to tell the
number of malfunctioning nodes in the network.

4 A single interior node is at a constant volt-

age

Suppose we have a graph, G, with m boundary nodes, µ1, . . . , µm, and n+ 1
interior nodes, ν1, . . . , νn, νβ. Suppose that an interior node, which we will
arbitrarily designate as νβis stuck at a constant voltage k. For now we will
assume k 6= 0, although the following can easily be adjusted for that case
because the voltage is always defined relative to an arbitrary constant. Our
goal is to try to identify which interior node is malfunction. However, in
order to do this we must recover the original graph.
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4.1 Finding the voltage of the voltage source

The first thing we will do is determine the value of k.

Theorem 1. The value of k can easily be determined by the following process.
Set the voltage of all of the boundary nodes to be V . Vary the value of V
until L = 0. Then k = V .

Proof. If the voltage at all of the boundary nodes are V and the voltage at
νβis k, then the leakage current can be calculated as follows. First we must
find the current at each of the boundary nodes. Recall that the row and
column sums of Ξ are zero.

Ξ


V
...
V
k

 =


V
∑m

i=1 ξ1i + k1b
...

V
∑m

i=1 ξmi + kmb
V
∑m

i=1 ξbi + kbb



−V ξ1b + kξ1b

...
−V ξmb + kξmb
−V ξbb + kξbb




(k − V )ξ1b
...

(k − V )ξmb
(k − V )ξbb


These first m currents are summed to find the leakage current.

L(


V
...
V
k

) =
m∑
i=1

(k − V )ξib = (k − V )
m∑
i=1

ξib = (V − k)ξbb

When the leakage current is zero, than either (V − k) or ξbb are zero. ξbb
cannot be zero because that would mean there is no path from nubd to the
boundary in the original graph. Thus, we must have (V − k)=0, so k = V
only at the voltage that causes the leakage current, which can be measured,
to be zero.

While this method gives a way to find k, it is not very efficient. The
following theorem gives another way to find k.

Theorem 2. If L is the ratio of the leakage current when all boundary nodes
are set to voltage V1 to the leakage current when all boundary nodes are set
to voltage V2, then k = V2−V1

L−1
.
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Proof. Let ~V =


V
...
V
k

. Then we will be able to measure L(V1) and L(V2),

where L(V1) = (V1 − k)ξbb and L(V2) = (V2 − k)ξbb. If one of these is zero,
then that voltage is what k is, as was explained above. Otherwise, we will
define L to be the ratio of these two measured values.

L =
L(V1)

L(V2)
=

(V1 − k)ξbb
(V2 − k)ξbb

=
V1 − k
V2 − k

Solving for k gives k = V2−V1
L−1

.

4.2 Finding the response matrix

Now that we have the value of k, we can continue the process and try to
reconstruct the original graph. In order to recover the graph, we want the
response matrix, Λ, for the graph. However, we are not able to measure the
values of the response matrix as we would in the normal case because of the
voltage source at νβ. We will proceed by creating the Ξ matrix for νβ. If
K is the Kirchoff matrix for G, then Ξ can be obtained by taking a Schur
complement:

Ξ = K/K(ν1, . . . , νn; ν1, . . . , νn) =


ξµ1,µ1 ξµ1,µ2 · · · ξµ1,µn ξµ1,νβ
ξµ2,µ1 ξµ2,µ2 · · · ξµ2,µn ξµ2,νβ

...
...

. . .
...

...
ξµn,µ1 ξµn,µ2 · · · ξµn,µn ξµn,νβ
ξνβ ,µ1 ξνβ ,µ2 · · · ξνβ ,µn ξνβ ,νβ



Ξ is essentially the response matrix for G if we considered the interior
node νβto be a boundary node. In some ways νβacts as a boundary node
because it’s voltage is not determined by the voltage of any other nodes.
However, like other interior nodes we cannot measure the voltage or current
at νβ. The following calculation treats νβas a boundary node. We will call
H the graph that is the same as G except νβis a boundary node. Ξ is the
response matrix for the graph H. Note that Λ can be obtained from Ξ by
taking another Schur complement.

6



We will find the values of Ξ by applying voltages to the boundary nodes and
measuring the current at the boundary nodes. The voltage at νβwill always
be k because it cannot be changed, but it is simple to work around this.
We also will not be able to measure the current at νβ. We can find most
of the values of Ξ by placing a single unit voltage at a boundary node and
subtracting the measured currents when the voltage at all boundary nodes
is 0.

Ξ



0
...
0
1
0
...
0
k


− Ξ


0
...
0
k

 = Ξei =


ξµ1,µi
ξµ2,µi

...
ξµn,µi
ξνβ ,µi



By doing this we can find all of elements of Ξ except for the last row and
column. What we are doing here is taking two current measurements at each
boundary node, and their difference gives m values in Ξ. We repeat this
process for every boundary node, changing with boundary node we set to
one.

Since we know the value of k, we can also find the values of Ξ except for
the bottom-right value, ξνβ ,νβ , by just setting all boundary voltages to 0 and
then dividing the result by k.

1

k
Ξ

[
0
0

]
=

1

k


kξµ1,νβ
kξµ2,νβ

...
kξµn,νβ
kξνβ ,νβ

 =


ξµ1,νβ
ξµ2,νβ

...
ξµn,νβ
ξνβ ,νβ


We can then find the last value in Ξ because the row and columns must be
zero. (Note that we have n equations for the row/column sums of the first
n rows/columns that we haven’t used. We could have found the values for
the last row/column of Ξ using those instead.) Now that we have all of the
values of Ξ, we can find the Schur complement to find the response matrix
of the original graph, Λ. This response matrix can be used to recover the
original network.
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4.3 Recovery and identification of the voltage source
node

We must realize that we may not get what we want in our recovered graph.
Since recovery is only up to Y − ∆ equivalences, our malfunctioning node
may not even be in the graph we recovered. For now, we will assume that
there are no Y −∆ equivalences in the original graph.

Our task now that we know the original network is to determine which
node is malfunctioning. To do this, we will first set all of the boundary
voltages to 0. Without loss of generality, we will assume k > 0. Now we will
use the recovered graph and find the voltage at all of the interior nodes by
working inward from the boundary nodes. We know all of the conductances
and the voltages and currents at the boundary nodes. Using this information
we will work inward from each boundary node. At each interior node we come
to, we will be able to determine the voltage.

5 Multiple interior nodes are voltage sources

Now we want to consider the situation in which two interior nodes are mal-
functioning and are stuck at constant voltages. We will call these nodes νβ1
and νβ2 , and their voltages k1 and k2. We will create the matrix Ξ in a

similar way, so that Ξ =



ξµ1,µ1 ξµ1,µ2 · · · ξµ1,µn ξµ1,νβ1 ξµ1,νβ2
ξµ2,µ1 ξµ2,µ2 · · · ξµ2,µn ξµ2,νβ2 ξµ2,νβ2

...
...

. . .
...

...
ξµn,µ1 ξµn,µ2 · · · ξµn,µn ξµn,νβ1 ξµn,νβ2
ξνβ1 ,µ1 ξνβ1 ,µ2 · · · ξνβ1 ,µn ξνβ1 ,νβ1 ξνβ1 ,νβ2
ξνβ2 ,µ1 ξνβ2 ,µ2 · · · ξνβ2 ,µn ξνβ2 ,νβ1 ξνβ2 ,νβ2


. In

order to see if we can find all unknown values and recover the original graph,
we will see how many unknowns and how many equations we have available.
Initially we do not know any values of Ξ (which is an (m + 2) by (m + 2)
matrix), but we do know that it is symmetric. We can find all values except
for the last two rows and columns by using a similar process to before. We
first set all of the boundary voltages to zero except for one value we set to 1.
From the resulting current at each boundary node we subtract the current
that results from all of the boundary nodes having voltage 0. By doing this
for each of the boundary nodes, we will get most of Ξ. For example, to get
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row i of Ξ, for 1 ≤ i ≤ m:

Ξ



0
...
0
1
0
...
0
k1
k2


= Ξ


0
...
0
k1
k2

 = Ξei =



ξµ1,µ1 ξµ1,µ2 · · · ξµ1,µn ξµ1,νβ1 ξµ1,νβ2
ξµ2,µ1 ξµ2,µ2 · · · ξµ2,µn ξµ2,νβ2 ξµ2,νβ2

...
...

. . .
...

...
ξµn,µ1 ξµn,µ2 · · · ξµn,µn ξµn,νβ1 ξµn,νβ2
ξνβ1 ,µ1 ξνβ1 ,µ2 · · · ξνβ1 ,µn ξνβ1 ,νβ1 ξνβ1 ,νβ2
ξνβ2 ,µ1 ξνβ2 ,µ2 · · · ξνβ2 ,µn ξνβ2 ,νβ1 ξνβ2 ,νβ2





0
...
0
1
0
...
0


=


ξµi,1

...
ξµi,m
ξµi,β1
ξµi,β2


We still do not know the last two rows or columns, so since Ξ is sym-

metric there are 2m + 3 unknown values in Ξ. In addition, we do not know
the values of k1 and k2. So in total there are 2m + 5 unknown values:
k1, k2, ξµ1,β1 , ξµ2,β1 , . . . , ξµm,β1 , ξβ1,β1 , ξµ1,β2 , ξµ2,β2 , . . . , ξµm,β2 , ξβ1,β2 , andξβ2,β2 .

For equations, we have m+ 2 equations resulting from the row sums hav-
ing to be zero, and we have m equations from measuring the current that
result from setting all of the boundary voltages to zero. The latter equations
are of the form k1ξµi,β1 +k2ξµi,β2 =measured value. So in total we have 2m+2
equations.

In total, this leaves us with 2m+5 unknown values and 2m+2 equations,
so there is no possible way for us to solve this general system. By setting
certain initial conditions, there may be useful solutions to this system that
can be found.

One specific case which we may want to attempt to solve is that of when
there are two interior nodes stuck at some unknown voltage, but we know
that they are at the same voltage k, so k = k1 = k2. We can find k by using
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the same method as used with a single voltage source. This knowledge gives
us two more equations, which would leave us one equation short of being able
to find Ξ and solve the system. However, we actually lost equations since the
row sum equations and the measurements made with all boundary nodes set
to voltage 0 are no longer linearly independent. Thus, although we would be
able to find the voltage, we have about twice as many unknown values as we
have equations.

The problem of too many unknown values and too few equations gets
worse if we add more unknown interior voltage sources; the number of un-
known values grows faster than the number of equations we have to find them.

6 Current Source

Now we will consider the case when an interior node is attached to a current
source. This means that Kirchoff’s law is not satisfied only at that one
interior node, and that the net current out of the node is constant. We will
assume the amount of current flowing into the network through that node,
denoted by I is nonzero. Since the current there is always flowing from that
node at the same rate, the voltage at the node will change depending on the
voltages of the other nodes.

Suppose we are given a critical circular planar network with m boundary
nodes and a single interior node, which we will call node b, that is a current
source with current I, which is initially not given. We are allowed to set
the voltages at the boundary nodes and measure the currents at the bound-
ary nodes, but we cannot access the interior node. We want to answer the
following questions:

1. Can we determine I?

2. Can we recover the original network?

3. Can we identify which node in the original network was malfunctioning?

6.1 Determining I

Because the amount of current through node b is always I, the amount of
current going out of the boundary nodes must sum to I. Thus, finding I
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is trivial and can be done by measuring the current at each boundary node
(while leaving the voltages at any set of values) and summing the measure-
ments.

6.2 Recovering the original network

We will let Ξ be the matrix that represents what the response matrix if
node b is treated as a boundary node. This is equivalent to taking the Schur
complement of the Kirchoff matrix with respect to all of the interior nodes
except for node b. If we are able to find Ξ, then we will be able to find the
response matrix, Λ for the original network by taking the Schur complement
with respect to the last row and column.

Ξ =


ξ1,1 ξ1,2 · · · ξ1,m ξ1,b
ξ2,1 ξ2,2 · · · ξ2,m ξ2.b

...
...

. . .
...

...
ξm,1 ξm,2 · · · ξm,m ξm,b
ξb,1 ξb,2 · · · ξb,m ξb.b


We will work toward our goal will by first determining every value of Ξ

in terms of ξbb.
If we apply voltages u to the boundary nodes, then the voltage at node

b will be determined as a function of u, which we will call f(u). We want to
determine the function f .

Ξu = Ξ


u1
...
um
f(u)

 =


u1ξ1,1 · · · umξ1,m f(u)ξ1,b

...
. . .

...
...

u1ξm,1 · · · umξm,m f(u)ξm,b
u1ξb,1 · · · umξb,m f(u)ξb,b

 =


I1
...
Im
I


In this equation, the values I1,...,Im could be measured for any u. This would
allow us to use any row to determine f in terms of other values. To keep it
simple we will use the last row.

f(u) =
I − u1ξb,1 − · · · − umξb,m

ξb,b
=

I −
m∑
i=1

uiξb,i

ξb,b
=
I −

∑m
i=1 uiξbi
ξbb
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Now we will put a voltage of zero at all of the boundary voltages. According
to the equation for f , the voltage at node b will be I/ξbb.

Ξ


0
...
0

I/ξbb

 =


Iξ1b/ξbb

...
Iξmb/ξbb

I

 =


h1
...
hm
I


The values h1,. . . ,hm can be measured. This is important because now we
can find each value in the last row and column of Ξ in terms of ξbb.

ξib = ξbi =
hi
I
ξbb

Also, since the net current at all of the nodes must sum to zero, we have∑m
i=1 hi = −I. Often the ratios of these values are easier to use, so we will

define a set of values kij for 1 ≤ i, j ≤ m (for the rest of the section assume
that i, j, and l are all between 1 and m inclusive).

kij =
hi
hj

=
Iξib/ξbb
Iξjb/ξbb

=
ξib
ξjb

=
1

kji

A useful relation is gained by summing kij’s over one of the values.

m∑
i=1

kij =
m∑
i=1

hi
hj

=
1

hj

m∑
i=1

hi =
−I
hj

Using these ratios gives another way to express ξib in terms of ξbb by using
the fact that row sums are zero.

m∑
j=1

ξjb = −ξbb =
m∑
j=1

ξib
kij

= ξib

m∑
j=1

kji

ξib =
−ξbb∑m
j=1 kji

Or by looking at the values of h gives another formula for the same value.

ξib =
hi
I
ξbb

12



Now that all of the values of the last row and column can be found in
terms of ξbb, we must find the rest of the values of values of Ξ in terms of
the entries in the last row or column. This will be done by applying specific
voltages to the boundary nodes and measuring the resulting current. First we
will apply a unit voltage to boundary node i (with voltage zero at the other
boundary nodes) and measure the current at each of the boundary nodes.
From this value we will subtract the curent resulting from applying voltage
kij to boundary node j (with voltage zero at the other boundary nodes). We
will call the resulting vector pij.

Ξ



0
...
0
1
0
...
0

I−ξbi
ξbb


− Ξ



0
...
0
kij
0
...
0

I−ξbi
ξbb


= Ξ



0
...
0
1
0
...
0
−kij

0
...
0
0



=

Ξ(ei − kijej) =


ξ1i − kijξ1j

...
ξmi − kijξmj

I

 pij =


pij1
...
pijm
I


From these equations we can relate values of Ξ that are in the same row. So
for any l between 1 and m:

ξli − kijξlj = pijl

ξli = pijl + kijξlj

Now we can use the fact that row sums are zero to find any value of Ξ in
terms of another value of Ξ that is in the last row or column.

m∑
i=1

ξli = −ξlb =
m∑
i=1

(pijl kijξlj) =
m∑
i=1

pijl + ξlj

m∑
i=1

kij
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ξlj =
−(
∑m

i=1 p
ij
l )− xilb∑m

i=1 kij
=
−
∑m

i=1 p
ij
l∑m

i=1 kij
+

ξbb
(
∑m

i=1 kij)(
∑m

i=1 kil)
=

hj
I

m∑
i=1

pijl +
hjhl
I2

ξbb

We now have an equation for every value of Ξ in terms of measured values
(currents) and the variable ξbb.

We can use these values to find the values of the response matrix Λ by
taking the Schur complement of Ξ with respect to the last row and column.

Λ =


ξ1,1 · · · ξ1,m
ξ2,1 · · · ξ2,m

...
. . .

...
ξm,1 · · · ξm,m
ξb,1 · · · ξb,m

−
 ξ1,b...
ξm,b

 [ξb,b]−1
[
ξ1,b

... ξm,b

]

Λlj = ξlj − ξlb
1

ξbb
ξjb =

hj
I

m∑
i=1

pijl +
hjhl
I2

ξbb −
hl
I
ξbb

1

ξbb

hj
I
ξbb =

hj
I

m∑
i=1

pijl +
hjhl
I2

ξbb −
hjhl
I2

ξbb =
hj
I

m∑
i=1

pijl

Miraculously this shows that the response matrix does not depend on ξbb.
Instead every value of Λ can be found by making various measurements at
the boundary nodes of the broken graph. Although it is not obvious from the
equation, it can easily be shown that, as expected, Λij = Λji. We can now
take this response matrix and recover the original graph without the current
sink. All that remains is to identify which interior node was the current sink.

7 Recovering the original network after find-

ing the response matrix

In this section we will attempt to determine which interior node was mal-
functioning when only a single node is malfunctioning. We will assume that
we have the Ξi matrix for the interior node i, which allows us to get the
response matrix, Λ, and then the original Kirchoff matrix.
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We can immediately see that there will be some problems with recovering
the original network. One problem is that the recovery gives us a critical
graph. This means that if we did not know that we started with a critical
graph, it will be impossible to find the node. Thus our first assumption will
be to assume that the network that we start with is critical. The recovered
network also only gives a network up to Y − ∆ equivalence. This can be
very problematic. Assume that the malfunctioning was at the center of a
3-connection. The graph we recover may change this Y into a ∆, which
means that the node we are trying to locate is not even in the network. This
problem can be largely be avoided by assuming that the broken node is not
in a Y or ∆, or maybe just that is not at the center of a 3-connection, but
we will assume that there are no Y −∆ equivalences in the entire network.

One way that we can determine what interior nodes might possibly be
the malfunctioning node i, is to use the Kirchoff matrix to get the Ξj matrix
for every interior node j. If Ξi 6= Ξj, then j cannot possibly be i. While this
eliminates nodes that definitely are not i, it does not guarantee that we will
get a unique answer.

While we cannot mathematically find a way to prove that Ξi is unique,
it seems that it is unique in nearly all cases. This topic needs to be studied
more in-depth.

8 Further topics to study

1. Is there a way to determine which node was malfunctioning that works
in all cases?

2. Can partial recovery be used when not all of the response matrix can
be found, or can only be found in terms of variables?

3. Can networks with two or more current sources be recovered? How
about networks with a combination of voltage sources and current
sources?

4. How are Y −∆ equivalences affected by having a source at the center
node?
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