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Classical Transport in Disordered Media: Scaling and Effective-Medium Theories*
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Electrical conduction in resistor networks with all but a fraction p of the resistors re-
moved is studied as a paradigm of classical transport in disordered materials. A self-
consistent effective-medium theory provides a quantitative description of the model, ex-
cept in a small critical region, where the scaling law 0 fx (p -p, ) is satisfied (in three
dimensions), with p, the critical probability for bond percolation. It is also contrasted
with a critical-path analysis recently developed for the study of hopping conduction.

Classical limits have been invoked recently for
the study of electronic conduction in disordered
materials by authors" interested variously in
extended states just above a mobility edge, ' or
hopping conduction among localized states well
below. ' ' This Letter reports three new results
relating to the classical transport problems de-
fined in these limits:

(l) The conductivity of a Monte Carlo sampling
of disordered resistor networks has been com-
puted in order to resolve some current specula-
tion about classical transport near a percola-
tion' ' threshold. The results obtained should al-
so describe, by inference, the mobilities of the
extended electronic states of a disordered system
with energies close to that of a mobility edge. '

(2) An old effective-medium theory of conduc-
tion in mixtures' has been re-examined and gen-
eralized to treat resistor networks. It gives sur-
prisingly accurate predictions of the observed re-
sults under a wide range of conditions.

(3) A very different point of view from that of
(2) focuses not on the average properties of the
medium, but on the details of the critical paths''
along which much of the current must flow. This
analysis ean be applied to our networks as well,
but the quantitative accuracy obtained, even in fa-
vorable cases, proves inferior to that possible
with the effective-medium theory.

Several authors' recently have suggested that
the transport properties of an electron with ener-
gy E near a mobility edge E„or the low-lying
excitations of electrons in dense vapors, 2 could
be studied semiclassically by calculating the con-
ductivity of the region available for classically
allowed motion with energy E in an appropriate
random potential. If p(E) is defined as the frac-
tion of the volume which is allowed, a first ap-
proximation to the conductivity' is.(E) = .P(P(E)),

where P(p), the percolation probability, ' ' is the

fraction of the volume allowed but not isolated,
i.e. , lying in infinitely extended channels; and v,
has a value characteristic of large allowed re-
gions of the material. P(P), sketched in Fig. l,
is known to vanish for p less than a critical value

p„ falls sharply to zero as p -p,+, and tends to
P as P -1. E, is obtained from

P(E.) =P..

A generalization of (l),

o(E) =) (p(E))P(p(E)),

(2)

was introduced by Eggarter and Cohen' to take
account of scattering off the boundaries of the al-
lowed volume, but they argue that the effective
mobility p, (P) is nonzero near P„so that the crit-
ical behavior of ct(E) near E, should be that of
P(P (E)).
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FIG. 1. Conductivity of a simple cubic network of
conductances with binary disorder. Values of the con-
ductances are 1 (with probability P) and 0& & 1 (proba-
bility 1-P), assigned at random. Calculations for net-
works with 15&& 15 x 15 nodes (data points) and predic-
tions of the effective-medium theory described in the
text (soIid lines) are displayed for three values of 0.

2 as
labeled. p~ indicates the critical concentration for
bond percolation on this lattice. The dashed line is
proportional to P(P) (Ref. 7) and represents the pre-
diction of (1) for a.
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Last and Thouless, "however, have suggested
that p. (P) may vanish at P, because the rather
constricted and convoluted shape of the first cur-
rent-carrying regions to appear makes them in-
efficient conductors. The vanishing of g(P, )
would weaken the critical behavior of o(E). This
conjecture has been supported experimentally"
by a measurement of the conductance of a piece
of conducting paper with many small holes punched
in it.

In order to remove the restriction to two di-
mensions (2D) inherent in the work of Ref. 10,
and also to obtain a quantitative result, we have
evaluated numerically the conductivities of large
regular 2D square and 3D simple cubic networks,
in which the values of the conductances (the bonds
of the arrays) are chosen by a Monte Carlo pro-
cedure from one of several distributions. The
voltages v; at the nodes of each network, and
from them the total current flow for a fixed ex-
ternal applied voltage, mere obtained by a relax-
ation procedure based upon the Kirchhoff current
law. If 0;,. is the conductance of the link between
adjacent nodes i and j, the condition that all cur-
rents into node i cancel is

Q,o, , (v; —v, ) =0. (4)

Resistor networks provide a convenient dis-
crete model of a continuous medium whose con-
ductivity varies with position. In fact, the net-
work equation for currents, (4), is just the dis-
crete form of the usual condition on a static cur-
rent distribution, V' ~ j =0. Also, the bond perco-
lation properties of the arrays studied are accu-
rately known (P, = & for a square, and P, =0.25 for
a simple cubic lattice' ), while the percolation
properties of continuous regions are not.

Results obtained mith a binary distribution of

J, in which two values o, and 0, occur with
probabilities P and (1-P), respectively, are
shown in Figs. 1 (3D) and 2 (2D results) For.
each set of points, o, = 1 and o» taken to be less
than o„ is indicated. The lowest sets of data in
the two figures (0, =10 ') are to be compared with
the predictions of (1), (3), and Ref. 10. Like
Last and Thouless, "we find that the critical be-
havior of v near P, is not that of P(P) alone. In
both 2D and BD, 0 appears to increase quite slow-
ly just above p,. The points in the "toe" of Fig.
1, for p, -p-0. 4, were obtained from three dif-
ferent Monte Carlo samples, yet all satisfy the
scaling relation

o(p) (p -p.)"
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FlG. 2. Conductivity of a two-dimensional square
net of conductances with 25& 30 nodes, binary disor-
der. Other labeling conventions as in Fig. l.

very closely. The exponent in (5) is accurate to
at least + 5/p. No estimate of the scaling exponent
in 2D could be made.

One immediate consequence of the scaling be-
havior (5) is an apparent softening of mobility
edges. The 0, =10 ' data of Fig. 1 should be rep-
resentative of the energy dependence of the mo-
bility of states near the mobility edge in an amor-
phous semiconductor or chalcogenide glass, i.e. ,
a'(E) ~ (E E,)-' ' near E,. This will give an acti-
vation energy for electronic conduction decreas-
ing with temperature, as is generally observed
in chalcogenide glasses. " The scaling behavior
expressed in (5) may also be experimentally ob-
servable in photoconductivity measurements.

Effective mediu-m theory. The —straight-line
portions of the data for o, -0, in both Figs. 1 and
2, and all the points for which 0, and 0, were
comparable can be accounted for by an old self-
consistent effective-medium theory of conduction
in mixtures. ' The average effect of the random
o;, 's can be expressed by giving all of them a sin-
gle value 0, and choosing o such that the ef-
fects of changing any one conductance back to its
true value will, on the average, cancel out. The
procedure is physically analogous to the construc-
tion of a "coherent potential"" in the theory of
electrons in alloys.

Altering the value of a conductance aligned
along the electric field from o to 0, causes an
additional voltage Vp to be induced across op,

V, =V (o —0,)/[o, +(—,'z —l)o ], (6)

where V is the voltage drop between adjacent
rows far from O„and s, the number of bonds at
each node of the network, is 6 for the simple cu-
bic lattice and 4 for the square. If the o;, are
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distributed according to some distribution function p(o), the self-consistency condition for o js

0=(VQ = V„(do p(o)(o„—o)/[o+ (2z —l)o ].. (7)

The binary distribution, inserted into (7), yields a quadratic equation for o, with the root
S/'2..=((-.' P -1),.[-."(1-P)-1];7/(. -2). IE(-.

'
P -1)...[-: (1-P)-1];].2(. -2).,; /(. -2), (8)

which is plotted as the light solid lines in Figs. l
and 2. For the cases in which 0, and 0, axe com-
parable, agreement between (8), appropriately
normalized, and the observed conductivities is
surprisingly good. For a, «o„(8)predicts a lin-
ear decrease in o with decreasing p, with o go-
ing to o, at P = 3 for the simple cubic net, at P = &

for the square. The data appear to show this lin-
ear dependence in both Pigs. 1 and 2, except in
the critical regions.

Criti ca/-path analysis. —The effective-medium
theory is expected to work best when spatial fluc-
tuations in the current are relatively small. The
opposite limit, when most of the current is chan-
neled along the paths of least resistance, occurs
at low temperatures, in inelastic hopping conduc-
tion among localized states. The localized states
may be viewed as the nodes i of a random net-
work of conductances o;„with the conductance
linking any two states exponentially dependent on
the distance between them as well as on their en-
ex'gies. " Several authors ' ' have suggested that
at low temperatures the conductivity of such a
network, and its temperature dependence, may
be estimated by focusing attention on critical
paths, and characterizing them by a critical con-
ductance o,.

This may be defined by a simple construction,
due to Ambegaokar, Halperin, and Langer': The
conductances are all removed from the network
and replaced one by one, the largest first. The
value of 0;,. at which extended paths open up is o,.

Ambegaokar, Halperin, and I anger argue that
for a very broad distribution of o;,'s, as is ob-
tained at low temperatures, v may be expressed
as @=t- 'o„where the prefactor L ' is not deter-
mined, but should be less sensitive to the charac-
teristics of the distribution of o; s than is 0, it-
self. The temperatuxe dependence of o is thus
taken to be that of 0, alone, the prefactor adding
corrections of order lno, or less. This yieMs a
very simple and elegant derivation of the Mott
T ' law for conduction at low temperatures.

In an attempt to determine the region of validity
of the critical path analysis, we have calculated
conductivities of 30 simple cubic networks with
the 0;,'s distributed continuously. For a given
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FIG. 3. Conductivity of a simple cubic network of
15 nodes, with values of the conductances chosen at
random from the distributions P(0) indicated. In the
case II plot, both scales are logarithmic, and the crit-
ical conductance 0~ has also been plotted.

distribution, both o and, from (7), o' are easily
obtained.

In case I of Fig. 3, 0;, is distxibuted uniformly
over the interval (1 —A, 1+A) with the weight
factor P(o) = (2A) '. Since P, (SD) =0.25, o, = 1+—,'A

and incxeases, but the netwoxk conductivity is ob-
served to decrease, with increasing width of the
distribution. As shown ln Fig. 3 0' gives a
close underestimate to o for allA. , the error in-
creasing as A increases. Clearly, for this dis-
tribution, conduction is not dominated by the
paths of least resistance, and the percolation
analysis is irrelevant.

In case II of Fig. 3, a broad distribution more
suitable to the critical-path analysis is studied.
in@;, is distributed uniformly; the 0;,'s range
from A ' to A, with P(o) = (2o lnA) '. For this
distribution, o is determined by

2lnA=Sln[(A+2o )/A '+2o )]. (9)
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Solution of (9) for large A yields c = 2~2' ', while
o, =A' '. A plot of 0, o„and the numerical re-
sults for case II, given in Fig. 3, shows that 0
slightly underestimates the observed conductivi-
ty, by a greater amount than in case I. The data
points for large A. fall roughly on a straight line
in this log-log plot, with a slope closer to 3 than

1to ~.
The logarithmic distribution of case II arises

in a description of ionic transport by thermal ac-
tivation across barriers whose heights are dis-
tributed uniformly over a range + &F. about some
average E,. In this case, we can factor out the
average conductance, o', (T) o-exp(-E, /kT), and
identify inA = DE/kT, c /co(T) = & exp(+DE/3kT),
and cr,/oo(T) ~exp(+ AE/2kT) for low T. The ef-
fective activation energy &E/3, given by the ef-
fective-medium theory, is in agreement with the
calculated results of Fig. 3, while the prefactor

is too low by about 25%. The critical-path anal-
ysis gives too large an effective activation ener-
gy, and no information about the prefactor. We
conclude that the changes with T in the composi-
tion of the critical paths and the varying impor-
tance of currents along noncritical paths are suf-
ficiently great that v, (T) alone does not provide a
quantitative description of the conductivity, at
least for this simple example.

Discussions with D. J. Thouless, Morrel Co-
hen, and Vinay Ambegaokar are gratefully ac-
knowledged.
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It is shown that, in the cubic phase, the doubly degenerate I'&2 mode is the only long-
wavelength optical mode which is temperature dependent in the harmonic approximation.
However, it does not become unstable on cooling because it mould drive a shear acoustic
mode unstable first. The elastic constants are calculated by the method of 1ong waves.
Only Cgg -C)2 is temperature dependent. Its calculated values for Nb3Sn are in fair
agreement with experiment.

I have developed a method for the first-princi-
ples calculation of phonon frequencies in the in-
termetallic compounds of P-W structure in the
harmonic approximation. I have examined the
temperature dependence, in the cubic phase, of

the long-wavelength optical modes and of the elas-
tic constants, from which can be deduced some
knowledge of the existence and the nature of the
martensitic transformation in these compounds.

To calculate the electronic polarization which
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