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1 Laplace’s Equation

1.1 Existence and Uniqueness

A graph with boundary G is a triple, (V, E,I), where V is a set of vertices,
E C V xV is the set of edges, and I C V is a set of vertices designated
as interior. The remaining vertices B = V \ I are boundary vertices. We
assume the vertices are indexed by integers 1,..., N with the boundary
vertices listed first. We assume G is finite and connected and that B is
nonempty. An electrical network I' consists of a graph with boundary and a
conductivity function . For each directed edge p — ¢, v assigns a function
Ypg : R — R such that

® 7 is continuous and weakly increasing,

® Ypq(0) =0,

® Ygp(T) = —Ypg(—2).

A potential or voltage is a function u : V' — R. For a given potential,
the current function ¢ : E — R, defined on directed edges, is given by

L(p = 4) = Ypq (up — ug)).
The net current function J : V — R is given by
J(p) =Y up—aq).
q~p

Thinking of v and J as vectors in RY, we define Kirchhoff function K :
RY — RY by u — J. Clearly, K is continuous.

I will write u, = u(p) forp € V, and let 7y : RV — Rl and 7 : RV — R5
be the projections onto the interior and boundary vertices respectively. A
potential ¢ is called y-harmonic if J(p) =0 for all p € I or w;(J) = 0. The
Dirichlet problem is this: Given ¢ : B — R, does there exist a y-harmonic
function w such that wp(u) = ¢? The answer is proved in Theorem 2.4 of
[2], which I restate here with slight changes of notation.

Theorem 1 (Will Johnson). Let I' be an electrical network and suppose
¢: B —R.

(i) There exists a ~y-harmonic function u with u|gp = ¢.

(i) The current v is uniquely determined by ¢.



(1it) (Mazimum principle) u can be chosen so that max,cy |up| = maxpep |dp.

Condition (iii) below is not stated in the theorem, but the u constructed
in the proof satisfies this condition. Letting ||u||,, = maxpev |up|, we can
write this as |lul|, = ||¢]| -

Define the Dirichlet-to-Neumann map A : RV — RY by A(¢) = n5(J),
where J is the net current function for a solution to the Dirichlet problem.
This is well-defined by (ii).

1.2 Continuity and Convergence
Proposition 2. A is a continuous function of ¢.

Proof. Continuity at 0 follows directly from condition (iii) above. Indeed,
for ¢ € RB, let U(¢) be some solution of the Dirichlet problem satisfying
the maximum principle. Then U(0) = 0 and lims_,o U(¢) = 0. Since K is
continuous, A = K o U is continuous at 0.

For continuity at an arbitrary ¢y € R?, we use a translation argument.
Let ug be any solution of the Dirichlet problem. Define

Apg(T) = Ypq(uo(p) — uo(q) + =) — Ypg(uo(p) — uo(q));

it is easy to verify 7, satisfies the necessary conditions to be a conductance
function. Let U(¢) map to @ € RE to a solution of the Dirichlet problem
satisfying the maximum principle. Then for any ¢, ug + U (f — fo) is -
harmonic. To see this, let U = ﬁ(f — fo) and w = up + u. Then

J(p) = pq(u(p) — u(q))

=" ypa(uo(p) — uo(g) + lp) — Tlg))
= Z%q (ﬂ(p) - ﬂ(q)) + Z Ypq (Uo(p) — uo(q))
=0.

Also,
ulp = wo|B +ulBp = ¢o + ¢ — do = ¢.

Thus, u is a solution of the Dirichlet problem for v and ¢. Hence,
A(f) = K(u)lp = K (uo + U(6 — ¢0))|5-

Since U is continuous at 0, A is continuous at ¢q. O



Proposition 3. There exists a continuous U : RE — RV such that U(¢) is
a solution to the Dirichlet problem, mp(U(¢)) = ¢, and

1U(61) = U(#2)lloo = 1 = b2l -

Proof. Suppose first that the conductances are strictly increasing. Then
because the currents are uniquely determined by the boundary potentials,
the solution to the Dirichlet problem must be unique. Let UA(gb) be the
solution to the Dirichlet problem. For any ¢g, we can define U as above,
and then U(¢g) + ﬁ(gf) — ¢p) is a solution to the Dirichlet problem for ¢ and
hence U(¢) = U(¢o) + U(¢ — ¢o). By construction of U,

1U(6) = U0l = || 06 = 00)|_ = 6= d0l.c

which shows that U is continuous and establishes the desired estimate.

To remove our restrictions on 7,4, note that if f : R — R is continuous
and weakly increasing with f(0) = 0, then there is a sequence f, — f
uniformly on compact sets such that f, is C1, f,,(0) = 0, and f/ > 0. In
particular, we can take

z+1/n 1/n z
RN S
z—1/n -1/n n
The first term converges uniformly to f on compact sets by uniform conti-

nuity of f, the second term approaches zero and does not depend on z, and
the third term approaches 0 uniformly on compact sets. Also,

ﬁ@ﬁ:ﬂw+vm—f@—1my+%>u

For each 4, let v, be the sequence thus constructed. Let U, (¢)
be the solution to the Dirichlet problem for conductances v,,. Because
1Un(61) = Un(62) o < 161 — b2l and [Un(6)], < 0], the sequence
{U,} is equicontinuous and pointwise bounded. Therefore, by the Arzela-
Ascoli theorem, there is a subsequence {U,, } converging uniformly on com-
pact sets to a function U. If K, is the Kirchhoff function corresponding
to the conductances v,,, then K,, — K uniformly on compact sets. It
follows by an easy argument, which is included after the proposition, that
Ky, oUpy, — KoU uniformly on compact sets, which implies K (U(¢)) = 0, so
U(¢) is a solution to the Dirichlet problem. It also satisfies |[U(¢1) — U(¢2)|| . =
|1 — ¢2|, since each U, satisfies the corresponding estimate. O



Lemma 4. Suppose f, : R4 — R®% and g, : R — R® are continuous
functions R™ — R™. If f, — f uniformly on compact sets and g, — ¢
uniformly on compact sets, then g, o fn — go f uniformly on compact sets.

Proof. Let K C R™ be a compact. Then f,(K) is compact for each n and
f(K) is compact. In particular these sets are bounded by constants M,, and
M. There is an N such that n > N implies | f,(z) — f(z)| < 1forall z € K.
Thus, M, < M + 1 for all n > N. Let M’ = max{Mj,...,My_1,M + 1}.
Let B be the closed ball of radius M’. Then f,(K) C B for all n and B is
compact. Thus, g, — g uniformly on B.

Choose € > 0. Since g is continuous, it is uniformly continuous on B, so
there is a § such that |z —y| < ¢ implies |g(z) — g(y)| < €/2 for all z,y € B.
There is also an Nj such that n > N; implies |f,(z) — f(z)| < § for all
x € K, and an Ny such that n > Ny implies |g,(y) — g(y)| < €/2 for all
y € B. Then for all n > max{Ny, No} and all z € K, we have

|90 (fu(@)) — 9(f (2))] < lgn(fn(@)) — 9(fn (@) + |g(fn(2)) — g(f (2))].

Since f,(x) € B, we have |gn(fn(z))—g(fn(x))| < €/2. Since | fn(z)—f(z)| <
0 and f(x), fn(z) € B, we have |g(fn(z)) —g(f(z))| < €/2, which completes
the proof. ]

Theorem 5. Suppose that v and v° are conductances on a graph G and
An and Ag are the corresponding Dirichlet-to-Neumann maps. If v, — qu,
then A, — Ao uniformly on compact sets.

For the proof, we actually need v, — fygq uniformly on compact sets,
but this happens automatically as a result of the following lemma:

Lemma 6. Suppose g, and g are increasing functions R = R and g, — g.
If g is continuous, then the convergence is uniform on compact sets.

Proof. 1t suffices to show that the convergence is uniform on any compact
interval [a, b]. By multiplying g,, and g by a constant and translating, we can
assume g(a) = 0 and g(b) = 1. Choose € > 0, and k such that 1/2% < ¢/2.
By the intermediate value theorem, for j = 1,...,2¥, there exists a t; € [a, b]
such that g(t;) = j/2%. Then t; < tj+1 because g is increasing. Since there
are only finitely many values of j, we know |g,(t;) — g(t;)| < €/2 for all j
for n sufficiently large. Then if ¢ € [t;,t;41], we have

€ 1 e
0al0) < gnltyi) < glt50) + 5 = 0(t5) + o + < < g(t) e
and by a symmetrical argument, g,(t) > g(t) — €. So |gn(t) — g(t)| < € for
all t € [a,b]. O



I will also use the lemma

Lemma 7. Let f, : R — R%. If every subsequence of {f,} has in turn
a subsequence converging uniformly on compact sets to f, then f, — f
uniformly on compact sets.

Proof. Suppose that f,, does not converge uniformly to f on compact sets.
Then there is a compact set K, an € > 0, and a subsequence f,, such that
SUP,ex | fry, () —f(2)| > € for each k. Then {f,, } cannot have a subsequence
converging uniformly to f on compact sets. O

Now we complete the proof of the theorem:

Proof. Let K, and K be the Kirchhoff functions corresponding to the con-
ductances 7% and 4. Let Upn(¢) and Up(¢) be solutions to the Dirich-
let problem as in Proposition 3. Let {A,, } be a subsequence of {A,}.
Since {U,,} is equicontinuous and pointwise bounded, there is a subse-
quence {Unkj} converging uniformly on compact sets to a function Uy. By
Lemma 4, Knk]. o Unkj — Ky o Uy on compact sets, which implies that
m1(Ko o Up) = 0, so Up(¢) is y-harmonic. Hence, Ay = mp(Kp o Up), and
Ankj = WB(Knkj ) Unkj) — Ag uniformly on compact sets. O

1.3 Differentiation of A

In order to differentiate (i.e. linearly approximate) A, we need some basic
results about linear conductances. Suppose there are nonnegative constants
apg = agp such that

Vpq(T) = apqz.
Assume the vertices of G are indexed by integers 1, ..., |V| with the bound-
ary vertices listed first. Let A be the Kirchhoff matrix given by
Dok @ik i 1= 7,
(A)ig = § —ai if i~ j,

0 otherwise.
In this case, K (u) = Au and so the Jacobian DK (u) = A. Write A in block
form as
<ABB ABI)
A Anr)

where the first row/column deals with B and the second row/column deals
with 1. If Ay is invertible, then the Dirichlet problem has a unique solution.



Indeed, suppose ¢ € R and u is a solution for the Dirichlet problem. Write
u in block form as (¢, w)?. Then

K(u) = (ABB ABI) <¢> _ (ABB¢+ABIUJ>
A Arr ) \w Ao+ Anqw ) -
For the net current on the interior vertices to be zero, we need Arpo +
Arjw =0, and thus w = —A;}A 1B¢. Then the boundary currents are

A(¢) = Appo + Aprw = (App — A1 A} A1B)9.

The matrix Agp — ABIA;IIA[B is the Schur complement A/Aj;.

However, A is well-defined even if we allow a,, = 0 for some edges. It
must also be a linear map, as the reader can verify. In fact, let Z : (Rsg)? —
Mpyp be the map {apq}peer — A/Arr. Then Z extends continuously to
(R>0)F. If some of the a,,’s are zero, we define Z({ap,}) to be the matrix
of the Dirichlet-to-Neumann map of the linear conductances given by aq.
To see that = is continuous, suppose that for each pq, we have a sequence of
coefficients (an)pg — (a0)pg- Let A, and Ag be the corresponding Dirichlet-
to-Neumann maps. Then by Theorem 5, A,, — Ay uniformly on compact
sets. This implies that the matrices of A,, converge to the matrix of Ag in
each entry of the matrix.

Therefore, if a,; > 0 and some of the a,,’s are zero, we define A/Ar; =
E({apq}) even if the Schur complement does not exist in the traditional
sense. | will assume this definition in the rest of the paper.

Then for all linear conductances, DA(¢) = A/Arr = DK (u)/DKrr(u).
Actually, the formula holds in great generality. If the conductances are
differentiable, then the Jacobian DK is given by

. Dk Vi (w(@) —u(k)) if i =,
(DK)ij(u) = ou(j) =9 ~j (u(i) — u()) if i ~ 7,
0 otherwise,

and we have

Theorem 8. If each vy, is differentiable, then A is differentiable and
DA(¢) = DK (u)/DKrr(u),

where u is any y-harmonic function with T(u) = ¢.



Proof. Here, I assume ¢ = 0 and u = 0. The general case can be handled
by the same translation argument used in Proposition 2. We want to show
that DA(0) = DK(0)/DK 1(0).

For each edge pq, v, is differentiable at 0 and hence v,4(z)/2 extends
to a continuous nonnegative function on R. For any ~-harmonic u, define
linear conductances v* by

v (Up — Ug)
py = pqu p—u ey Vg (L) = ap .
p — Uq

Let A" be the corresponding Kirchhoff matrix, K, the Kirchhoff function
and Ay the Dirichlet to Neumann map. By construction,

Vpq(Up — ug) = ’Y;fq(“p — Ug).

Thus, u is y“-harmonic, and K(u) = K,(u). Also, Ay = limy, 0 A4, =
DK (0).

For ¢ € RB, let u = U(¢) be a solution of the Dirichlet problem such
that U is continuous. Because u is y“-harmonic and 7g(u) = ¢, we can
apply the formula proven above for linear conductances:

A(¢) = Au(9) = (A" /AY) 0.

As noted above, A"/A}; depends continuously on the coefficients a,,, which

depend continuously on u, which depends continuously on ¢. Therefore, A
is differentiable at 0 and

DA(0) = (A°/AY;) = DK(0)/DK(0). O
Corollary 9. If each vy, is C1, then A is C1.

Proof. Let U(¢) be a solution to the Dirichlet problem continuous in ¢.
Then DA(¢) = DK(U(¢))/DK1(U(¢)) is the composition of continuous
functions. O

Combining this with results of [1] and [2], we have
Corollary 10. Suppose ,q is differentiable and ~,,(x) > 0. Then
(i) DKrr(u) is invertible for all u € RY.
(i) For all ¢ € RB, the Dirichlet problem has a unique solution U(¢).

1
1) DU = _ , where DK is evaluated at U.
(i) (—DKHlDKIB)

8



() If ypq is C™, then U and A are C™.

Proof. (i) follows from noticing that DK (¢) is a Kirchhoff matrix for a set
of positive linear conductances on G, and then applying Lemma 3.8 of [1].
For (ii), note that by Theorem 1, the current across each edge is uniquely
determined by ¢. Since the conductance functions are strictly increasing, the
voltage drop across each edge is uniquely determined, and since the graph
is connected, the voltages are uniquely determined. To prove (iii), consider
the case ¢ = 0 and u = 0, and let v* be as in the previous theorem. Since

u is y“-harmonic,
1
u = _
(g 1a,)

by the results for linear conductances, and (iii) follows by the same reasoning
as above. Alternatively, (iii) can be deduced from the implicit function theo-
rem. (iv) follows from the previous corollary, (iii), and repeated application
of the chain rule. O

Remark. In fact, [1] shows that DK is symmetric and positive semi-definite
and every principal proper submatrix is positive definite. Actually, DK is
the Hessian matrix of a convex function. In the process of proving his
Theorem 2.4, [2] defines the pseudopower

Q(u) = quq(“p — ug), where gpq(z) = /05” Voq(t) dt,

p~q

and shows it is convex. The Kirchhoff function is the gradient of %Q, and
DK is its Hessian.

Remark. (iii) can be viewed as a nonlinear PDE which is satisfied by U.
Given a PDE with a similar form, we can show it has a unique solution using
Theorem 1 and Corollary 10.

2 The Inverse Problem

The inverse conductivity problem is to find the conductivity function of a
network I' given the graph and the Dirichlet-to-Neumann map. If this is
possible, then T" (or ) is said to be recoverable. To say that all linear con-
ductances are recoverable means that any linear conductance is recoverable
on the assumption that it is linear. In other words, no two linear conduc-
tances produce the same Dirichlet-to-Neumann map. The same definition
holds with “linear” replaced by “differentiable with positive derivative.”



The equations for DA and DU in Corollary 10 allow us to reduce the
inverse problem to the linear case in the following sense:

Proposition 11. Suppose that all positive linear conductances are recover-
able on a graph G. Let T’ be a network on G with differentiable conductances
Ypq such that v, (x) > 0 for all z. Then for each ¢, u = U(¢) and the as-
sociated current v are uniquely determined by A.

Proof. The fact that linear conductances are recoverable means that any
Kirchhoff matrix A for positive linear conductances on G is uniquely de-
termined by A/Aj;. In particular, for any f, we can determine DK (U (¢))
from DA = DK/DKj;. Knowing DK, we can compute DU using (iii) of
Corollary 10. U is uniquely determined by DU because U(0) = 0. Similarly,
for any edge pq,

L(p = q) = Ypg(up — uq), where u =U(f),

so differentiating with respect to ¢ yields
oulp = q ou ou
( ) / (Up o uq) < P ‘1)

96, M 96, 00
for each ¢ € B. The quantity on the right can be computed from DK and
DU. Therefore, t(p — ¢) is uniquely determined for each f. O

Unfortunately, this is not enough to guarantee recoverability. Suppose
we want to find 7,4(z0). If there is a y-harmonic function w such that
up — Uq = To, then the previous proposition guarantees that ¢(p), ¢(q), and
t(p — q) are uniquely determined by A. In that case, v,q(0) is also uniquely
determined. However, in some cases, there is no y-harmonic function with
up —Ug = To, as shown in [2] section 4, and this implies I' is not recoverable.

To guarantee recoverability, we need an additional hypothesis on the
graph.

2.1 Layerable Graphs

The inverse problem has been studied much more thoroughly in the linear
case. The typical approach is to determine conductance of a boundary edges
(edges between two boundary vertices) and boundary spikes (edges between
an interior vertex and a boundary vertex of degree one). Knowing the
conductances near the boundary, we can determine some interior voltages
and currents for y-harmonic functions, which in turn gives us information
about conductances deeper in the network.

10



Alternatively, after recovering the conductance of each edge, we can re-
move it from the graph and update the Dirichlet-to-Neumann map (although
this may not be feasible numerically for nonlinear conductances). A bound-
ary edge is deleted (simply removed from the graph). A boundary spike is
contracted. That is, if p is the boundary vertex and ¢ is the interior vertex,
the edge is removed and p and ¢ are replaced by a single boundary vertex
q’, which occupies the position of ¢ in the graph.

We call a graph G layerable if at has at least two boundary vertices and
there exists a sequence of graphs Gy = G, G1, ..., Gy such that

e (41 is obtained from G,, by deleting a boundary edge or contracting
a spike.

e In each G,, there are two disjoint paths from each interior vertex to
the boundary.

e G has no interior vertices and no edges.

We will prove that for layerable graphs, the inverse problem for nonlinear
conductivities reduces to the linear case. It is reasonable to assume the graph
is layerable because most known recoverable graphs are layerable. We need
the following lemma:

Proposition 12. Let I' = (G,~), where G is layerable and each ~ypq is
strictly increasing. Choose an edge 15 and a constant C € R. There exists a
~v-harmonic potential u such that u; — u; = xo.

Proof. G, be the smallest graph in the sequence described above which
includes the edge ij. We show there is a y-harmonic potential u” on G7,
with u(i) — u*(j) = xo, then we show that it can be extended to G _,
Gr_o, ....

Notice that ij is either a boundary edge or a spike of G. If it is a
boundary edge, then let u” be the solution of the Dirichlet problem with
ul(i) = x¢ and u*(k) = 0 for each other boundary vertex k.

If ij is a spike, assume without loss of generality that ¢ is the interior
vertex. By Theorem 9.4 of [2], the Neumann problem has a solution for any
boundary currents which add up to zero on each connected component of the
graph. By assumption, there exist two disjoint paths from ¢ to the boundary
of G, which implies that G4 has at least two boundary vertices in the
component which includes i’. Let r # ¢/ be a boundary vertex in the same
component as i’ of Gpy1. Let u*1! be a solution to the Neumann problem
on Gri1 with Jp1(#') = 7i5(20), JETH(r) = —7i5(20), all other boundary

11



currents zero, and u“t1(i') = xg. Then let u*(k) = u**1(k) for all k # j
and u”(j) = 0. This ensures J(i) = 0.

This completes the base case. Now suppose that there is a y-harmonic
function u,, on GG,,, and I will show it can be extended to a harmonic function
on Gn_1. If G,,_1 is obtained from G,, by adjoining a boundary edge pq, let
u (k) = u(k) for all k. J" !(k) will be the same as J"(k) except at p
and ¢, so u, is y-harmonic.

If G,,—1 is obtained from G,, by adjoining a spike pq where p is the
boundary vertex and ¢ the interior vertex, then let u"~1(k) = u™(k) for all
k # p,q, let w1 (q) = u"(¢), and let u" ' (p) = u"(¢') — 7,4 (J"(¢'))- This
ensures that J"~!(q) = 0.

By induction, we can extend u to all of G. O

Theorem 13. Suppose G is a layerable graph on which all positive linear
conductances are recoverable. If v is a conductivity with each ~ypq is differ-
entiable with y,, > 0, then (G, ) is recoverable.

3 The Heat Equation

If Kirchhoff’s current law is analoguous to Laplace’s equation, and if K
is analogous to the Laplacian, we obtain a natural analogue to the heat
equation by letting u vary with respect to a real variable t. Foru: I C R —
R, the (discrete nonlinear) heat equation is

du
'= K h = —.
u (u), where u 7

In this version, there is no distinction between interior and boundary ver-
tices, so it models insulated boundary conditions. For a more general ver-
sion, let ¢ : [0,00) — R and fix ug € RY with 7p(up) = #(0). Then
consider the initial value problem

mr(u') = —m(K(u)), 75(u)=¢, u(0)=ug

(homogeneous heat equation with boundary potentials). Let w = 7r(u),
wy = 77 (ug) and write u = (¢, w). Then we can rewrite this equation in the
form

w' = —7m(K(¢,w)), w(0)=wy,
which is simpler and has the advantage of not assuming in its notation that
¢ = mp(u) is differentiable. Finally, the inhomogenous problem is given by

w' =0 —m(K(¢,w)), w(0)=mwp,

where 6 : [0,00) — R! is a “forcing function” depending on t.

12



3.1 Maximum Estimates and Existence

I will show this equation has a unique solution whenever # and ¢ are con-
tinuous. But first, here is an estimate on the solutions, which is needed for
the proof of existence. This an analogue of the maximum principle in the
continuous heat equation.

Proposition 14 (Maximum estimate). Suppose ¢ is C', and let w be a
solution to the above equation on some interval [0,t] and w = (¢,w). Then

max  up(7) < max
(p,7)€V x|0,t] (p,7)e(Vx{0})U(Bx[0,t])

to
w(r)+ [ 100 o
Proof. Let

T = 8500 0= e im0
Clearly, f and g are increasing. Now we prove they are Lipschitz for ¢ in a
compact interval [0,#]. Since u is C*, it is Lipschitz on [0, ], so there is an
L such that |u,(s) —upy(t)| < L|s—t| for all p € V and s,t € [0, ]. Suppose
0 < s <t <ty Supposethat f(s) < f(t). There must be a (p,79) € V X (s,1]
with up(m0) = f(t). Note u(s) < f(s), so by the intermediate vallue theorem,
there is a 7 € [s, 79] with u,(m1) = f(s). Thus,

[£(t) = f(s)| = [up(10) = up(1)| < Lmo — 71| < Lt — 5.

If f(t) = f(s), then trivially |f(¢) — f(s)| < |t —s|. Thus, f is Lipschitz with
constant L. By similar reasoning, we see that ¢ is Lipschitz with constant
L as well.

This implies f and g are absolutely continuous; hence, they are differ-
entiable almost everywhere and the fundamental theorem of calculus holds.
Upon examining the definition of f and g, we see

0
£(0) = 9(0) = g(0) + /0 1600, dr.

Thus, if we prove f' < ¢’ + ||0]|,, wherever the derivatives exist, the lemma
will follow because

£() = £(0) + /0 f'< F0)+ /0 J+ /0 6]l = g(t) + /0 16

13



Fix 79 € [0,¢] and suppose f'(79) and ¢'(70) exist. Let M = f(79). Let
P={peV:uy(r) <M} (which may be empty). If p € V' \ P, then there
is an interval 19, 70 + 0p) in which u,(7) < M. If p € PN 1, then

(K (u(10)))p = D Wpa(up(0) = uq(70)) = 0,

q~p

SO
up(10) = Op(70) — (K (u(70)))p < 10(70) ]l — 0.

Thus, given € > 0, there is J, such that for 0 < h < dp,

up(10 + h) < up(10) + (up(70) + )b < M + ([[0(70)l| o + €)-
If p e PN B, then for h > 0,

up(70 + h) — up(70) = up(10 +h) — M < g(10 + h) — g(70)
because g(19) < f(79) = M. There is a 6, such that for 0 < h < 6,
9(m0 +h) = g(0) < (¢'(70) + €)h,

which implies

up(10 + h) < M + (¢'(10) + €)h.
Let ¢ be the minimum of the §,’s over p e V. = (V\ P)U(PNI)U(PNB).
Then using each of the three cases, we have for 0 < h < 4,

gy (70 + h) < max(M, M + (1000l + ), M+ (5 () + )h)
P

= M + [max([|0(70)| o » ¢'(70)) + €] .
This is also true if we replace h with any n € [0, h], which implies

f(ro+h) < M+ [max([|0(r0) o - g'(70)) + €]
= f(r0) + [max([|0(70) | - g'(70)) + €] .

Therefore,

F(70) = lim f(ro+h) — f(70)

h—0+ h

< max([|0(70) |l - 9'(70)) + €.
Taking € — 0 yields

f'(70) < max([|0(r0) | » 9'(10)) < g (70) + [10(70) o - M

14



Corollary 15.

to
min Up(T) > min Up(T) — 0(r dr.
(p,r)EV X[0,4] o )_(yﬂanwameﬂ)p() LA 1) loe

Proof. Symmetrical to the proof of the proposition. O

Corollary 16.

[w ()]l oo < max (Honw max H¢(T)HOO> +/O 10(7)]| oo -

0<r<t

Here ||-||, is the infinity norm on RV (or RB or RY) given by ||lul|, = maxpey up)|.
This follows from combining the proposition and corollary, unwinding the

definition of ||-|| ., and noting ||w(t)||, < maxo<r<¢ ||w(T)] - O

Theorem 17 (Existence). Let I' be an electrical network. Let 6 : [0, 00) —
R! and ¢ : [0,00) — R be continuous and wy € R!. There exists w :
[0,00) — R! satisfying

w =0 —n(K(p,w)), w(0)=wp.

Proof. First consider the case where each 7y, is C L with 71/%1 > 0, and ¢ is C.
Let S be the set of ty > 0 such that there exists a unique solution to the IVP
on [0,t9 + €) for some € > 0. [When I say “a unique solution on [0, ¢y + €),”
I mean that if we consider any other solution on [0,%;), the two solutions
must agree on the overlap [0,t9+¢€)N[0,¢1).] T will show S is nonempty and
it is both open and closed in [0, c0). It is open by construction.

To show 0 € S, note that K is C' and hence Lipschitz on compact sets.
In particular, 8 — 77 (K (¢, w)) is Lipschitz in w and continuous in (¢, w) in
a neighborhood of (0, wp). Thus, by the Picard-Lindelof theorem, there is a
unique solution to the IVP for ¢ in some interval (—e¢,€). So S is nonempty.

Since S must be an interval, to prove it is closed, it suffices to show that
[0,t9) C S implies tg € S. If [0,t9) C S, then for any ¢t < ty, there is a
solution w; defined on [0,t); by pasting these solutions together, we obtain
a unique solution w on [0,?y). Let

b(t) = mas ol s 106 ) + [ 106

0<r<

This is continuous on [0, 00) and independent of w, and |Jw(t)|| ., < h(t) for
t € [0,tp). This implies that w(t) is bounded on [0,¢y). Since K is bounded
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on bounded sets and 6 and ¢ are continuous on [0,0), w' = 0 — 7 (K (¢, w))
is also bounded. Therefore, w' is integrable on [0, ¢), and

t
lim w(t) = wo + lim [ w'(7)dr
t—ty t—ty, JO
exists. Thus, w extends to a continuous function on [0, to].
By the Picard-Lindelof theorem, there is 1 : (tg—e, to+¢) — R’ satisfying
W' =6 — WI(K(¢7 w))? ’LIJ(t(]) = w(tO)'

Let w = w on [0,%)) and W = @ on [ty + €). Then W is continuous and
satisfies the differential equation for t # ¢y, but by L’Hopital’s rule,

lim M = lim @/(t)
t—to t— to t—to
= lim (6(t) — w1 (K(¢,@(t))))

= 0(to) — m1(K (¢, W(to))),

so w is a solution on [0,ty + €), and it is easy to verify it is unique. Thus,
to € S as desired, and S must be [0, c0).

For each pg, let {v,,} be the sequence of C I conductances with positive
derivative converging to 7,, uniformly on compact sets, and let K, be the
corresponding Kirchhoff function. Let {¢,} be a sequence of C! functions
converging uniformly on compact sets to ¢. Then K, — K uniformly on
compact sets. For each n, there is a w,, satisfying

w), =0 — 7 (Kp(d,wy)), wn(0) = wo.

Let hy(t) be the function corresponding to 7y, and w,, given by the same
formula as h(t). Since ¢, — ¢ uniformly on compact sets, we know that

sup 6a()

1<n<oo

1<7<t
is finite for any t. It is increasing and in particular bounded on compact
sets. Thus, ¢g(t) = Supi<,<oo n(t) is finite, and it is bounded for ¢ in a
compact set. Since ||un(7)||o, < g(t), we know the ¢,’s and w,’s are uni-
formly bounded on compact sets. It follows that K, (¢, w,) is uniformly
bounded on compact sets, and so is w], = 0 — K (¢, wy,). So for any ¢, there
is an M(t) with |w],(7)| < M(t) for all 7 € [0,t] and n > 1. In particular,
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{wy,} is equicontinuous and pointwise bounded, so by the Arzela-Ascoli the-
orem, there is a subsequence {wy,, } converging uniformly on compact sets
to a function w. By Lemma 4, the composition Ky, (¢n,,wn,) = K(¢, w)
uniformly on compact sets, and hence

t

w(t) = wo + lim [ (6 —m7(Kn, (¢, wny))) = wo +/0 (0 — 71 (K (¢, w))),

k—o00 0

and by the fundamental theorem of calculus, w’ = 0—71(K (¢, w)) as desired.
O

Corollary 18. The solution constructed satisfies the estimates of Lemma
14, Corollary 15, and Corollary 16.

Proof. Let wy, be as above and u,, = (¢, wy, ), u = (¢, w). Since u,, — u
uniformly on compact sets, and each u,, satisfies the estimates, so does
Uu. ]

3.2 Difference Estimates and Uniqueness

1/a
Let flul, = (Spev lwpl?) " for a € [1,00) and Jull,, = maxper fu|

Observe that |lul|, is continuous in @ and limg—e0 |||, = [Ju/| o

Lemma 19 (First difference estimate). Suppose that w and @ : [0,00) — RV
satisfy
w' =0 _'}((¢71U)7 W' =0 _'}((¢7d»'

If a € [1,00], then ||w(t) —w(t)|, is a decreasing function of t.

Proof. Suppose 1 < a < oo. Let f(z) = |z|*. Note that f'(z) = a|z|* 'sgnz
is increasing, and f(0) =0 = f(0). Let
g(t) = [lw(t) =D flup(t) = @y(1)).

pel

Differentiate and apply v’ — @' = 0 — m(K(¢,w)) — 0 + 71(K (¢, w)) =
—mr(K(u) — K(u)):

J = %Zf(wp — ) = 3wy — )y — )

pel pel
= 2y — ) (K () — (K (@))y)-
pel
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We can take the sum over V rather than I because for p € B, f'(up —up) =
J'(¢p — ¢p) = 0. Then by definition of K,

g =- Z ' (up — ) Z(qu(up — Uq) — Ypq(lp — tg))

peV q~p
= —% Z (f’(up - fbp) - f’(uq - ﬁq)) ('ypq(up — uq) — 'qu(ﬂp — ﬁq)).
pgeE

Note that both f” and ~y,q are increasing, so f’(up, — tp) — f'(ug — tq) > 0 if
and only if u, — @, > uy — 4 if and only if u, — vy > 4, — 4 if and only if
Ypq(Up — Ug) — Ypq(Up — Ug) > 0. Thus, each term in the sum is nonnegative,
so ¢’ <0, and g is decreasing. Thus, ||w — @, = g%/? is decreasing.

The cases for « = 1 and a = oo follow by taking « — 1t and o — co. [

Theorem 20 (Uniqueness). There is at most one solution to
w' =0 —7m1(K(p,w)), w(0)=wo.

Proof. If w and @w are two solutions, then |w — ||, is decreasing. But
|w(0) —w(0)|l,, =0, so w(t) —w(t) =0 for all ¢. O

Suppose we have two solutions w and w with different initial data. Since
|lw — ||, is decreasing for all «, it has a limit as ¢ — co. Since this is true
for all values of «, it would be reasonable to suppose

Theorem 21. Suppose that w and o : [0,00) — RY satisfy
w =0-K(p,w), w=0-—K(pw0).
Then limy_, oo (w(t) — w(t)) exists.
To prove this, it suffices to prove the more general

Proposition 22. If u : [0,00) — R is continuous and lim; o |Ju(t)|
exists for all a, then limy_, o u(t) exists.

la

Proof. We first consider the case where u : [0,00) — A, where A = {x =
(T15. .., mp) ERT iy > 9 > -+ > 24 > 0}. Suppose limy_,o0 |Ju(t)||,, exists
for all a, and T will show limy_, o u(t) = ug for some ug € A.

Since |Ju(t)||,, converges, there is an M with ||u(t)||,, < M for all t. Let
S =An{x: ||z|, < M} which is compact. Since u(n) € S, there is a
subsequence {u(ng)} converging to a ug € S. Then

Jim [t} = T )| = ol
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Suppose for the sake of contradiction that u(t) does not converge to wug.
Then there is an € > 0 and a sequence t, — oo with ||u(t,) — ug|| > € for
all n. But then by compactness of S, there is a subsequence {t,, } such
that u(t,,) = v € S. If we can prove that v = wu, then we will have a
contradiction and the proof will be complete.

By definition of A, u; = ||ul|,, and v1 = |Jv||,, so u; = v1. For a # o0,

1 1
lu —wrer]l, = (Jull® —u$)™ = (Jo]|2 = o)™ = v — viea], ,

where e; is the standard basis vector for R¢. Then, taking a — oo, we

have [|u — equ1|,, = ||v — e1v1]|,- By construction, up = ||u — ejuq||,, and
vy = ||lv —ejv1| . Repeating the argument yields uz = vs and so on, so
that u = v.

Now I remove the restriction that w takes values in A. Suppose u :
[0,00) — R? is continuous and lim; o, ||u(t)|, exists for all a. For o in the
symmetric group Sy and 7 € {—1,1}%, let

la

Asr ={z cRe: [To)l = = [To@)) >0, 7(k)x) 2 0 for k=1,...,d}.

Then A, differs from A by a reflection and permutation of coordinates,
and R? = UU’T Ay 7. For any u € R?, we can find an @ € A such that
|@ll, = |lull, for all o, by changing the signs and permuting the order of
the coordinates of u. If u(t) is the point in A corresponding to wu(t), then
by the previous case, lim;_,o u(t) = ug for some uy € A. (The reader may
verify that @ is continuous.)

Let v1 = ug, and let vg,..., v, be all the points which differ from v,
by sign changes and permutations of the coordinates. We can choose € > 0
such that the open balls B(vj, €) are disjoint, and for each j,

B(’Uj,ﬁ) C U A(;’T.

b
v GAUJ—

There is an M such that [u(t) — ug| < € for all ¢ > M. This implies that
u([M,0)) is contained in (JiL; B(vj,€), but since u([M,00)) is connected
it must be contained in only one of the balls B(vj,e). If ¢ > M, and
u(t) € Agr, then v; € Ay, and since A, is congruent to A, we have
lu(t) — vl = [[U(t) — uol|loo- Thus, ||u(t) —vjl|,, — 0 ast— oo. O

Proposition 23 (Second difference estimate). Suppose

Cmi(u) =0 (K (), () = ¢~ m(K@), () = mp(0)
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Then
) = o) < (1-+ [0(0) = o)) esp [ 1(7) -
Proof. Fix a € (1,00), and let f(w) = |z|*. Let

g(t) = [Ju(t) Zf Up — Vp) Zf(up

peV pel
since mp(u) = 7p (v) Then
g = f(up—vy) =D [ (up = 0p) (B — (K () —
pel pel
== > [y — o) (K (w)), — )+ f(u
peV pel

since (K (v)) = 0 and f'(up — vp) = 0 for p € B. By the same reasoning

o dT.

— ()

as in the other lemma, the first term is less than or equal to zero. Thus,

g < Zf/(up —vp)(bp — &) < 10 — ¢l Zf,(up — Up)

pel pel
Note

f(x) = alz[* < amax(L, |[2|%) < a(l + f(z)),
so that

9 <10l Y all+ flup —vp)) = |6 = ¢ll (] + 9).

pel
Thus, ¢'/(I| + g9) < a(]|0 — ¢||)- Integrate from 0 to ¢:

og(1]+9(0))~og11-+9(0)) = [ g'“>)d7<a INGE

| +g(r

Let h(t) be the integral on the right. Then by exponentiation,

]+ g(t) < (] + 9(0))e*"®).
Recalling g(t) = ||u(t) — v(t)]|5, we have

lu(t) = v(@®)lly < 111+ g(t) < (1] + Ju(0) = v(0)]|3)e**®

Raising this to the 1/« and applying Minkowski’s inequality,

lu(t) = @), < (1+]]u(0) = v(O)]|2)/*® < (j1]Y*+|u(0) -

Taking o — o0,
lu(t) = v(#)lloe < (1 + [[u(0) = v(0)]o)e"®.
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