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Abstract

We use certain tools related to chord diagrams to give a discussion of critical
circular planar electrical networks with no Y -Delta equivalents. As a corollary we
have that these medial graphs can be given a characterization which enables us to
uniquely determine the electrical netwok from the Z-sequence rather than the graph.
This can be easily generalized to arbitrary medial graphs.
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1 Background

We use this section to give some initial definitions. Throughout this paper, let G =
(E, V ) be a circular planar electrical network, by which we mean that we can decompose
V into sets ∂V and intV , such that the vertices ∂V can be embedded on ∂D such that
G remains a planar graph.

We will define the medial graph as follows, taking the definition from [1].

Definition LetG be a connected circular planar graph. with n boundary nodes v1, · · · vn
in counterclockwise order around ∂D,and the rest of G staying in intD. For each edge e
of G, let me be its midpoint. Now place 2n points t1, · · · t2n around ∂D such that

t1 < v1 < t2 < t3 < v2 · · · < t2n−1 < vn < t2n < v1

within the embedding on ∂D,
(1) The vertices of the medial graph M consist of the points me for all edges e.
(2) If e and f are edges in G with a common vertex, incident to the same face in

G, the line memf is an edge in M . For each tj on the boundary circle, t2i is joined
to me where e is the edge of the form e = viw which comes first after the line vit2i in
counterclockwise order around vi; the point t2i−1 ic joined by an edge to mf where f is
the edge of form viw which comes first after the line vit2i−1 in clockwise order around
vi.

We begin by citing some theorems of [1] which link networks and medial graphs.

Theorem 1.1 (Theorem 8.3) A circular planar graph G is critical if and only if its
medial graph MG is lensless.

Recall that we call a circular planar graph G critical if the deletion of any edge in E
breaks a connection in G.

Theorem 1.2 (Lemma 9.3) Suppose that a medial graph M has one or more lenses.
Then by a finite sequence of uncrossing arcs, M can be reduced to be lensless.
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Combined, this means that any medial graph M is equivalent to a medial graph MG

of a critical circular planar graph G. Throughout, we will only consider such medial
graphs M corresponding to circular planar graphs. Therefore, they are lensless.

Another theorem will establish a unifying characteristic of such graphs.

Theorem 1.3 (Lemma 8.6) Suppose M ⊂ D is lensless, and that each geodesic in M
intersects at least one other chord in M . Then there are at least three empty boundary
triangles with disjoint interiors.

Three empty boundary triangles with disjoint interiors correspond to any combina-
tion of three or more boundary edges or spikes. Therefore, the resulting graph from M
is critical, as necessary.

Lastly we establish the usage of the Z-sequence as an invariant.

Theorem 1.4 (Lemma 8.7) Suppose that A = {αi} and B = {βi} are two lensless
families of n geodesics in D and for each i the endpoints of αi are the endpoints of βi.
Then A and B are equivalent by switches of chords.

Remark We will always use the designation that the Z-sequence tabulates the geodesic
endpoints in a counterclockwise manner.

The above theorem implies that the Z-sequence produces a class of electrically equiv-
alent medial graphs, i.e. a network and its Y −Delta equivalents. We wish to examine
graphs with no Y −Delta equivalents.

Y-Delta Transformation A Y is a 3-star, and a Delta is K3, i.e. a triangle. A Y-
Delta transformation takes a 3-star, deletes the root vertex, and turns the other three
vertices into the complete graph on three vertices. The inverse is similarly defined.

That is to say,
and
We can also write the conductivities of the edges of the Y as rational functions of

the conductivities of the Delta, and vice versa. This establishes the idea that the two
graphs are electrically equivalent, as they also give the same response matrix.

In terms of the medial graph, we have the following two local images.
and after the motion
We say that the two medial graphs have undergone an motion, since we have shifted

a single geodesic by changing the relative positions of the intersections.
Using the same coloring, this corresponds to a Y-Delta transformation. The careful

reader will note that the Y is the dual of the Delta, but duality is not an issue which
concerns us at this point. We will also note that we have colored the same upper-left
cell in the medial graph in both cases, so what we did does not correspond to taking the
dual of the graph.

If no motions exist for MG, then the original graph G has no Y-Delta equivalents.
This gives rise to the following claim.
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Figure 1: Example Y

Figure 2: Example Delta

Claim A medial graph has no Y-Delta equivalents if and only if there exists no crossing
of three geodesics as above.

Proof If a crossing of three geodesics as above exists, this corresponds to a Y-Delta
transformation as demonstrated.

Conversely, if no such crossing exists, then there is no Y-Delta equivalent.

In particular, if the graph has a Y or a ∆, then the medial graph has an empty
triangle. In particular, the medial graph has a triangle, and if the triangle isn’t empty,
there is a geodesic passing through it, that intersects two edges of the triangle, creating
a smaller triangle. Therefore, there will be an empty triangle in the medial graph.

We will seek to give a count of medial graphs with n geodesics with no such crossings
of three geodesics.
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Graph 1.pdf

Figure 3: Initial medial graph

2 Definitions

Throughout, let M be a medial graph that represents a critical circular planar graph.
In particular, it is lenseless.

Definition Let α and β be geodesics in M . Say that α and β are parallel if they do not
intersect, and incident if they intersect. On this basis, we can also define the incidence
graph as follows.

If M has n geodesics, number them 1 to n in some fashion. Draw an edge between i
and j if geodesics i and j are incident. The incidence graph is connected as long as the
medial graph is connected.

Any two geodesics are either incident or parallel. We can also define these in terms
of the Z-sequence. Suppose our medial graph has n geodesics, and the Z-sequence takes
some form of 1 · · ·1 1 · · ·2, where · · ·1, · · ·2 are sequences of integers, possibly empty.

A geodesic k taking both vertices in one of the · · ·1 or · · ·2, assuming lenseless-ness
in the medial graph, will not intersect geodesic 1. Conversely, a geodesic k taking one
vertex in · · ·1 and one in · · ·2 will intersect geodesic 1.

Given our assumption of a lenseless medial graph, we now define the parallel and
incidence graphs.
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Graph 1’.pdf

Figure 4: Post-Motion medial graph

Remark Parallel-ness is not an equivalence relation, as if geodesics γ and β are parallel
to geodesic α, they need not necessarily be parallel, by the following example.

Figure 5

Despite parallel-ness not being an equivalence relation, it is clear that three geodesics
intersecting is equivalent to there being a triangle in the incidence graph. Therefore, a
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medial graph with no three geodesics mutually intersecting corresponds to a triangle-free
incidence graph.

Of course, at this point we have no idea whether the map between these medial graph
and triangle-free incidence graphs is injective, surjective, or both. We will seek to prove
that the map is both injective and surjective, thereby giving us a count for Y-Delta free
critical circular planar graphs with n vertices.

3 The Main Theorem

Claim There is a correspondence between Y-Delta free critical circular planar graphs
with n vertices and connected triangle free graphs with n vertices modulo certain knot-
theoretic invariants.

Proof We first state a lemma establishing the equivalence between medial graphs and
incidence graphs in our triangle-free case.

Lemma 3.1 There exists a one-to-one, surjective correspondence between Y-Delta free
critical circular planar graphs and lenseless medial graphs with no three geodesics mutu-
ally crossing.

This result is clear.

Remark There exist connected triangle-free graphs that are not intersection graphs for
any medial graph.

We will now proceed to work with these lenseless medial graphs and their Z-sequences.
Suppose we have a given incidence graph I. Place some order on the vertices of I

from 1 to n. We will prove that it arises from a unique medial graph M by examining
the Z-sequence that arises.

Consider I. Construct its incidence matrix (aij) as follows. It is an n by n matrix,
and for i 6= j,aij = −1 if there is an edge between i and j, and aij = 0 otherwise. For
aii, simply make the row and column sums to be 0. Then the matrix is Kirchhoff, and
each diagonal entry is strictly positive since no vertex is isolated. The incidence matrix
corresponds in a one-to-one and surjective manner with the incidence graph I, hence
we construct a bijective correspondence between valid Z-sequences for medial graphs of
critical circular planar graphs.

Specifically, we wish to construct a correspondence between connected graphs and
valid medial graphs. We do so by constructing a correspondence between disconnected
graphs and invalid medial graphs by usage of the extremal principle.

Let I be such a disconnected graph. Suppose i and j are two vertices in distinct
connected components, and let Ci and Cj denote those components respectively. Suppose
that Ci contains vertices {i1, i2, · · · ik} and Cj contains vertices {j1, j2, · · · jl}. In the
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parallel graph, therefore, we obtain that each geodesic iα is parallel to each geodesic jβ.
Then the geodesics {i1, i2, · · · ik} and {j1, j2, · · · jl} are parallel in the sense that any iα
is parallel to any jβ. Thus there exists a cut of D, where M is embedded, such that
{i1, · · · ik} lies on one side and {j1, · · · jl} lies on the other side. Then the resulting graph
is not connected, contradiction.

4 Applicable Results in the Theory of Chord Diagrams

Remark From now on, we will use the terminology of chord diagrams (chord diagrams
and chords) and the terminology of electrical networks (medial graphs and geodesics)
interchangeably. They are equivalent, and we will use whichever designation fitting the
discussion on hand.

A chord diagram consists of a circle, and 2n points on the circle, paired with a
curve inside the disk connecting them. In this regard, they are simply medial graphs if
we perturb them slightly to avoid intersections of valence greater than 2. Suppose in
addition that no three curves intersect. Then this construction is equivalent to a medial
graph.

The following Theorem, found as Theorem 4.28 of [2], is instrumental in establishing
the relationship between intersection graphs to chord diagrams/medial graphs.

Theorem 4.1 (Chmutov-Duzhin-Mostovoy) Two chord diagrams have the same
intersection graph if and only if they are related by a sequence of mutations.

To make sense of this assertion, we define the notion of a share.

Definition A share is a part of a chord diagram consisting of two arcs of the outer
circle with the following property: each chord one of whose ends belongs to these arcs
has both endpoints on these arcs.

Definition A mutation of a chord diagram is another chord diagram obtained by the
flip of a share.

Note that the complement of a share is also a share. The fact that a share consists of
two arcs should give some sort of restriction. Also, note that if there is a triangular cell in
the medial graph, flipping the share also corresponds locally to a Y-Delta transformation.
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5 Applying the Theory of Chord Diagrams to Electrical Networks with
no Y-Delta equivalences

It is clear that any medial graph corresponds to a chord diagram. In fact, they correspond
to chord diagrams with no so-called short chords, that is to say, chords which are not
obligated to intersect any other chord because the medial graph of a recoverable graph
is lenseless.

Now we move on to investigate shares in medial graphs with no Y-Delta equivalents.
Let S be a share, with components S1 and S2, thereby defining two components of their
complement, R1 and R2. Then each geodesic with one endpoint in S1 and one endpoint
in S2 will intersect each geodesic with one component in R1 and one component in R2.
From this we also see that the complement of a share is a share.

This implies that if S is a share, then the set of geodesics that go from R1 to R2

do not intersect at all, hence they are mutually parallel. But then similarly, the set of
geodesics going from S1 to S2 must also be mutually parallel, giving us a restriction on
the number of shares.

Note that it is pointless to think about a share containing a single geodesic, since
flipping it accomplishes nothing. Therefore, the only shares we need to consider are those
with at least two geodesics. In fact, both shares need to have at least two geodesics, and
the graph at least four geodesics.

It is clear that the number of equivalent medial graphs corresponding to a given
triangle-free intersection graph is equal to 2 raised to the power of viable share trans-
forms.

Furthermore, let S be a share with arcs S1 and S2, then its complement R is a share
with arcs R1 and R2, and suppose there exists a geodesic in the medial graph with one
endpoint in S1 and one endpoint in S2. Then it intersects each geodesic in the share
R with one endpoint in R1 and one endpoint in R2. Using the characterization of the
medial graph that no three geodesics intersect, it is abundantly clear that the geodesics
in R that have one vertex each in R1 and R2 are all mutually parallel. Similarly, this
holds for those going from S1 to S2. Hence the geodesics in a share consists a set of
mutually parallel geodesics plus those which stay in a single arc of the share. We call
geodesics who have one vertex on each arc of the share a “crossing geodesic.”

For example, the below

Chord Diagram.png

Figure 6
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is certainly triangle-free by inspection, with Z-sequence 1, 2, 3, 1, 4, 5, 6, 7, 8, 7, 4, 3, 9, 8, 6, 2, 9, 5.
Does it have nontrivial shares? Yes, for example we may take the portion of the Z-
sequence given by 787 and the single 8 to get a share. However, by the condition that
the crossing geodesics of any share are all mutually parallel, taking more than a single
crossing geodesic often becomes very difficult.

Remark The number of shares is bounded above by the number of sets of mutually
parallel geodesics.

By the connectedness of S1 and S2, it is also relevant to note that the set of crossing
geodesics automatically defines a “minimal” share by taking portions of the Z-sequence
that bound the relevant geodesics.

First, viewing the medial graph M as a chord diagram, the medial graph produces
a connected graph if and only if each one of the geodesics intersects at least one other
geodesics. If this does not happen, the chord diagram is termed degenerate. In his 2000
paper On the Number of Chord Diagrams, Alexander Stoimenow computes the number
degenerate chord diagrams with respect to the total number of chord diagrams.

Remark The total number of chord diagrams with n chords is
∏n
k=1(2k−1) = (2n−1)!!.

This is clear, as we are obligated to partition a set of 2n vertices into n sets of 2 vertices
in some order, where all vertices are indistinguishable. The result is precisely (2n)!

n!2n , or
(2n− 1)!!.

and we can similarly compute the number of degenerate chord diagrams.

Definition A linearized chord diagram is formed by taking a chord diagram and making
a cut along a diameter of the circle to “linearize” it.

Definition The length of a chord in a linearized chord diagram is equal to the number
of endpoints it encloses, plus 1. Say that a chord is minimal if it encloses no other chord,
and maximal if no other chord encloses it.

Claim The number of degenerate linearized chord diagrams is given by the following
formula in [5]. If the chord diagram has n chords, then the number of degenerate
linearized chord diagrams ϕn is

ϕn =
n∑
i=1

(−1)i−1
∑

j1,···ji,k≥0,
∑
jl+k=n−i

λk,i+1

i∏
l=1

(λjl − ϕjl)

where i is the number of minimal isolated choards, j1 up to ji the degrees of the
linear chord diagrams enclosed by those i chords, and k the degree of the remaining
diagram.
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For chord diagrams the number of degenerate chord diagrams is ωn = 1
2n

∑
d·c=2n φ(c) ˜γd,c,

where the ˜γd,c are given by a recursive form. Generally speaking the number ωn
(2n−1)!!

converges. This gives us a bound for the number of connected chord diagrams, i.e. valid
medial graphs for electrical networks.

In Stoimenow’s paper, the ratio of connected (linearized) chord diagrams to (lin-
earized) chord diagrams is claimed to be 1

e , albeit in a very slow fashion.
We have the following bound on the γd,c.

Theorem 5.1
γd,c ≤ (1 +

√
c)d(d− 1)!!

This gives us a very useful bound on γd,c, which we will now use to do some compu-
tations relating to shares. We have that the bound on the number of shares is related
to γd,c as follows.

Let MG be a medial graph, or, equivalently, a chord diagram. Then we see immedi-
ately by our prior observation that if S = (S1, S2) forms a share, so does the complement
∂D−S = (R1, R2), and that the geodesics in MG are partitioned in the following manner.

MG = RR1 ∪RR2 ∪RS1 ∪RS2 ∪R1,2 ∪ S1,2

What does the above partition mean? RK , for K an arc, denotes the re-entrant
geodesics of K, while R1,2 and S1,2 denote the geodesics with one endpoint in S1 and
one endpoint in S2. Note that the above holds for any chord diagram. What is unique
about this situation for triangle-free chord diagrams is that the geodesics in R1,2 and in
S1,2 form mutually parallel sets, and that no geodesic in R1,2 is parallel to any geodesic
in S1,2.

Therefore, this gives a good restriction on possible shares in a chord diagram.
We now work through an example.

Chord Diagram.png
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6 Creating and Identifying Shares within a Chord Diagram

Identifying a share will first require us to identify two sets of mutually parallel geodesics,
that is to say, a bipartite subgraph of the intersection graph.

Firstly, taking two intersecting geodesics satisfies the conditions. To create a share,
all that is left is to take some other possible geodesics only intersect one of the two
intersecting ones. But this is not very exciting and the construction is fairly trivial.

For example, here we might take geodesics {3, 4} and {5, 6} as a basis for our share.
But then one portion of the share S, WLOG S1, has to contain the endpoint 1 on the
upper half of the circle, and so it has to contain the other endpoint of 1, but then
between them is an endpoint labelled 2, and so on and so forth, and we see that the
shares “spread” until they encompass the entirety of the circle, which is not what we
want. Generally, this gives us an idea of the obstacles we encounted by constructing
shares.

So to create a share, our idea is as follows

• Find a bipartite graph in the intersection graph. Denote the components by P and
Q

• Consider all vertices connected to vertices in P , they ought to be in the share too

• Hope that they are not connected to any vertices in Q

• Repeat for Q to obtain a share (hopefully not the entire set of vertices is considered
in the intersection graph)

The components P and Q identify the crossing geodesics of the share. The triangle-
free condition ensure that geodesics corresponding to P are all mutually parallel.

Note that fairly trivial shares are always possible, taking a single edge (and the two
corresponding vertices) is the most trivial example, and flipping them does nothing.
Generally, since the complement of a share is also a share, although we still need to
consider flips independently.

Since we are working with flips of shares, trivial shares involving only a single geodesic
are irrelevant for creating a different medial graph. Shares that consist solely of crossing
geodesics are also irrelevant.

Now let us suppose that we have a bipartite subgraph of the intersection graph, Bm,n
for m,n > 1.

Definition There exist two sets of vertices Bm, Bn which partition the vertices of Bm,n
for which there exists an edge from each vertex of Bm to each vertex of Bn. Call Bm,
Bn the vertex sets of Bm,n.

Definition Define the graph I −Bm,n as the graph obtained by deleting all vertices in
the vertex sets of Bm,n as well as all edges which take a vertex in the vertex set as one
of its endpoints.
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Definition Say a vertex v ∈ V (I −Bm,n) is connected to Bm through I −Bm,n if there
exists a path v → i ∈ Bm that whose vertices are all in I −Bm,n.

Remark Since our intersection graph I is connected, it follows that each v ∈ V (I−Bm,n)
is connected to at least one of Bm, Bn. For our given Bm,n, if no v ∈ V is connected to
both Bm and Bn, then it follows that Bm,n generates a share. Conversely, if some v ∈ V
is connected to both Bm and Bn, then Bm,n cannot generate a share.

Since our medial graph admits some Z-sequence representation, we may take a rep-
resentation of the Z-sequence such that in the components of our bipartite graph Bm,n,
Bm and Bn do not include both geodesic n and geodesic 1, for ease of notation. Denote
the vertices of Bm as i1 < i2 · · · < im and of Bn as j1 < j2 · · · < jn.

For now, consider the share generated by Bm. The vertices of Bm generate something
like

Chord Diagram.png

Then the Bm portion consists of geodesics marked 2, 4, 5, 7, 8. It is immediately clear
that geodesics numbered 1, 3, and 6 are obligated to be in the share and to remain
in the same portion of the geodesic. This is what we mean when we talk about Bm
“generating” a share. Of course, not every geodesic intersecting those vertices in Bm
have to be in the same portion of the share. So 1, 3, 6 can be “permuted” in that manner
to either the “upper” half of the circle as envisioned here or to the“lower” half. Then
each geodesic can be manuvered to each half of the share independently, giving

However, note that these geodesics have a “parallel” condition in the sense that none
of the geodesics 1, 3, and 6 intersect. Doing the same thing with n shares, since they do
not intersect while all in the same arc of the share, putting them on one or the other arc
of the share does not influence the part of the intersection graph corresponding to the
drawn portion of the medial graph, implying that there are 2n possible shares that have
the same local intersection graph (flips of shares are also considered here). Suppose now
that 1 and 6 intersect, in such a manner as below

Then 1 and 6 must lie in the same arc of that share, since they intersect and are
both re-entrant. Therefore, there exists a unique flip in the creation of a share between
maximal classes of “intersecting” geodesics.
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Example 1.png

Keep in mind that the Z-sequence of a chord diagram or medial graph is numbered
in order, and that there is a correspondence with the vertices of the intersection graph,
in particular Bm.

From a bipartite graph Bm,n, consider the resulting graph obtained by deleting all
vertices of Bm,n and all edges emanating from those vertices, but remember the vertices
that were connected to Bm,n. Since the intersection graph is connected, from each vertex
in I(MG) there exists a path from that vertex to both Bm and Bn. In particular, there
either exists a path not passing through Bm to Bn or a path not passing through Bn to
Bm, by terminating the path either when it first hits Bn or Bm. We may also assume
that said path contains no cycles, as if it does we can just delete the cycle and obtain a
similar path.

Definition A share component is a set of vertices in I − Bm,n that are all connected
through I −Bm,n.

Given Bm,n, say that vertices i and j not in Bm,n lie in the same share component
if there exists a path connecting vertices i and j not passing through Bm or Bn.

The maximality concept for re-entrant geodesics is somewhat more complicated than
what might appear on the surface. If two geodesics intersect the same crossing geodesic,
then they do not intersect by the triangle-free nature of the graph. Suppose i is a re-
entrant geodesic that intersects the set of crossing geodesics Ai, and similarly for j. Then
if Ai ⊂ Aj or Aj ⊂ Ai, the two are parallel and can lie in the same or different arcs of
the share. If not, then they must lie in different arcs and hence are “dependent” in a
sense.

However, in both cases the re-entrant geodesics do not intersect, but are somehow
“connected” through I −Bm,n. This leads to the first preliminary characterization:

• Let i1, i2 be vertices of the intersection graph I which are only connected to
Bm ⊂ Bm,n, and suppose that Bm,n generates a share S. Let A1, A2 be the sets
of vertices that i1, i2 have an edge to, respectively. If A1 ⊂ A2 or A2 ⊂ A1, then
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i1, i2 are parallel. Hence they can occur in (be re-entrant in) either the same or
different arcs of the share.

• If A1 6⊂ A2 and A2 6⊂ A1, then the two geodesics must be re-entrant in different
arcs of the share.

In the former case, the flips of i1, i2 can occur independently, whereas in the latter
case flipping i1 results in a flip of i2 also, so in some sense the flips are not “independent.”

If we have maximal share components, we can still take the same characterization,
since if two geodesics intersect, then their flips are dependent in order to preserve that
intersection point.

• If geodesics i1, i2 intersect, then their flips are dependent.

• If geodesics i1, i2 intersect the same crossing geodesic, they are parallel to each
other. They are re-entrant in the same arc if and only if A1 ⊂ A2 or A2 ⊂ A1 per
the definitions above.

We take the following method. Let C be the set of all vertices that have an edge to
some vertex of Bm and let V be the set of all vertices connected to Bm. Write out the
vertices as {v1, · · · vn}. Then if vi, vj are connected through I −Bm,n, then vi, vj must
lie in the same maximal share component.

For each vi, we may define Ci as the set of vertices that are connected to vi. For
each v ∈ V , we may define Dv as the set of vertices of C connected to v.

If Ci ∩ Cj 6= ∅, then vi, vj are in the same maximal share component. Two vertices
v1, v2 ∈ V are in the same connected component if and only if Dv1 and Dv2 do not
contain each other and are not disjoint.

Claim Given a share generated by a bipartite graph Bm,n for some intersection graph I,
the number of lenseless medial graphs/chord diagrams corresponding to said intersection
graph I is 2k, where k is the number of sets of disjoint maximal share components.

Definition Let X and Y be two maximal share components. Call them disjoint if
there do not exist a path from both X and Y to the same vertex in Bm,n through
I − Bm,n. Otherwise, call them intersecting. Therefore, we can partition the maximal
share components of Bm,n into classes of intersecting maximal share components. Each
set is maximal, hence disjoint.

Proof Each maximal share component induces a reflection as described above. Since the
share components are maximal, they do not intersect each other, and hence reflections
of those geodesics are independent, rendering 2k equivalent medial graphs.

15



As a corollary, if Bm,n does not generate a share, then it is irrelevant to our computa-
tion. If we can tabulate the number of bipartite graphs for each triangle-free intersection
graph along with the corresponding number of maximal share components, then we will
have calculated the number of medial graphs corresponding to that chord diagram.

The formula for the number of triangle-free medial graphs corresponding to a given
intersection graph is ∑

Bm,n

2kBm,n

by summing over all maximal disjoint bipartite subgraphs of the intersection graph,
and k is the number of sets of disjoint intersecting maximal share components associated
to Bm,n.

Reflection of a single maximal share component can be thought of as reflecting a
“sub-share” of the larger share, corresponding to those vertices that have a path to the
maximal share component. This is the reason we take maximal bipartite subgraphs, as
each bipartite subgraph is contained in a maximal bipartite subgraph and hence we will
count exactly the number of possible flips.

7 Differing Notions of parallel geodesics

Example Examine the following chord diagram

Diagram Example 1.png

Figure 7

There are two notions of “parallel” geodesic one might draw from here. For example,
geodesics 3, 5, 7 are all mutually parallel, but so are geodesics 3, 8, 7. But we might note
that they are parallel in different ways.

Both sets contain geodesics 3 and 7. We can use the endpoints of those two geodesics
to define four arcs on the boundary of the circle as below.

Since 5 and 8 are both parallel both of their endpoints lie in the green area of the
boundary. But the vertices for 5 lie in different areas, while the vertices for 8 lie in the
same area.
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Diagram Example 2.png

In this case we say that 8 is “trivially parallel” with 3 and 7, that is to say, the
vertices of 8 lie in the same green area, and 5 is“strictly parallel” with 3 and 7, that is
to say, the vertices of 5 lie in different green areas. If any other geodesic parallel to 3
and 7 has both vertices lying in red areas, we do not care.

Remark We clearly need two parallel geodesics to define these criteria of strictly and
trivially parallel.

Now, in this case, the bipartite graph Bm,n with Bm = {3, 7} does not generate
a share, because the only possible outcome is Bn = {2}, and then the maximal share
component is {1, 4, 5, 6, 8} in the intersection graph, which has paths to both Bm and
Bn.

Recall that our construction of a share is given by taking two sets A and B of
mutually parallel chords, with each chord in A intersecting each chord in B, thereby
defining disjoint arcs A1, A2 and B1, B2 with all other geodesics re-entrant in one of
those arcs.

Hence if some geodesic not in Bm,n is strictly parallel to two geodesics in either Bm
or Bn, it cannot be re-entrant and hence Bm cannot generate a share. If, however, there
were trivially parallel geodesics, we would be unaffected. Generally, given a bipartite
graph Bm,n we have to verify that there are no geodesics that are strictly parallel with
two geodesics in Bm or Bn. We can easily identify those geodesics: a geodesic i strictly
parallel to geodesics j1, j2 in Bm must intersect each crossing geodesic in Bn. If this
is indeed the case, this would mean that Bm,n is contained in a bigger bipartite graph
where the components are Bm ∪ {i} and Bn.

Geodesic i is situated in between j1, j2 if and only if j1 < i < j2 where < is given
by the circular ordering on the graph that places j1 before j2 in one component of the
share. This condition is also satisfied on the other component of the share, because all
crossing geodesics in Bm ∪ {i} are mutually parallel.

Nevertheless, as long as we take maximal classes of parallel geodesics we will not be
bothered by the issue of some strictly parallel geodesics.
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Using the above chord diagram/medial graph, we construct a share.

Example Take the bipartite graph Bm,n with Bm = {1, 2, 4} and Bn = {5, 6}. There
are three maximal share components, {3}, {7}, and {8}.

Each maximal share component admits a flip, but if two maximal share components
are both connected to the same vertex, then the flip is not independent. Rather, if one
is flipped, so is the other. We immediately see that {3} and {7} form a maximal set
of intersecting maximal share components, since they both intersect {2} and no other
share component does.

Then there are two maximal sets of intersecting maximal share components, giving
22 = 4 possible chord diagrams with the same intersection graph using that share as a
basis, which we can physically verify by drawing them out.

Therefore, given a possible generating disjoint bipartite subgraph Bm,n for a share,
we can identify whether it actually generates a share by (1) examining the maximal
share components and (2) examining the possibility of strictly parallel geodesics.

Remark It is probably easier to look at the number of chord diagrams with the same
intersection graph by taking some chord diagram that has that intersection graph, iden-
tifying the maximal share components, and then computing it.

Under share reflection, the notions of strict and trivial parallelism are preserved, as
can also be evidenced by the intersection graph. Notions of strict and trivial parallelism
are also reflected in the construction of a share, as each maximal share component can
only intersect a single Bm or Bn.

Example It is necessary to discuss maximal bipartite graphs Bm,n used to generate
shares. These maximal bipartite graphs are important because if they generate a share,
we don’t need to worry about other possible crossing geodesics interfering with our ability
to create a share.

Since any bipartite subgraph is contained in a maximal bipartite subgraph, if given
some Bm,n not maximal there exists a maximal bipartite subgraph containing it, which
might automatically trigger some strictly parallel geodesics. IfBm,n only induces trivially
parallel geodesics, then it could still generate a share. Hence for each maximal Bm,n,
there are only m2n2 possible choices of subgraphs to examine, rather than the 2m+n total
subgraphs of the maximal graph. As we can tell, for large m, n this is an extremely
significant reduction in the number of graphs to consider.

To recap, given a chord diagram and its associated intersection graph, we can con-
struct and compute the chords as follows

• For the intersection graph, identify all maximal bipartite subgraphs of the inter-
section graph.
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• Examine the maximal share components of each bipartite subgraph, and partition
them into disjoint maximal components.

• The number of share flips for the bipartite subgraphs is 2k where k is the number
of disjoint maximal components.

• The total number of chord diagrams with that intersection graph is given by sum-
ming over all these 2k.

However, we have no idea whether a given graph is the intersection graph of a chord
diagram.

8 Identifying and Characterizing valid Intersection Graphs

Let I be a connected graph with n vertices, numbered 1 to n. Suppose in addition that
I is triangle-free, so that should it correspond to an intersection graph of a medial graph
M , the critical network associated to M will have no Y − Delta equivalencies. There
exist certain graphs which are not intersection graphs of any chord diagram, such as

Intersection Graph.png

Figure 8

For example, we can easily identify that this graph cannot correspond to a chord
diagram. The middle vertex (corresponding to some geodesic) has an edge connecting
it to each other vertex so draw it as [−1, 1] in the plane.Hence that geodesic intersects
each other geodesic, yet the intersection conditions will require the leftmost geodesic to
intersect the rightmost geodesic (by examining their endpoints in the upper half-plane),
a contradiction.

In [7], it is shown that there is an O(n2) algorithm to identify whether any given
graph is the intersection graph of a chord diagram (the intersection graphs are known
as “circle graphs”), where n is the number of vertices of the intersection graph. The
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algorithm relies on placing the vertices one by one in some order, until either a chord
diagram is created or a contradiction in terms of intersections is obtained.

However, it is still unknown as to which graphs are actual circle graphs or do not
represent the intersection graph of a chord diagram.

9 Conclusions and Remarks

We have given a characterization of how to construct shares, as well as computing share
reflections, which will enable us to identify the number of chord diagrams correspond-
ing to some given triangle-free graph as its intersection graph. We have also cited an
algorithm (of order O(n2)) which enables us to identify chord diagrams.

It remains to give a characterization of triangle-free graphs that are intersection
graphs, and the answer to this question has consistently eluded us. The algorithm
described allows us to look at a cycle in the intersection graph and attempt to re-create
the graph from there.

9.1 General Intersection Graphs

Most of the tools outlined here can be used to discuss general intersection graphs. Share
reflection as a tool can be used for general intersection graphs. Shares are still con-
structed by bipartite subgraphs of the intersection graph, and the idea of maximal share
components stays the same. Unfortunately, the notion of strict and parallel geodesics
will often go away.

Examine the following set of crossing geodesics.

2.png

Figure 9

Then 2 and 3 are both strictly parallel to 1 and 4. This is fine. But 2, while parallel
to 1, is not parallel to 3. We will say that in this case, geodesics 1, 3 do not generate
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a share, since if they were crossing geodesics it is obvious that 2 will also be a crossing
geodesic. We do not encounter this problem for triangle-free intersection graphs.

Therefore, we have an additional condition on the bipartite subgraphs used to create
shares. Le tBm,n be such a bipartite subgraph. It is contained in some maximal bipartite
subgraph Bm′,n′ , where possibly there are edges between vertices of Bm′ or Bn′ , with
Bm ⊂ Bm′ and Bn ⊂ Bn′ .

As we see in the above example, if there are no edges between Bm′ − Bm and Bm,
then Bm can generate a share, and similarly for Bn.

10 Further Questions

The results outlined in this paper pertain only to triangle-free medial graphs. In particu-
lar, the idea of taking a bipartite subgraph of the intersection graph can only be limited
to triangle-free medial graphs. This should generalize easily to all medial graphs, as
none of our tools relied on the triangle-free nature of either the medial graph or the
intersection graph.

We have given a formula to count the number of medial graphs corresponding to
a given intersection graph, as well as a condition for which graphs can possibly be
intersection graphs for a medial graph. However, it is not easy to identify offhand
whether a given graph is actually an intersection graph or not, if we have to examine all
possible bipartite subgraphs of the intersection graph. We would like a systematic way
to tell whether a graph is an intersection graph or not.

Additionally, it is evident that generally speaking, the presence of a greater number
of intersections in the intersection graph will bring with it a greater number of shares
for the chord diagram, as more bipartite subgraphs of the intersection graph exist, and
more connections through I − Bm,n also exist. In [7], it is shown that there is an
O(n2) algorithm to determine whether a given graph is the intersection graph of a chord
diagram, so again we have, theoretically, a way to determine the possible intersection
graphs, but we cannot construct the chord in the way that they do.

However, we can still construct crossing geodesics by constructing a bipartite sub-
graph Bm,n as we did for the triangle-free case. The difference is that the vertices
in Bm and Bn need not all be totally disconnected, though this does not change the
construction because of the deletion of the triangle-free condition.

Either way, the construction should take the same route despite the removal of the
triangle-free condition. The triangle-free condition manifests itself in the sense that if
two vertices both have an edge to another one (like in a bipartite graph), then there
isn’t an edge between the two vertices.

It still remains to give a count for the number of connected triangle-free graphs that
correspond to intersection graphs, or a characterization beyond the O(n2) algorithm in
[7].
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