DERIVATIVE OF Λ

JULY 3, 2013

Let Λ_{γ} denote the Dirichlet-to-Neumann map for an electrical network with conductivity γ. By way of the Kirchhoff matrix $K=\left(\kappa_{i j}\right)$, consider the space of conductivities to be a subset of $\mathbb{R}^{N \times N}$, where N is the number of vertices, We donote the map from γ to Λ_{γ} by L. In this note we compute the directional derivative $D_{\epsilon} L$ of L.

A direction in this context is represented by a matrix ϵ, with arbitrary real entries, which is symmetric and has row sum 0 .

Lemma 0.1. Let

$$
K=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right], \epsilon=\left[\begin{array}{cc}
\epsilon_{A} & \epsilon_{B} \\
\epsilon_{B}^{T} & \epsilon_{C}
\end{array}\right],
$$

where ϵ is symmetric, has row sum 0 , and K is a Kirchhoff matrix. Let

$$
K(t)=\left[\begin{array}{cc}
A+t \epsilon_{A} & B+t \epsilon_{B} \\
B^{T}+t \epsilon_{B}^{T} & C+t \epsilon_{C}
\end{array}\right],
$$

and

$$
\Lambda(t)=\left[A+t \epsilon_{A}-\left(B+t \epsilon_{B}\right)\left(C+t \epsilon_{C}\right)^{-1}\left(B^{T}+t \epsilon_{B}^{T}\right)\right] .
$$

Then

$$
D_{\epsilon} L=\Lambda^{\prime}(0)=\epsilon_{A}-\epsilon_{B} C^{-1} B^{T}-B C^{-1} \epsilon_{B}^{T}+B C^{-1} \epsilon_{C} C^{-1} B^{T} .
$$

Proof. Let $C(t)=C+t \epsilon_{C}$. Notice $C(t)(C(t))^{-1}=I$. By the product rule $C^{\prime}(t) C(t)+C(t)\left(C(t)^{-1}\right)^{\prime}=0$, hence $\left(C^{-1}\right)^{\prime}(0)=-C^{-1} \epsilon_{C} C^{-1}$. Using the product rule again

$$
D_{\epsilon} L=\Lambda^{\prime}(0)=\epsilon_{A}-\epsilon_{B} C^{-1} B^{T}-B C^{-1} \epsilon_{B}^{T}+B C^{-1} \epsilon_{C} C^{-1} B^{T} .
$$

Corollary 0.1. Let ϕ, ψ be boundary functions. Let u, v be γ harmonic functions with boundary values ϕ, ψ. Then

$$
\phi^{T} D_{\epsilon} L \psi=\sum_{i \neq j} \epsilon_{i j}\left(u_{i}-u_{j}\right)\left(v_{i}-v_{j}\right) .
$$

Proof. The interior values of the γ-harmonic function with boundary values ϕ is $-C^{-1} B^{T} \phi$ and with boundary values ψ is $-C^{-1} B^{T} \psi$. Hence by computation
$\phi^{T} D_{\epsilon} L \psi=\left[\begin{array}{ll}\phi^{T} & -\phi^{T} B C^{-1}\end{array}\right]\left[\begin{array}{cc}\epsilon_{A} & \epsilon_{B} \\ \epsilon_{B}^{T} & \epsilon_{C}\end{array}\right]\left[\begin{array}{c}\psi \\ -C^{-1} B^{T} \psi\end{array}\right]=\sum_{i \neq j} \epsilon_{i j}\left(u_{i}-u_{j}\right)\left(v_{i}-v_{j}\right)$

