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Abstract

I reexamine the 2-to-1 network in [2], giving a new and complete
proof of their results. Using the determinant-connection formula, I
show that there are always exactly one or two valid conductivity func-
tions for any valid response matrix and give explicit formulas for the
solutions in terms of one of the conductivity functions. The conditions
for a unique solution and a symmetric characterization of the response
matrix are included.
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Figure 1: The network Γ with N = 6.
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1 Introduction

For definitions of graphs with boundary, electrical networks, the Kirchhoff
matrix, the response matrix, and k-connections see [1].

We consider a network Γ on a graph which is a loop of N four-stars.
Γ has boundary vertices u1, . . . , uN and v1, . . . , vN , and interior vertices
w1, . . . , wN . The nth four-star has central vertex wn and boundary vertices
un, vn, un+1, and vn+1 with indices reduced modulo N . For pictoral pur-
poses, assume Γ is embedded in an annulus with vertices u1, . . . , uN on the
inner circle and v1 . . . vN on the outer circle, and that the indices proceed
counterclockwise around the annulus.

Always assume N ≥ 3 and that indices are reduced modulo N (for
instance, vN+1 is the same as v1). The conductances of the edges will be
labeled

an = γ(unwn)

bn = γ(vnwn)

cn = γ(wnun+1)

dn = γ(wnvn+1),

and we let σn = an + bn + cn + dn.
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Figure 2: Γ with N = 6 after F-K transformation.
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Following the sign conventions for N -to-1 graphs, we assume the off-
diagonal entries of Λ are nonnegative and the diagonal entries are negative.
To avoid nested subscripts, we will denote the entry of Λ for vertices u and
v by λ(uv) (for instance, λ(u1v2)).

By a quasi-conductivity we mean a function defined on edges that allows
negative or complex “conductances.” A conductivity or a quasi-conductivity
is called consistent (with a given response matrix Λ) if it has Λ as its response
matrix.

We apply the F-K transformation described in [3] to the network, re-
placing each four-star with an electrically equivalent complete graph on four
vertices. The new network has a double edge between un and vn. We will
denote the single edges in these pairs, e1, . . . , eN and e′1, . . . , e

′
N . The index

corresponds to the index of the four-star to which the edge belongs (or to
the index of the wn); en is the edge between un and vn corresponding to
wn and e′n is the edge between un+1 and vn+1 corresponding to wn. All
other edges in the transformed graph will be named by the vertices at their
endpoints.

The conductivity function on the transformed graph will be called µ,
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Figure 3: Conductances on a four-star and the corresponding K4.
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and is given by

µ(unun+1) =
ancn
σn

= λ(unun+1)

µ(vnvn+1) =
bndn
σn

= λ(vnvn+1)

µ(unvn+1) =
andn
σn

= λ(unvn+1)

µ(vnun+1) =
bncn
σn

= λ(vnun+1)

µ(en) =
anbn
σn

µ(e′n) =
cndn
σn

λ(unvn) = µ(e′n−1) + µ(en).

The conductances satisfy the quadrilateral rule:

µ(en) · µ(e′n) = µ(unun+1) · µ(vnvn+1) = µ(unvn+1) · µ(vnun+1).

In fact, as shown in [3], any conductivity function µ on the transformed
graph which satisfies this condition corresponds to a conductivity function
γ on the original graph. Thus, specifying such a µ is a valid way to define
conductivities on Γ.
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2 The Determinant-Connection Formula

Minors of Λ are related to connections in the graph by the determinant-
connection formula (Lemma 3.12 of [1]). When considering a k-connection
α, we will write p 7→ q if a path of α connects p and q. If P = {p1, . . . , pk}
and Q = {q1, . . . , qk} are disjoint sets of boundary vertices, and α is a k-
connection between P and Q, then τα is the permutation of the symmetric
group Sk such that pn 7→ qτ(n) for each n. We let I be the set of interior
vertices, Iα be the set of interior vertices used in α, and Jα as the set of
interior vertices not used in α and letDα = detK(Jα; Jα). The determinant-
connection formula says that

det Λ(P ;Q) detK(I; I) = (−1)k
∑
τ∈Sk

sgn(τ)
∑
α

τα=τ

Dα

∏
e∈Eα

γ(e),

where the second sum is taken over all k-connections which exist between
P and Q.

We denote by Λ(uK . . . uL; vK . . . vL) the submatrix formed by rows uK ,
uK+1, . . . , uK and vJ , vJ+1, . . . , vK with indices reduced modulo N .

Theorem 2.1. For K ≤ L < K +N − 1,

det Λ(uK . . . uL, vK . . . vL) =
L+1∑

i=K−1

i−1∏
j=K−1

cjdj
σj

L+1∏
j=i+1

ajbj
σj

Proof. We consider the original form of the graph and apply the determinant-
connection formula.

First, we compute the possible permutations for a connection. Notice
that for each k, either uk is connected with either vk−1, vk, or vk+1, and the
same is true with u and v switched. I claim that uk 7→ vk for k = K, . . . , L.
First, consider uK . Since vK−1 is not one of the vertices under consideration,
either uK 7→ vK or uK 7→ vK+1. If uK 7→ vK+1, then vK 7→ uK+1. But
then the connections intersect. Thus, uK 7→ vK and repeating the argument
shows that uk 7→ vk for all k. Thus, the only possible permutation is identity.

Now we consider the possible connections. Start with uK and vK . One
possibility connects uK to vK through wK , which will we write uK → wK →
vK for short, and the other possibility is uK → wK−1 → vK . In the first
case, we must have uK+1 → wK+1 → vK+1 and continuing inductively uk →
wk → vk for all k. In the case where uK → wK−1 → vK , we have a choice
whether to connect uK+1 → wK+1 → vK+1 or uK+1 → wK → vK+1, so we
consider two subcases and repeat the process. In the end, the connections
we have are exactly the connections of the form
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• uk → wk−1 → vk for all k ≤ i,

• uk → wk → vk for all k ≥ i,
for some i between K − 1 and L+ 1.

Now we make some simplifications in the determinant-connection for-
mula. In our case, K(I; I) is a diagonal matrix with entries −σ1, −σ2, . . . ,
−σN because there are no interior-to-interior edges. Thus,

detK(I; I) = (−1)N
N∏
n=1

σn.

In each of the connections we computed, |Iα| = L − K + 1, so |Jα| =
N − (L−K + 1).

Dα = (−1)L−K+1
∏

wn∈Jα

σn.

Hence,

det Λ(uJ . . . uK , vJ . . . vK) =
∑
α

∏
wn∈Jα σn∏N
n=1 σn

∏
e∈Eα

γ(e)

=
∑
α

∏
wn∈Iα

1

σn

∏
e∈Eα

γ(e).

Evaluating the summands for each of the connections we computed gives
the desired formula.

Theorem 2.2.

det Λ(u1 . . . uN ; v1 . . . vN )

=
N∏
n=1

anbn
σn

+
N∏
n=1

cndn
σn
− (−1)N

N∏
n=1

andn
σn
− (−1)N

N∏
n=1

bncn
σn

.

Proof. By similar reasoning as in the previous theorem, there are four pos-
sible connections:

• uk → wk → vk for all k;

• uk → wk−1 → wk for all k;

• uk → wk → vk+1 for all k;

• uk → wk−1 → vk−1 for all k.

Applying the determinant-connection formula to these connections proves
the theorem.

6



3 Solving for Valid Quasi-Conductivities

In this section, we assume that Λ is a valid response matrix produced by
conductivities {an, bn, cn, dn}, and we determine whether there are any other
conductivity functions with response matrix Λ.

We begin with the transformed graph, whose original conductivity func-
tion is µ. We construct a possibly different quasi-conductivity function µy
by supposing that µy(e1) = y and using the quadrilateral rule to determine
µy such that it has Λ as its response matrix.

First off, we need

µy(unun+1) = λ(vnvn+1)

µy(vnvn+1) = λ(vnvn+1)

µy(unvn+1) = λ(unvn+1)

µy(vnun+1) = λ(vnun+1)

because the entries of the response matrix come directly from these conduc-
tivities.

By the quadrilateral rule, we need

µy(e1)µy(e
′
1) = µy(u1v2)µy(v1u2) = λ(u1v2)λ(v1u2),

and so

µy(e
′
1) =

λ(u1v2)λ(v1u2)

y
.

Then since we want λ(u2v2) = µy(e
′
1) + µy(e2), we need

µy(e2) = λ(u2v2)−
λ(u1v2)λ(v1u2)

y
=
λ(u2v2)y − λ(u1v2)λ(v1u2)

y
.

We will let g1(x) be the linear fractional transformation in the last equation,
that is, the function mapping µy(e1) to µy(e2) by the quadrilateral rule and
subtraction. Similarly, we let gn be the function mapping µy(en) to µy(en+1):

gn(x) =
λ(un+1vn+1)x− λ(unvn+1)λ(vnun+1)

x
,

so that
µy(en) = gn−1 ◦ gn−2 ◦ · · · ◦ g1(y).

If µy is a valid quasi-conductivity function, we need

µy(e1) = µy(eN+1) = gN ◦ gN−1 ◦ · · · ◦ g1(y).
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That is, y must be a fixed point of the LFT g(y) = gN ◦ gN−1 ◦ · · · ◦ g1(y).
Finding the fixed points means solving a quadratic equation (unless g

turns out to be linear!). Thus, to begin with, we know that there are prob-
ably either one or two possible conductances for e1, one of which is the
original conductance because it satisfies all the quadrilateral conditions we
used to construct g. Since all the other edges can be found in terms of e1,
we know there one or two valid quasi-conductivity functions, and we know
that one of them must be the original conductivity function. To know more,
we have to compute the coefficients for g.

4 Computing the Coefficients

The coefficients for g can be computed by matrix multiplication:

g(y) =
Ay +B

Cy +D
,

where (
A B
C D

)
=

1∏
n=N

(
λ(un+1vn+1) −λ(unvn+1)λ(vnun+1

1 0

)
.

In my convention, the indices of the product proceed from left to right (for
instance,

∏1
n=N Mn = MNMN−1 . . .M1). We can think of this formula as

specifying the recursion relation described in [2].
We will compute the coefficients A, B, C, D in terms of certain subde-

terminants of Λ. To do this, we need a basic fact about tridiagonal matrices:

Lemma 4.1. Let T be an m×m tridiagonal matrix. Then

detT = Tm,m detT (1, . . . ,m− 1; 1, . . .m− 1)

− Tm,m−1Tm−1,m detT (1, . . . ,m− 2; 1, . . .m− 2).

Proof. Use cofactor expansion on the last column of T . There are only two
nonzero entries. The entry Tm,m yields the first term. For the entry Tm−1,m,
apply cofactor expansion again to T (1, . . . ,m− 1; 1, . . . ,m− 2,m), noticing
that only one entry in the bottom row is nonzero.

Now we can prove
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Theorem 4.2.

A = det Λ(u1 . . . uN ; v1 . . . vN ) + (−1)N

(
N∏
n=1

λ(unvn+1) +
N∏
n=1

λ(vnun+1)

)
+ λ(u1v2)λ(v1u2) det Λ(u3 . . . uN ; v3 . . . vN )

B = −λ(u1v2)λ(v1u2) det Λ(u3 . . . uN+1; v3 . . . vN+1)

C = det Λ(u2 . . . uN ; v2 . . . vN )

D = −λ(u1v2)λ(v1u2) det Λ(u3 . . . uN ; v3 . . . vN ).

Proof. Let(
An Bn
An−1 Bn−1

)
=

1∏
j=n

(
λ(uj+1vj+1) −λ(ujuj+1) · λ(vjvj+1)

1 0

)
We know this definition is consistent over various indices because the bottom
row of each matrix is (1, 0). We want to compute A = AN , B = BN ,
C = AN−1, and D = BN−1.

First, we argue by induction that An = det Λ(u2 . . . un+1; v2 . . . vn+1)
for n = 1, . . . , N − 1. For the base case, we notice A0 = 1 (which is the
“determinant of the 0 × 0 matrix”) and A1 = λ(u2v2) = det Λ(u2; v2). For
the induction step, notice that for n = 1, . . . N−1, Λ(u2 . . . un+1; v2 . . . vn+1)
is tridiagonal; the other entries of the matrix are zero because there is no
connection through the graph from uj to vj+` or vj to uj+` if 1 < ` <
N −1. Then write out part of the 2×2 matrix multiplication and apply the
preceding lemma on tridiagonal matrices:

An = λ(un+1vn+1)An−1 − λ(unvn+1)λ(vnun+1)An−2

= λ(un+1vn+1) det Λ(u2 . . . un; v2 . . . vn)

− λ(unvn+1)λ(vnun+1) det Λ(u2 . . . un−1; v2 . . . vn−1)

= det Λ(u2 . . . un+1; v2 . . . vn+1).

This formula is not true for n = N , however, because Λ(u2 . . . uN+1; v2 . . . vN+1)
is not tridiagonal; it has nonzero entries λ(u2v1) in the last row, first column
and λ(u1v2) in the first row, last column. By the preceding argument, the
value AN is the determinant of the matrix we would get by removing the
non-tridiagonal entries.

Let

• P1 be the set of permutations τ with τ(uN+1) 6= v2 and τ(u2) 6= vN+1,
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• P2 be the set with τ(uN+1) 6= v2 and τ(u2) = vN+1,

• P3 be the set with τ(uN+1) = v2 and τ(u2) 6= vN+1,

• P4 be the set with τ(uN+1) = v2 and τ(u2) = vN+1.

These are a partition of SN which we can use to group the terms in the
determinant. The terms in the group for P1 add up to AN . For P2,
there is only one nonzero term,

∏N
n=1 λ(vnun+1). For P3, the only term

is
∏N
n=1 λ(unvn+1). For P4, the terms add up to

λ(u1v2)λ(v1u2) det Λ(u3 . . . uN ; v3 . . . vN ).

To complete the proof of the formula for A, simply notice that

det Λ(u1 . . . uN ; v1 . . . vN ) = det Λ(u2 . . . uN+1; v2 . . . vN+1)

by permutation of the rows and columns. The proof for C is also complete.
For B and D, the induction argument is similar, and there are no difficulties
with the final step.

5 Evaluating the Quadratic Formula

Knowing the formulas for the coefficients of g(y), we are ready to solve for
its fixed points, the solutions of

Ay +B

Cy +D
= y,

which are given by the quadratic formula:

A−D ±
√

(A−D)2 + 4BC

2C
.

We will evaluate this formula in terms of the original conductances. We
start by rewriting the discriminant:

(A−D)2 + 4BC = (A+D)2 − 4(AD −BC).
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By the matrix formula for g,

det

(
A B
C D

)
=

1∏
n=N

det

(
λ(un+1vn+1) −λ(unvn+1)λ(vnun+1)

1 0

)

=
N∏
n=1

λ(unvn+1)λ(vnun+1)

=
N∏
n=1

anbncndn
σn

.

By Theorem 4.2, A+D equals

det Λ(u1 . . . uN ; v1 . . . vN ) + (−1)N

(
N∏
n=1

λ(unvn+1) +

N∏
n=1

λ(vnun+1)

)
.

Notice that the last two terms are

(−1)N
N∏
n=1

andn
σn

+ (−1)N
N∏
n=1

bncn
σ2n

.

By Theorem 2.2, the determinant is

N∏
n=1

anbn
σn

+
N∏
n=1

cndn
σn
− (−1)N

(
N∏
n=1

andn
σn

+
N∏
n=1

bncn
σn

)
,

so A+D is
N∏
n=1

anbn
σn

+
N∏
n=1

cndn
σn

,

and the whole discriminant is(
N∏
n=1

anbn
σn

+
N∏
n=1

cndn
σn

)2

− 4
N∏
n=1

anbncndn
σ2n

=

(
N∏
n=1

anbn
σn
−

N∏
n=1

cndn
σn

)2

.

Applying the theorems again, we have A−D equal to

N∏
n=1

anbn
σn

+

N∏
n=1

cndn
σn

+ 2λ(u1v2)λ(v1u2) det Λ(u3 . . . uN ; v3 . . . vN ),
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so the two values for the numerator are

2
N∏
n=1

anbn
σn

+ 2λ(u1v2)λ(v1u2) det Λ(u3 . . . uN ; v3 . . . vN ),

2
N∏
n=1

cndn
σn

+ 2λ(u1v2)λ(v1u2) det Λ(u3 . . . uN ; v3 . . . vN ).

At this point, we know that both solutions for the conductance on e1 are
positive because the denominator is positive by Theorem 2.1.

The first value corresponds to the original conductance a1b1/σ1. To see
this, use Theorem 2.1 to rewrite 1

2 the numerator as

N∏
n=1

anbn
σn

+
a1b1c1d1
σ21

N+1∑
i=2

i−1∏
j=2

cjdj
σj

N+1∏
j=i+1

ajbj
σj


=
a1b1
σ1

N+1∑
i=1

i−1∏
j=1

cjdj
σj

N+1∏
j=i+1

ajbj
σj

 ,

which is a1b1/σ1 times 1
2 the denominator.

6 Two Valid Conductivity Functions

In light of the preceding argument,

Theorem 6.1. The conductivities on Γ that produce a response matrix Λ
are unique if and only if

N∏
n=1

anbn
σn

=

N∏
n=1

cndn
σn

if and only if

det Λ(u1 . . . uN ; v1 . . . vN )

= (−1)N+1

(
N∏
n=1

√
λ(unvn+1) + (−1)N+1

N∏
n=1

√
λ(vnun+1)

)2

.

12



Proof. Both formulas are equivalent to setting the discriminant equal to
zero. The first is obvious. For the second, we note thatA+D =

∏N
n=1 anbn/σn+∏

cndnσn is positive and rewrite

(A+D)2 − 4(AD −BC) = 0.

as
A+D = 2

√
AD −BC,

or

det Λ(u1 . . . uN ; v1 . . . vN ) + (−1)N

(
N∏
n=1

λ(unvn+1) +
N∏
n=1

λ(vnun+1)

)

= 2
N∏
n=1

√
λ(unvn+1)λ(vnun+1).

Then we subtract the second term on the left hand side, and rewrite the
new right hand side as a square.

Theorem 6.2. If this condition is not satisfied, then there are two valid
conductivity functions.

Proof. We know there are exactly two valid quasi-conductivity functions.
We only have to show that the both have all positive conductances. The
preceding computations verified that this was true for e1. But the argu-
ment did not rely on the specific ordering of the vertices. We can rotate
all the indices counterclockwise by 1, 2, . . . , N − 1 and use the same argu-
ment to show that the two values on e2, . . . , eN are positive. Then, since
µy(en)µy(e

′
n) = λ(unvn+1)λ(vnun+1), we know the two values for e′n are

positive.

Theorem 6.3. If {an, bn, cn, dn} are the original conductances of the net-
work, then the other valid conductance for e1 is

a1b1
σ1

+

N∏
n=1

cndn
σn
−

N∏
n=1

anbn
σn

N+1∑
i=1

i−1∏
j=1

cjdj
σj

N+1∏
j=i+1

ajbj
σj

,

and similar formulas hold for the other edges.

Proof. Computation.
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7 Characterization of the Response Matrix

Theorem 7.1. A response matrix Λ is a valid response matrix for Γ if and
only if

1. Λ is symmetric and has row sums zero;

2. The diagonal entries are negative and the off-diagonal entries are non-
negative;

3. λ(unum), λ(vnvm), and λ(unvm) are nonzero if and only if n − m
mod N is 0, 1, or −1;

4. λ(unvn+1)λ(vnun+1) = λ(unun+1)λ(vnvn+1) for all n;

5. det Λ(uK . . . uL; vK . . . vL) > 0 for all K ≤ L < K +N − 1;

6. det Λ(u1 . . . uN ; v1 . . . vN )

≥ (−1)N+1

(
N∏
n=1

√
λ(unvn+1) + (−1)N+1

N∏
n=1

√
λ(vnun+1)

)2

.

Proof. Suppose that Λ is valid. The first three statements are obvious. The
fourth is a straightforward application of the quadrilateral rule. The fifth
statment follows from Theorem 2.1. The sixth says that A + D is positive
and the discriminant is nonnegative.

Suppose conversely that Λ satisfies all these conditions, and I will show
that there are two positive conductivity functions counting multiplicity which
produce the response matrix Λ. The first four conditions show that the
entries have the correct sign and satisfy one of the three quadrilateral con-
ditions for each four-star. We only have to solve for µ(en) and µ(e′n) and
show that the resulting values are positive.

The computations of Theorem 4.2 do not rely on the assumption that
the response matrix is valid, so we can compute the coefficients A, B, C,
and D for g(y) using that theorem. Condition 5 guarantees that B and D
are negative and C is positive. The sixth condition guarantees that A+D is
positive and the discriminant is nonnegative. Since D is negative, we know
A−D is also positive. Since the discriminant

(A−D)2 + 4BC ≥ 0,

and BC < 0, we know A −D >
√

(A−D)2 + 4BC, and hence that there
are two solutions which yield positive values at e1. The same argument
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will work for all the other edges because the conditions imposed on Λ were
symmetric, so the two conductivity functions are positive everywhere.
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