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1 Introduction

In this paper I present a hodgepodge of ideas that I’ve had on infinite networks
since completing my thesis. This document is in a very rought state, and certain
aspects may be incorrect. I leave it the reader (and possibly myself in the future)
to sort out these ideas and or expand on them to get some real results.

We attempt to generalize the notion of a supercritical halfplanar network to
other networks which are nicely embedded in certain simply connected regions
of the plane. At the current moment I have hope that this could allow us to
recover certain infinite graphs embedded on surfaces by pulling the surface up
to its simply connected covering space. We could potentially answer questions
about extending functions on the finite embedded graph by extending cell sets
of subsets of certain infinite medial graphs.

2 Medial Graphs

In a previous paper, we discuss and prove many results about a type of infinite
network which we called supercritical halfplanar. We described these networks
as a nice generalization of critical circular planar. Here we present a slightly
broader generalization of critical circular planar.

Definition 2.1. Suppose that Ω ⊆ R2 is a smoothly embedded two-dimensional
submanifold of R2 with corners. If Ω is simply connected and has nonempty
boundary, then we will call Ω a superplane with boundary.

We should note that by our definition a superplane with boundary is a
closed subset Ω ⊆ R2 such that int Ω = Ω and ∂Ω consists of a union piecewise
smooth arcs (where a piecewise smooth arc is the image of a function γ : R→ R2

which is continuous on R, differentiable at all but a discrete set of points, has
nonvanishing derivative where it is defined, and has well defined, nonvanishing
left and right hand derivatives wherever it fails to be differentiable).

Examples of superplanes with boundary are the closed unit disk, the upper
half plane, an infinite closed strip in R2, and polygonal regions.

1



Definition 2.2. Let Ω be a superplane with boundary. Suppose that {gi}i∈I
is a collection of continuous functions with domains either [0, 1], [0, 1) or (0, 1)
or S1 such that the following conditions are satisfied:

• The functions gi are are all injective;

• The functions gi are all proper maps (i.e. the inverse image of a compact
set is compact)’

• The functions gi are all smooth with nonvanishing derivative and have
nonvanishing left and right derivatives at t = 0 and t = 1 if they are
defined there;

• Each point in R2 is in the preimage of at most two functions gi (i.e. at
most two curves can intersect at a point);

• If gi and gj intersect, then they intersect transversally (i.e. their deriva-
tives are linearly independent);

• If gi is defined at 0 then gi(0) ∈ ∂Ω. Similarly if gi is defined at 1 then
gi(1) ∈ ∂Ω.;

• if K ⊆ R2 is compact, then only finitely many gi have images which
intersect K;

• if t ∈ int dom g then g(t) ∈ int Ω.

If all of the above conditions are satisfied, then we say that {gi} is geodesic
system and that the curves gi are geodesics.

Definition 2.3. Suppose Ω is a superplane with boundary. we will define a
pseudo medial graph on Ω to be the collection closures of connected com-
ponents of Ω \

⋃
i gi (where we naturally identify gi with it’s image). If all of

the cells are compact and if the collection of cells is locally finite (any compact
subset of R2 intersects only finitely many of them) then we say that M is a
medial graph.

The closure of each connected component is called a cell and the cells which
intersect ∂Ω are called boundary cells. The set of cells will be denoted by M
and the set of boundary cells will be denoted by ∂M ⊆M .

Definition 2.4. A geodesic system {gi} which no loops, lenses or self inter-
sections is called pseudocritical. A pseudocritical geodesic system such that
all geodesics have domain [0, 1] is called supercritical. A medial graph M is
called pseudocritical (resp. supercritical) if it is induced by a pseudocritical
(resp. supercritical) geodesic system.

Intuitively a supercritical medial graph is one where all of the geodesics
have two endpoints on the boundary.
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We define corners, anticorners and degenerate corners exactly as in
the previous paper; a corner of a set X is where X contains a cell c adjacent to
a medial vertex v, but none of the other three cells adjacent to v; an anticorner
of X is a vertex v of the medial graph such that X contains three of the cells
adjacent to v but not the fourth; a degenerate corner of X is when X contains
exactly two of the cells adjacent to a vertex v, but these two cells are not
adjacent.

If a set X has no anticorners we say it is closed. By a Zorn’s lemma
argument, if X ⊆ M is a subset of a pseudocritical medial graph, we define
the intersection of all closed sets containing X to be its closure, written X. A
Zorn’s lemma argument shows that X can be written the union of a countable
increasing chain of sets, each of which is obtained from the previous by filling
in an anticorner. One observes that the intersection of closed sets is closed.

If g is a geodesic, then by the Jordan Curve Theorem g divides Ω into two
disjoint regions. Similarly g divides M into two disjoint sets of cells, which we
will call half planes. Half planes are obviously closed and hence intersections
of half planes are closed. We will define a set X ⊆ M to be convex if it is an
intersection of halfplanes. If X ⊆ M is any set of cells, we define X̃ to be the
intersection of all halfplanes that contain X.

Proposition 2.5. Let M be a medial graph induced by the geodesic system
G = {gi}i∈I . If X ⊆ M is a convex set, then X is itself a medial graph with
superplane Ω0 equal to the union of all the cells in X and geodesic system G0

equal to a subset of appropriate restrictions of the gi functions.

Lemma 2.6. Let M be a supercritical superplanar medial graph and let c ∈M .
If g1, . . . , gn are the geodesics neighborhing c and H1, . . . ,Hn are the half planes
formed by the geodesics g1, . . . , gn respectively which contain c, then

⋂n
i=1Hi =

{c}.

Proof. The intersection of half planes is connected (by induction), so it is suffi-
cient to show that none of the cells neighboring c are contained in

⋂n
i=1Hi. But

this is obvious by Jordan Curve Theorem nonsense since the geodesics adjacent
to c divide c from a cell neighboring cell.

Theorem 2.7. Let X ⊆ M be a finite connected subset of a supercritical
superplanar medial graph. Then X is contained in a finite submedial graph of
M . In particular X̃ is finite.

Proof. By definition, a finite submedial graph of M is just a finite convex subset
of M . Hence it is sufficient to show that X̃ is finite. Suppose that c ∈ X̃, i.e.
that if H is a half plane which contains X then H contains c. We first show that
some geodesic g which neighbors c must also neighbor a cell in X. Suppose this
were not the case, i.e. if all of the geodesics neighboring c did not also neighbor
a cell in X. then if Hg

c denotes the half plane bounded by the geodesic g which
contains the cell c, then for any geodesic g which neighbors c we would have
that X ⊆ Hg

c since by definition c ∈ X̃ and X̃ is the intersection of half planes
containing X. But this would imply that X ⊆ Hg

c for all geodesics g neighboring
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c. By Lemma 2.6 we would have that if g1, . . . , gn denote the geodesics bounding
c, that

X ⊆
n⋂

i=1

Hgi
c = {c}.

Since the theorem statement is trivial if X is empty, we can assume that X =
{c}, which is trivially a finite submedial graph.

Hence if c ∈ X̃, one of the geodesics neighboring c must also neighbor a cell
in X. Since X is finite, there are only finitely many geodesics which neighbor
cells in X. By supercriticality, each of these geodesics can only neighbor finitely
many cells. A finite union of finite sets is finite, and hence the set of cells which
neighbor a geodesic which neighbors a cell in X is finite. Since X̃ is a subset of
this set, it is in particular finite.

Corollary 2.8. Let X ⊆ M be a finite (not necessarily connected) subset
of a supercritical superplanar medial graph. Then X is contained in a finite
submedial graph of M .

Proof. For each pair of cells (c, c′) in X there is a path of cell Pc,c′ of cells in X.
Let Y be the union of the paths Pc,c′ . Clearly X ⊆ Y and Y is a finite connected

set. Applying the previous lemma shows that X̃ ⊆ Ỹ and Ỹ is finite.

We can actually modify the above argument to get a stronger result. First
however, we need to define something. Obviously this parallels the development
of the subject in Will Johnson’s paper.

Definition 2.9. If c and c′ are cells in a pseudocritical medial graph then define
d(c, c′) to be the minimal length of any path between c and c′.

Remark 2.10. Note that we can alternatively define d(c, c′) to be the size of
the smallest connected set of cells which contains both c and c′

We now prove a lemma that is verbatim a result from Will’s paper:

Lemma 2.11. The quantity d(c, c′) − 1 is equal to the number of geodesics
which divide c from c′.

Proof. We note that by the local finiteness of our geodesics, a simple argument
shows that only finitely many geodesics can divide c from c′.

Let P be a minimal length path. Let N denote the number of geodesics
which separate c from c′. Since P can only cross one geodesic at a time, we
know that d(c, c′) ≥ N+1. To construct a path of length N+1, simply proceed
by induction on the number of geodesics which divide from c from c′. (The
construction is identical to Will’s paper).

Corollary 2.12. In particular, any pseudocritical medial graph is connected
(every pair of cells can be connected by a path of cells).

Theorem 2.13. Let X ⊆ M be a finite connected subset of a pseudocritical
medial graph. Then X̃ is finite.

4



Proof. Let X be a finite connected subset of a pseudocritical medial graph M .
Since X is finite, there can only be finitely many geodesics g1, . . . , gn which are
adjacent to any cell in X. Suppose that c is a cell such that d(c, c′) ≥ n + 2

for any cell c′ ∈ X. We claim that this implies that c 6∈ X̃. Let c′ be any cell
in X. By the previous lemma, there are at least n+ 1 geodesics which divide c
from c′. In particular, there is a geodesic which divides c from c′ which is not
adjacent to any cell in X. Since X is connected, and g is not adjacent to any
cell in X, we know that g must divide c from X and hence c 6∈ X̃. Since there
are only finitely many cells in M of distance at most n + 1 from X, we know
that X̃ is finite.

Theorem 2.14. If M is a pseudocritical medial graph and X ⊆ M is a finite
subset which doesn’t intersect the boundary, then X has at least three corners.

Proof. By induction as in Will’s paper.

Theorem 2.15 (The Filling Lemma). The filling lemma applies to pseudocrit-
ical superplanar graphs.

Proof. Simply copy and paste from my previous paper.

Corollary 2.16. If X ⊆M is closed and connected then X̃ = X.

Proof. Copy paste.

Corollary 2.17. If X ⊆M is connected then X = X̃.

Proof. Even more copy paste!

3 Recovery

In general there is no known way to recover a general infinite pseudocritical
graph, even if it is embedded in the upper half plane. In a previous paper we
show how to recover supercritical half planar networks, and here we generalize
this slightly to supercritical superplane networks with a certain property:

Definition 3.1. We will say a superplane Ω has finite boundary if ∂Ω has a
finite number of components.

Definition 3.2. We will say that an electrical network is supercritical finite
superplanar if it is supercritically embedded in a finite boundary superplane.

Lemma 3.3. Suppose M is a supercritical finite superplanar medial graph em-
bedded in Ω and suppose that Ω is unbounded. Let F be one of the components
of the boundary. As discussed above F is the image of a continuous piecewise
smooth curve γ : (−∞,∞) → R2. There exist t0 and t1 such that t0 < t1
and two boundary components F0 and F1 such that if g is a geodesic with an
endpoint in the image of (−∞, t0) then the other endpoint of g is in F or F0,
and similarly if g is a geodesic with an endpoint in the image of (t1,∞) then
the other endpoint is on F or F1.
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Proof. This is a proof by induction on the number of boundary components.
The n = 2 case is obvious. If all geodesics on F return to F , then we are
done. Let g be an arbitrary geodesic with an endpoint on F and an endpoint
on another boundary component F ′. Consider the two half planes H and H ′

generated by g. Each of the other n − 2 components of the boundary must
completely be contained in one of the half planes H and H ′. Viewing H and H ′

as submedial graphs, we observe that each H and H ′ have no more than n− 1
boundary components. Let s0 denote the real number such that γ(s0) = g(0).
Without loss of generality, suppose that H is the half plane which contains γ(s)
for s > s0. Now the reader verifies that the boundary component of H which
contains this portion of F is parametrized piecewise by a restriction of γ, the
geodesic g, and a restriction of another parametrization for the other component
of the boundary which g intersects. Let γ′ bet the parametrization of this new
boundary component. By considering either large s or small s we can restriction
to the image of γ′ which is also in the image of γ. Without loss of generality
suppose that we can do this by considering small s. Since only finitely many
geodesics can cross g, by considering s small enough that γ′(s) never intersects
a geodesic which crosses g, we can now apply the inductive hypothesis to H,
with the boundary component in consideration being the image of γ′.

4 Cutpoint Lemma for Pseudocritical Networks.

Here we prove a version of the cutpoint lemma for infinite pseudocritical graphs.
We refer the reader to my thesis for the definition of a pseudocritical graph. We
include the additional assumption (which should be ever present) that all medial
graphs have the property that all cells are compact and that all edges of the
medial graph are also compact. The second assumption actually follows from
the first, assuming we have some other normality assumptions, but we won’t
concern ourselves with such pedantic nonesense.

As a historical note, one should recall that the Cutpoint lemma was first
proven for finite critical circular planar networks using a purely geometric argu-
ment. The argument appears in [1]. In my thesis, I gave an alternate proof using
special γ-harmonic functions on the network. This adapted to an argument for
the infinite case, yielding the cutpoint equality for supercritical graphs and the
cutpoint inequality for pseudocritical graphs. Here we present the cutpoint
equality for pseudocritical graphs using a geometric argument.

Let M be an infinite pseudocritical medial graph and let (x, y,R) be a
directed segment (using the notation from my thesis). This just means that
x < y and the points x and y lie on the real axis and R is the closed interval
[x, y]. Let b(R) denote the number of black cells completely contained in R. Let
r(R) denote the number of geodesics which have both endpoints in R. Finally
let m(R) denote the largest k such that there is a k-connection which respects
the cut R (or using the notation from my thesis, a k-flowout which respects R).

We will prove the cutpoint lemma for certain pseudocritical networks, namely
the connected ones with compact cells in the medial graph. We will first need
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several lemmas.

Lemma 4.1. Let M be a pseudocritical medial graph and suppose the parti-
tioned graph G is medially embedded in M . Let c be a compact dual cell in
M . If ∂c has either one or zero boundary arcs corresponding to closed intervals
of R, then all primal cell adjacent to a particular dual cell can be connected by
a path in G. If ∂c has more than one boundary arc corresponding to a closed
interval of R, then G is not connected.

Proof. Left to reader. See Figure 1.

Figure 1: An example of how the primal cells are connected to each other in
Lemma 4.1.

Corollary 4.2. Suppose G is a partitioned graph that is medially embedded
in the pseudocritical medial graph M . If G is connected and c is a compact cell
dual cell of M , then all primal vertices medially adjacent to c can be connected
to each other through a path of cells which are adjacent to c.

Lemma 4.3. Let M be a pseudocritical medial graph with compact cells and
the paritioned graph G = (∂G, intG) is medially embedded in M . Suppose
further that G is connected. Let F ⊆ M be any finite collection of cells which
contains a boundary cell. Then there is a path in G which avoids all primal
cells of F and which starts at some boundary vertex which is to the left of all
boundary cells in F and ends at a boundary vertex in G.

Proof. Let L be the set of vertices of G which can be connected to a primal
vertex of G (through a path through G) which is to the left of all boundary
vertices of F . Let R be the set of vertices of G which can be connected to a
primal vertex of G which is to the right of all boundary vertices of G. We will
show that R ∩ L must be nonempty. Let L denote the set of all primal cells
corresponding to vertices of L, taken along with the set of all dual cells which
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are adjacent to a cell in L and are not in F and not adjacent to any cells in F .
Define R similarly.

We will be done if we can show that R ∩ L is nonempty, so suppose to the
contrary that R ∩ L = ∅. We first claim that this implies R ∩ L is empty.
Suppose that there is a cell c in R ∩ L. Clearly c cannot be a primal cell, and
hence c must be a dual cell. But then c is a dual cell which neighbors a cell in
R and a cell in L. Since c does not neighbor any cell in F , and by Corollary 4.2,
we know that all primal cells neighboring c can be connected by a path which
is not in F .

Let F ′ denote the set of all cells which are in F or adjacent to a cell in F .
Let F denote the union of all cells in F ′ (as a subset of R2). Since each cell in
F ′ is compact and F ′ is finite, we know that F is compact. Since F is compact,
there is a path γ : [0, 1]→ H \F such that γ(0) is a boundary vertex of G which
lies in L and γ(1) is a boundary vertex of G which lies in R. Furthermore,
since the set of medial vertices is locally finite, we can assume that γ avoids all
medial vertices (we remind the reader that a medial vertex is the intersection
point of two geodesics). Also, by some differential geometry nonesense, we can
assume that γ is transverse to the set of geodesics with the geodesic vertices
removed (which is a smooth 1 dimensional manifold). This implies that the
inverse image of any geodesic is a discrete subset, and hence a finite number
of points. Hence a simple argument shows that this implies that if γ crosses a
geodesic at s0 ∈ (0, 1) then γ(t) is in the interior of a medial cell in an interval
(s0 − ε, s0) and in the interior of a different cell in an interval (s0, s0 + ε′) for
some ε and ε′. Define the set S =

⋃
c∈L c. Since S is a locally finite union of

closed sets, we know that S is closed. By continuity, the set

γ−1(S) = {t ∈ [0, 1] : γ(t) is in a cell in L}

is closed. Let t0 = sup γ−1(S) Since the above set is closed (since S =
⋃

c∈L c is
the union of cells in L is a locally finite union of closed sets and hence is closed,
and the above set is just γ−1(S). Since γ−1(S) is closed and bounded, it is
compact, and hence there is a maximum element, t0, of γ−1(S). Furthermore,
clearly we must have t0 < 1, since otherwise γ(1) would be a primal vertex which
is in both R and L. Now our transversality assumption implies that γ(t) is in
the interior of a cell c for t slightly less than t0 and that γ(t) is in a different cell,
c′ for t slightly larger than t0. Clearly c and c′ must be adjacent cells. Clearly
c ∈ L and c′ 6∈ L. If c is a dual cell, then clearly c′ is a primal cell. If c ∈ L,
then c is adjacent to a primal cell in L by definition, and hence by Corollary
4.2 there is a path from a cell in L to c′ which does not pass through any cells
in F , and hence c′ ∈ L. But this is a contradiction. Similarly if c is a primal
cell, then c′ is a dual cell which, by construction of F ′, is not adjacent to any
cell in F , and hence c′ ∈ L. But these are the only possible cases, and hence
we must conclude that the maximum value of γ is 1, which implies that there
is a primal vertex in L and R, which implies that there is a path of primal cells
through G from a boundary vertex to the left of all boundary vertices of in F
to a boundary vertex which is to the right of all boundary vertices of F . This
is exactly what we wanted to construct, so we are done.
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Lemma 4.4. Suppose M is a pseudocritical medial graph with compact cells
and F ⊆ M is a finite subset of cells and F contains a boundary cell in the
medial graph. Then there is a path of medial cells in M \ F from a boundary
cell which is to the left of all boundary cells in F to a boundary medial cell to
the right of all boundary cells in F .

Proof. Suppose F is a finite set of cells and let F denote the union of points
in R2 which are in cells in F . By assumption F is compact. Construct a path
γ : [0, 1]→ H such that γ(0) is to the left of any boundary cell in F and γ(1) is
to the right of any boundary cell in F and γ doesn’t enter any cell in F . By basic
theorems about transversality of manifolds, we can assume that γ doesn’t cross
any medial vertex (a point where two geodesics cross) and that γ is transverse
to the set of all geodesics. This last assumption implies that γ properly crosses
any geodesic that it intersects (i.e. if γ(t0) is a point on a geodesic, then γ(t)
is in the interior of a cell for t slightly less than t0 and γ(t) is in the interior
of an adjacent (but different) cell for t slightly larger than t0). The curve γ
determines a path of geodesic cells. The details are left to the reader, though
the reader should look at [5] for a background in transversality, or just ignore
the details since they are essentially irrelevant.

We now prove the cutpoint lemma for connected pseudocritical networks
with compact cells. The reader should familiarize themself with the argument
in [6] for finite networks since we are essentially just adapting that proof to the
infinite case. We construct a function φg for each reentrent geodesic and we con-
struct a map L which takes boundary voltages inside of our cut R to boundary
currents outside of R. We apply the rank nullity theorem of lineary algebra to
L and show that the functions φg span the kernel of L. In the supercritical case,
these functions φg span the kernel because of simple geometric considerations
(we just look at the geodesic closure of where a function in the kernel is zero).
Unfortunately we have to work a little harder in the pseudocritical case, but
everything works out in the end.

Theorem 4.5. LetM be a pseudocritical halfplanar medial graph with compact
cells and let Γ = (G, γ) be a connected electrical network embedded in M . Let
(x, y,R) be a directed segment. Then the Cutpoint Lemma is satisfied:

b(r) = r(R) +m(R).

Proof. Let X` denote the set of boundary cells to the left of R and let Xr denote
the set of boundary cells to the right of R. Let φ̃ denote a voltage and covoltage
function for φ defined on all of the cells of the medial graph, such that the
covoltage on X` is zero. By assummption we know that the covoltage on Xr is
constant (though a-apriori not necessarily zero).

We will show first that φ is zero except at finitely many vertices. To do
this, we will have to use Lemma 4.3 repeatedly. Let F0 be the set of primal
boundary vertices at which φ is nonzero or has nonzero current leaving. We now
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will proceed as in the [6]. Let v1, . . . , vn denote the boundary primal vertices
which are completely contained in the cut R. Let V be the n-dimensional vector
space of minimal functions φ such that φ|∂G is zero everywhere except possibly
on the set {v1, . . . , vn}. Let ∂G◦ denote the set of boundary vertices which are
completely contained in R \ R. Let VC denote the vector subspace of R∂G◦

consisting of ∂G◦-tuples of currents leaving vertices in ∂G◦ from functions in
V . Note that VC is finite dimensional and has dimension at most n. Now define
the map L : V → VC sending a minimal function φ ∈ V to the ∂G◦-tuple of
currents leaving the vertices in ∂G◦. Since V and VC are finite dimensional
vector spaces, we have that

dimVC = dim kerL+ rankL.

Notice that rankL equal to the maximum k-flowout which respects the directed
segment R. Furthermore, dimVC is just the number of black vertices completely
contained inside the cut R. Thus we have that

b(R) = dim kerL+m(R).

We now need to show that dim kerL = r(R). As shown in [6], each reentrant
geodesic determines a minimal function, and the set of these minimal func-
tions is linearly independent. Each of these functions is supported only inside
of the region bounded by a reentrant geodesic, and also as shown in [6], any
minimal voltage-covoltage function which is supported only on

⋃
g recurrentB(g)

is a unique linear combination of the functions above. Hence we have that
dim kerL ≥ r(R). Let g1, . . . , gm be the reentrant geodesics of the directed
segment R (hence m = r(R)).

Now suppose that φ̃ is a voltage-covoltage function in kerL which has finite
support on the medial graph. Let F be the set of cells where φ̃ is nonzero. By
Lemma 4.4,we know that there is a path P of cells in the medial graph from a
boundary cell that is to the left of all boundary cells in F , to a cell that is to the
right of any boundary cell in F . Define X = Xr∪X`∪P . Since X is connected,
we know by Corollary 2.17 that X = X̃. Since each reentrant geodesic divides
the half plane into two regions, exactly one of which is bounded, if gi is a
reentrant geodesic, we will let B(gi) denote the set of cells in the bounded
region determined by gi, and we will let U(gi) denote the unbounded set of cells

determined by gi. It is easy to verify that X̃ is equal to exactly
⋂m

i=1 U(gi). By

basic facts about γ-harmonic functions, we thus know that φ̃ is supported at
most on the set (

m⋂
i=1

U(gi)

)c

=

m⋃
i=1

B(gi).

By what we have shown, this would imply that φ is a unique linear combination
of the functions determined by our geodesics.

Hence to show that kerL = r(R), it is sufficient to show that all functions
in kerL have a voltage-covoltage extension which is finitely supported.
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We will now do this. Let φ ∈ kerL be a minimal function in the kernel
of L. By Lemma 4.3 there is a path from a boundary vertex v to the left of
R to a boundary vertex v′ to the right of R which and which avoids all of the
boundary vertices in R. A simple argument shows that we can assume that this
path passes only through the interior of the graph. By deleting cycles we can
assume that this path has no repeated vertices. This path determines exactly
two regions by the Jordan curve theorem, exactly one of which is bounded. The
bounded region will contain all boundary vertices with nonzero voltage. We
will consider the voltages on this path. Let S denote all of the vertices in the
bounded region (including those on the path P ). If all voltages on this path are
zero, then we consider the function ψ : V → R defined by

ψ(v) =

{
φ(v) if v ∈ S
0 ifv 6∈ S

.

A simple argument shows that ψ|∂G = φ|∂G and P (ψ) ≤ P (φ) and that P (ψ) <
P (φ) if any vertex in Sc has nonzero voltage. Since φ is minimal power, we
know that φ = ψ. Hence if all voltages along P are zero, then we will be done,
since φ will have finite support. Hence some vertex along P must have nonzero
voltage. We now perform the trick that we did in proving that certain maps
have nonzero determinant in [6]. Let v0 be the last vertex in P which has
voltage zero. Connected to this vertex must be a vertex of positive voltage and
a vertex of negative voltage by the local maximum principle. Construct paths
α1 and β1 as follows. Let α1 and β1 start along the path P until the vertex v0.
After v0, construct α and β inductively by picking the next vertex in α to be
the neighbor to the current vertex with the minimum voltage, and picking β1

to be the maximum. Hence α1 is a path of vertices with nonincreasing voltages,
which is strictly decreasing after v0. Similarly β1 is a path of vertices with
nondecreasing voltgages, which is strictly increasing after v0. Clearly α1 and β1

do not intersect after they diverge at v0, and furthermore a simple argument
shows that there are no loops in α1 or in β1 since the voltages are eventually
strictly decreasing or increasing.

We now claim that both α1 and β1 must terminate at a vertex on the
boundary. We will first show that at least one of the paths terminates on the
boundary. Suppose that neither do. Notice that the paths α1 and β1 determine
three regions of A1, A2 and A3, two of which contain boundary cells. Label the
regions as in the below Figure 2 (and possibly multiply φ by −1 to switch α
and β)

Now if we have this configuration, we just do the standard trick and define
ψ : V → R by

ψ(v) =


φ(v) if v ∈ A3

φ(v) if v 6∈ A3 and φ(v) ≤ 0

0 if v ∈∈ A3 and φ(v) > 0

.

A simple argument shows that φ|∂G = ψ|∂G and P (ψ) ≤ P (φ). Furthermore,
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Figure 2: The curves α1 and β1, assuming neither terminate, and the regions
A1, A2 and A3.

the reader checks that in fact P (ψ) < P (φ), contradicting the minimality of φ.
Hence at least one of α1 and β1 must terminate.

We now will show that both α1 and β1 must terminate. Suppose that
exactly one terminates. By possibly multiplying by −1 we will assume that α1

terminates but β1 does not. Since our graph embedding is locally finite, we
know that if we parametrized the edges and vertices of β1 as a topological path,
then that path would go to ∞. Hence we have the situation as in Figure 3.

Figure 3: The curves α1 and β1, assuming that α1 termiantes but β1 does not.

We note that by the maximum principle, every vertex in the region A1 must
have nonnegative voltage (define a function ψ by changing negative values to
zero in the region A1 and observe that it reduces power iff φ has a vertex of
properly negative voltage in A1). Now let F denote the set of all vertices in the
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path α1 or in the region A3 or in the cut R. Since F is a finite set of vertices,
Lemma 4.3 implies that there is a path P ′ from a boundary vertex to the left
of all boundary vertices if F to a boundary vertex which is to the right of all
boundary vertices of F . An argument involving planarity shows that this path
must cross a vertex of β1 which is not shared with α1. This implies that the
voltage along the path P ′ is not constantly zero. Consider the last vertex, v′

where the voltage is zero. It is possible that v′ is on the boundary, but by
assumption if v′ is on the boundary, then there is no current flowing leaving v′

(since φ is in the kernel of L). If v′ is an interior vertex, then we also would have
that the net current leaving v′ is zero. In all cases, v′ would have net current 0
leaving it. Since the voltages in A1 are nonnegative, we know the next vertex in
the path P ′ must have positive voltage. By the local maximum principle there
must also be a vertex of negative voltage adjacent to v′. But clearly all vertex
adjacent to v′ must have positive voltage (since adjacent vertices must be in A1

or be along β1). This is a contradiction and hence β1 must terminate.
We now observe that both α1 and β1 must terminate inside R, since the

only boundary vertices with nonzero voltages are inside R. Now apply Lemma
4.3 to get a path P2 which avoids α1, β1 and R which starts to the left of R
and ends to the right of R. Again we can assume that P2 has no repeated
vertices. Now if all vertices have zero voltage along P2 then we are done, so
assume otherwise. Construct α2 and β2 as above. An identical argument shows
that α2 and β2 must both terminate on the boundary. Now construct a path
P3 which avoids α1, β1, α2, β2 and R and which starts to the left of R,α1, β1, α2

and β2 and ends to the right of R,α1, β1, α2 and β2. Construct α3 and β3 as
above. They must terminate by the same argument. Keep constructing paths
αi and βi. Note that αi can never intersect βj if i 6= j. Let r(αi) denote the
last vertex of αi (as a real number), and define r(βi) similarly. Note that

r(α1) < r(β2) < r(α3) < · · · .

Since r(αi) and r(βi) are all vertices of R, and r(α1) < r(β2) < r(α3) < · · · ,
we know that eventually in constructing all of these paths αi and βi, we must
eventually exhaust all of the vertices in R. Whenever we construct a path Pi

as above which has a vertex with nonzero voltage, we will be able to construct
paths αi and βi, which must terminate. Since there cannot be infinitely many
paths of the form αi or βi since there are only finitely many vertices in R, we
know that eventually we will construct a path Pj of the above form which has
voltage zero along it. But, as we’ve already remarked, the existence a path Pj of
the above form which has voltage zero along it implies that φ has finite support.

By what we’ve said already, we know that this implies that φ is in the
span of the set of functions which are supported inside of a single reentrant
geodesic. The reader now verifies that this implies the statement of the cutpoint
lemma.
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4.1 Facts About Functions with Finite Support

We remark that the reader should pay close attention to the proof of the Pseudo-
critical Cutpoint Lemma (Theorem 4.5). There are several interesting corollaries
that we get immediately from the proof:

Corollary 4.6. Suppose M is a pseudocritical half planar medial graph with
compact cells and Γ = (G, γ) is an embedded electrical network. Then any
minimal function φ with finite support on the boundary of the network (both
voltage and currents equal to zero except at finitely many boundary vertices)
has support contained inside of the union of the bounded regions bounded by
reentrent geodesics. In particular, a network Γ as above has minimal functions
with finite support iff there exist reentrent geodesics.

The last statement of the above corollary was conjectured by Gracie Inger-
manson.

5 Well Connectedness

Here we begin a discussion of an property called well connectedness. The main
theorem, that a pseudocritical half planar graph with no reentrent geodesics is
well connected in a certain sense, was conjectured by Gracie Ingermanson. Her
work on the theorem proceeded by an uncrossing argument using the medial
graph. We will give a proof based on linear algebra using the techniques we
used to prove the cutpoint lemma.

Definition 5.1. Let Γ be a half planar electrical network. We will say that Γ is
circularly well connected if for all k-pairs A = (a1, . . . , ak) and B = (b1, . . . , bk)
of primal boundary vertices such that a1 < a2 < · · · ak < b1 < · · · < bk there
is a k connection from A to B. We will call such a k connection a circular
k-connection.

Definition 5.2. We will say that a half planar electrical network Γ is confor-
mally circularly well connected if it is circularly well connected and if for
all k-pairs A = (a1, . . . , ak) and B = (b1, . . . , bk) of primal boundary vertices
such that a1 < · · · aj < b1 < · · · bk < aj+1 < · · · ak for some 1 ≤ j ≤ k there is
a k-connection from A to B. We will call such a k-connection a conformally
circular k-connection.

Definition 5.3. Suppose M is a pseudocritical half planar medial graph with
compact cells and suppose that Γ = (G, γ) is medially embedded in M and that
M has no reentrent geodesics. Then we will say that Γ is an ultralattice.

Lemma 5.4. Let Γ be an ultralattice and let A = (a1, . . . , ak) be a collection
of k primal boundary vertices such that a1 < · · · < ak. Let c be an arbitrary
primal boundary vertex such that c < a1 and let L be the collection of all primal
vertices to the left of c (and including c). Then there is a k-connection from A
to L.
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Proof. We proceed in the only way imaginable. Define the map L : RA → RL

which sends an A-tuple v of real numbers to the L-tuple of currents leaving the
vertices of L from the minimal function which has boundary values v on A and
is zero everywhere else on the boundary. By a theorem in [6], it is sufficient to
show that L is full rank. Let V denote RA and let C denote the image of L
in RL. With a slight abuse of notation, we will now write L as a map from V
to C. To show that L is full rank, we just need to compute the kernel of L.
Specifically we will show that the kernel of L is just 0. Let φ be in the kernel
of L. By Corollary 4.6, if we can show that φ has finite support, then we will
know that φ = 0 since M has no reentrent geodesics.

Hence we will just show that φ has finite support. Let F0 be the set of all
primal boundary vertices between c and ak. By Lemma 4.3, there is a path
P1 in G from some boundary vertex in L to some primal boundary cell to the
right of F0 which passes only through the interior of G. Now let F1 denote
the union of F0 and all vertices in this path. Apply Lemma 4.3 to get another
path P2 from a boundary vertex in L to the left of all primal vertices in F1 to
some primal boundary vertex to the right of F1. Continue in this manner and
construct k disjoint paths P1, . . . , Pk, each of which starts at a primal boundary
vertex in L and ends at a primal boundary vertex to the right of A, and each
of which only passes through the interior of G. Without loss of generality, we
may assume that the paths Pi have no repeated vertices, and hence no loops.
The situation is shown in Figure 4.

Figure 4: The paths P1, . . . , Pk with respect to the vertices a1, . . . ak and c.

From each primal vertex, pick an adjacent vertex with maximal voltage (in
the case where two vertices both attain the maximal voltage, pick arbitrarily).
Similarly, for every primal vertex, pick an adjacent vertex with minimal voltage
amongst neighboring cells and resolve ambiguity arbitrarily. Now φ is zero
completely on any of the paths Pi, then we will be done, since if we let U
denote the primal vertices outside of the bounded region bounded by Pi, then
if φ is zero on Pi, we note that the function ψ : V → R defined by

ψ(v) =

{
φ(v) if v ∈ U c

0 if v ∈ U

satisfies P (ψ) ≤ P (φ) and φ|∂G = ψ|∂G, implying that φ = ψ since φ is minimal.

15



Hence φ would have finite support, and by what we’ve shown, we would be done.
Hence we know that there each Pi must have a vertex which has nonzero voltage.
Let vi be the last vertex of Pi such that φ is zero all the way from the first vertex
in Pi to vi. Since the sum of the currents of φ at vi must be zero (either vi is the
first vertex in Pi and hence there is zero net current leaving vi by assumption or
vi is an interior vertex), we know by the local maximum principle that there is a
vertex adjacent to vi of positive voltage, and a vertex adjacent to vi of negative
voltage. Construct the paths αi and βi by following the least adjacent voltage
and the greatest adjacent voltage respectively (as in the proof of the Cutpoint
Lemma for the pseudocritical cutpoint lemma). An identical argument to the
one from the cutpoint lemma shows that all the paths αi and βi must terminate
on the boundary. Let F (αi) denote the final vertex of the path αi and let F (βj)
denote the final vertex of βj . Note that the vertices F (αj) and F (βj) must be
amongst {a1, . . . , ak} since those are the only boundary vertices with nonzero
voltage. The reader checks that since αi and βj cannot cross if i 6= j, and since
αi and βi must have distinct endpoints, there is no way for all the αi and βj to
terminate, and hence we have a contradiction. The details are as in [6], so we
omit them.

Theorem 5.5. Suppose that Γ is an ultralattice with medial graph M . Then
Γ is circularly well connected.

Proof. Let A = (a1, . . . , ak) and B = (b1, . . . , bk) be two collections of boundary
vertices such that a1 < · · · < ak < b1 < · · · bk. We do the standard nonsense.
Define the map L from RA to RB . Define L by sending an A-tuple v to the
B-tuple of currents leaving the vertices in B from the minimal function with
boundary values v on A and 0 on the rest of the boundary. By a theorem in
[6], if L has full rank, then there will be a k-connection from A to B. It is
sufficient to show that kerL = 0. Suppose that φ ∈ kerL. Suppose without loss
of generality that A is to the left of B. Now let R denote the set of boundary
primal vertices between A and B taken along with all the primal vertices in A.
Now by Lemma 5.4, we can find a k-connection from B to k boundary primal
vertices which are to the left of R. As we’ve done many a time, construct
paths αi and βi in the normal fashion. We know need to show that these paths
terminate. We summarize a way of doing it, but we don’t go into enormous
details because it’s identical to the strategy used in [6].

First we observe that for each i, at least one of αi and βi must terminate,
because if neither terminate we can define a trick function ψ which would have
less power than φ. This forces all of the paths α1, β1, α2, . . . , αk−1 and βk−1

must terminate by planarity. Clearly they must terminate at vertices in A. We
also know that at least one of the path αk and βk must terminate. A simple
argument shows that all vertices in A must be “occupied” by vertices at the ends
of paths α1, β1, . . . , αk, βk. To show that both α1 and β1 terminate is identical
to showing case 1 from the proof of Theorem 3.2.4 of [6]. The reader verifies
that this impossible by planarity. The details are almost identical to the proof
of Theorem 3.2.4 of [6].
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6 New Results about Recoverability

Here we will begin work on answering some general questions about recoverabil-
ity. As of yet, we do not have a general answer to recoverability for pseudocritical
half planar graphs networks. Here we present several new results about pseudo-
critical networks. First we use Corollary 4.6 to show that a new class of graphs
is recoverable. Then we give several examples of nontrivially nonrecoverable
networks.

7 Partially-Supercritical Networks

Definition 7.1. Let Γ = (G, γ) be an electrical network embedded into a
partially-supercritical half planar medial graph with compact cells such that
every edge is crossed by at least one compact geodesic. We call Γ partially-
supercritical.

Lemma 7.2. Partially-supercritical networks have a least one boundary spike
or boundary to boundary edge.

Proof. Simply take any reentrent geodesic, and perform the same trick as usual
(taking a decreasing sequence of subsets of the medial graph which must termi-
nate in a geodesic triangle). The details are left to the reader.

A more useful way to phrase this is:

Proposition 7.3. Suppose M is a pseudocritical medial graph and g is a finite
geodesic that intersects at least one other geodesic. Let B(g) denote the set of
cells in the compact region bounded by g. At least one of the cells in B(g) is a
boundary geodesic triangle.

Proof. The proof is identical to above, so it is omitted.

Theorem 7.4. Partially-supercritical networks are recoverable from the mini-
mal boundary data maps.

Proof. There are no new or profoundly insightful techniques used here. We
basically will use Corollary 4.6 along with the tried and tested technique we
used with finite graphs. Let e be an edge in G. We will show how to recover the
conductivity along e. Let g be a finite geodesic which crosses e. By Proposition
7.3 we know that there is a geodesic triangle T somewhere in G. This geodesic
triangle corresponds to either a boundary spike or a boundary to boundary
edge. In either case, let the boundary to boundary edge or boundary spike be
denoted by e′. Let g′ be a finite geodesic which crosses this e′. Let p be the
primal boundary vertex on e′ which is in B(g′) (notice that this statement makes
sense regardless of whether e′ is a boundary spike or a boundary to boundary
edge). By previous results there is a minimal function voltage-covoltage function
defined on M which is supported only in B(g) and which is equal to 1 at the
primal vertex p. Furthermore, by Corollary 4.6 any minimal function with
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boundary values (both voltages and currents) supported in the boundary cells
of B(g′), must be supported only on B(g′). The conductivity along e′ can
immediately be read off. Let Γ′ be the electrical network corresponding to
removing e′ (by contracting if e′ is a boundary spike and deleting if e′ is a
boundary to boundary edge). By previous results we can determine the minimal
boundary data maps for Γ′. Removing the edge e′ leaves all cells compact, leaves
any finite geodesic finite, and doesn’t add any loops or lenses. Finally, it removes
exactly one cell from the region B(g). By induction we must eventually exhaust
all of B(g), and thus recover the conductivity along the edge e. The details are
nearly identical to the case of supercritical networks now that we have Corollary
4.6, so the details are left to the reader.

Example 7.5. The graph in Figure 5 is obviously not recoverable, though it
has been given a pseudocritical embedding.

Figure 5: A trivially nonrecoverable pseudocritical half planar graph and its
medial embedding into the half plane.

The issue is that there is ambiguity in which medial graph we embed the
network into. In 5 the network could also be embedded into a medial graph
with a self loop, which is “hidden” in the above medial graph by letting the
geodesics go off to ∞.

Example 7.6. In Figure 6 is a less trivially example of a nonrecoverable graph
and a medially embedding for it. We will call this network the NR2 network
(NonRecoverable 2).

We will leave the proof that this network is not recoverable for late.
We will need to work hard to show that this network is indeed not recover-

able. To do this, we will need to introduce a little machinery.

7.1 Wye-Delta Transformations

In the finite case, we know that performing Wye-Delta transformations does
not change the response matrix. We will want an analogue of this for infinite
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Figure 6: The NR2 network embedded in a medial graph. A less trivial example
of a nonrecoverable pseudocritical half planar electrical network. Notice that
two geodesics with domain [0, 1) intersect.

networks. It will actually turn out to be relatively straightforward to show the
minimal Dirichlet-to-Neumann maps are unchanged by a finite number of Wye-
Delta transformations. We will work to show that we can do the same thing for
certain infinite sequences of Wye-Delta transformations, which will be necessary
to show that certain graphs are not recoverable.

We first need a lemma from [6].

Theorem 7.7. Suppose Γ = (G, γ) is an infinite electrical network and φ ∈
M(Γ) is a minimal function. Then we can write φ as a pointwise limit of γ-
harmonic functions on an increasing chain of finite connected subnetworks of Γ
which share the same boundary values on φ.

The proof can be found in [6], but is relatively straightforward.

Definition 7.8. Suppose that Γ = (G, γ) and Γ′ = (G′, γ′) are electrical net-
works which have the same boundary vertices. We will say that Γ and Γ′ are
electrically equivalent if there is a map Φ : M(Γ)→M(Γ′) such that

(a) Φ is a linear bijection;

(b) Φ(φ)|∂G′ = φ|∂G;

(c) Λ(M(Γ)φ = ΛM(Γ′)Φ(φ) (where ΛM(Γ)φ is the ∂G-tuple of currents leaving
the boundary from the minimal function Φ.

We will say that Γ and Γ′ are electrically isometric if they are electrically
equivalent and if in addition the map Φ is also an isometry (and hence an
isometric isomorphism of Hilbert Spaces).
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Theorem 7.9. Suppose that Γ = (G, γ) and Γ′ = (G′, γ′) are electrical net-
works such that Γ′ is obtained from Γ by a finite sequence of Wye-Delta trans-
formations. Then Γ′ and Γ are electrically isometric.

Proof. The proof goes by way of Theorem 7.7. Let G0 be a connected finite
subnetwork which contains all of the vertices and edges of G which are used
in any of the Wye-Delta transformations used to pass from G to G′. Suppose
that φ ∈M(Γ). Note that the statement of the theorem is well known for finite
networks. Complete G0 to an exhausting increasing chain of finite subnetworks
G0 ⊆ G1 ⊆ · · · . Let G′i denote the network Gi after applying the finite number
of Wye-Delta transformations. Let φi be the γ-harmonic function on Gi with
boundary values φ|∂Gi

and let Φi : M(Γi)→M(Γ′i) be the map as in the finite
case. By Theorem 7.7 some subsequence {φjk} of {φj} converges to φ. Pick
a subsequence of Φjk(φjk) which converges pointwise to a function ψ (take a
diagonal subsequence; the details are left to the reader). By Fatou’s lemma
we know that ψ has finite power. Furthermore, an identical argument as in
the proof of [6] of Theorem 7.7 shows that ψ ∈ M(Γ′). Thus we just define
Φ(φ) to be ψ. Since Φj(φj)|∂G′ = φj |∂G = φ|∂G we know that ψ|∂G′ = φ|∂G.
Furthemore, we also know that P (Φj(φj)) = P (φj). Hence by Fatou’s lemma
we know that

P (Φ(φ)) = P (ψ) ≤ P (φ).

Now since all Wye-Delta transformations are invertable, we could just reverse
this procedure, and perform all Wye-Delta transformations in the reverse order
to go from G′ to G. This would yield a map Ψ : M(Γ′)→M(Γ) which preserves
boundary values and satisfies (by what we’ve already shown) that P (Ψ(φ)) ≤
P (φ). Since φ|∂G = ψ|∂G′ , we would have that Ψ(Φ(φ)) and φ are both minimal
functions with the same boundary values, and hence

Ψ(Φ(φ)) = φ

. Hence
P (Ψ(Φ(φ))) = P (φ)

and hence
P (φ) ≤ P (Φ(φ)).

Since we’ve already shown that P (Φ(φ)) ≤ P (φ), we know that P (φ) = P (Φ(φ)).
The final statement that the map Φ preserves currents on the boundary

follows from observing that each Φi satisfies this property, and then just taking
limits.

Another way of stating this is as follows:

Corollary 7.10. If Γ and Γ′ are electrical networks that are obtainable by a
finite number of Wye-Delta transformations, then there are maps Φ : M(Γ) →
M(Γ′) and Ψ : M(Γ′)→M(Γ) such that

1. Φ and Ψ are isometries,
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2. Φ and Ψ preserve boundary values

3. Φ ◦Ψ = id |M(Γ′) and Ψ ◦ Φ = id |M(Γ).

7.2 Passing an Edge Across a 4-star

We now describe an action which is the composition of two Wye-Delta transfor-
mations. We call it passing an edge across a 4-star. We describe it pictorially
in Figure 7.

Figure 7: The operation of passing an edge across a 4-star by two consecutive
Y -∆ equivalences.

The new conductivities after passing an edge across a 4-star can be explicitly
computed to be

a′ =
ra+ rb+ ab

b
, (1)

b′ =
ra+ rb+ ab

a
,

c′ =

(
ra+ rb+ ab

rσ0 + ab

)
c,

d′ =

(
ra+ rb+ ab

rσ0 + ab

)
d,

and

r′ =
cdr

rσ0 + ab
,

where
σ0 = a+ b+ c+ d.

Remark 7.11. Passing an edge across a 4-star is a composition of Wye-Delta
transformations and hence induces an isometry between minimal functions on
the network which preserves boundary values and boundary currents.

The operation of passing an edge across a 4-star has some pretty nice prop-
erties, which we go into now. A first remark is in order.

Definition 7.12. We will call the network in Figure 8 the 4+1-star network.
Notice that it is recoverable since the medial graph has no lenses.
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Figure 8: The augmented 4-star graph and its medial graph.

Figure 9: The augmented 4-star graph and its medial graph.

Definition 7.13. We will call the network in Figure 9 the 4+2-star network.
Notice that the 4 + 2-star is recoverable since its medial graph has no lenses.

We now prove several easy theorems about passing an edge across a 4-star.

Proposition 7.14. The operation of passing an edge across a 4-star is re-
versible, i.e. the operation of passing an edge across a 4-star can be undone by
passing an the resulting edge backwards across the same 4-star. This is shown
in Figure 10.

Proof. This follows from the fact that Wye-Delta transformations are invertible.

Figure 10: Passing an edge forward and then backward results in the original
network.

Proposition 7.15. Passing an edge across a 4-star is invertible, i.e. passing
conductivity r across a 4-star can be undone by passing a conductivity −r in
the same direction. This is shown in Figure 11.

Proof. This is just a direct computation from the equations in 1. We leave the
computation to the reader.
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Figure 11: Passing r and then −r results in no change to the network.

Proposition 7.16. Passing an edge across a 4-star does induces a natural
map on the γ-harmonic functions on the network which does not influence the
power on the network. This remains true even if the edge passed has negative
conductivity (where the power function is just the formal sum

∑
γvv′(φ(v) −

φ(v′))2) ) so long as all the conductivities are defined in the resulting network.

Proof. This is left to the reader, but is a straightforward computation.

Proposition 7.17. Passing an edge across a 4-star is transversally commu-
tative, i.e. passing 2 edges across a 4-star doesn’t depend on which they are
passed if the two edges are on different but adjacent sides of the 4-star. As in
Figure 12.

Proof. We use the recoverability of the 4+2-star network. Suppose we pass p
and then q. This will produce the same graph as first passing q and then p. Since
the graph produced will be a 4 + 2 star, and the 4 + 2-star graph is recoverable,
and since the resulting graphs must be electrically equivalent, we know that the
resulting networks must have the same electrical conductivities.

Figure 12: Passing edges in this manner is commutative.

We now will need to prove an extremely important but very tedious lemma.
To do so, we will first introduce some terminology and notation.

7.3 A Technical Lemma

7.4 Nonrecoverability of the NR2 network

We will now show that the NR2 network is not recoverable. We begin with a
basic fact about the NR2 network.
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Lemma 7.18. Let Γ be the NR2 network. Then H(Γ) = M(Γ), i.e. a finite
power function is minimal iff it is γ-harmonic.

Proof. The only claim that requires proof is that any finite power γ-harmonic
function is minimal. Let φ be a γ-harmonic function. Let W be the vector space
of finite power functions which are supported only on the interior. We note that
W is closed (by a theorem in [6]). Let Wf denote the vector space of finite
power functions which are supported on intG which have finite support. Note
that φ is orthogonal to every function Wf by assumption. By continuity of the
inner product, we know that φ is orthogonal to everything in Wf . Hence t show
that φ is minimal (i.e. that φ is orthogonal to W ) we will show that Wf = W .
Let ψ ∈ W . Give the interior vertices an arbitrary ordering v1, v2, . . . . Let σi
be the sum of the conductivities adjacent to vi. Note that there are no interior
vertices are adjacent, and hence by direct computation

‖ψ‖2 =

∞∑
i=1

σiχ(vi)
2.

Now define the function

ψN =

N∑
i=1

χviψ(vi).

Note that ψN ∈Wf and furthermore

‖ψN − χ‖2 =

∞∑
i=N+1

σiχ(vi)
2,

which goes to zero as N →∞, and hence ψN → χ and hence W = Wf , and the
theorem statement follows.

We note that the reader verifies that one can prove a slightly more general
result that generalizes the above argument in the obvious way:

Corollary 7.19. Suppose that Γ is an (infinite) electrical network such that
there are no interior-to-interior edges. Then H(Γ) = M(Γ), i.e. all finite power
functions are minimal.

Lemma 7.20. In the NR2 network, the γ-harmonic functions with finite sup-
port are dense in the set of minimal functions.

Proof. Let Γ = (G, γ) be the NR2 network with some choice of conductivities.
Let Mf (Γ) denote the vector space of minimal functions on Γ with finite support.
We wish to show that Mf (Γ) is dense in M(Γ). To do this, we will show that
any element of M(Γ) can be approximated arbitrarily well by an element of
Mf (Γ).

Let φ ∈ M(Γ). Let e denote the only boundary to boundary edge, and let
Sn denote the nth 4-star, as in Figure 13.
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Figure 13: An enumeration of the 4-stars of Γ. The edge e is also shown.

Let PSi(φ) denote the power dissipated by φ on the 4-star Si and let Pe(φ)
denote the power dissipated by φ over the edge e. Now observe that

P (φ) = Pe(φ) +

∞∑
i=1

PSi
(φ).

Now we will break each PSi
(φ) further into two summands. Consider the la-

belling of the edges of the 4-star Si shown in Figure 14.

Figure 14: A labelling of the edges in the 4-star Si.

Let P `
Si

(φ) be the sum of the power dissipated on the edges ai and bi of the
4-star Si, and let P r

Si
(φ) be the sum of the power dissipated on the edges ci and

di of the 4-star Si. Now note that PSi
(φ) = P `

Si
(φ) + P r

Si
(φ) and hence
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P (φ) = Pe(φ) +

∞∑
i=1

(P `
Si

(φ) + P r
Si

(φ)). (2)

Let ε > 0. Since all of the summands in the above sum are positive and
P (φ) is finite, pick N large enough that∣∣∣∣∣P (φ)−

N∑
i=1

PSi
(φ)− Pe(φ)

∣∣∣∣∣ = P (φ)−
N∑
i=1

PSi
(φ)− Pe(φ) < ε.

Using Equation (2) we get that this is equivalent to

0 ≤
∞∑

i=N+1

PSi(φ) < ε (3)

Let vN+1 denote the interior vertex of the 4-star SN+1. By possibly adding
the constant function to φ, we can assume that φ(vN+1) = 0. Now define the
function φN+1 : V → R by

φN+1(v) =


φ(v) if v ∈ Si and i ≤ n
0 if v = vN+1

0 otherwise.

Notice that φN+1 has finite support and hence has finite power (notice
however that φN+1 may not be minimal!). Consider the function φ−φN+1. We
simply compute to see that

(φ− φN+1)(v) =


0 if v ∈ Si and i ≤ n
0 if v = vN+1

φ(v) if v ∈ Si and i > N + 1.

We see immediately that

0 ≤ P (φ− φN+1) = P r
SN+1

(φ) +

∞∑
i=N+2

PSi
(φ) ≤

∞∑
i=N+1

PSi
(φ).

Using Equation 3 we have that

P (φ− φN+1) < ε. (4)

Let Λ : Z(Γ)→M(Γ) be the map which projects finite power functions onto the
unique minimal function with the same boundary values. As proven in [6], Λ is
linear and the identity on M(Γ), and furthermore P (Λ(ψ)) ≤ P (ψ). Applying
these facts to Equation (4), we get that

P (φ− ΛφN+1) = P (Λφ− ΛφN+1)

= P (Λ(φ− φN+1))

≤ P (φ− φN+1)

< ε.

26



Hence P (φ−ΛφN+1) < ε. Notice that ΛφN+1 is a minimal function with the
same boundary values as φN+1. It’s clear that if ψ is minimal function which is
zero on the four boundary vertices of Si, then ψ will be zero on the interior vertex
of Si. Since ΛφN+1 is zero on the four boundary vertices of all but finitely many
Si, we know that ΛφN+1 is zero on all but finitely many vertices, and hence in
particular, ΛφN+1 ∈ Mf (Γ). Since P (φ − ΛφN+1) = ‖φ − ΛφN+1‖2 < ε, we
know that Mf (Γ) is dense in M(Γ).

Theorem 7.21. The NR2 network is not recoverable from the minimal bound-
ary data map for any choice of conductivities. In particular, given an NR2
network Γ with any choice of conductivities, there is at least a one parameter
family of NR2 networks which are electrically isometric.

Proof. Let Γ = (G, γ) be the NR2 network with some choice of positive conduc-
tivities. Let γ0 denote the conductivity along the bottom boundary to boundary
edge (as shown in Figure 15).

Figure 15: The conductivity γ0 in the NR2 network.

Now let r be a real number 0 < r < γ0. Let e denote the boundary to
boundary edge. We will construct an electrical network with the same graph
G which has conductivity r on e which is electrically equivalent to Γ. To do
this, split the edge e into two edge, e and e′. Put conductivity r on e and
conductivity γ0 − r on e′. Notice that this network is electrically equivalent to
Γ. See Figure 16.

Now pass the edge e′ to infinity, i.e. pass it across the neighboring 4-star,
and then pass it again across the next 4-star, and continue indefinitely, altering
the conductivities in the way described in the section about passing an edge
across a 4-star. This gives us another set of conductivities on the NR2 network.
Let the network with the new conductivities be denoted by Γ′. We now need to
show that these networks are electrically equivalent. We will show that there is a
bijection from M(Γ) to M(Γ′) which respects boundary voltages and boundary
currents. Given a function φ ∈M(Γ), after the ith time we pass an edge across
a 4-star, we get a new function, φi. Notice that at each vertex φi is eventually
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Figure 16: Splitting the edge e into two edges e and e′.

constant since Wye-Delta transformations only affect the voltages at the vertices
involved. Let ψ be the pointwise limit of φi. A basic argument using Fatou’s
lemma shows that P (ψ) is finite and furthermore P (ψ) ≤ P (φ). Furthermore,
it is easy to verify that ψ is γ-harmonic since each φi is γ-harmonic and the
sequence φi is eventually constant at each vertex. By Lemma 7.18 we know that
ψ is a minimal function. Define Φ(φ) to be φ. By the uniqueness of minimal
functions with given boundary values, we know that Φ(φ) is well defined.

We will now show that Φ is an electrical isometry (a bijective isometry be-
tween M(Γ) and M(Γ′) which respects boundary values and currents of minimal
voltages). Clearly Φ is injective since minimal functions are uniquely determined
by their boundary values, so we only need to show that it is surjective.

Suppose that ψ ∈ M(Γ′). First observe that Φ is continuous (as a map
between Hilbert Spaces) since P (Φ(φ)) ≤ φ (as observed by above). Let Mf (Γ)
denote the space of minimal functions on Γ with finite support and let Mf (Γ′)
denote the space of minimal functions on Γ′ with finite support. Note that if
φ ∈ Mf (Γ), then once the edge e′ is passed outside of the support of φ, the
values and power of φ will no longer change. Since a finite sequence of Wye-
Delta transformations is an electrical isometry, we know that P (Φ(φ)) = φ,
i.e. Φ is an isometry on Mf (Γ). The reader verifies that boundary voltage
function which is nonzero at only finitely many boundary vertices is valid for
both networks, and hence Φ maps Mf (Γ) bijectively (and isometrically) onto
Mf (Γ′). By Lemma 7.20 we know that Mf (Γ) is dense in M(Γ) and that Mf (Γ′)
is dense in M(Γ). Since Mf (Γ′) is dense in M(Γ′), there is a sequence ψi of
functions in Mf (Γ′) such that ψi → ψ in Z(Γ) (i.e. that PΓ′(ψ − ψi) → 0.
Since Φ maps Mf (Γ) bijectively and isometrically onto Mf (Γ′), let φi denote
Φ−1(ψi). Since ψi converges to ψ, we know in particular that {ψi} is a Cauchy
sequence. Since Ψ is a bijective isometry from Mf (Γ) onto Mf (Γ′) and both
Mf (Γ) and Mf (Γ′) are vector subspaces, we know that φi is a Cauchy sequence.
Since Hilbert Spaces are complete (and M(Γ) is a Hilbert space as it is a closed
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subspace of Z(Γ), which is a Hilbert Space) we know that there is a φ ∈ Z(Γ)
such that φi → φ. Since φi ∈ M(Γ) and M(Γ) is a closed subspace of Z(Γ),
we know that φ ∈ M(Γ). Since Φ is continuous (as Φ(θ) ≤ θ), we know that
Φ(φi) = ψi converges to Φ(φ). Since ψi → ψ (and since Hilbert Spaces are
Hausdorff topological spaces and hence limits are unique) we know that ψ =
Φ(φ), and hence Φ is bijective. Finally, by the continuity of the power functions,
we know that

P (ψi) = P (Φ(φi)) = P (φi)→ P (φ).

Since P (ψi) → P (ψ), we know that P (ψ) = P (φ), and hence Φ is an isometry
on all of M(Γ).

8 More Results About Electrical Equivalence

In this section we further develop our results about electrical equivalent of two
networks. We will first prove a result about substituting electrically equivalent
subnetworks of an electrical network.

8.1 Embedded Subnetworks

Definition 8.1. Let Γ = (G, γ) and Σ = (S, σ) be two electrical networks such
that S ⊆ G as unpartitioned graphs (meaning that the subset relation holds
for the edge sets and vertex sets of S and G. We say that Σ is an embedded
subnetwork of Γ (or just Σ is embedded in Γ) if the following conditions hold:

(i) intS ⊆ intG;

(ii) if v ∈ intS and u
G∼ v then u ∈ S and u

S∼ v;

(iii) if e ∈ E(G) ∩ E(S), then γ(e) = σ(e).

Definition 8.2. Suppose that Σ = (S, σ) is an embedded subnetwork of Γ =
(G, γ). Then we will define a map R0 : Z(Γ) → Z(Σ) to be restriction of a
function from in Z(Γ) to the subnetwork Σ. Define R to be the restriction of
R0 to M(Γ).

Proposition 8.3. Suppose that Σ = (S, σ) is an embedded subnetwork of
Γ = (G, γ). Then R maps M(Γ) into M(Σ). Furthermore, R is a bounded
linear operator of Hilbert Spaces.

Proof. Given a function φ ∈M(Γ), it is clear that we should define

(Rφ)(v) = φ(v)

for any v ∈ S ⊆ G. Clearly this is linear and satisfies P (Rφ) ≤ P (φ) for any
φ ∈ Z(Γ), and hence R is bounded.

We now just need to show that Rφ ∈ M(Σ) whenever φ ∈ M(Γ). Suppose
that φ ∈ M(Γ) but that Rφ 6∈ M(Σ), then there exists a θ ∈ Z(Σ) such that
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θ|∂S = Rφ|∂S but P (θ) < P (Rφ). Construct the function Θ : V (G) → R by
defining

Θ(v) =

{
θ(v) if v ∈ S
φ(v) if v 6∈ S.

We first will show that Θ|∂G = φ|∂G. Suppose that v ∈ ∂G. Then in
particular, by property (i) of the definition of an embedded subgraph, we know
that v 6∈ intS. Hence if v ∈ S, we know that Θ(v) = θ(v) = φ(v) and if v 6∈ S
we know that Θ(v) = φ(v) by construction. Hence Θ|∂G = φ|∂G.

We now will show that P (Θ) < P (φ). This is simply a computation. We
compute

P (Θ) =
∑

v,v′∈V (G)

γv,v′(Θ(u)−Θ(v))2

=
∑

u,v 6∈S

γv,v′(Θ(u)−Θ(v))2

+ 2

 ∑
u6∈S;v∈S

γv,v′(Θ(u)−Θ(v))2


+
∑

u,v∈S
γv,v′(Θ(u)−Θ(v))2

.
Now observe that by condition (ii) of an embedded subnetwork, if u ∈ S

and v 6∈ S and u
G∼ then u ∈ ∂S. Hence Θ(u) = θ(u) = φ(u). Hence we can

rewrite the above equation to see that

P (Θ) =
∑

v,v′∈V (G)

γv,v′(φ(u)− φ(v))2

=
∑

u,v 6∈S

γv,v′(φ(u)− φ(v))2

+ 2

 ∑
u6∈S;v∈S

γv,v′(φ(u)− φ(v))2


+
∑

u,v∈S
γv,v′(θ(u)− θ(v))2.
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Noticing that the last summand is P (θ) we get

P (Θ) =
∑

u,v 6∈S

γv,v′(φ(u)− φ(v))2 + 2

 ∑
u 6∈S;v∈S

γv,v′(φ(u)− φ(v))2

+ P (θ)

<
∑

u,v 6∈S

γv,v′(φ(u)− φ(v))2 + 2

 ∑
u 6∈S;v∈S

γv,v′(φ(u)− φ(v))2

+ P (Rφ)

= P (φ).

Hence P (Θ) < P (φ), which contradicts the fact that φ was minimal. Hence
R maps M(Γ) into M(Σ), as we wanted.

To be absolutely pedantic, we now remark that we will always view R as
having codomain M(Σ) instead of Z(Σ).

8.2 Splicing Subnetworks

We now will describe a fairly intuitive operation of taking an embedded elec-
trical subnetwork Σ ⊆ Γ and an electrically isometric subnetwork Σ′ ∼= Σ and
replacing Σ in Γ with Σ′, to produce a new network Γ′ which is electrically
isometric to Γ.

Definition 8.4. Suppose Σ = (S, σ),Σ′ = (S′, σ′), and Γ = (G, γ) are all
electrical networks and Σ is an electrical subnetwork of Γ and Σ and Σ′ are
electrically isometric. Define the network the electrical network (T, τ) with
vertex set (G \ S) ∪ S′ and adjacency defined as follows:

(i) if u, v ∈ G \ S then u
T∼ v iff u

G∼ v;

(ii) if u ∈ G \ S and v ∈ S′, then u
T∼ v iff v ∈ ∂S′ (note that ∂S = ∂S′ ⊆ G

by construction) and u
G∼ v;

(iii) if u, v ∈ S′ then u
T∼ v iff u

S′∼ v.

We define the conductivity function τ : E(T )→ R+ by

τ(uv) =


γ(uv) if u, v ∈ G \ S
γ(uv) if u ∈ G \ S, v ∈ ∂S′(= ∂S ⊆ G)

σ′(uv) if u, v ∈ S′
.

Finally we define ∂T = ∂G and intT = T \ ∂T . Note that since ∂S′ = ∂S
and ∂G ⊆ (G \ S) ∪ ∂S since Σ is embedded in Γ, we know that ∂G is
indeed a subset of T , so the above definition makes sense.

We call the network (T, τ) the network Γ with S and S′ spliced and
we write Γ(Σ : Σ′) for (T, τ).
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We now state and prove the culminating theorem of this section, namely
that spliced networks are electrically isometric.

Theorem 8.5. Suppose Γ = (G, γ),Σ = (S, σ),Σ′ = (S′, σ′) are electrical
networks such that Σ is embedded in Γ and such that Σ is electrically isometric
to Σ′. Then Γ is electrically isometric to Γ(Σ : Σ′). Furthermore, S′ is an
embedded subnetwork of Γ(Σ : Σ′) and we have the following commutative
diagram of Hilbert Space maps:

Proof. Let Φ : M(Σ) → M(Σ′) be an electrical isometry and let Θ : M(Σ′) →
M(Σ) be its inverse (and hence also an electrical isometry). Let Γ′ = (G′, γ′)
denote the network Γ(Σ : Σ′). We will define a map Ξ between Z(Γ) and
Z(Γ(Σ : Σ′)) in the following way. Suppose φ ∈ Z(Γ). Define Ξφ by

(Ξφ)(v) =

{
φ(v) if v ∈ G \ S
(ΦΛΣ(φ|S))(v) if v ∈ S

.

The reader checks that indeed (Ξφ)|∂G′ = φ|∂G. Furthermore, one checks that
P (Ξφ) ≤ P (φ).

We need only show that Ξ maps M(Γ) into M(Γ(Σ : Σ′)). We note that
Σ′ is an embedded subnetwork of Γ′, and that the spliced network Γ′(Σ′ : Σ)
is actually equal to Γ. Let H : Z(Γ′) → Z(Γ) be the splice map from Γ′ to Γ
defined analogously to Ξ. Once again we have that H satisfies P (Hψ) ≤ P (ψ).
Now let ΛΓ denote the canonical projection of Z(Γ) onto M(Γ) which preserves
boundary values and similarly let ΛΓ′ denote the projection of Z(Γ′) onto M(Γ′).
Suppose that φ ∈ M(Γ). We wish to show that Ξφ ∈ M(Γ′). Observe that we
have the following string of inequalities:

P (φ) ≥ P (Ξφ) ≥ P (ΛΓ′Ξφ) ≥ P (HΛΓ′Ξφ) ≥ P (ΛΓHΛΓ′Ξφ). (5)

But now we observe that all of the maps ΛΓ, H,ΛΓ′ and Ξ preserve boundary
values. Hence we know that (ΛΓHΛΓ′Ξ)φ is a minimal function with the same
boundary values as φ and hence

ΛΓHΛΓ′Ξφ = φ.

In particular P (ΛΓHΛΓ′Ξφ) = P (φ). This implies that we have equality all
throughout Equation 5 and hence P (Ξφ) = P (ΛΓ′Ξφ). But this implies that Ξφ
has the same power as a minimal function with the same boundary values, which
implies that Ξφ is minimal. Hence Ξ maps M(Γ) into M(Γ′). Furthermore, one
shows in the exact same manner that the map H defined above maps M(Γ′) into
M(Γ), is an isometry on M(Γ′) and satisfies Ξ◦H = idM(Γ′) and H◦Ξ = idM(Γ).

The fact that the diagram in the theorem statement commutes is obvious
and follows from our construction.
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We now state a generalization of the maximum principle.

Proposition 8.6 (Strong Maximum Principle). If φ ∈M(Γ) then φ|H satisfies
the maximum principle for any embedded subnetwork H ⊆ Γ.

Proof. The function φ|H is a minimal function on H and hence satisfies the
maximum principle.

8.3 Electrical Scheaves

9 More Examples of Nonrecoverable Networks

Definition 9.1. Define the infinite 4-star strip network or 4SS network to
be the network in Figure 17.

Figure 17: The infinite 4-star strip network, or 4SS.

Theorem 9.2. The 4SS network is in general not recoverable. In particular,
there exists a one parameter family of conductivities on the network which are
electrically isometric. Fix a K > 0 and let t and s be any positive numbers such
that t+ s = K. Consider a modified 4SS network shown in Figure 18.

Figure 18: The modified 4SS network.

Proof. For any choice of s and t such that t + s = K and t, s > 0, the above
networks are electrically isometric. By passing the edge with conductivity t to
infinity to the left and by passing the edge with conductivity s to infinity to
the right, we get 4SS networks which are electrically isometric to our original
modified 4SS network (this is actually nontrivial, but using our analysis of the
NR2 network and the fact that the there are two copies of the NR2 embedded
in the modified 4SS network, the reader easily checks the details). For different
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choices of s and t we get different conductivities on the network. Hence we have
a one parameter family of 4SS networks which are electrically isometric.

Definition 9.3. We will define the ultralattice 1 or UL1 network to be the
network in Figure 19.

Figure 19: The first ultralattice network, UL1.

Theorem 9.4. The UL1 network is not recoverable.

Proof. The UL1 network has the 4SS network as an embedded subnetwork.
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