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1 Perfect Propagation

In radial networks, voltage-covoltage information on all of one boundary cir-
cle propagates completely and consistently to the whole network. If Γ has
no type 0 geodesics or self-intersecting type 1 geodesics, then perfect propa-
gation guarantees Γ is radial.1 This property can interfere with recovery by
making easy to overdetermine the network.

Theorem 1.1. Suppose Γ is a radial network with no simply connected
lenses. Then every mixed problem specifying complete Dirichlet and Neu-
mann data on one boundary circle has a unique solution.

Proof. Assume without loss of generality we want to specify data on the in-
ner boundary. Consider the medial cells in the universal cover of the annulus.
Let φ be a function on the upper boundary cells specifying voltage-covoltage
data with periodicity conditions consistent for the annulus. Choose a cell
c0 on the upper boundary and let cn be the nth cell to the right of c0. Let
X0 = {c0}. Assign the (co)voltage f(c0) to be φ(c0). Then X0 = X0 and
f specifies consistent data on X0. For n ≥ 1, let Yn = Xn−1 ∪ {cn}. Define
f(cn) = φ(cn) and extend f consistently on Yn; Will Johnson’s theorem
guarantees this is possible. Then let Xn = Yn ∪ {c−n} and extend f on Xn.

We show that for each cell c ∈ M , f will be defined and analytic at c
for n sufficiently large. Let S be the set of c and all cells sharing a side or
corner with c. Let D = {a < Re(z) < b,− logR < Im z < − log r} where
a and b are chosen so that S ⊂ D. Let F be the family of all geodesics
(in the universal cover) intersecting D. Choose n large enough that the

1This may be true when there are self-intersecting type 1 geodesics, but I have not
proved it.
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upper endpoints of geodesics in F fall within Xn. Since Xn is closed and
connected, it is the intersection of half-planes, but none of the geodesics in
F can form part of the boundary of Xn. Hence, Xn ⊃ D ⊃ S. Therefore, f
is defined on S for n sufficiently large, and it gives consistent data on S.

Take n→∞ and f will be defined and consistent on all of M . To show
that f defines a consistent function on the annulus, we only have to show
that the voltages and the differences in covoltages are periodic. For any cell
c, let c + 2π denote the cell in the next period. Let K be the difference in
covoltage from c to c + 2π for c on the upper boundary and let χ be the
characteristic function of the covoltage cells. Then f(c+2π) = f(c)+Kχ(c)
on the upper boundary. Since conductivities repeat periodically and the two
functions are equal on the upper boundary, they are equal on the geodesic
closure of the upper boundary, which is all of M . Thus, f is appropriately
periodic and defines a consistent voltage-covoltage on the annulus.

Theorem 1.2. Suppose Γ is an annular planar network with no type 0
geodesics, simply connected lenses, or self-intersecting type 1 geodesics. Sup-
pose that every mixed problem specifying complete Dirichlet and Neumann
data on one boundary circle has a unique solution. Then Γ is radial.

Proof. Suppose that G has a type 1 geodesic; assume without loss of general-
ity that it is an outer-to-outer geodesic. We will show there is a mixed prob-
lem that does not have a unique solution. Let g be an outer-to-outer geodesic
such that no other geodesic is fully contained in S(g). Every geodesic seg-
ment in S(g) has an endpoint on ĝ and exits S(g) somewhere along g. By the
same argument given in “Elimination of Type 1 Geodesics,” we can remove
all crossings out of S(g) by motions of the medial graph (these are electri-
cal equivalences which preserve the response matrix). In the transformed
medial graph, S(g) contains only a series of boundary cells.

Consider a mixed problem setting all (co)voltages to zero on the inner
boundary. We will construct multiple γ-harmonic functions satisfying these
boundary conditions. Consider functions with all (co)voltages set to zero
outside S(g). Let c1, . . . , cn be the cells in S(g) in counterclockwise order.
Assign an arbitrary (co)voltage x to c1. That will uniquely determine the
(co)voltage at c2, c3, and eventually cn, and since we moved in order across
the cells, we still have consistent data on the network. Thus, the mixed
problem has a one-parameter family of solutions.
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2 Determinants, Mixed Problems, and Connec-
tions

Definition 2.1. Define

Λii = Λ(∂iV ; ∂iV ),

Λio = Λ(∂iV ; ∂oV ),

Λoi = Λ(∂oV ; ∂iV ) = ΛTio,

Λoo = Λ(∂oV ; ∂oV ).

Theorem 2.2. Suppose Γ is an annular planar network. Every mixed prob-
lem specifying complete Dirichlet and Neumann data on one boundary circle
has a unique solution if and only if Λio is invertible.

Proof. Suppose every such mixed problem has a unique solution. Then for
any φ and ψ, there is a unique x satisfying Λiiφ+ Λiox = ψ. In particular,
this is true for φ = 0, which means that for any ψ, Λiox = ψ has a unique
solution. Thus, Λio is invertible.

If Λio is invertible, then Λiox = ψ − Λiiφ has a unique solution for any
φ and ψ. Similarly, Λoi is invertible and Λoix = ψ − Λooφ has a unique
solution. Once x is known, the voltage on the whole network is determined
because the Dirichlet problem has a unique solution.

Corollary 2.3. If Γ is radial, there is a connection between ∂iV and ∂oV .

Proof. It follows directly from the determinant connection formula.

Remark. The above results hold even for degenerate networks. If a medial
cell with a primal vertex in it touches both boundary circles, then it must be
counted on both boundaries. It is considered to be connected to itself.

Theorem 2.4. Suppose Γ is an annular planar network. Suppose P ⊂ ∂iV
and Q ⊂ ∂oV and |P | = |Q| = k, where k is odd. Let P be written in
clockwise order and Q in counterclockwise order. Then det Λ(P ;Q) ≤ 0 and
det Λ(P ;Q) < 0 if and only if there is a connection between P and Q.

Proof. The only possible permutations for a connection are of the form
τ(i) ≡ i + n mod k, where n is some integer. Since k is odd, all these
permutations are even. Let T be the set of all such permutations. By the
determinant connection formula,

det Λ(P ;Q) · detK(intV, intV ) = −
∑
τ∈T

∑
α:τα=τ

Dα

∏
e∈Eα

γ(e).
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All the terms inside the sum are positive and there is at least one term if
and only if there is a connection between P and Q.

Corollary 2.5. Suppose Γ is a radial network. Suppose P ⊂ ∂iV and
Q ⊂ ∂oV and |P | = |Q| = k, where k is odd. Let P be written in clockwise
order and Q in counterclockwise order. Then det Λ(P ;Q) < 0.

Proof. There is a connection between ∂iV and ∂oV . Thus, there must be a
connection between P and Q.

3 Geodesics and Connections

Lemma 3.1. Suppose Γ′ is obtained from Γ by geodesic elimination. Then
the maximum size k-connection between the inner and outer boundary is the
same for Γ and Γ′.

Proof. Geodesic elimination corresponds on the primal graph to Y -∆ trans-
formations, removing boundary-to-boundary edges on the same boundary
circle, removing boundary spikes, and deleting disconnected vertices. We
only have to show that these operations do not change the maximum size
k-connection between the two boundaries.

This is obvious for disconnected vertex deletion. Boundary-to-boundary
edges play no role in connections from one boundary circle to the other. If
a boundary spike is used in a k-connection, then 1-connection must pass
through the interior vertex of the spike, and that vertex cannot be used
in any other 1-connections. Thus, contracting the spike will not affect the
k-connections.

Now consider Y -∆ transformations. Let a, b, and c be the corners of the
Y , and let d be the central vertex. Suppose a k-connection uses the edge ab.
If a k-connection uses another edge, say bc, it cannot use the third; so we
can change the connection to use the ac rather than ab and bc. Thus, the
case where two edges are used reduces to the case where one edge is used.
If the edge ab is used and ac and bc are not used, then we can change the
Y to a ∆ and the new connection can use ad and db. It does not matter if
the connection used vertex c. To show that changing a ∆ to a Y does not
affect connections, we simply reverse the argument.

Theorem 3.2. Suppose Γ is an annular planar network with no simply
connected lenses, type 0 geodesics, or lenses involving type 1 geodesics. The
maximum size k-connection between the inner and outer boundaries is equal
to half the number of type 2 geodesics.
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Proof. Γ can be reduced by geodesic elimination to a radial network Γ′

(see “Elimination of Type 1 Geodesics”), which has a connection between
∂iV and ∂oV . The size of this connection is exactly half the number of
type 2 geodesics. The geodesic elimination does not change the number of
type 2 geodesics or the size of the maximum connection between the two
boundaries.

We can think of this theorem as a version of the cut-point lemma in
which the cut divides the inner boundary circle from the outer boundary
circle. For each boundary circle, the number of black cells is equal to the
number of reentrant geodesics plus the maximum size k-connection between
the two boundaries.
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