L-Functions: A Crash Course

Simon Spicer

University of Washington
mlungu@uw.edu
July 2, 2013

Introduction: The Riemann Zeta Function

Introduction: The Riemann Zeta Function

Let $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ be the Riemann zeta function.

Introduction: The Riemann Zeta Function

Let $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ be the Riemann zeta function.

Introduction: The Riemann Zeta Function

Let $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ be the Riemann zeta function.

This Dirichlet series converges absolutely for any complex s with $\Re(s)>1$

The Euler product

The Euler product

Theorem (Euler 1737)

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p} \frac{1}{1-p^{-s}}
$$

where the product is taken over all primes, and the product converges absolutely for $\Re(s)>1$.

The Euler product

Theorem (Euler 1737)

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p} \frac{1}{1-p^{-s}}
$$

where the product is taken over all primes, and the product converges absolutely for $\Re(s)>1$.

$$
\begin{aligned}
& \text { "Proof" } \\
& \begin{aligned}
\sum_{n=1}^{\infty} n^{-s} & =1^{-s}+2^{-s}+3^{-s}+4^{-s}+\ldots \\
& =\left(1^{-s}+2^{-s}+\left(2^{2}\right)^{-s}+\ldots\right)\left(1^{-s}+3^{-s}+\left(3^{2}\right)^{-s}+\ldots\right) \ldots \\
& =\left[\left(2^{-s}\right)^{0}+\left(2^{-s}\right)^{1}+\left(2^{-s}\right)^{2} \ldots\right]\left[\left(3^{-s}\right)^{0}+\left(3^{-s}\right)^{1}+\left(3^{-s}\right)^{2} \ldots\right] \ldots \\
& =\left(\frac{1}{1-2^{-s}}\right)\left(\frac{1}{1-3^{-s}}\right)\left(\frac{1}{1-5^{-s}}\right) \ldots
\end{aligned}
\end{aligned}
$$

Extending $\zeta(s)$ to a Larger Domain

Can we get better convergence for $\zeta(s)$?

Extending $\zeta(s)$ to a Larger Domain

Can we get better convergence for $\zeta(s)$? Yes! Observe:

$$
\begin{aligned}
2^{-s} \zeta(s) & =2^{-s} \sum_{n=1}^{\infty} n^{-s} \\
& =\sum_{n=1}^{\infty}(2 n)^{-s}
\end{aligned}
$$

Extending $\zeta(s)$ to a Larger Domain

Can we get better convergence for $\zeta(s)$? Yes! Observe:

$$
\begin{aligned}
2^{-s} \zeta(s) & =2^{-s} \sum_{n=1}^{\infty} n^{-s} \\
& =\sum_{n=1}^{\infty}(2 n)^{-s}
\end{aligned}
$$

So

$$
\begin{aligned}
& \left(1-2 \cdot 2^{-s}\right) \zeta(s)=\zeta(s)-2 \cdot 2^{-s} \zeta(s) \\
& =\left(1^{-s}+2^{-s}+3^{-s}+\ldots\right)-\left(2 \cdot 2^{-s}+2 \cdot 4^{-s}+2 \cdot 6^{-s}+\ldots\right) \\
& =1^{-s}-2^{-s}+3^{-s}-4^{-s}+\ldots \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} n^{-s} .
\end{aligned}
$$

Extending $\zeta(s)$ to a Larger Domain

$\sum_{n=1}^{\infty}(-1)^{n+1} n^{-s}$ converges (conditionally) on the strip $0<\Re(s) \leq 1$, so we can use it to define $\zeta(s)$ on the entire right half plane.

Extending $\zeta(s)$ to a Larger Domain

$\sum_{n=1}^{\infty}(-1)^{n+1} n^{-s}$ converges (conditionally) on the strip $0<\Re(s) \leq 1$, so we can use it to define $\zeta(s)$ on the entire right half plane.

Extending $\zeta(s)$ to a Larger Domain

$\sum_{n=1}^{\infty}(-1)^{n+1} n^{-s}$ converges (conditionally) on the strip $0<\Re(s) \leq 1$, so we can use it to define $\zeta(s)$ on the entire right half plane.

We can see $\zeta(s)$ clearly has a pole at $s=1$.

The Completed Zeta Function

Define the completed zeta function

$$
\xi(s)=s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

The Completed Zeta Function

Define the completed zeta function

$$
\xi(s)=s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

The Completed Zeta Function

Define the completed zeta function

$$
\xi(s)=s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

We can show that $\xi(s)=\xi(1-s)$ on the strip $0<\Re(s)<1$, so we use this to extend $\zeta(s)$ to all of \mathbb{C}.

The Completed Zeta Function

Define the completed zeta function

$$
\xi(s)=s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

We can show that $\xi(s)=\xi(1-s)$ on the strip $0<\Re(s)<1$, so we use this to extend $\zeta(s)$ to all of \mathbb{C}.

$\zeta(s)$ Analytically continued to \mathbb{C}

So we have

$$
\operatorname{zeta}(s)= \begin{cases}\left(1-2^{1-s}\right)^{-1} \sum_{n=1}^{\infty}(-1)^{n+1} n^{-s} & \Re(s)>0 \\ 2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) & \Re(s) \leq 0\end{cases}
$$

defined for all $s \in \mathbb{C}$ except $s=1$.

$\zeta(s)$ Analytically continued to \mathbb{C}

So we have

$$
\operatorname{zeta}(s)= \begin{cases}\left(1-2^{1-s}\right)^{-1} \sum_{n=1}^{\infty}(-1)^{n+1} n^{-s} & \Re(s)>0 \\ 2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) & \Re(s) \leq 0\end{cases}
$$

defined for all $s \in \mathbb{C}$ except $s=1$.

The Poles and Zeros of $\zeta(s)$

We can show $\zeta(s)$ has:

- a single simple pole at $s=1$ with residue 1 , and no other poles on \mathbb{C}

The Poles and Zeros of $\zeta(s)$

We can show $\zeta(s)$ has:

- a single simple pole at $s=1$ with residue 1 , and no other poles on \mathbb{C}
- simple zeros at $-2,-4,-6,-8 \ldots$ coming from the $\Gamma(s / 2)$ part of the functional equation, called the trivial zeros

The Poles and Zeros of $\zeta(s)$

We can show $\zeta(s)$ has:

- a single simple pole at $s=1$ with residue 1 , and no other poles on \mathbb{C}
- simple zeros at $-2,-4,-6,-8 \ldots$ coming from the $\Gamma(s / 2)$ part of the functional equation, called the trivial zeros
- no other zeros outside the vertical strip $0<\Re(s)<1$

The Poles and Zeros of $\zeta(s)$

We can show $\zeta(s)$ has:

- a single simple pole at $s=1$ with residue 1 , and no other poles on \mathbb{C}
- simple zeros at $-2,-4,-6,-8 \ldots$ coming from the $\Gamma(s / 2)$ part of the functional equation, called the trivial zeros
- no other zeros outside the vertical strip $0<\Re(s)<1$
- an infinite number of zeros inside the strip $0<\Re(s)<1$, symmetric about the real axis and $\Re(s)=\frac{1}{2}$, called the nontrivial zeros

The Poles and Zeros of $\zeta(s)$

We can show $\zeta(s)$ has:

- a single simple pole at $s=1$ with residue 1 , and no other poles on \mathbb{C}
- simple zeros at $-2,-4,-6,-8 \ldots$ coming from the $\Gamma(s / 2)$ part of the functional equation, called the trivial zeros
- no other zeros outside the vertical strip $0<\Re(s)<1$
- an infinite number of zeros inside the strip $0<\Re(s)<1$, symmetric about the real axis and $\Re(s)=\frac{1}{2}$, called the nontrivial zeros

Conjecture (Riemann Hypothesis)

All nontrivial zeros of ζ are simple and lie on the line $\Re(s)=\frac{1}{2}$.

The Zeros of ζ

The imaginary parts of the first few zeros of $\zeta(s)$ in the upper half plane are

$$
\begin{aligned}
& 14.134725142 \ldots \\
& 21.022039639 \ldots \\
& 25.010857580 \ldots \\
& 30.424876126 \ldots \\
& 32.935061588 \ldots \\
& 37.586178159 \ldots \\
& 40.918719012 \ldots \\
& 43.327073281 \ldots \\
& 48.005150881 \ldots \\
& 49.773832478 \ldots \\
& 52.970321478 \ldots \\
& 56.446247697 \ldots \\
& 59.347044003 \ldots \\
& 60.831778525 \ldots
\end{aligned}
$$

The Zeros of ζ

The imaginary parts of the first few zeros of $\zeta(s)$ in the upper half plane are

$$
\begin{aligned}
& 14.134725142 \ldots \\
& 21.022039639 \ldots \\
& 25.010857580 \ldots \\
& 30.424876126 \ldots \\
& 32.935061588 \ldots \\
& 37.586178159 \ldots \\
& 40.918719012 \ldots \\
& 43.327073281 \ldots \\
& 48.005150881 \ldots \\
& 49.773832478 \ldots \\
& 52.970321478 \ldots \\
& 56.446247697 \ldots \\
& 59.347044003 \ldots \\
& 60.831778525 \ldots
\end{aligned}
$$

The Explicit Formula for $\zeta(s)$

Consider as a function of $x>1$ the sum

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}
$$

where ρ runs over nontrivial zeros of $\zeta(s)$.

The Explicit Formula for $\zeta(s)$

Consider as a function of $x>1$ the sum

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}
$$

where ρ runs over nontrivial zeros of $\zeta(s)$.
According to RH , nontrivial zeros come in pairs and have the form $\rho=\frac{1}{2} \pm i \gamma$, so in the above sum for a single zero pair we have

$$
\begin{aligned}
\frac{x^{\rho}}{\rho}+\frac{x^{\bar{\rho}}}{\bar{\rho}} & =\frac{x^{1 / 2+i \gamma}}{1 / 2+i \gamma}+\frac{x^{1 / 2-i \gamma}}{1 / 2-i \gamma} \\
& =\frac{\sqrt{x}}{1 / 4+\gamma^{2}}[\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)]
\end{aligned}
$$

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

Contingent on the Riemann Hypothesis:

$$
S_{\zeta}(x, T)=\sum_{|\rho|<T} \frac{x^{\rho}}{\rho}=\sqrt{x}\left(\sum_{0<\gamma<T} \frac{\cos (\gamma \log x)+2 \gamma \sin (\gamma \log x)}{1 / 4+\gamma^{2}}\right)
$$

where γ runs over imaginary parts of nontrivial zeros.

The Explicit Formula for $\zeta(s)$

What does this sum converge to?

The Explicit Formula for $\zeta(s)$

What does this sum converge to?
Theorem (Riemann 1858, von Mangoldt 1905)

$$
\begin{gathered}
\sum_{\rho} \frac{x^{\rho}}{\rho}=\lim _{T \rightarrow \infty} S_{\zeta}(x, T)=x-\frac{1}{2} \log \left(1-1 / x^{2}\right)-\log (2 \pi)-\psi_{\zeta}(x) \\
\text { where } \psi_{\zeta}(x)=\sum_{p^{e} \leq x}^{\prime} \log p \quad \text { is the second Chebyshev function. }
\end{gathered}
$$

The Explicit Formula for $\zeta(s)$

What does this sum converge to?
Theorem (Riemann 1858, von Mangoldt 1905)

$$
\begin{gathered}
\sum_{\rho} \frac{x^{\rho}}{\rho}=\lim _{T \rightarrow \infty} S_{\zeta}(x, T)=x-\frac{1}{2} \log \left(1-1 / x^{2}\right)-\log (2 \pi)-\psi_{\zeta}(x) \\
\text { where } \psi_{\zeta}(x)=\sum_{p^{e} \leq x}^{\prime} \log p \text { is the second Chebyshev function. }
\end{gathered}
$$

This is known as (one formulation of) the explicit formula for $\zeta(s)$.

The Explicit Formula for $\zeta(s)$

The Explicit Formula for $\zeta(s)$

Equivalent Formulation of the Riemann Hypothesis
The above function $\psi_{\zeta}(x)=x+O\left(x^{1 / 2+\epsilon}\right)$ for arbitrarily small $\epsilon>0$.

L-Functions

- $\zeta(s)$ is the prototypical example of an L-function: a meromorphic function on \mathbb{C} that encode various arithmetic data about a particular algebraic object.

L-Functions

- $\zeta(s)$ is the prototypical example of an L-function: a meromorphic function on \mathbb{C} that encode various arithmetic data about a particular algebraic object.
- For example, the explicit formula for $\zeta(s)$ shows that it encodes the locations of the prime numbers.

L-Functions

- $\zeta(s)$ is the prototypical example of an L-function: a meromorphic function on \mathbb{C} that encode various arithmetic data about a particular algebraic object.
- For example, the explicit formula for $\zeta(s)$ shows that it encodes the locations of the prime numbers.
- Can define analogous L-functions attached to other number-theoretic objects:
- Number fields
- Modular forms
- Elliptic curves
- And many more

L-Functions

- $\zeta(s)$ is the prototypical example of an L-function: a meromorphic function on \mathbb{C} that encode various arithmetic data about a particular algebraic object.
- For example, the explicit formula for $\zeta(s)$ shows that it encodes the locations of the prime numbers.
- Can define analogous L-functions attached to other number-theoretic objects:
- Number fields
- Modular forms
- Elliptic curves
- And many more

I will show what you can do with elliptic curve L-functions.

Elliptic Curves

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O}.

Elliptic Curves

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O}.

For This Talk:
$E / \mathbb{Q}: \quad y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{Z}$

Elliptic Curves

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O}.

$$
\begin{aligned}
& \text { For This Talk: } \\
& E / \mathbb{Q}: y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{Z}
\end{aligned}
$$

Example

$$
E=37 a: y^{2}=x^{3}-16 x+16
$$

Figure: The Elliptic Curve 37a

Elliptic Curves

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O}.

For This Talk:

$$
E / \mathbb{Q}: y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{Z}
$$

Example

$$
E=37 a: y^{2}=x^{3}-16 x+16
$$

Figure: The Elliptic Curve $37 a$

Theorem (Mordell 1922, Weil 1928)

$$
E(\mathbb{Q}) \approx E(\mathbb{Q})_{T O R} \times \mathbb{Z}^{r}
$$

where $E(\mathbb{Q})_{\text {TOR }}$ is a finite abelian group, and $r \in \mathbb{Z}_{\geq 0}$ is the algebraic rank of E / \mathbb{Q}.

Theorem (Mordell 1922, Weil 1928)

$$
E(\mathbb{Q}) \approx E(\mathbb{Q})_{T O R} \times \mathbb{Z}^{r}
$$

where $E(\mathbb{Q})_{\text {TOR }}$ is a finite abelian group, and $r \in \mathbb{Z}_{\geq 0}$ is the algebraic rank of E / \mathbb{Q}.

Example

For $E=37$ a, we have $E(\mathbb{Q}) \approx \mathbb{Z}^{1}$, generated by $P=(0,4)$:

n	0	1	2	3	4	5	6
$n P$	\mathcal{O}	$(0,4)$	$(4,4)$	$(-4,-4)$	$(8,-20)$	$(1,-1)$	$(24,116)$

n	7	8	9
$n P$	$\left(-\frac{20}{9}, \frac{172}{27}\right)$	$\left(\frac{84}{25},-\frac{52}{125}\right)$	$\left(-\frac{80}{49},-\frac{2108}{343}\right)$

Elliptic Curves over finite fields

Example

$E=37 a: y^{2}=x^{3}-16 x+16$
Consider its solutions (x, y) modulo 101, e.g. (40,7):

Elliptic Curves over finite fields

Example

$E=37 a: y^{2}=x^{3}-16 x+16$
Consider its solutions (x, y) modulo 101, e.g. (40,7):

Elliptic Curves over finite fields

Example

$E=37 a: y^{2}=x^{3}-16 x+16$
Consider its solutions (x, y) modulo 101, e.g. (40,7):

Let $\# E\left(\mathbb{F}_{p}\right)$ be the number of points on E modulo the prime p.

Elliptic Curves over finite fields

Example

$E=37 a: y^{2}=x^{3}-16 x+16$
Consider its solutions (x, y) modulo 101, e.g. $(40,7)$:

Let $\# E\left(\mathbb{F}_{p}\right)$ be the number of points on E modulo the prime p.
Theorem (Hasse, 1936)

$$
p+1-2 \sqrt{p} \leq \# E\left(\mathbb{F}_{p}\right) \leq p+1+2 \sqrt{p} \quad \text { for all } p
$$

Elliptic Curves over finite fields

Definition

For prime p, let $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.

Elliptic Curves over finite fields

Definition

For prime p, let $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.
So an alternate statement of Hasse's Theorem is that $\left|a_{p}\right| \leq 2 \sqrt{p}$ always.

Elliptic Curves over finite fields

Definition

For prime p, let $a_{p}(E)=p+1-\# E\left(\mathbb{F}_{p}\right)$.
So an alternate statement of Hasse's Theorem is that $\left|a_{p}\right| \leq 2 \sqrt{p}$ always.

Example

$E=37 a$

p	2	3	5	7	11	13	17	19	23	29	31	37
a_{p}	-2	-3	-2	-1	-5	-2	0	0	2	6	-4	-1

The Conductor of a Curve

Definition

The conductor N of an elliptic curve E is a positive integer that encapsulates primes of bad reduction for E, i.e. primes for which when we look at the set of points on E modulo p, bad stuff* happens.

The Conductor of a Curve

Definition

The conductor N of an elliptic curve E is a positive integer that encapsulates primes of bad reduction for E, i.e. primes for which when we look at the set of points on E modulo p, bad stuff* happens.

Example

The conductor of $37 a$ is $N=37$, hence its name. That is, bad stuff only happens for this elliptic curve at $p=37$.

Elliptic Curve L-Functions

Definition

The L-function attached to E is

$$
L_{E}(s):=\prod_{p \mid N} \frac{1}{1-a_{p} p^{-s}} \prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

for $\Re(s)>\frac{3}{2}$.
The a_{n} are defined by multiplying out the Euler product.

Elliptic Curve L-Functions

Definition

The L-function attached to E is

$$
L_{E}(s):=\prod_{p \mid N} \frac{1}{1-a_{p} p^{-s}} \prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

for $\Re(s)>\frac{3}{2}$.
The a_{n} are defined by multiplying out the Euler product.

Definition

The completed L-function attached to E is

$$
\Lambda_{E}(s):=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L_{E}(s)
$$

Analytic Continuation of $L_{E}(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001) $L_{E}(s)$ extends to an entire function on \mathbb{C}. Specifically,

$$
\Lambda(s)=w \Lambda(2-s),
$$

where $w=1$ or -1 depending on the elliptic curve.

Analytic Continuation of $L_{E}(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001)
$L_{E}(s)$ extends to an entire function on \mathbb{C}. Specifically,

$$
\Lambda(s)=w \Lambda(2-s),
$$

where $w=1$ or -1 depending on the elliptic curve.
Notably, unlike $\zeta(s), L_{E}(s)$ has no poles on \mathbb{C} for any given elliptic curve E.

The Zeros of $L_{E}(s)$

Three flavors:

- A simple zero at $0,-1,-2,-3, \ldots$
- A zero of order $r_{a n}$ at $s=1 ; r_{a n}$ is called the analytic rank of E
- Countably infinite zeros in the strip $0<\Re(s)<2$, symmetric about $\Re(s)=1$ and x-axis.

The Zeros of $L_{E}(s)$

Three flavors:

- A simple zero at $0,-1,-2,-3, \ldots$
- A zero of order $r_{a n}$ at $s=1 ; r_{a n}$ is called the analytic rank of E
- Countably infinite zeros in the strip $0<\Re(s)<2$, symmetric about $\Re(s)=1$ and x-axis.

Conjecture (Generalized Riemann Hypothesis for Elliptic Curves)

All nontrivial zeros of $L_{E}(s)$ are simple and lie on the line $\Re(s)=1$.

The Zeros of $L_{E}(s)$

Three flavors:

- A simple zero at $0,-1,-2,-3, \ldots$
- A zero of order $r_{a n}$ at $s=1 ; r_{a n}$ is called the analytic rank of E
- Countably infinite zeros in the strip $0<\Re(s)<2$, symmetric about $\Re(s)=1$ and x-axis.

Conjecture (Generalized Riemann Hypothesis for Elliptic Curves)

All nontrivial zeros of $L_{E}(s)$ are simple and lie on the line $\Re(s)=1$.

Figure: The zeros of $L_{E}(s)$ for $E=37 a$

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

- $r_{a n}=r$, i.e. the order of vanishing of $L_{E}(s)$ at $s=1$ equals the rank of the free part of $E(\mathbb{Q})$

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

- $r_{a n}=r$, i.e. the order of vanishing of $L_{E}(s)$ at $s=1$ equals the rank of the free part of $E(\mathbb{Q})$
- The leading coefficient of $L_{E}(s)$ at $s=1$ is

$$
\frac{\Omega_{E} \cdot \operatorname{Reg}_{E} \cdot \# Ш(E / \mathbb{Q}) \cdot \prod_{p} c_{p}}{\left(\# E_{\text {Tor }}(\mathbb{Q})\right)^{2}}
$$

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

- $r_{a n}=r$, i.e. the order of vanishing of $L_{E}(s)$ at $s=1$ equals the rank of the free part of $E(\mathbb{Q})$
- The leading coefficient of $L_{E}(s)$ at $s=1$ is

$$
\frac{\Omega_{E} \cdot \operatorname{Reg}_{E} \cdot \# Ш(E / \mathbb{Q}) \cdot \prod_{p} c_{p}}{\left(\# E_{\text {Tor }}(\mathbb{Q})\right)^{2}}
$$

where
Ω_{E} is the real period of (an optimal model of) E, Reg_{E} is the regulator of E, $\# \amalg(E / \mathbb{Q})$ is the order of the Shafarevich-Tate group attached to E / \mathbb{Q},
$\prod_{p} c_{p}$ is the product of the Tamagawa numbers of E, and $\# E_{\text {Tor }}(\mathbb{Q})$ is the number of rational torsion points on E.

Things You Can Do With EC L-functions

Things You Can Do With EC L-functions

Proposition

If E / \mathbb{Q} has conductor N and analytic rank r then

$$
N>\frac{1}{5} e^{2 r}
$$

Things You Can Do With EC L-functions

Proposition

If E / \mathbb{Q} has conductor N and analytic rank r then

$$
N>\frac{1}{5} e^{2 r}
$$

Better results (S.), although nowhere close to effective yet:

r	$N \geq$	Smallest Known Conductor
0	3	11
1	6	37
2	16	389
3	55	5077
4	232	234446
5	1192	19047851
6	6696	5187563742

Things You Can Do With EC L-functions

Contingent on GRH and BSD we have a complete description of the Taylor series of L_{E} about $s=1$. Specifically:

Things You Can Do With EC L-functions

Contingent on GRH and BSD we have a complete description of the Taylor series of L_{E} about $s=1$. Specifically:

Proposition

Let $L_{E}(s+1)=s^{r}\left(a+b \cdot s+c \cdot s^{2}+O\left(s^{3}\right)\right)$,
where a is the leading coefficient described by BSD. Then

$$
\begin{aligned}
& \frac{b}{a}=\eta+\log \left(\frac{2 \pi}{\sqrt{N}}\right) \\
& \frac{c}{a}=\frac{1}{2}\left[\eta+\log \left(\frac{2 \pi}{\sqrt{N}}\right)\right]^{2}-\frac{\pi^{2}}{12}+\sum_{\gamma>0} \gamma^{-2}
\end{aligned}
$$

where γ runs over the imaginary parts of the nontrivial zeros of $L_{E}(s)$ (excluding $s=1$), and $\eta=0.57721566 \ldots$ is the Euler-Mascheroni constant.

Recursive formulae exist for higher coefficients as well.

The Explicit Formula for Elliptic Curves

The Explicit Formula for Elliptic Curves

Definition

Let

$$
S_{E}(x, T):=\sum_{|\gamma|<T} \frac{x^{i \gamma}}{i \gamma}=\sum_{0<\gamma<T} \frac{2 \sin (\gamma \log x)}{\gamma}
$$

where γ runs over imaginary parts of nontrivial zeros other than $s=1$

The Explicit Formula for Elliptic Curves

Definition

Let

$$
S_{E}(x, T):=\sum_{|\gamma|<T} \frac{x^{i \gamma}}{i \gamma}=\sum_{0<\gamma<T} \frac{2 \sin (\gamma \log x)}{\gamma}
$$

where γ runs over imaginary parts of nontrivial zeros other than $s=1$

$$
\psi_{E}(x):=\sum_{n \leq x}^{\prime} c_{n}(E)
$$

where $c_{n}(E)=-\left(p^{e}+1-\# \widetilde{E}\left(\mathbb{F}_{p^{e}}\right)\right) \cdot \frac{\log (p)}{p^{e}}$ for $n=p^{e}$ a perfect prime power, and 0 otherwise.

The Explicit Formula for Elliptic Curves

Figure: $\psi_{E}(x)$ for $E=37 a$

The Explicit Formula for Elliptic Curves

Theorem

For any any E / \mathbb{Q} with conductor N and for any $x>1$ the partial sum function $S_{E}(x, T)$ converges as $T \rightarrow \infty$. Specifically,

$$
\begin{aligned}
\lim _{T \rightarrow \infty} S_{E}(x, T) & =\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma} \\
& =-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
\end{aligned}
$$

where η is the Euler-Mascheroni constant $=0.5772156649 \ldots$

The Explicit Formula for Elliptic Curves

Theorem

$$
\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
$$

The Explicit Formula for Elliptic Curves

Theorem

$$
\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
$$

The Explicit Formula for Elliptic Curves

Theorem

$$
\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
$$

The Explicit Formula for Elliptic Curves

Theorem

$$
\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
$$

The Explicit Formula for Elliptic Curves

Theorem

$$
\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
$$

The Explicit Formula for Elliptic Curves

Theorem

$$
\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
$$

The Explicit Formula for Elliptic Curves

Theorem

$$
\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
$$

The Explicit Formula for Elliptic Curves

Theorem

$$
\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
$$

The Explicit Formula for Elliptic Curves

Theorem

$$
\sum_{\gamma>0} \frac{2 \sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r_{a n} \log x-\log \left(1-x^{-1}\right)+\psi_{E}(x)
$$

Some Neat Corollaries

Loosely, $\left\{\right.$ nontrivial zeros of $\left.L_{E}\right\} \sim\left\{a_{p}(E): p\right.$ prime $\}$ in an information theoretic sense. For example,

Some Neat Corollaries

Loosely, $\left\{\right.$ nontrivial zeros of $\left.L_{E}\right\} \sim\left\{a_{p}(E): p\right.$ prime $\}$ in an information theoretic sense. For example,

Corollary (S.)

$$
a_{p}=\lim _{T \rightarrow \infty} \frac{-2 \pi p}{\log p} \cdot \frac{1}{T} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}
$$

Some Neat Corollaries

Loosely, $\left\{\right.$ nontrivial zeros of $\left.L_{E}\right\} \sim\left\{a_{p}(E): p\right.$ prime $\}$ in an information theoretic sense. For example,

Corollary (S.)

$$
a_{p}=\lim _{T \rightarrow \infty} \frac{-2 \pi p}{\log p} \cdot \frac{1}{T} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}
$$

Figure: $\frac{-2 \pi p}{\log p} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}$ as a function of T for various small p

Some Neat Corollaries

Loosely, $\left\{\right.$ nontrivial zeros of $\left.L_{E}\right\} \sim\left\{a_{p}(E): p\right.$ prime $\}$ in an information theoretic sense. For example,

Corollary (S.)

$$
a_{p}=\lim _{T \rightarrow \infty} \frac{-2 \pi p}{\log p} \cdot \frac{1}{T} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}
$$

Figure: $\frac{-2 \pi p}{\log p} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}$ as a function of T for various small p

Some Neat Corollaries

Loosely, $\left\{\right.$ nontrivial zeros of $\left.L_{E}\right\} \sim\left\{a_{p}(E): p\right.$ prime $\}$ in an information theoretic sense. For example,

Corollary (S.)

$$
a_{p}=\lim _{T \rightarrow \infty} \frac{-2 \pi p}{\log p} \cdot \frac{1}{T} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}
$$

Figure: $\frac{-2 \pi p}{\log p} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}$ as a function of T for various small p

Some Neat Corollaries

Loosely, $\left\{\right.$ nontrivial zeros of $\left.L_{E}\right\} \sim\left\{a_{p}(E): p\right.$ prime $\}$ in an information theoretic sense. For example,

Corollary (S.)

$$
a_{p}=\lim _{T \rightarrow \infty} \frac{-2 \pi p}{\log p} \cdot \frac{1}{T} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}
$$

Figure: $\frac{-2 \pi p}{\log p} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}$ as a function of T for various small p

Some Neat Corollaries

Loosely, $\left\{\right.$ nontrivial zeros of $\left.L_{E}\right\} \sim\left\{a_{p}(E): p\right.$ prime $\}$ in an information theoretic sense. For example,

Corollary (S.)

$$
a_{p}=\lim _{T \rightarrow \infty} \frac{-2 \pi p}{\log p} \cdot \frac{1}{T} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}
$$

Figure: $\frac{-2 \pi p}{\log p} \sum_{0<\gamma<T} \frac{\cos (\gamma \log p)}{\gamma}$ as a function of T for various small p

Some Neat Corollaries

Conjecture - Alternate BSD Part 1 (Sarnak, Mazur)
For any given E / \mathbb{Q},

$$
\lim _{x \rightarrow \infty} \frac{1}{\log (x)} \sum_{p \leq x} \frac{-a_{p} \log (p)}{p}=r
$$

Some Neat Corollaries

Conjecture - Alternate BSD Part 1 (Sarnak, Mazur)
For any given E / \mathbb{Q},

$$
\lim _{x \rightarrow \infty} \frac{1}{\log (x)} \sum_{p \leq x} \frac{-a_{p} \log (p)}{p}=r
$$

Where does this comes from?

Take explicit formula:

$$
\sum_{\gamma} \frac{\sin (\gamma \log x)}{\gamma}=-\eta-\log \left(\frac{2 \pi}{\sqrt{N}}\right)-r \log x-\log (1-1 / x)+\psi_{E}(x)
$$

Divide both sides by $\log (x)$ and take limits*.

Ngiyabonga Kakhulu

Ngiyabonga Kakhulu

Hamba Kahle!

