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Abstract

We give parametrizations of the response matrix for graphs with k
spokes and n wheels. We generalize results found in Zhang’s paper for
spoked wheel graphs and extend his parametrizations for use in graphs
with an arbitrary number of wheels.

1 Introduction

The entries in the response matrix for a given graph are related to the structure
of the graph itself. For certain graphs, the number of entries in the response
matrix is greater than the number of edges in the graph. This led researchers
to investigate ways of parametrizing the response matrix for square lattices [1],
(4n + 1)-spoked wheel graphs [3], n × (n + 1) lattices [3], and general spoked
wheel graphs [4].

2 n-Wheeled Graphs

In this section, we discuss properties of n-wheeled graphs and of subdetermi-
nants of their response matrices.

Definition Consider a circular planar graph G. We define G to have k spokes
and n wheels if there are k rays in the graph whose endpoints lie on the inner and
outer wheels and if each ray intersects each of n wheels exactly once, as shown
in BLEHH. The set V = {∂V, V (int)} is the set of vertices on the boundary
and in the interior formed by all intersections of rays and wheels. The set
E = {∂E, E(int)} is the set of edges formed by all spoke- or wheel segments
between two adjacent vertices, where ∂E is the set of boundary-to-boundary
edges with two boundary vertices as endpoints. We define the boundary of
G to be ∂G = {∂V, ∂E}, which is the set containing boundary vertices and
boundary-to-boundary edges. We call G an n-wheeled graph.

In such a graph, there are
(
k
2

)
= k(k−1)

2 entries in the response matrix but
only k(2n− 1) edges in the graph (note that we consider only the entries in the
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response matrix above the main diagonal because of symmetry). This means
that we should be able to find a parametrization that specifies k(2n− 1) entries

in the response matrix and allows k(k−1)
2 − k(2n − 1) entries to be calculated

from the previously established parameters.

Claim The response matrix of a k-spoked and n-wheeled graph should be
parametrized with k(2n− 1) elements.

Lemma 2.1 All 2(n− 1) connections exist in an n-wheeled graph.

Proof The base case is provided by McCormick in [3] for n = 2. We proceed
inductively for cases where n ≥ 2.

Let (P ;Q) = (p1, p2, · · · , p2(j−1); q1, q2, · · · , q2(j−1) be a circular pair of bound-
ary vertices on a j-wheeled graph, where j = n+ 1. Without loss of generality,
assume that the vertices are ordered clockwise along the boundary in this way:
(p1, p2, · · · , p2(j−1), q2(j−1), q2(j−1)−1, · · · , q1).

We can always find disjoint paths from p1 to q1 and from p2(j−1) to q2(j−1)

using only interior vertices adjacent to the boundary. This means we are left
with the sequence (p2, · · · , p2(j−1)−1, q2(j−1)−1, · · · , q2), so that each set has
size 2(j − 1) − 2 = 2(n − 1). By the induction hypothesis, we know that all
2(n − 1) connections exist on an n-wheeled graph. It is straightforward to see
that such connections will also exist on an n+ 1-wheeled graph: each path from
a boundary vertex uses the interior vertex adjacent to it and then proceeds as
in the n-wheeled case. Moreover, the paths formed by the 2(n− 1) connection
are disjoint from the paths formed by the (p1, p2(j−1); q1, q2(j−1)) connection
described.

Therefore, 2(j − 1) connections exist on the j-wheeled graph, and by exten-
sion, all 2(n− 1) connections exist on n-wheeled graphs.

Remark Note that each interior wheel can accommodate a two-connection.
This provides an explanation for the 2(n − 1) form of the size of guaranteed
connections on an n-wheeled graph.

Theorem 2.2 Suppose Γ = (G, γ) is a circular planar resistor network and
(P ;Q) = (p1, p2, · · · , pk; q1, q2, · · · , qk) is a circular pair of sequences of bound-
ary nodes.

(a) If (P ;Q) are not connected through G, then det(Λ(P ;Q)) = 0.

(b) If (P ;Q) are connected through G, then (−1)k(detΛ(P ;Q)) > 0.

Proof This is proven by Curtis and Morrow in [2].

By Lemma 2.1 and Theorem 2.2, any determinant of Λ(P ;Q), where P ;Q)
is a circular pair with exactly 2(n − 1) boundary nodes on the graph, is not
equal to zero.

Lemma 2.3 Let (P ;Q) be a circular pair on a spoked wheel graph.
If det(Λ[p1,p2,··· ,p2n−1],[q1,q2,··· ,q2n−1]) = 0, then one of the entries in the (2n −
1) × (2n − 1) submatrix can be determined in terms of the other (2n − 1)2 − 1
entries.
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Proof If we compute the determinant using cofactor expansion along the row
or column containing our unknown entry, we can clearly see that each term in
the determinant is nonzero. This is because every entry in the response matrix
is nonzero and because every 2(n − 1) × 2(n − 1) submatrix has a nonzero
determinant (by Lemma 2.1 and Theorem 2.2). We can solve for our unknown
entry in terms of these quantities. As noted in [3], a subdeterminant of size
2(n− 1)× 2(n− 1) will always appear in the denominator, but we have already
guaranteed that this subdeterminant is nonzero. Therefore, the solution for the
unknown entry is unique and defined.

Definition Let i and j be two boundary vertices on a graph with k spokes
and n wheels. Without loss of generality, let i < j. We say that i and j are
neighbors if i+ 1 = j or i = 1 and j = k.

Lemma 2.4 Let (P ;Q) = (p1, p2, · · · , p2n−1; q1, q2, · · · , q2n−1) be a circular
pair of sequences of boundary nodes on an n-wheeled graph. None of the nodes in
P are neighbors of any nodes in Q if and only if there is no (2n− 1)-connection
between P and Q.

Proof If none of the nodes in P are neighbors of any nodes in Q, then there is
no (2n− 1)-connection between P and Q.

Let (P ;Q) = (p1, p2, · · · , p2n−1; q1, q2, · · · , q2n−1 be a circular pair of bound-
ary vertices on an n-wheeled graph. Without loss of generality, assume that the
vertices are ordered clockwise along the boundary in this way: (p1, · · · , p2n−1,
q2n−1, · · · , q1). We know that the 2(n− 1) connection through the circular pair
(P\{p2n−1};Q\{q2n−1}) exists and must use the vertices on the first interior
circle from p2(n−1) to q2(n−1). Both points in the circular pair (p2n−1; q2n−1)
lie between p2(n−1) and q2(n−1). Any path from (p2n−1 to q2n−1) must use the
interior vertices adjacent to both of these boundary vertices, but these interior
vertices already appear in a path in the 2(n − 1) connection. Therefore, the
paths are not disjoint, and no 2(n− 1) connection exists.

If there is no 2n− 1 connection between P and Q, then none of the nodes in
P are neighbors of any nodes in Q.

It suffices to prove the contrapositive. If one of the nodes pi in P is the
neighbor of one of the nodes qj in Q, then the path from pi to qj need not use
any interior vertices; it can use the direct boundary-to-boundary edge between
the two. This guarantees that none of the vertices used by the 2(n−1) connection
will be used by the (pi; qj) connection. Therefore, the paths of each connection
are disjoint and the 2n − 1 connection exists. By the contrapositive, if the
2n− 1 connection does not exist, then none of the nodes in P are neighbors of
any nodes in Q.
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3 Parametrizing n-Wheeled Graphs

3.1 Even Number of Spokes (k = 2m)

Here, we consider specifically the n-wheeled graphs with an even number of
spokes, where k can be written as 2m. This means that the response matrix
will consist of 2m columns and 2m rows. We partition the response matrix in
the following way: (

A B
BT D

)
Here, A, B, and D are m ×m blocks. Again, we need only determine the

entries above the main diagonal because of the symmetry of the response matrix.
The parametrization for an n-wheeled graph with 2m spokes is given as

follows:
• All entries aj,j+1 (these are the entries directly above the main diagonal),
• top 2(n− 1) rows of B,
• rightmost 2(n− 1) columns of B,
• a2n−1,k−2(n−1),
• upper right triangle in A with height and width 2n− 3,
• upper right triangle in D with height and width 2n− 3,
• entries aj,m−2n+3+j for a1,m−2n+4 through an−1,m−n+4,
• and BLAHHHH.

Essentially, this parametrization allows us to calculate unknown entries using
the fact that (2n − 1) × (2n − 1) subdeterminants are zero if no nodes in the
circular pair are neighbors. We will be able to use these calculated entries to
propagate information through the rest of the matrix. Note that the number of
parameters is equal to the number of edges in the graph (the check is left to the
reader).

Theorem 3.1 The parametrization given above completely determines every
entry of a response matrix for an n-wheeled graph with an even number of spokes.

Proof We can compute the remaining entries in B by using the (2n−1)×(2n−
1) subdeterminant that places the unknown entry in the bottom left corner.
Because none of the entries in this subdeterminant correspond to nodes that
are neighbors, we can solve for the unknown entry (by Theorem 2.2, Lemma
2.3, and Lemma 2.4).

We can compute the remaining entries in A and D in a similar way, again
by using the (2n− 1)× (2n− 1) subdeterminant that places the unknown entry
in the bottom left corner. However, the entries used in these subdeterminants
are not necessarily contiguous in the matrix. In A, they may “wrap around”
the top and bottom edges of the matrix to form a complete (2n− 1)× (2n− 1)
subdeterminant. In D, they may “wrap around” the sides.

Consider an entry λi,j in A, where i < 2n− 1, j > m− (2n− 1), the entries
directly above and to the right of λi,j are parameters, and λi,j is not a parameter.
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We claim that this entry can be calculated by placing it in the bottom left corner
of a (2n−1)×(2n−1) subdeterminant. We have already noted that rows of this
subdeterminant will “wrap around” the top and bottom of the matrix. In order
to calculate λi,j , each of the other entries in the subdeterminant must be known.
It is easy to see that all the needed entries in A and B are known because all
entries above and to the right of λi,j are parameters. We now have to examine
the entries in the “wrap-around” region of the subdeterminant. We know that
all needed entries in BT are present because we know all entries in B. If we want
to calculate λi,j , we must know the entries in a (2n− 1− i)× (2n− 1)− (m− j)
block in the bottom left corner of D. We know that these entries are parameters,
however, because by symmetry, these entries appear as the parametrized entries
mentioned above.

In this way, we can calculate all entries in A that have parameters directly
above them and to their right. Subsequently, we can propagate this information
down and to the left through A until we reach the above-diagonal parame-
ters. Note that for this submatrix, we also avoided using subdeterminants that
included neighboring nodes.

The same argument applies to D. Simply apply the subdeterminants that
“wrap around” the sides of the matrix rather than the top and bottom.

By symmetry, we can reflect these known entries over the main diagonal to
fill in all other entries, except those on the main diagonal. However, we can use
the fact that row sums of the response matrix are zero to solve for entries on
the diagonal.

Thus, all entries are able to be determined using the parametrization outlined
above.

Example Consider the specific parametrization of the response matrix for a
graph with 12 spokes and 3 wheels.

1-40. Parameters.
41. Calculated from detΛ(2, 3, 4, 5, 6; 8, 9, 10, 11, 12) = 0.
42-45. Parameters.
46. Calculated from detΛ(1, 2, 3, 4, 5; 7, 8, 9, 10, 11) = 0.
47-53. Parameters.
54. Calculated from detΛ(12, 1, 2, 3, 4; 6, 7, 8, 9, 10) = 0.
55-59. Parameters.
60. Calculated from detΛ(3, 4, 5, 6, 7; 9, 10, 11, 12, 1) = 0.
61-63. Parameters.
64. Calculated from detΛ(11, 12, 12, 1, 2, 3; 5, 6, 7, 8, 9) = 0.
65. Parameter.

66. Calculated from detΛ(4, 5, 6, 7, 8; 10, 11, 12, 1, 2) = 0.

Each calculated entry is found using the fact that 5 × 5 subdeterminants are
zero if no nodes in the circular pair are neighbors. To avoid using nonzero
subdeterminants, we did not use any subdeterminants containing the entries
directly above the main diagonal (entries 30-40) or the entry in the upper right
corner (entry 5). At times, this forced us to use determinants that “wrapped
around” the sides of the matrix (this occurred for entries 54, 60, 64, and 66).
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3.2 Odd Number of Spokes (k = 2m+ 1)

Here, we consider specifically the n-wheeled graphs with an odd number of
spokes, where k can be written as 2m+ 1. This means that the response matrix
will consist of 2m+1 columns and 2m+1 rows. For this reason, let us partition
the response matrix in the following way: A B D

BT C E
DT ET F


Here, A, D, and F are m ×m blocks. B is m × 1, E is 1 ×m, and C is a

single entry. As noted previously, we need only consider the entries above the
main diagonal and use symmetry to determine the remaining entries.

The parametrization for an n-wheeled graph with 2m+ 1 spokes is given as
follows:
• All entries aj,j+1 (these are the entries directly above the main diagonal),
• top 2(n− 1) rows of D,
• rightmost 2(n− 1) columns of D,
• a2n−1,k−2(n−1),
• top 2(n− 1) entries of B,
• rightmost 2(n− 1) entries of E,
• upper right triangle in A with height and width 2n− 3,
• and upper right triangle in F with height and width 2n− 3.

We use similar techniques as in the even case. Again, note that the number of
parameters is equal to the number of edges (the check is still left to the reader).

Theorem 3.2 The parametrization given above completely determines every
entry of a response matrix for an n-wheeled graph with an odd number of spokes.

Proof The proof for computing entries in D is identical to that for computing
entries in B in the even case.

Computing an unparametrized entry in B and E is similarly simple because
it can always be placed in the lower left corner of a (2n−1)×(2n−1) submatrix
whose determinant is zero.

The same argument for calculating entries in A and E applies as in the even
case.

By symmetry, we can reflect these known entries over the main diagonal to
fill in all other entries, except those on the main diagonal. However, we can use
the fact that row sums of the response matrix are zero to solve for entries on
the diagonal.

Thus, all entries are able to be determined using the parametrization outlined
above.

Remark
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3.3 Relationship to Zhang’s Work

3.4 Generalized n-Wheeled Graphs

Corollary 3.3 Let G be an n-wheeled graph. Consider vertices i and j ∈ ∂V ,
where i and j are neighbors and without loss of generality, i < j. If we delete
the edge between them, we can remove entry λi,j in the response matrix from
our list of parameters.

Proof If there is no edge between i and j, then any path between them uses an
interior vertex. By the proof of Lemma 2.4, we can see that the (2n−1)×(2n−1)
connection containing i and j (but no other neighboring vertices) does not exist,
and therefore, the determinant of the (2n− 1)× (2n− 1) submatrix containing
λi,j is equal to zero (by Theorem 2.2). Therefore, we can calculate λi,j (by
Lemma 2.3) and do not need to include it as a parameter.

Remark In a purely numerical sense, this result is logical because deleting an
edge removes one of the unknowns from the system and thus removes the need
for one independent parameter.

4 Further Research

References

[1] Edward B. Curtis and James A. Morrow. The Dirichlet to Neumann Map
for a Resistor Network. May 8, 1990.

[2] Edward B. Curtis and James A. Morrow. Inverse Problems for Electrical
Networks. World Scientific: New York, New York, 2000.

[3] Megan McCormick. Parameterizing Response Matrices. August 4, 2005.

[4] John Zhang. Parametrizing Response Matrices. August 12, 2012.

7


