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1 Introduction

Definitions are explained in “Annular Networks: Preliminaries,” but some
of the most nonstandard definitions are repeated here.

In this paper, I consider annular networks without simply connected
lenses or lenses involving type 1 geodesics. I prove that geodesic elimination
can be used to remove all type 1 geodesics from the network. The problem
of recoverability is thus reduced to the case of radial networks (networks
with only type 2 geodesics).

The proof has three parts. First, we show how to construct an empty
boundary triangle at which one of the geodesics is type 1. Second, we show
how to recover the conductivity on the spike or boundary-to-boundary edge
corresponding to the triangle. Finally, we argue by induction that all type
1 geodesics can be removed from the graph.

2 Constructing an Empty Boundary Triangle

Definition 2.1. Suppose g is a type 1 geodesic in M , which does not form
a one-pole lens. Then g divides the annulus into two components. Let S(g)
be the component which does not include the hole. Let ĝ denote the arc of
the outer circle which lies along S(g). A geodesic h is said to lie inside g if
h 6= g and S(h) ⊂ S(g). These terms are not defined for any other geodesics.

Definition 2.2. g : h1, h2 means that the geodesic g intersects geodesic
h1 and immediately afterward intersects the geodesic h2. In other words,
“h1, h2” appears in the crossing sequence of g. If no orientation is specified
on g, g : h1h2 is equivalent to g : h2, h1.

Lemma 2.3. Suppose Γ is an annular planar network with at least one type
1 geodesic; suppose Γ has no type 0 geodesics and no simply connected lenses,
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and that no type 1 geodesic intersects any other geodesic more than once.
Then by motions of the medial graph we can transform Γ into a network
with an empty boundary triangle, such that at least one of the two geodesics
which form the triangle is type 1.

Proof. Assume without loss of generality that there is an outer-to-outer
geodesic and we wish to work on the outer boundary. The argument for the
inner boundary is exactly the same.

There exists an outer-to-outer geodesic g0 with no outer-to-outer geodesics
inside it. This is obvious and can easily be proved by contradiction. Sup-
pose there is no such g0. Then we can find an infinite sequence of geodesics
{gn} such that S(gn+1) ( S(gn). Clearly, gi 6= gj for any i 6= j, so this
contradicts the assumption that there are only finitely many geodesics.

Given this g0, let x be the left (further clockwise) endpoint of ĝ0. Let y
be the first geodesic endpoint reached by traveling clockwise from x along ĝ0.
If y is another endpoint of g0, then g0 does not intersect any other geodesics,
which is impossible. Thus, y is the endpoint of some other geodesic g1.

We know that the other endpoint of g1 does not lie on ĝ0. If it did, then g1
would either cross g0 twice (which contradicts our assumptions about lenses)
or else it would be an inner-to-inner geodesic inside of g0 (which contradicts
our choice of g0). By the Jordan curve theorem and our assumptions about
lenses, g1 must cross g0 exactly once.

I claim that we can make g0 and g1 form an empty boundary triangle
using Y -∆ transformations.

Let z be point where g0 and g1 intersect. Let T be the region inside
x̂y∪ x̂z[g0]∪ ŷz[g1]. Then every geodesic h which intersects T must enter at
a vertex on g0 and exit at a vertex on g1. It cannot exit along x̂y because
by construction there are no endpoints of geodesics there. Also, it cannot
enter along one of the g’s and exit along the same one because then it would
form a simply connected lens.

Let h1, . . . , hn be the geodesics intersecting T , oriented so that the pos-
itive direction of hj moves from the endpoint lying in x̂y to g1, then to g0,
and eventually to the other endpoint. Consider the crossings of hi and hj
which lie inside T . I claim there exist some hi and hj such that hi : hj , g0
and hj : hi, g0.

Orient g1 with the starting point at y. Let h1 be the last geodesic before
g0 in the crossing sequence of g1 that intersects any other geodesics within
T . Let p1 be the point where h1 intersects g0. Let h2 be the last the last
geodesic before g0 in the crossing sequence of h1, and let p2 be the point
where h2 intersects g0. We know that p2 ∈ p̂1z[g0]; this is because h1 was
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Figure 1: Construction of g0 and g1.
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Figure 2: Moving the crossings of h1, . . . , hn out of T .
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the last geodesic along g1 before g0 and because h2 cannot intersect h1 more
than once. Next, let h3 be the last geodesic along h2 before g0. By a similar
argument, we know p3 ∈ p̂1p2.

Suppose there are no hi and hj such that hi : hj , g0 and hj : hi, g0. Then
continuing inductively, we can create an infinite sequence of geodesics such
that ̂p2n−1p2n[g0] ( ̂p2n+1p2n+2[g0]. This is a contradiction because there
are only finitely many geodesics.

Therefore there is such an hi and hj , and we can legally move the crossing
of hi and hj across g0 and out of T . Then apply the above argument to the
remaining hn’s and move the next crossing out of T . Since there are only
finitely many crossings inside T , we will eventually move them all out of T .

At this point g0 comes immediately after g1 in the crossing sequence
of each hk. Therefore, we move the crossing of g0 and g1 across each hk
toward the outer boundary circle. Once we do this, g0 and g1 form an
empty boundary triangle.
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Figure 3: Moving the crossing of g0 and g1 toward the boundary.
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3 Recovering the Conductivity

Definition 3.1. Let G0 be the family of type 0 geodesics, G1 the family of
type 1 geodesics, G2 the family of type 2 geodesics. Let Go be the family of
outer-to-outer geodesics and Gi be the family of inner-to-inner geodesics.

Lemma 3.2. Let Γ and g0 be as in the previous lemmas. Let Y be the set
of medial cells along the inner boundary. Then Y = M \

⋃
g∈Go S(g).

Proof. Consider the network as embedded on the universal cover. Let Y be
the set of all cells on the whole upper boundary of the strip. Y is connected,
so by Will Johnson’s lemma, Y is the minimal intersection of half-planes
containing Y . All inner-to-inner and all type 2 geodesics are in I(Y ), so
B(Y ) ⊂ Go because Y is the intersection of half-planes. Y is the minimal
intersection of half-planes containing Y , and the half-planes S(g) for g ∈ Go
do not intersect Y , so Y = M \

⋃
g∈Go S(g).

Claim. Let X be the set of medial cells along the outer boundary that do
not lie in S(g0). Then X ∪ Y is connected.

The proof of this claim is complex enough that it will be broken down
into several lemmas. We consider the set W of cells lying along S(g0) which
are not in S(g0), and we prove that X ∪ Y is connected in the case when
W ⊂ X and the case where W 6⊂ X. The first case is easier:

Lemma 3.3. If W ⊂ X, then X ∪ Y is connected.
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Figure 4: Y = M \
⋃

g∈Go S(g). Not all geodesics are shown.
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Figure 5: Y , X, and W .
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Proof. Observe W ∪X = X. Also, W ∪X is a connected set, even when we
consider Γ as embedded on the universal cover and consider W and X over
the whole strip.

Suppose g is a type 2 geodesic. If g does not intersect g0 its vertex on
the outer boundary must lie on the complementary arc to ĝ0, so there are
cells in X on both sides of g; if g intersects g0, then there are cells in W
on both sides of g. Thus, every type 2 geodesic g is in I(X). Since X is
the intersection of half-planes, B(X) must only include g0 and inner-to-inner
geodesics. If X = M \ S(g0), we are done; otherwise, X includes at least
one cell along some inner-to-inner geodesic h. But we know that S(h) ⊂ Y ,
so there are cells c1 ∈ X and c2 ∈ Y such that c1 and c2 are adjacent. Thus,
X ∪ Y is connected.

We now have to prove that X∪Y is connected in the case where W 6⊂ X.
We will suppose X ∪ Y is not connected and show that there must be lens
involving type 1 geodesics. But before we can produce the lens, we need
several constructions.

Let x be a point on the lower boundary of the strip such that eix ∈ ĝ0.
Let X0 be the set of cells in X in the fundamental domain with real part
between x and x+2π. X0 is connected, so we know X0 is the intersection of
half-planes. X0 includes adjacent cells on both sides of every outer-to-outer
geodesic except g0. Therefore, B(X) contains only type 2 geodesics, inner-
to-inner geodesics, and g0. If B(X0) contains any inner-to-inner geodesics,
then we are done because X0 has cells adjacent to cells in Y . So suppose
B(X0) contains only type 2 geodesics and g0.

We assumed there are cells in W that are not in X. Let g00 be the copy
of g0 immediately to the left of X0. Let y be the right endpoint of g00. If C
is an oriented curve starting at y and moving along g00, it will eventually be
alongside a cell in W \X. Let c be the first cell in W \X. Then c is located
at a corner z of X0 because the cells on the other side of g00 are not in X.
At the corner, g00 meets another geodesic h01 along ∂X0, which must be type
2. Let C continue from the corner along h01. Then C has made a right turn.

Continuing similarly, we can construct a sequence of type 2 geodesics
{h0n} along ∂X0. At each step, we will add to C the segment of h0n lying
along ∂X0. At each corner, C must make a right turn because X0 has no
anticorners and lies to the right of C.

The sequence {h0n} cannot continue infinitely. We cannot have h0i = h0j
for i 6= j because ∂X0 must be a simple closed curve and at least part of
X0 lies along the lower boundary. Let h0N be the last type 2 geodesic in the

sequence, and let z be the endpoint of the segment of h0N lying along ∂X0; let
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Figure 6: Construction of {h0n} and C.
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w be the endpoint occuring later along C. If w lies on the upper boundary,
we are done because X intersects Y . If w lies on the lower boundary, then
it must lie on ∂X0; but this is impossible because the only corners of X0 on
the lower boundary are at the endpoints of g0. Therefore, w must lie on g0.

Specifically, w must lie on the copy of g0 immediately to the right of
X0, which we will designate by g10. It cannot lie to the left of h01 because C
makes only right turns. It cannot lie to the right of z along g00 because we
assumed c was the first cell in W that was not in X0. Since we showed there
was at least one type 2 geodesic intersecting g0 and since X0 is the minimal
intersection of half-planes containing X0, we know X0 cannot include any
cells farther right than g10. Therefore, C intersects g10 at z.

Orient the curves h0n with the starting point on the lower boundary and
the ending point on the upper boundary. Let U be the set of h0n’s such that
the orientations of h0n and C are the same on h0n ∩ C. Let V be the set of
h0n’s such that the orientations of h0n and C are opposite on h0n ∩ C.

Lemma 3.4. There is an integer K such that U = {h01, h02, . . . , h0K} and
V = {h0K+1, h

0
K+2, . . . , h

0
N}.

Proof. Suppose this is not the case. We know both U and V are nonempty
because h01 ∈ U and h0N ∈ V. Thus, there must be some J such that h0J ∈ V
and h0J+1 ∈ U . Let p be the point of intersection of h0J and h0J+1. Let qJ be
the endpoint of h0J on the upper boundary and let qJ+1 be the endpoint of
h0J+1 on the upper boundary. Let T be the region inside p̂q[h0J ]∪ p̂r[HJ+1]∪
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Figure 7: Construction of g̃ as in Lemma 3.6.
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q̂r. Let sJ be the endpoint of h0J on the lower boundary and let sJ+1 be
the endpoint of h0J+1 on the lower boundary. By construction, a segment of
ŝJp[h

0
J ] and a segment of ŝJ+1p[h

0
J+1] lie inside T . But this is impossible

because the we assumed h0J and h0J+1 do not form any lenses.

Lemma 3.5. For each h0k, let sk be the endpoint on the lower boundary.
Then sk lies to the left of sk−1 for k ≤ K, and sk lies to the right of sk−1
for all k > K.

Proof. This follows because of the orientation we chose for h0k, because C
makes only right turns, and because we assume h0i and h0j do not form a
lens.

Lemma 3.6. Suppose X ∪ Y is not connected. Then M has a lens of type
1 geodesics.

Proof. Let c be the cell in X0 at the corner where h0K and h0K+1 intersect.

Since we supposed X ∪ Y is not connected, c must not be in Y . Recall
that Y = M \

⋃
g∈Go S(g). Thus, there is some g̃ ∈ Go such that c ∈

S(g̃). Specifically, c is contained in S(g̃0). Since g̃0 has both its endpoints
on the lower boundary of the strip, we know that h0K must intersect g̃0

sometime after it intersects h0K+1 and h0K+1 must intersect g̃0 sometime
after it intersects h0K .

8



Figure 8: Setup of Lemma 3.8.
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Let pk designate the left endpoint of g̃k and qk its left endpoint. Since
we assume g̃0 only intersects each of the other curves once, we know that
the arc of g̃0 from p to the point where g̃ intersects h0K lies to the left of h0K .
Therefore, p0 lies to the left of sK , and by the previous lemma, p0 lies to
the left of s1. By a similar argument, q0 lies to the right of sN .

If p0 lies to the left of q−1, we know that g̃0 and g̃−1 intersect, which
implies that in the annulus g̃ forms a one-pole lens. On the other hand, if p0

lies to the right of q−1, we know that q−1 and p0 lie inside ĝ00, which implies
that g0 and g̃ form a two-pole lens in the annulus.

Lemma 3.7. X ∪ Y = M \ S(g0).

Proof. X ∪ Y = X ∪ Y . From the preceding lemmas, we know X ∪ Y is
connected, so X ∪ Y is the minimal intersection of half-planes containing
X ∪ Y , which is M \ S(g0).

Lemma 3.8. Let a be the cell of the medial graph in the empty boundary
triangle formed by g0 and g1. Let b be the cell diagonally opposite to a at
g0 ⊥ g1. Let e be the vertex of the medial graph between a and b. We can
determine the conductivity of e from the Dirichlet-to-Neumann map.

Proof. Let U = X ∪ Y . By the preceding lemmas, we know that b ∈ U .
Setting all (co)voltages to zero on X ∪Y will force the (co)voltage at b to be
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zero. At this point, all the (co)voltage data on the network are consistent
because they are all zero.

Consider {a} ∪ U where a is taken in a single period of the graph. By
a theorem of Will Johnson, U ∪ {a} is a nice extension of U ∪ {a} and
therefore setting the (co)voltage at a to some value x produces consistent
data on some part of the network. Obviously, if take a over all periods, we
still have consistent data. In fact, defining the (co)voltage at a determines
the (co)voltage over the whole network because U ∪ {a} has cells on both
sides of every geodesic. We therefore have a mixed problem with unique
solution.

We know the (co)voltage on a and b by construction and on the two cells
adjacent to both a and b because they are boundary cells. Therefore, we
can determine the conductivity of e.

4 Completing the Theorem

Definition 4.1. An annular planar network is called radial if all geodesics
in the medial graph are type 2.

Theorem 4.2. Suppose Γ is an annular planar network with no type 0
geodesics, no simply connected lenses, and no lenses involving type 1 geodesics.
Then Γ can be reduced by geodesic elimination to a (possibly degenerate) ra-
dial network.

Proof. If there is no type 1 geodesic, we are done. As long as there is a type 1
geodesic, the preceding lemmas show that we can find some conductivity and
uncross an empty boundary triangle. At each step, we will not create any
new lenses because we only used Y -∆ transformations and empty boundary
triangle uncrossings.

There are only a finite number of type 1 geodesics in the network and
each one has only finitely many geodesics intersecting it. Eventually, some
type 1 geodesic will have only one geodesic intersecting it. This corresponds
in the primal graph to a degree 1 boundary vertex with an edge connecting
it to another boundary vertex. We can easily find the conductivity on that
edge and delete the edge and the now disconnected vertex from the network.
In the medial graph, the corresponding geodesic will disappear.

By continuing to solve empty boundary triangles, we will eventually
eliminate all type 1 geodesics from the medial graph.

Corollary 4.3. To determine the recoverability of such a graph, we may
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delete all one-component geodesics and determine the recoverability of the
remaining graph.

Proof. The above theorem guarantees that any such network Γ can be re-
duced to a radial network Γ′. To prove the corollary, it suffices to show
that the two-component geodesics in Γ′ can be put back into their original
arrangement; that is, any switches in the crossings of the two-component
geodesics can be reversed. Supposing that the geodesic elimination pro-
ceeded in the manner given in the proof of the above theorem, this is obvious.
We never changed the crossing set of any two-component geodesics. Thus,
we can obtain the original arrangement of the two-component geodesics by
reversing all the Y -∆ transformations which involved only two-component
geodesics.

The above theorem and proof generalize to nonlinear conductivity func-
tions of the type described by Will Johnson in [2]. The argument was mostly
geometric and nowhere assumed the conductivities were linear.

5 Conclusion

The theorem guarantees partial recoverability for a wide range of annular
networks. Although the motions (corresponding to Y -∆ transformations)
will jumble the conductivities, the amount of information recovered is equiv-
alent to the number of crossings along the geodesics removed (the number
of edges in the primal graph).

The theorem simplifies the question of recoverability in a reasonably
general case, but more work is needed because we still do not understand
radial networks. Yet even this result required a combination of the most
powerful medial graph techniques invented for circular planar graphs. It
shows that, in some sense, the type 1 geodesics encapsulate the “circular
planar component” in the behavior of annular networks. Type 2 geodesics
and non-simply-connected lenses are new problems that will require new
techniques.
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