The N-gon in N-gon Network Revisited

David Jekel

August 14, 2013

Abstract

I reexamine the 2 -to- 1 network in [2], giving a new and complete proof of their results. Using the determinant-connection formula, I show that there are always exactly one or two valid conductivity functions for any valid response matrix and give explicit formulas for the solutions in terms of one of the conductivity functions. The conditions for a unique solution and a symmetric characterization of the response matrix are included.

Contents

1 Introduction 2
2 The Determinant-Connection Formula 5
3 Solving for Valid Quasi-Conductivities 7
4 Computing the Coefficients 8
5 Evaluating the Quadratic Formula 10
6 Two Valid Conductivity Functions 12
7 Characterization of the Response Matrix 14

Figure 1: The network Γ with $N=6$.

1 Introduction

For definitions of graphs with boundary, electrical networks, the Kirchhoff matrix, the response matrix, and k-connections see [1].

We consider a network Γ on a graph which is a loop of N four-stars. Γ has boundary vertices u_{1}, \ldots, u_{N} and v_{1}, \ldots, v_{N}, and interior vertices w_{1}, \ldots, w_{N}. The nth four-star has central vertex w_{n} and boundary vertices u_{n}, v_{n}, u_{n+1}, and v_{n+1} with indices reduced modulo N. For pictoral purposes, assume Γ is embedded in an annulus with vertices u_{1}, \ldots, u_{N} on the inner circle and $v_{1} \ldots v_{N}$ on the outer circle, and that the indices proceed counterclockwise around the annulus.

Always assume $N \geq 3$ and that indices are reduced modulo N (for instance, v_{N+1} is the same as $\left.v_{1}\right)$. The conductances of the edges will be labeled

$$
\begin{aligned}
a_{n} & =\gamma\left(u_{n} w_{n}\right) \\
b_{n} & =\gamma\left(v_{n} w_{n}\right) \\
c_{n} & =\gamma\left(w_{n} u_{n+1}\right) \\
d_{n} & =\gamma\left(w_{n} v_{n+1}\right)
\end{aligned}
$$

and we let $\sigma_{n}=a_{n}+b_{n}+c_{n}+d_{n}$.

Figure 2: Γ with $N=6$ after $\star-\mathcal{K}$ transformation.

Following the sign conventions for N-to- 1 graphs, we assume the offdiagonal entries of Λ are nonnegative and the diagonal entries are negative. To avoid nested subscripts, we will denote the entry of Λ for vertices u and v by $\lambda(u v)$ (for instance, $\lambda\left(u_{1} v_{2}\right)$).

By a quasi-conductivity we mean a function defined on edges that allows negative or complex "conductances." A conductivity or a quasi-conductivity is called consistent (with a given response matrix Λ) if it has Λ as its response matrix.

We apply the \star - \mathcal{K} transformation described in [3] to the network, replacing each four-star with an electrically equivalent complete graph on four vertices. The new network has a double edge between u_{n} and v_{n}. We will denote the single edges in these pairs, e_{1}, \ldots, e_{N} and $e_{1}^{\prime}, \ldots, e_{N}^{\prime}$. The index corresponds to the index of the four-star to which the edge belongs (or to the index of the $\left.w_{n}\right) ; e_{n}$ is the edge between u_{n} and v_{n} corresponding to w_{n} and e_{n}^{\prime} is the edge between u_{n+1} and v_{n+1} corresponding to w_{n}. All other edges in the transformed graph will be named by the vertices at their endpoints.

The conductivity function on the transformed graph will be called μ,

Figure 3: Conductances on a four-star and the corresponding \mathcal{K}_{4}.

and is given by

$$
\begin{aligned}
\mu\left(u_{n} u_{n+1}\right) & =\frac{a_{n} c_{n}}{\sigma_{n}}=\lambda\left(u_{n} u_{n+1}\right) \\
\mu\left(v_{n} v_{n+1}\right) & =\frac{b_{n} d_{n}}{\sigma_{n}}=\lambda\left(v_{n} v_{n+1}\right) \\
\mu\left(u_{n} v_{n+1}\right) & =\frac{a_{n} d_{n}}{\sigma_{n}}=\lambda\left(u_{n} v_{n+1}\right) \\
\mu\left(v_{n} u_{n+1}\right) & =\frac{b_{n} c_{n}}{\sigma_{n}}=\lambda\left(v_{n} u_{n+1}\right) \\
\mu\left(e_{n}\right) & =\frac{a_{n} b_{n}}{\sigma_{n}} \\
\mu\left(e_{n}^{\prime}\right) & =\frac{c_{n} d_{n}}{\sigma_{n}} \\
\lambda\left(u_{n} v_{n}\right) & =\mu\left(e_{n-1}^{\prime}\right)+\mu\left(e_{n}\right) .
\end{aligned}
$$

The conductances satisfy the quadrilateral rule:

$$
\mu\left(e_{n}\right) \cdot \mu\left(e_{n}^{\prime}\right)=\mu\left(u_{n} u_{n+1}\right) \cdot \mu\left(v_{n} v_{n+1}\right)=\mu\left(u_{n} v_{n+1}\right) \cdot \mu\left(v_{n} u_{n+1}\right) .
$$

In fact, as shown in [3], any conductivity function μ on the transformed graph which satisfies this condition corresponds to a conductivity function γ on the original graph. Thus, specifying such a μ is a valid way to define conductivities on Γ.

2 The Determinant-Connection Formula

Minors of Λ are related to connections in the graph by the determinantconnection formula (Lemma 3.12 of [1]). When considering a k-connection α, we will write $p \mapsto q$ if a path of α connects p and q. If $P=\left\{p_{1}, \ldots, p_{k}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{k}\right\}$ are disjoint sets of boundary vertices, and α is a k connection between P and Q, then τ_{α} is the permutation of the symmetric group S_{k} such that $p_{n} \mapsto q_{\tau(n)}$ for each n. We let I be the set of interior vertices, I_{α} be the set of interior vertices used in α, and J_{α} as the set of interior vertices not used in α and let $D_{\alpha}=\operatorname{det} K\left(J_{\alpha} ; J_{\alpha}\right)$. The determinantconnection formula says that

$$
\operatorname{det} \Lambda(P ; Q) \operatorname{det} K(I ; I)=(-1)^{k} \sum_{\tau \in S_{k}} \operatorname{sgn}(\tau) \sum_{\substack{\alpha \\ \tau_{\alpha}=\tau}} D_{\alpha} \prod_{e \in E_{\alpha}} \gamma(e),
$$

where the second sum is taken over all k-connections which exist between P and Q.

We denote by $\Lambda\left(u_{K} \ldots u_{L} ; v_{K} \ldots v_{L}\right)$ the submatrix formed by rows u_{K}, u_{K+1}, \ldots, u_{K} and $v_{J}, v_{J+1}, \ldots, v_{K}$ with indices reduced modulo N.

Theorem 2.1. For $K \leq L<K+N-1$,

$$
\operatorname{det} \Lambda\left(u_{K} \ldots u_{L}, v_{K} \ldots v_{L}\right)=\sum_{i=K-1}^{L+1} \prod_{j=K-1}^{i-1} \frac{c_{j} d_{j}}{\sigma_{j}} \prod_{j=i+1}^{L+1} \frac{a_{j} b_{j}}{\sigma_{j}}
$$

Proof. We consider the original form of the graph and apply the determinantconnection formula.

First, we compute the possible permutations for a connection. Notice that for each k, either u_{k} is connected with either v_{k-1}, v_{k}, or v_{k+1}, and the same is true with u and v switched. I claim that $u_{k} \mapsto v_{k}$ for $k=K, \ldots, L$. First, consider u_{K}. Since v_{K-1} is not one of the vertices under consideration, either $u_{K} \mapsto v_{K}$ or $u_{K} \mapsto v_{K+1}$. If $u_{K} \mapsto v_{K+1}$, then $v_{K} \mapsto u_{K+1}$. But then the connections intersect. Thus, $u_{K} \mapsto v_{K}$ and repeating the argument shows that $u_{k} \mapsto v_{k}$ for all k. Thus, the only possible permutation is identity.

Now we consider the possible connections. Start with u_{K} and v_{K}. One possibility connects u_{K} to v_{K} through w_{K}, which will we write $u_{K} \rightarrow w_{K} \rightarrow$ v_{K} for short, and the other possibility is $u_{K} \rightarrow w_{K-1} \rightarrow v_{K}$. In the first case, we must have $u_{K+1} \rightarrow w_{K+1} \rightarrow v_{K+1}$ and continuing inductively $u_{k} \rightarrow$ $w_{k} \rightarrow v_{k}$ for all k. In the case where $u_{K} \rightarrow w_{K-1} \rightarrow v_{K}$, we have a choice whether to connect $u_{K+1} \rightarrow w_{K+1} \rightarrow v_{K+1}$ or $u_{K+1} \rightarrow w_{K} \rightarrow v_{K+1}$, so we consider two subcases and repeat the process. In the end, the connections we have are exactly the connections of the form

- $u_{k} \rightarrow w_{k-1} \rightarrow v_{k}$ for all $k \leq i$,
- $u_{k} \rightarrow w_{k} \rightarrow v_{k}$ for all $k \geq i$,
for some i between $K-1$ and $L+1$.
Now we make some simplifications in the determinant-connection formula. In our case, $K(I ; I)$ is a diagonal matrix with entries $-\sigma_{1},-\sigma_{2}, \ldots$, $-\sigma_{N}$ because there are no interior-to-interior edges. Thus,

$$
\operatorname{det} K(I ; I)=(-1)^{N} \prod_{n=1}^{N} \sigma_{n}
$$

In each of the connections we computed, $\left|I_{\alpha}\right|=L-K+1$, so $\left|J_{\alpha}\right|=$ $N-(L-K+1)$.

$$
D_{\alpha}=(-1)^{L-K+1} \prod_{w_{n} \in J_{\alpha}} \sigma_{n}
$$

Hence,

$$
\begin{aligned}
\operatorname{det} \Lambda\left(u_{J} \ldots u_{K}, v_{J} \ldots v_{K}\right) & =\sum_{\alpha} \frac{\prod_{w_{n} \in J_{\alpha}} \sigma_{n}}{\prod_{n=1}^{N} \sigma_{n}} \prod_{e \in E_{\alpha}} \gamma(e) \\
& =\sum_{\alpha} \prod_{w_{n} \in I_{\alpha}} \frac{1}{\sigma_{n}} \prod_{e \in E_{\alpha}} \gamma(e) .
\end{aligned}
$$

Evaluating the summands for each of the connections we computed gives the desired formula.

Theorem 2.2.

$$
\begin{aligned}
& \operatorname{det} \Lambda\left(u_{1} \ldots u_{N} ; v_{1} \ldots v_{N}\right) \\
& \qquad=\prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}+\prod_{n=1}^{N} \frac{c_{n} d_{n}}{\sigma_{n}}-(-1)^{N} \prod_{n=1}^{N} \frac{a_{n} d_{n}}{\sigma_{n}}-(-1)^{N} \prod_{n=1}^{N} \frac{b_{n} c_{n}}{\sigma_{n}} .
\end{aligned}
$$

Proof. By similar reasoning as in the previous theorem, there are four possible connections:

- $u_{k} \rightarrow w_{k} \rightarrow v_{k}$ for all k;
- $u_{k} \rightarrow w_{k-1} \rightarrow w_{k}$ for all k;
- $u_{k} \rightarrow w_{k} \rightarrow v_{k+1}$ for all k;
- $u_{k} \rightarrow w_{k-1} \rightarrow v_{k-1}$ for all k.

Applying the determinant-connection formula to these connections proves the theorem.

3 Solving for Valid Quasi-Conductivities

In this section, we assume that Λ is a valid response matrix produced by conductivities $\left\{a_{n}, b_{n}, c_{n}, d_{n}\right\}$, and we determine whether there are any other conductivity functions with response matrix Λ.

We begin with the transformed graph, whose original conductivity function is μ. We construct a possibly different quasi-conductivity function μ_{y} by supposing that $\mu_{y}\left(e_{1}\right)=y$ and using the quadrilateral rule to determine μ_{y} such that it has Λ as its response matrix.

First off, we need

$$
\begin{aligned}
\mu_{y}\left(u_{n} u_{n+1}\right) & =\lambda\left(v_{n} v_{n+1}\right) \\
\mu_{y}\left(v_{n} v_{n+1}\right) & =\lambda\left(v_{n} v_{n+1}\right) \\
\mu_{y}\left(u_{n} v_{n+1}\right) & =\lambda\left(u_{n} v_{n+1}\right) \\
\mu_{y}\left(v_{n} u_{n+1}\right) & =\lambda\left(v_{n} u_{n+1}\right)
\end{aligned}
$$

because the entries of the response matrix come directly from these conductivities.

By the quadrilateral rule, we need

$$
\mu_{y}\left(e_{1}\right) \mu_{y}\left(e_{1}^{\prime}\right)=\mu_{y}\left(u_{1} v_{2}\right) \mu_{y}\left(v_{1} u_{2}\right)=\lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right)
$$

and so

$$
\mu_{y}\left(e_{1}^{\prime}\right)=\frac{\lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right)}{y}
$$

Then since we want $\lambda\left(u_{2} v_{2}\right)=\mu_{y}\left(e_{1}^{\prime}\right)+\mu_{y}\left(e_{2}\right)$, we need

$$
\mu_{y}\left(e_{2}\right)=\lambda\left(u_{2} v_{2}\right)-\frac{\lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right)}{y}=\frac{\lambda\left(u_{2} v_{2}\right) y-\lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right)}{y}
$$

We will let $g_{1}(x)$ be the linear fractional transformation in the last equation, that is, the function mapping $\mu_{y}\left(e_{1}\right)$ to $\mu_{y}\left(e_{2}\right)$ by the quadrilateral rule and subtraction. Similarly, we let g_{n} be the function mapping $\mu_{y}\left(e_{n}\right)$ to $\mu_{y}\left(e_{n+1}\right)$:

$$
g_{n}(x)=\frac{\lambda\left(u_{n+1} v_{n+1}\right) x-\lambda\left(u_{n} v_{n+1}\right) \lambda\left(v_{n} u_{n+1}\right)}{x}
$$

so that

$$
\mu_{y}\left(e_{n}\right)=g_{n-1} \circ g_{n-2} \circ \cdots \circ g_{1}(y)
$$

If μ_{y} is a valid quasi-conductivity function, we need

$$
\mu_{y}\left(e_{1}\right)=\mu_{y}\left(e_{N+1}\right)=g_{N} \circ g_{N-1} \circ \cdots \circ g_{1}(y)
$$

That is, y must be a fixed point of the LFT $g(y)=g_{N} \circ g_{N-1} \circ \cdots \circ g_{1}(y)$.
Finding the fixed points means solving a quadratic equation (unless g turns out to be linear!). Thus, to begin with, we know that there are probably either one or two possible conductances for e_{1}, one of which is the original conductance because it satisfies all the quadrilateral conditions we used to construct g. Since all the other edges can be found in terms of e_{1}, we know there one or two valid quasi-conductivity functions, and we know that one of them must be the original conductivity function. To know more, we have to compute the coefficients for g.

4 Computing the Coefficients

The coefficients for g can be computed by matrix multiplication:

$$
g(y)=\frac{A y+B}{C y+D}
$$

where

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\prod_{n=N}^{1}\left(\begin{array}{cc}
\lambda\left(u_{n+1} v_{n+1}\right) & -\lambda\left(u_{n} v_{n+1}\right) \lambda\left(v_{n} u_{n+1}\right. \\
1 & 0
\end{array}\right)
$$

In my convention, the indices of the product proceed from left to right (for instance, $\prod_{n=N}^{1} M_{n}=M_{N} M_{N-1} \ldots M_{1}$). We can think of this formula as specifying the recursion relation described in [2].

We will compute the coefficients A, B, C, D in terms of certain subdeterminants of Λ. To do this, we need a basic fact about tridiagonal matrices:

Lemma 4.1. Let T be an $m \times m$ tridiagonal matrix. Then

$$
\begin{aligned}
\operatorname{det} T=T_{m, m} \operatorname{det} T(1 & , \ldots, m-1 ; 1, \ldots m-1) \\
& \quad-T_{m, m-1} T_{m-1, m} \operatorname{det} T(1, \ldots, m-2 ; 1, \ldots m-2)
\end{aligned}
$$

Proof. Use cofactor expansion on the last column of T. There are only two nonzero entries. The entry $T_{m, m}$ yields the first term. For the entry $T_{m-1, m}$, apply cofactor expansion again to $T(1, \ldots, m-1 ; 1, \ldots, m-2, m)$, noticing that only one entry in the bottom row is nonzero.

Now we can prove

Theorem 4.2.

$$
\begin{aligned}
A= & \operatorname{det} \Lambda\left(u_{1} \ldots u_{N} ; v_{1} \ldots v_{N}\right)+(-1)^{N}\left(\prod_{n=1}^{N} \lambda\left(u_{n} v_{n+1}\right)+\prod_{n=1}^{N} \lambda\left(v_{n} u_{n+1}\right)\right) \\
& +\lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right) \operatorname{det} \Lambda\left(u_{3} \ldots u_{N} ; v_{3} \ldots v_{N}\right) \\
B= & -\lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right) \operatorname{det} \Lambda\left(u_{3} \ldots u_{N+1} ; v_{3} \ldots v_{N+1}\right) \\
C= & \operatorname{det} \Lambda\left(u_{2} \ldots u_{N} ; v_{2} \ldots v_{N}\right) \\
D= & -\lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right) \operatorname{det} \Lambda\left(u_{3} \ldots u_{N} ; v_{3} \ldots v_{N}\right) .
\end{aligned}
$$

Proof. Let

$$
\left(\begin{array}{cc}
A_{n} & B_{n} \\
A_{n-1} & B_{n-1}
\end{array}\right)=\prod_{j=n}^{1}\left(\begin{array}{cc}
\lambda\left(u_{j+1} v_{j+1}\right) & -\lambda\left(u_{j} u_{j+1}\right) \cdot \lambda\left(v_{j} v_{j+1}\right) \\
1 & 0
\end{array}\right)
$$

We know this definition is consistent over various indices because the bottom row of each matrix is $(1,0)$. We want to compute $A=A_{N}, B=B_{N}$, $C=A_{N-1}$, and $D=B_{N-1}$.

First, we argue by induction that $A_{n}=\operatorname{det} \Lambda\left(u_{2} \ldots u_{n+1} ; v_{2} \ldots v_{n+1}\right)$ for $n=1, \ldots, N-1$. For the base case, we notice $A_{0}=1$ (which is the "determinant of the 0×0 matrix") and $A_{1}=\lambda\left(u_{2} v_{2}\right)=\operatorname{det} \Lambda\left(u_{2} ; v_{2}\right)$. For the induction step, notice that for $n=1, \ldots N-1, \Lambda\left(u_{2} \ldots u_{n+1} ; v_{2} \ldots v_{n+1}\right)$ is tridiagonal; the other entries of the matrix are zero because there is no connection through the graph from u_{j} to $v_{j+\ell}$ or v_{j} to $u_{j+\ell}$ if $1<\ell<$ $N-1$. Then write out part of the 2×2 matrix multiplication and apply the preceding lemma on tridiagonal matrices:

$$
\begin{aligned}
A_{n}= & \lambda\left(u_{n+1} v_{n+1}\right) A_{n-1}-\lambda\left(u_{n} v_{n+1}\right) \lambda\left(v_{n} u_{n+1}\right) A_{n-2} \\
= & \lambda\left(u_{n+1} v_{n+1}\right) \operatorname{det} \Lambda\left(u_{2} \ldots u_{n} ; v_{2} \ldots v_{n}\right) \\
& -\lambda\left(u_{n} v_{n+1}\right) \lambda\left(v_{n} u_{n+1}\right) \operatorname{det} \Lambda\left(u_{2} \ldots u_{n-1} ; v_{2} \ldots v_{n-1}\right) \\
= & \operatorname{det} \Lambda\left(u_{2} \ldots u_{n+1} ; v_{2} \ldots v_{n+1}\right) .
\end{aligned}
$$

This formula is not true for $n=N$, however, because $\Lambda\left(u_{2} \ldots u_{N+1} ; v_{2} \ldots v_{N+1}\right)$ is not tridiagonal; it has nonzero entries $\lambda\left(u_{2} v_{1}\right)$ in the last row, first column and $\lambda\left(u_{1} v_{2}\right)$ in the first row, last column. By the preceding argument, the value A_{N} is the determinant of the matrix we would get by removing the non-tridiagonal entries.

Let

- P_{1} be the set of permutations τ with $\tau\left(u_{N+1}\right) \neq v_{2}$ and $\tau\left(u_{2}\right) \neq v_{N+1}$,
- P_{2} be the set with $\tau\left(u_{N+1}\right) \neq v_{2}$ and $\tau\left(u_{2}\right)=v_{N+1}$,
- P_{3} be the set with $\tau\left(u_{N+1}\right)=v_{2}$ and $\tau\left(u_{2}\right) \neq v_{N+1}$,
- P_{4} be the set with $\tau\left(u_{N+1}\right)=v_{2}$ and $\tau\left(u_{2}\right)=v_{N+1}$.

These are a partition of S_{N} which we can use to group the terms in the determinant. The terms in the group for P_{1} add up to A_{N}. For P_{2}, there is only one nonzero term, $\prod_{n=1}^{N} \lambda\left(v_{n} u_{n+1}\right)$. For P_{3}, the only term is $\prod_{n=1}^{N} \lambda\left(u_{n} v_{n+1}\right)$. For P_{4}, the terms add up to

$$
\lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right) \operatorname{det} \Lambda\left(u_{3} \ldots u_{N} ; v_{3} \ldots v_{N}\right) .
$$

To complete the proof of the formula for A, simply notice that

$$
\operatorname{det} \Lambda\left(u_{1} \ldots u_{N} ; v_{1} \ldots v_{N}\right)=\operatorname{det} \Lambda\left(u_{2} \ldots u_{N+1} ; v_{2} \ldots v_{N+1}\right)
$$

by permutation of the rows and columns. The proof for C is also complete. For B and D, the induction argument is similar, and there are no difficulties with the final step.

5 Evaluating the Quadratic Formula

Knowing the formulas for the coefficients of $g(y)$, we are ready to solve for its fixed points, the solutions of

$$
\frac{A y+B}{C y+D}=y
$$

which are given by the quadratic formula:

$$
\frac{A-D \pm \sqrt{(A-D)^{2}+4 B C}}{2 C} .
$$

We will evaluate this formula in terms of the original conductances. We start by rewriting the discriminant:

$$
(A-D)^{2}+4 B C=(A+D)^{2}-4(A D-B C) .
$$

By the matrix formula for g,

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) & =\prod_{n=N}^{1} \operatorname{det}\left(\begin{array}{cc}
\lambda\left(u_{n+1} v_{n+1}\right) & -\lambda\left(u_{n} v_{n+1}\right) \lambda\left(v_{n} u_{n+1}\right) \\
1 & 0
\end{array}\right) \\
& =\prod_{n=1}^{N} \lambda\left(u_{n} v_{n+1}\right) \lambda\left(v_{n} u_{n+1}\right) \\
& =\prod_{n=1}^{N} \frac{a_{n} b_{n} c_{n} d_{n}}{\sigma_{n}}
\end{aligned}
$$

By Theorem 4.2, $A+D$ equals

$$
\operatorname{det} \Lambda\left(u_{1} \ldots u_{N} ; v_{1} \ldots v_{N}\right)+(-1)^{N}\left(\prod_{n=1}^{N} \lambda\left(u_{n} v_{n+1}\right)+\prod_{n=1}^{N} \lambda\left(v_{n} u_{n+1}\right)\right)
$$

Notice that the last two terms are

$$
(-1)^{N} \prod_{n=1}^{N} \frac{a_{n} d_{n}}{\sigma_{n}}+(-1)^{N} \prod_{n=1}^{N} \frac{b_{n} c_{n}}{\sigma_{n}^{2}}
$$

By Theorem 2.2, the determinant is

$$
\prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}+\prod_{n=1}^{N} \frac{c_{n} d_{n}}{\sigma_{n}}-(-1)^{N}\left(\prod_{n=1}^{N} \frac{a_{n} d_{n}}{\sigma_{n}}+\prod_{n=1}^{N} \frac{b_{n} c_{n}}{\sigma_{n}}\right)
$$

so $A+D$ is

$$
\prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}+\prod_{n=1}^{N} \frac{c_{n} d_{n}}{\sigma_{n}}
$$

and the whole discriminant is

$$
\left(\prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}+\prod_{n=1}^{N} \frac{c_{n} d_{n}}{\sigma_{n}}\right)^{2}-4 \prod_{n=1}^{N} \frac{a_{n} b_{n} c_{n} d_{n}}{\sigma_{n}^{2}}=\left(\prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}-\prod_{n=1}^{N} \frac{c_{n} d_{n}}{\sigma_{n}}\right)^{2}
$$

Applying the theorems again, we have $A-D$ equal to

$$
\prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}+\prod_{n=1}^{N} \frac{c_{n} d_{n}}{\sigma_{n}}+2 \lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right) \operatorname{det} \Lambda\left(u_{3} \ldots u_{N} ; v_{3} \ldots v_{N}\right)
$$

so the two values for the numerator are

$$
\begin{aligned}
& 2 \prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}+2 \lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right) \operatorname{det} \Lambda\left(u_{3} \ldots u_{N} ; v_{3} \ldots v_{N}\right) \\
& 2 \prod_{n=1}^{N} \frac{c_{n} d_{n}}{\sigma_{n}}+2 \lambda\left(u_{1} v_{2}\right) \lambda\left(v_{1} u_{2}\right) \operatorname{det} \Lambda\left(u_{3} \ldots u_{N} ; v_{3} \ldots v_{N}\right)
\end{aligned}
$$

At this point, we know that both solutions for the conductance on e_{1} are positive because the denominator is positive by Theorem 2.1.

The first value corresponds to the original conductance $a_{1} b_{1} / \sigma_{1}$. To see this, use Theorem 2.1 to rewrite $\frac{1}{2}$ the numerator as

$$
\begin{aligned}
& \prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}+\frac{a_{1} b_{1} c_{1} d_{1}}{\sigma_{1}^{2}}\left(\sum_{i=2}^{N+1} \prod_{j=2}^{i-1} \frac{c_{j} d_{j}}{\sigma_{j}} \prod_{j=i+1}^{N+1} \frac{a_{j} b_{j}}{\sigma_{j}}\right) \\
&=\frac{a_{1} b_{1}}{\sigma_{1}}\left(\sum_{i=1}^{N+1} \prod_{j=1}^{i-1} \frac{c_{j} d_{j}}{\sigma_{j}} \prod_{j=i+1}^{N+1} \frac{a_{j} b_{j}}{\sigma_{j}}\right)
\end{aligned}
$$

which is $a_{1} b_{1} / \sigma_{1}$ times $\frac{1}{2}$ the denominator.

6 Two Valid Conductivity Functions

In light of the preceding argument,
Theorem 6.1. The conductivities on Γ that produce a response matrix Λ are unique if and only if

$$
\prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}=\prod_{n=1}^{N} \frac{c_{n} d_{n}}{\sigma_{n}}
$$

if and only if

$$
\begin{aligned}
& \operatorname{det} \Lambda\left(u_{1} \ldots u_{N} ; v_{1} \ldots v_{N}\right) \\
& \quad=(-1)^{N+1}\left(\prod_{n=1}^{N} \sqrt{\lambda\left(u_{n} v_{n+1}\right)}+(-1)^{N+1} \prod_{n=1}^{N} \sqrt{\lambda\left(v_{n} u_{n+1}\right)}\right)^{2} .
\end{aligned}
$$

Proof. Both formulas are equivalent to setting the discriminant equal to zero. The first is obvious. For the second, we note that $A+D=\prod_{n=1}^{N} a_{n} b_{n} / \sigma_{n}+$ $\prod c_{n} d_{n} \sigma_{n}$ is positive and rewrite

$$
(A+D)^{2}-4(A D-B C)=0 .
$$

as

$$
A+D=2 \sqrt{A D-B C}
$$

or

$$
\begin{aligned}
& \operatorname{det} \Lambda\left(u_{1} \ldots u_{N} ; v_{1} \ldots v_{N}\right)+(-1)^{N}\left(\prod_{n=1}^{N} \lambda\left(u_{n} v_{n+1}\right)+\prod_{n=1}^{N} \lambda\left(v_{n} u_{n+1}\right)\right) \\
&=2 \prod_{n=1}^{N} \sqrt{\lambda\left(u_{n} v_{n+1}\right) \lambda\left(v_{n} u_{n+1}\right)} .
\end{aligned}
$$

Then we subtract the second term on the left hand side, and rewrite the new right hand side as a square.

Theorem 6.2. If this condition is not satisfied, then there are two valid conductivity functions.

Proof. We know there are exactly two valid quasi-conductivity functions. We only have to show that the both have all positive conductances. The preceding computations verified that this was true for e_{1}. But the argument did not rely on the specific ordering of the vertices. We can rotate all the indices counterclockwise by $1,2, \ldots, N-1$ and use the same argument to show that the two values on e_{2}, \ldots, e_{N} are positive. Then, since $\mu_{y}\left(e_{n}\right) \mu_{y}\left(e_{n}^{\prime}\right)=\lambda\left(u_{n} v_{n+1}\right) \lambda\left(v_{n} u_{n+1}\right)$, we know the two values for e_{n}^{\prime} are positive.

Theorem 6.3. If $\left\{a_{n}, b_{n}, c_{n}, d_{n}\right\}$ are the original conductances of the network, then the other valid conductance for e_{1} is

$$
\frac{a_{1} b_{1}}{\sigma_{1}}+\frac{\prod_{n=1}^{N} \frac{c_{n} d_{n}}{\sigma_{n}}-\prod_{n=1}^{N} \frac{a_{n} b_{n}}{\sigma_{n}}}{\sum_{i=1}^{N+1} \prod_{j=1}^{i-1} \frac{c_{j} d_{j}}{\sigma_{j}} \prod_{j=i+1}^{N+1} \frac{a_{j} b_{j}}{\sigma_{j}}}
$$

and similar formulas hold for the other edges.
Proof. Computation.

7 Characterization of the Response Matrix

Theorem 7.1. A response matrix Λ is a valid response matrix for Γ if and only if

1. Λ is symmetric and has row sums zero;
2. The diagonal entries are negative and the off-diagonal entries are nonnegative;
3. $\lambda\left(u_{n} u_{m}\right), \lambda\left(v_{n} v_{m}\right)$, and $\lambda\left(u_{n} v_{m}\right)$ are nonzero if and only if $n-m$ $\bmod N$ is 0,1 , or -1 ;
4. $\lambda\left(u_{n} v_{n+1}\right) \lambda\left(v_{n} u_{n+1}\right)=\lambda\left(u_{n} u_{n+1}\right) \lambda\left(v_{n} v_{n+1}\right)$ for all n;
5. $\operatorname{det} \Lambda\left(u_{K} \ldots u_{L} ; v_{K} \ldots v_{L}\right)>0$ for all $K \leq L<K+N-1$;
6. $\operatorname{det} \Lambda\left(u_{1} \ldots u_{N} ; v_{1} \ldots v_{N}\right)$

$$
\geq(-1)^{N+1}\left(\prod_{n=1}^{N} \sqrt{\lambda\left(u_{n} v_{n+1}\right)}+(-1)^{N+1} \prod_{n=1}^{N} \sqrt{\lambda\left(v_{n} u_{n+1}\right)}\right)^{2} .
$$

Proof. Suppose that Λ is valid. The first three statements are obvious. The fourth is a straightforward application of the quadrilateral rule. The fifth statment follows from Theorem 2.1. The sixth says that $A+D$ is positive and the discriminant is nonnegative.

Suppose conversely that Λ satisfies all these conditions, and I will show that there are two positive conductivity functions counting multiplicity which produce the response matrix Λ. The first four conditions show that the entries have the correct sign and satisfy one of the three quadrilateral conditions for each four-star. We only have to solve for $\mu\left(e_{n}\right)$ and $\mu\left(e_{n}^{\prime}\right)$ and show that the resulting values are positive.

The computations of Theorem 4.2 do not rely on the assumption that the response matrix is valid, so we can compute the coefficients A, B, C, and D for $g(y)$ using that theorem. Condition 5 guarantees that B and D are negative and C is positive. The sixth condition guarantees that $A+D$ is positive and the discriminant is nonnegative. Since D is negative, we know $A-D$ is also positive. Since the discriminant

$$
(A-D)^{2}+4 B C \geq 0
$$

and $B C<0$, we know $A-D>\sqrt{(A-D)^{2}+4 B C}$, and hence that there are two solutions which yield positive values at e_{1}. The same argument
will work for all the other edges because the conditions imposed on Λ were symmetric, so the two conductivity functions are positive everywhere.

References

[1] Edward B. Curtis and James A. Morrow. Inverse Problems for Electrical Networks. World Scientific. 2000.
[2] Jennifer French and Shen Pan. " 2^{n}-to- 1 Graphs."
[3] Jeff Russell. " \star and \mathcal{K} Solve the Inverse Problem."

