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Introduction: The Riemann Zeta Function

Let ζ(s) =
∑∞

n=1 n−s be the Riemann zeta function.

This Dirichlet series converges absolutely for any complex s with <(s) > 1
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The Euler product

Theorem (Euler 1737)

ζ(s) =
∞∑
n=1

n−s =
∏
p

1

1− p−s

where the product is taken over all primes, and the product converges
absolutely for <(s) > 1.

“Proof”

∞∑
n=1

n−s = 1−s + 2−s + 3−s + 4−s + . . .

=
(
1−s + 2−s + (22)−s + . . .

) (
1−s + 3−s + (32)−s + . . .

)
· · ·

=
[
(2−s)0 + (2−s)1 + (2−s)2 . . .

] [
(3−s)0 + (3−s)1 + (3−s)2 . . .

]
· · ·

=

(
1

1− 2−s

)(
1

1− 3−s

)(
1

1− 5−s

)
· · ·
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Extending ζ(s) to a Larger Domain

Can we get better convergence for ζ(s)?

Yes! Observe:

2−sζ(s) = 2−s
∞∑
n=1

n−s

=
∞∑
n=1

(2n)−s

So

(1− 2 · 2−s)ζ(s) = ζ(s)− 2 · 2−sζ(s)

=
(
1−s + 2−s + 3−s + . . .

)
−
(
2 · 2−s + 2 · 4−s + 2 · 6−s + . . .

)
= 1−s − 2−s + 3−s − 4−s + . . .

=
∞∑
n=1

(−1)n+1n−s .

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 4 / 32



Extending ζ(s) to a Larger Domain

Can we get better convergence for ζ(s)? Yes! Observe:

2−sζ(s) = 2−s
∞∑
n=1

n−s

=
∞∑
n=1

(2n)−s

So

(1− 2 · 2−s)ζ(s) = ζ(s)− 2 · 2−sζ(s)

=
(
1−s + 2−s + 3−s + . . .

)
−
(
2 · 2−s + 2 · 4−s + 2 · 6−s + . . .

)
= 1−s − 2−s + 3−s − 4−s + . . .

=
∞∑
n=1

(−1)n+1n−s .

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 4 / 32



Extending ζ(s) to a Larger Domain

Can we get better convergence for ζ(s)? Yes! Observe:

2−sζ(s) = 2−s
∞∑
n=1

n−s

=
∞∑
n=1

(2n)−s

So

(1− 2 · 2−s)ζ(s) = ζ(s)− 2 · 2−sζ(s)

=
(
1−s + 2−s + 3−s + . . .

)
−
(
2 · 2−s + 2 · 4−s + 2 · 6−s + . . .

)
= 1−s − 2−s + 3−s − 4−s + . . .

=
∞∑
n=1

(−1)n+1n−s .

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 4 / 32



Extending ζ(s) to a Larger Domain∑∞
n=1(−1)n+1n−s converges (conditionally) on the strip 0 < <(s) ≤ 1, so

we can use it to define ζ(s) on the entire right half plane.

We can see ζ(s) clearly has a pole at s = 1.
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The Completed Zeta Function

Define the completed zeta function

ξ(s) = s(s − 1)π−s/2Γ
( s

2

)
ζ(s)

We can show that ξ(s) = ξ(1− s) on the strip 0 < <(s) < 1, so we use
this to extend ζ(s) to all of C.
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ζ(s) Analytically continued to C
So we have

zeta(s) =

{
(1− 21−s)−1

∑∞
n=1(−1)n+1n−s <(s) > 0

2sπs−1 sin
(
πs
2

)
Γ(1− s)ζ(1− s) <(s) ≤ 0

defined for all s ∈ C except s = 1.
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The Poles and Zeros of ζ(s)

We can show ζ(s) has:

a single simple pole at s = 1 with residue 1, and no other poles on C

simple zeros at −2,−4,−6,−8 . . . coming from the Γ(s/2) part of
the functional equation, called the trivial zeros

no other zeros outside the vertical strip 0 < <(s) < 1

an infinite number of zeros inside the strip 0 < <(s) < 1, symmetric
about the real axis and <(s) = 1

2 , called the nontrivial zeros

Conjecture (Riemann Hypothesis)

All nontrivial zeros of ζ are simple and lie on the line <(s) = 1
2 .
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The Zeros of ζ
The imaginary parts of the first few zeros of ζ(s) in the upper half plane
are

14.134725142. . .
21.022039639. . .
25.010857580. . .
30.424876126. . .
32.935061588. . .
37.586178159. . .
40.918719012. . .
43.327073281. . .
48.005150881. . .
49.773832478. . .
52.970321478. . .
56.446247697. . .
59.347044003. . .
60.831778525. . .
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The Explicit Formula for ζ(s)

Consider as a function of x > 1 the sum

Sζ(x ,T ) =
∑
|ρ|<T

xρ

ρ

where ρ runs over nontrivial zeros of ζ(s).

According to RH, nontrivial zeros come in pairs and have the form
ρ = 1

2 ± iγ, so in the above sum for a single zero pair we have

xρ

ρ
+

xρ

ρ
=

x1/2+iγ

1/2 + iγ
+

x1/2−iγ

1/2− iγ

=

√
x

1/4 + γ2
[cos(γ log x) + 2γ sin(γ log x)]
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The Explicit Formula for ζ(s)

Contingent on the Riemann Hypothesis:

Sζ(x ,T ) =
∑
|ρ|<T

xρ

ρ
=
√

x

 ∑
0<γ<T

cos(γ log x) + 2γ sin(γ log x)

1/4 + γ2


where γ runs over imaginary parts of nontrivial zeros.
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The Explicit Formula for ζ(s)

What does this sum converge to?

Theorem (Riemann 1858, von Mangoldt 1905)

∑
ρ

xρ

ρ
= lim

T→∞
Sζ(x ,T ) = x − 1

2
log
(
1− 1/x2

)
− log(2π)− ψζ(x)

where ψζ(x) =
∑′

pe≤x
log p is the second Chebyshev function.

This is known as (one formulation of) the explicit formula for ζ(s).
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The Explicit Formula for ζ(s)

Equivalent Formulation of the Riemann Hypothesis

The above function ψζ(x) = x + O(x1/2+ε) for arbitrarily small ε > 0.
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L-Functions

ζ(s) is the prototypical example of an L-function: a meromorphic
function on C that encode various arithmetic data about a particular
algebraic object.

For example, the explicit formula for ζ(s) shows that it encodes the
locations of the prime numbers.

Can define analogous L-functions attached to other number-theoretic
objects:

I Number fields
I Modular forms
I Elliptic curves
I And many more

I will show what you can do with elliptic curve L-functions.
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Elliptic Curves

Definition

An elliptic curve E is a smooth
projective genus 1 algebraic curve
with a marked point O.

For This Talk:

E/Q : y2 = x3+Ax+B, A,B ∈ Z

Example

E = 37a : y2 = x3 − 16x + 16

Figure: The Elliptic Curve 37a
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Theorem (Mordell 1922, Weil 1928)

E (Q) ≈ E (Q)TOR × Zr

where E (Q)TOR is a finite abelian group, and r ∈ Z≥0 is the algebraic rank
of E/Q.

Example

For E = 37a, we have E (Q) ≈ Z1, generated by P = (0, 4):

n 0 1 2 3 4 5 6

nP O (0, 4) (4, 4) (−4,−4) (8,−20) (1,−1) (24, 116)

n 7 8 9

nP
(
−20

9 ,
172
27

) (
84
25 ,−

52
125

) (
−80

49 ,−
2108
343

)
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Elliptic Curves over finite fields

Example

E = 37a : y2 = x3− 16x + 16

Consider its solutions (x , y)
modulo 101, e.g. (40, 7):

Let #E (Fp) be the number of points on E modulo the prime p.

Theorem (Hasse, 1936)

p + 1− 2
√

p ≤ #E (Fp) ≤ p + 1 + 2
√

p for all p.
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Elliptic Curves over finite fields

Definition

For prime p , let ap(E ) = p + 1−#E (Fp).

So an alternate statement of Hasse’s Theorem is that |ap| ≤ 2
√

p always.

Example

E = 37a

p 2 3 5 7 11 13 17 19 23 29 31 37

ap −2 −3 −2 −1 −5 −2 0 0 2 6 −4 −1

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 18 / 32



Elliptic Curves over finite fields

Definition

For prime p , let ap(E ) = p + 1−#E (Fp).

So an alternate statement of Hasse’s Theorem is that |ap| ≤ 2
√

p always.

Example

E = 37a

p 2 3 5 7 11 13 17 19 23 29 31 37

ap −2 −3 −2 −1 −5 −2 0 0 2 6 −4 −1

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 18 / 32



Elliptic Curves over finite fields

Definition

For prime p , let ap(E ) = p + 1−#E (Fp).

So an alternate statement of Hasse’s Theorem is that |ap| ≤ 2
√

p always.

Example

E = 37a

p 2 3 5 7 11 13 17 19 23 29 31 37

ap −2 −3 −2 −1 −5 −2 0 0 2 6 −4 −1

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 18 / 32



The Conductor of a Curve

Definition

The conductor N of an elliptic curve E is a positive integer that
encapsulates primes of bad reduction for E , i.e. primes for which when we
look at the set of points on E modulo p, bad stuff* happens.

Example

The conductor of 37a is N = 37, hence its name. That is, bad stuff only
happens for this elliptic curve at p = 37.
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Elliptic Curve L-Functions

Definition

The L-function attached to E is

LE (s) :=
∏
p|N

1

1− app−s

∏
p-N

1

1− app−s + p1−2s =
∞∑
n=1

ann−s

for <(s) > 3
2 .

The an are defined by multiplying out the Euler product.

Definition

The completed L-function attached to E is

ΛE (s) := Ns/2(2π)−sΓ(s)LE (s)
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Analytic Continuation of LE (s)

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001)

LE (s) extends to an entire function on C. Specifically,

Λ(s) = wΛ(2− s),

where w = 1 or −1 depending on the elliptic curve.

Notably, unlike ζ(s), LE (s) has no poles on C for any given elliptic curve
E .
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The Zeros of LE (s)

Three flavors:

A simple zero at
0,−1,−2,−3, . . .

A zero of order ran at s = 1; ran
is called the analytic rank of E

Countably infinite zeros in the
strip 0 < <(s) < 2, symmetric
about <(s) = 1 and x-axis.

Conjecture (Generalized Riemann
Hypothesis for Elliptic Curves)

All nontrivial zeros of LE (s) are
simple and lie on the line <(s) = 1.

Figure: The zeros of LE (s) for E = 37a
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The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

ran = r , i.e. the order of vanishing of LE (s) at s = 1 equals the rank
of the free part of E (Q)

The leading coefficient of LE (s) at s = 1 is

ΩE · RegE ·#X(E/Q) ·
∏

p cp

(#ETor(Q))2

where
I ΩE is the real period of (an optimal model of) E ,
I RegE is the regulator of E ,
I #X(E/Q) is the order of the Shafarevich-Tate group attached to

E/Q,
I
∏

p cp is the product of the Tamagawa numbers of E , and
I #ETor(Q) is the number of rational torsion points on E .
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Things You Can Do With EC L-functions

Proposition

If E/Q has conductor N and analytic rank r then

N >
1

5
e2r

Better results (S.), although nowhere close to effective yet:

r N ≥ Smallest Known Conductor

0 3 11
1 6 37
2 16 389
3 55 5077
4 232 234446
5 1192 19047851
6 6696 5187563742
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Things You Can Do With EC L-functions

Contingent on GRH and BSD we have a complete description of the
Taylor series of LE about s = 1. Specifically:

Proposition

Let LE (s + 1) = sr
(
a + b · s + c · s2 + O(s3)

)
,

where a is the leading coefficient described by BSD. Then

b

a
= η + log

(
2π√

N

)
c

a
=

1

2

[
η + log

(
2π√

N

)]2
− π2

12
+
∑
γ>0

γ−2

where γ runs over the imaginary parts of the nontrivial zeros of LE (s)
(excluding s = 1), and η = 0.57721566 . . . is the Euler-Mascheroni
constant.

Recursive formulae exist for higher coefficients as well.
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The Explicit Formula for Elliptic Curves

Definition

Let

SE (x ,T ) :=
∑
|γ|<T

x iγ

iγ
=

∑
0<γ<T

2 sin(γ log x)

γ

where γ runs over imaginary parts of nontrivial zeros other than s = 1

ψE (x) :=
∑′

n≤x
cn(E )

where cn(E ) = −
(

pe + 1−#Ẽ (Fpe )
)
· log(p)pe for n = pe a perfect

prime power, and 0 otherwise.
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The Explicit Formula for Elliptic Curves

Figure: ψE (x) for E = 37a
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The Explicit Formula for Elliptic Curves

Theorem

For any any E/Q with conductor N and for any x > 1 the partial sum
function SE (x ,T ) converges as T →∞. Specifically,

lim
T→∞

SE (x ,T ) =
∑
γ>0

2 sin(γ log x)

γ

= −η − log

(
2π√

N

)
− ran log x − log(1− x−1) + ψE (x)

where η is the Euler-Mascheroni constant = 0.5772156649 . . .
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Some Neat Corollaries

Loosely, {nontrivial zeros of LE} ∼ {ap(E ) : p prime} in an information
theoretic sense. For example,

Corollary (S.)

ap = lim
T→∞

−2πp

log p
· 1

T

∑
0<γ<T

cos(γ log p)

γ

Figure: −2πp
log p

∑
0<γ<T

cos(γ log p)
γ as a function of T for various small p
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Some Neat Corollaries

Conjecture - Alternate BSD Part 1 (Sarnak, Mazur)

For any given E/Q,

lim
x→∞

1

log(x)

∑
p≤x

−ap log(p)

p
= r

Where does this comes from?

Take explicit formula:∑
γ

sin(γ log x)

γ
= −η − log

(
2π√

N

)
− r log x − log(1− 1/x) + ψE (x)

Divide both sides by log(x) and take limits*.
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Ngiyabonga Kakhulu

Hamba Kahle!
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