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Introduction: The Riemann Zeta Function

Let {(s) = >_,2, n° be the Riemann zeta function.

5 ¢(s)

N

2 4 6 8 10

This Dirichlet series converges absolutely for any complex s with R(s) > 1
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The Euler product
Theorem (Euler 1737)

> 1
@=2m =i
n=1 P

where the product is taken over all primes, and the product converges
absolutely for R(s) > 1.
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The Euler product
Theorem (Euler 1737)

> 1
&= =l
n=1 P

where the product is taken over all primes, and the product converges
absolutely for R(s) > 1.

“Proof”

in—s: 17 4+27°4+3°+4°4+ ...
=l (12 (2 ) (3T (B T )
_ [(2—5)0 + (2—5)1 + (2—5)2 N ] [(3—5)0 + (3—5)1 + (3—5)2 B ] L

(1_12_5) (1_13_5) (1_15_5)
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Extending ((s) to a Larger Domain

Can we get better convergence for ((s)?
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Extending ((s) to a Larger Domain

Can we get better convergence for ((s)? Yes! Observe:

27%¢(s)=2"" i n—*
n=1

— 3 (en)®

n=1
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Extending ((s) to a Larger Domain

Can we get better convergence for ((s)? Yes! Observe:

27%¢(s)=2"" i n—*
n=1

oo

— 3 (en)®

n=1

So

(1-2-27%)¢(s) = ¢(s) —2-27°C(s)
=17 +27° 437 +..)—(2:27°+2-47°42:6°+..)
=17 -27°"437° -4+ ...

= i(—n"ﬂn—s.
n=1
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Extending ((s) to a Larger Domain

3% (—1)"1n~s converges (conditionally) on the strip 0 < R(s) < 1, so

n=1
we can use it to define {(s) on the entire right half plane.
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Extending ((s) to a Larger Domain

3% (—1)"1n~s converges (conditionally) on the strip 0 < R(s) < 1, so

n=1
we can use it to define {(s) on the entire right half plane.

C(S) :(1721—3 )71 Z(fl)"Jrl n*

4 n=1
2
p) Z 6 8 10
2
-4
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Extending ((s) to a Larger Domain

3% (—1)"1n~s converges (conditionally) on the strip 0 < R(s) < 1, so

n=1
we can use it to define {(s) on the entire right half plane.

C(S) :(1721—3 )71 Z(fl)"Jrl n*

'
N

We can see ((s) clearly has a pole at s = 1.
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The Completed Zeta Function

Define the completed zeta function

§(s) = s(s = D)r =21 () <(s)
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The Completed Zeta Function

Define the completed zeta function

§(s) = s(s = 1)x 21 () <(s)
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The Completed Zeta Function
Define the completed zeta function

§(s) = s(s = 1)x 21 () <(s)
s £(s)

0.5

-6 -4 -2 2 4 6 8

We can show that £(s) = £(1 — s) on the strip 0 < R(s) < 1, so we use
this to extend ((s) to all of C.
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The Completed Zeta Function
Define the completed zeta function

§(s) = s(s = 1)x 21 () <(s)

; &(s)

0.5 ;

We can show that £(s) = £(1 — s) on the strip 0 < R(s) < 1, so we use
this to extend ((s) to all of C.
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((s) Analytically continued to C

So we have

a(s) = { A= 27X () R(s) >0
zeta(s) = § 5o o1, (Z)M(1—s)¢(1—s) R(s)<0

defined for all s € C except s = 1.
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The Poles and Zeros of ((s)

We can show ((s) has:

@ a single simple pole at s = 1 with residue 1, and no other poles on C
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We can show ((s) has:
@ a single simple pole at s = 1 with residue 1, and no other poles on C

@ simple zeros at —2, —4,—6, —8... coming from the '(s/2) part of
the functional equation, called the trivial zeros
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The Poles and Zeros of ((s)

We can show ((s) has:
@ a single simple pole at s = 1 with residue 1, and no other poles on C

@ simple zeros at —2, —4,—6, —8... coming from the '(s/2) part of
the functional equation, called the trivial zeros

@ no other zeros outside the vertical strip 0 < R(s) < 1

@ an infinite number of zeros inside the strip 0 < R(s) < 1, symmetric
about the real axis and R(s) = % called the nontrivial zeros

All nontrivial zeros of  are simple and lie on the line R(s)

Conjecture (Riemann Hypothesis) J
1
E.
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The Zeros of (

The imaginary parts of the first few zeros of ((s) in the upper half plane
are

14.134725142. ..
21.022039639. ..
25.010857580. ..
30.424876126. ..
32.935061588. ..
37.586178159. ..
40.918719012. ..
43.327073281. ..
48.005150881. ..
49.773832478. ..
52.970321478. ..
56.446247697. ..
59.347044003. ..
60.831778525. ..
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The imaginary parts of the first few zeros of ((s) in the upper half plane
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The Explicit Formula for {(s)

Consider as a function of x > 1 the sum
XP

ST)=Y =

ol<T P

where p runs over nontrivial zeros of ((s).
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The Explicit Formula for ((s)

Consider as a function of x > 1 the sum
P

S, T)= > =

ol<T P

where p runs over nontrivial zeros of ((s).
According to RH, nontrivial zeros come in pairs and have the form
p= % =+ i, so in the above sum for a single zero pair we have

XP xP /2y /2=
—+ == — 4 .
p P 1240y 1/2—iy

= 1/4—\/;__(72 [cos(7y log x) 4- 27y sin(y log x)]
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The Explicit Formula for {(s)

Contingent on the Riemann Hypothesis:

SteT)= Y X = x| 3 lloex) 12 onlylogx)

2
lpl<T 0<y<T 1/4+7

where 7 runs over imaginary parts of nontrivial zeros.
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The Explicit Formula for ((s)

Contingent on the Riemann Hypothesis:

Se(x, T) = Z xP — X Z cos(~y log x) + 27 sin(y log x)

2
lpl<T 0<y<T 1/4+7

where v runs over imaginary parts of nontrivial zeros.

S(x,2%) 1 zero

= N W B

' ' ' '
» w N =
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Contingent on the Riemann Hypothesis:

Se(x, T) = Z xP — X Z cos(~y log x) + 27 sin(y log x)

2
lpl<T 0<y<T 1/4+7

where v runs over imaginary parts of nontrivial zeros.

S(2,2%) 4 zeros
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The Explicit Formula for ((s)

Contingent on the Riemann Hypothesis:

Se(x, T) = Z xP _ X Z cos(~y log x) + 27 sin(y log x)

2
lpl<T 0<y<T 1/4+7

where v runs over imaginary parts of nontrivial zeros.

S,(2,2%) 14 zeros

= N W B

' ' ' '
» w N =

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 11 /32



The Explicit Formula for ((s)

Contingent on the Riemann Hypothesis:

Se(x, T) = Z xP _ X Z cos(~y log x) + 27 sin(y log x)

2
lpl<T 0<y<T 1/4+7

where v runs over imaginary parts of nontrivial zeros.

S(x,27) 42 zeros

= N W B

' ' ' '
» w N =
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The Explicit Formula for ((s)

Contingent on the Riemann Hypothesis:

Se(x, T) = Z xP _ X Z cos(~y log x) + 27 sin(y log x)

2
lpl<T 0<y<T 1/4+7

where v runs over imaginary parts of nontrivial zeros.

S(2,2%) 111 zeros

= N W B
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The Explicit Formula for ((s)

Contingent on the Riemann Hypothesis:

Se(x, T) = Z xP _ X Z cos(~y log x) + 27 sin(y log x)

2
lpl<T 0<y<T 1/4+7

where v runs over imaginary parts of nontrivial zeros.

S(=,2'") 668 zeros

= N W B
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The Explicit Formula for ((s)

Contingent on the Riemann Hypothesis:

Se(x, T) = Z xP _ X Z cos(~y log x) + 27 sin(y log x)

2
lpl<T 0<y<T 1/4+7

where v runs over imaginary parts of nontrivial zeros.

S (x,2'%) 3573 zeros

= N W B

' ' ' '
» w N =
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The Explicit Formula for ((s)

Contingent on the Riemann Hypothesis:

Se(x, T) = Z xP _ X Z cos(~y log x) + 27 sin(y log x)

2
lpl<T 0<y<T 1/4+7

where v runs over imaginary parts of nontrivial zeros.

S(=,2') 17905 zeros

= N W B

' ' ' '
» w N =
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The Explicit Formula for ((s)

Contingent on the Riemann Hypothesis:

Se(x, T) = Z xP _ X Z cos(~y log x) + 27 sin(y log x)

2
lpl<T 0<y<T 1/4+7

where v runs over imaginary parts of nontrivial zeros.

S (x,2'%) 86078 zeros

= N W B

' ' ' '
» w N =

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 11 /32



The Explicit Formula for {(s)

What does this sum converge to?
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The Explicit Formula for {(s)

What does this sum converge to?

Theorem (Riemann 1858, von Mangoldt 1905)

3% = Jim Sl T) =~ glog (1 =1/ ~log2m) ~4i(

where ¢(x) = Z/ log p is the second Chebyshev function.
pe<x
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The Explicit Formula for ((s)

What does this sum converge to?

Theorem (Riemann 1858, von Mangoldt 1905)

322 Jim Sex, ) = x = 108 (1-1/) ~ og(2r) = ()

where ¢(x) = Z/ log p is the second Chebyshev function.

pe<x

This is known as (one formulation of) the explicit formula for {(s).
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The Explicit Formula for {(s)

50
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The Explicit Formula for {(s)

50

'ng(x)

40

30

20

10

Equivalent Formulation of the Riemann Hypothesis
The above function ¥¢(x) = x + O(x}/27€) for arbitrarily small € > 0. J
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L-Functions

@ ((s) is the prototypical example of an L-function: a meromorphic
function on C that encode various arithmetic data about a particular
algebraic object.
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@ ((s) is the prototypical example of an L-function: a meromorphic
function on C that encode various arithmetic data about a particular
algebraic object.

@ For example, the explicit formula for ((s) shows that it encodes the
locations of the prime numbers.
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L-Functions

@ ((s) is the prototypical example of an L-function: a meromorphic
function on C that encode various arithmetic data about a particular
algebraic object.

@ For example, the explicit formula for ((s) shows that it encodes the
locations of the prime numbers.
@ Can define analogous L-functions attached to other number-theoretic
objects:
> Number fields
» Modular forms
» Elliptic curves
» And many more
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L-Functions

@ ((s) is the prototypical example of an L-function: a meromorphic
function on C that encode various arithmetic data about a particular
algebraic object.

@ For example, the explicit formula for ((s) shows that it encodes the
locations of the prime numbers.

@ Can define analogous L-functions attached to other number-theoretic
objects:
» Number fields
» Modular forms
» Elliptic curves
» And many more

| will show what you can do with elliptic curve L-functions.
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Elliptic Curves

Definition

An elliptic curve E is a smooth
projective genus 1 algebraic curve
with a marked point O.
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Elliptic Curves

Definition

An elliptic curve E is a smooth
projective genus 1 algebraic curve
with a marked point O.

For This Talk:

E/Q: y>=x3+Ax+B, ABeZ
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Elliptic Curves

Definition
An elliptic curve E is a smooth
projective genus 1 algebraic curve

15

10
with a marked point O. h
For This Talk: b\

E/Q: y>=x3+Ax+B, ABeZ

Example

E=37a:y?>=x3—16x+16

Figure: The Elliptic Curve 37a
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Elliptic Curves

Definition
An elliptic curve E is a smooth
projective genus 1 algebraic curve

15¢

with a marked point O. /‘\§
For This Talk: R

E/Q: y>=x3+Ax+B, ABeZ

Example

E=37a:y?>=x3—16x+16
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“15¢

6
P+Q=(4,-4)

- = —— - A -

Figure: The Elliptic Curve 37a
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Theorem (Mordell 1922, Weil 1928)

E(Q) ~ E(Q)Tor x Z*

where E(Q)1or is a finite abelian group, and r € Z> is the algebraic rank

of E/Q.
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Theorem (Mordell 1922, Weil 1928)

E(Q) ~ E(Q)1or X Z'

where E(Q)1or is a finite abelian group, and r € Z> is the algebraic rank
of E/Q. )
Example
For E = 37a, we have E(Q) ~ Z!, generated by P = (0,4):

n 0 1 2 3 5 6

nP | O (0,4) | (4,4) | (—4,-4) | (8, 20) (1,-1) | (24,116)

n 7 8 9

2| C2B) | &%) | 52 J
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Elliptic Curves over finite fields

Example

E=37a:y?>=x>—16x+16

Consider its solutions (x, y)
modulo 101, e.g. (40,7):
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Elliptic Curves over finite fields

Example

E=37a:y?>=x3—16x+16

Consider its solutions (x, y)
modulo 101, e.g. (40,7):
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Elliptic Curves over finite fields

100¢. . e .
Example e, S

80 °- .° a8 :" .
E:373:y2:x3—16x+16 60, , J° :'. ': -.':-

aof T L. T L S
Consider its solutions (x, y) ol o0 R
modulo 101, e.g. (40,7): et ST

’ = > : e E(Fg)

20 40 60 230 100
Let #E(F,) be the number of points on E modulo the prime p.
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Elliptic Curves over finite fields

Example

E=37a:y?>=x3—16x+16

Consider its solutions (x, y)
modulo 101, e.g. (40,7):

100y,

80

60|,

40

20

: : “_ E(Fg)

20 40 60 80 100

Let #E(F,) be the number of points on E modulo the prime p.

Theorem (Hasse, 1936)

p+1-2/p<#E[F,)<p+1+2/p forallp. J
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Elliptic Curves over finite fields
Definition
For prime p , let ap(E) = p+ 1 — #E(F)).
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Elliptic Curves over finite fields
Definition

For prime p , let ap(E) = p+ 1 — #E(F)).

So an alternate statement of Hasse's Theorem is that |a,| < 2,/p always.
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Elliptic Curves over finite fields

Definition

For prime p , let ap(E) = p+ 1 — #E(Fp).

So an alternate statement of Hasse's Theorem is that |a,| < 2,/p always.

Example
E =37a
p 2 3 5 7| 11| 13|17 (19|23 |29 | 31| 37
ap | 2| 3| -2|-1]|-5]|—=2| 0] 0| 2| 6] 4|1
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The Conductor of a Curve

Definition

The conductor N of an elliptic curve E is a positive integer that
encapsulates primes of bad reduction for E, i.e. primes for which when we
look at the set of points on E modulo p, bad stuff* happens.
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The Conductor of a Curve

Definition

The conductor N of an elliptic curve E is a positive integer that
encapsulates primes of bad reduction for E, i.e. primes for which when we
look at the set of points on E modulo p, bad stuff* happens.

Example
The conductor of 37a is N = 37, hence its name. That is, bad stuff only
happens for this elliptic curve at p = 37.
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Elliptic Curve L-Functions

Definition
The L-function attached to E is

LE(S)::H —a,p=* Hl_aps+p1 2s Za" -

p|N n=1

for R(s) > 3.

The a, are defined by multiplying out the Euler product.
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Elliptic Curve L-Functions

Definition
The L-function attached to E is

LE(S)::H —a,p=* Hl_aps+p1 2s Za" -

p|N n=1

for R(s) > 3.

The a, are defined by multiplying out the Euler product.
Definition

The completed L-function attached to E is

Ae(s) := N*/2(2m) =T (s)LE(s)
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Analytic Continuation of Lg(s)

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001)

Le(s) extends to an entire function on C. Specifically,
A(s) = wh(2 —s),

where w = 1 or —1 depending on the elliptic curve.
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Analytic Continuation of Lg(s)

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001)

Le(s) extends to an entire function on C. Specifically,
A(s) = wh(2 —s),

where w = 1 or —1 depending on the elliptic curve.

Notably, unlike {(s), Le(s) has no poles on C for any given elliptic curve
E.
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The Zeros of Lg(s)

Three flavors:
@ A simple zero at
0,-1,-2,-3,...
@ A zero of order ry, at s =1; rap
is called the analytic rank of E

@ Countably infinite zeros in the
strip 0 < R(s) < 2, symmetric
about R(s) = 1 and x-axis.
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The Zeros of Lg(s)

Three flavors:

@ A simple zero at
0,-1,-2,-3,...

@ A zero of order ry, at s =1; rap
is called the analytic rank of E

@ Countably infinite zeros in the
strip 0 < R(s) < 2, symmetric
about R(s) = 1 and x-axis.

Conjecture (Generalized Riemann
Hypothesis for Elliptic Curves)

All nontrivial zeros of Lg(s) are
simple and lie on the line R(s) = 1.
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The Zeros of Lg(s)

Three flavors:

@ A simple zero at
0,-1,-2,-3,...

@ A zero of order ry, at s = 1; rap
is called the analytic rank of E

@ Countably infinite zeros in the
strip 0 < R(s) < 2, symmetric
about R(s) = 1 and x-axis.

Conjecture (Generalized Riemann
Hypothesis for Elliptic Curves)

All nontrivial zeros of Lg(s) are
simple and lie on the line R(s) = 1.

30

20

10} ¢

-10

-20

-30
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Figure: The zeros of Lg(s) for E = 37a
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The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

® ran = r, i.e. the order of vanishing of Lg(s) at s =1 equals the rank

of the free part of E(Q)
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The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

® ran = r, i.e. the order of vanishing of Lg(s) at s =1 equals the rank
of the free part of E(Q)

@ The leading coefficient of Lg(s) ats=1is

Qf - Rege - #11(E/Q) - 1, ¢p
(#ETor(Q))2
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The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

® ran = r, i.e. the order of vanishing of Lg(s) at s =1 equals the rank
of the free part of E(Q)

@ The leading coefficient of Lg(s) ats=1is

Qf - Rege - #11(E/Q) - 1, ¢p
(7%'£ETor((@))2

where

Qg is the real period of (an optimal model of) E,

Regg is the regulator of E,

#III(E/Q) is the order of the Shafarevich-Tate group attached to
E/Q,

Hp Cp is the product of the Tamagawa numbers of E, and
#E75:(Q) is the number of rational torsion points on E.
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Things You Can Do With EC L-functions

Proposition
If E/Q has conductor N and analytic rank r then

1
N> = 2r
56
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Things You Can Do With EC L-functions

Proposition
If E/Q has conductor N and analytic rank r then

1
N> = 2r
56

Better results (S.), although nowhere close to effective yet:

r || N > | Smallest Known Conductor |

0 3 11
1 6 37
2 16 389
3 55 5077
4| 232 234446
5 1192 19047851
6 || 6696 5187563742
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Things You Can Do With EC L-functions

Contingent on GRH and BSD we have a complete description of the
Taylor series of Lg about s = 1. Specifically:
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Things You Can Do With EC L-functions

Contingent on GRH and BSD we have a complete description of the
Taylor series of Lg about s = 1. Specifically:

Proposition

Let Le(s+1)=s"(a+ b-s+c s>+ O(s)),
where a is the leading coefficient described by BSD. Then

vem(Z)

L frvoe ()] - By

>0

Lo LT

where v runs over the imaginary parts of the nontrivial zeros of Lg(s)

(excluding s = 1), and n = 0.57721566. . . is the Euler-Mascheroni
constant.

Recursive formulae exist for higher coefficients as well.
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The Explicit Formula for Elliptic Curves

Definition
Let
O .
x" 2 sin(~ log x
Se(x, T) i= -y 2sin(y log x)
iy gl
vl<T 0<y<T

where v runs over imaginary parts of nontrivial zeros other than s = 1
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The Explicit Formula for Elliptic Curves

Definition
Let
O .
x" 2 sin(~ log x
Se(x, T) i= -y 2sin(y log x)
iy gl
vl<T 0<y<T

where v runs over imaginary parts of nontrivial zeros other than s = 1

ve(x) = 3 cal E)

n<x

where ¢,(E) = — (pe +1-— #E(]Fpe)) . loi(ep) for n = p¢ a perfect
prime power, and 0 otherwise.
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The Explicit Formula for Elliptic Curves

10 20 30 40 50

Figure: ¢g(x) for E =37a
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The Explicit Formula for Elliptic Curves

Theorem

For any any E /Q with conductor N and for any x > 1 the partial sum
function Sg(x, T) converges as T — co. Specifically,

, 2sin(~y log x)
| T)=) 2N
s Se(xT) Y

>0

= —n—log (\2/%) — ran log x — log(1 — X_l) + YEe(x)

where 1 is the Euler-Mascheroni constant = 0.5772156649 . ..
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The Explicit Formula for Elliptic Curves
Theorem

2sin(~y log x
Z (v g):_

~ — log (%) — ranlog x — log(1 — X_l) + e(x)

v>0

5) Sp(x,6) 1 zero

L=
AL =

-1.5F

,_u
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The Explicit Formula for Elliptic Curves
Theorem

2sin(~y log x
Z (v g):

5 —n — log (%) — fanlog x — log(1 — x™1) 4+ e (x)

v>0

15} Sp(z,12) 6 zeros

RNV NSRS

N Kf 10 20 ] 30 40 50
0.5}

-1.5F

|
B
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The Explicit Formula for Elliptic Curves
Theorem

2sin(~y log x
Z (v g):

5 —n — log (%) — fanlog x — log(1 — x™1) 4+ e (x)

v>0

15} Sp(z,24) 16 zeros

AN S .ﬁ/TJ
o N U/ T R

-1.5F

=
T
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The Explicit Formula for Elliptic Curves
Theorem

2sin(~y log x
Z (v g):_

~ — log (%) — ranlog x — log(1 — X_l) + e(x)

v>0

5) Sp(x,48) 44 zeros

I\N\ A e MMV{D
LAV I O

-1.5F

,_u
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The Explicit Formula for Elliptic Curves
Theorem

2sin(~y log x
Z (v g):

5 —n — log (%) — fanlog x — log(1 — x™1) 4+ e (x)

v>0

15¢ Sp(z,96) 107 zeros

AN aT~

N‘i \1\] 20 F N =2 50
05|

-1.5F

)
"~
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The Explicit Formula for Elliptic Curves
Theorem

2sin(~y log x
Z (v g):

5 —n — log (%) — fanlog x — log(1 — x™1) 4+ e (x)

v>0

15) Sp(2,192) 258 zeros

AN WS~

NV fj 20 M Sd 50
0.5}

-1.5F

i
i
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The Explicit Formula for Elliptic Curves
Theorem

2sin(~y log x
Z (v g):_

~ — log (%) — ranlog x — log(1 — X_l) + e(x)

v>0

15¢ Sp(x,384) 601 zeros

jLIS I
LA v

-1.5F

,_u
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The Explicit Formula for Elliptic Curves
Theorem

2sin(~y log x
Z (v g):_

~ — log (%) — ranlog x — log(1 — X_l) + e(x)

v>0

1.5¢ Sp(z,1536) 3082 zeros

f\l\h ST FI

SN

-1.5F

,_u
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The Explicit Formula for Elliptic Curves
Theorem

2sin(~y log x
Z (v g):

5 —n — log (%) — fanlog x — log(1 — x™1) 4+ e (x)

v>0

15) Sp(z,6144) 15040 zeros

AN, o . H
o U S S

-1.5F

=
T
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Some Neat Corollaries

Loosely, {nontrivial zeros of Lg} ~ {ap(E) : p prime} in an information
theoretic sense. For example,
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Some Neat Corollaries

Loosely, {nontrivial zeros of Lg} ~ {ap(E) : p prime} in an information
theoretic sense. For example,

Corollary (S.)

—27p 1 Z cos(~y log p)

a, = lim
P i log p vy

0<y<T
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Some Neat Corollaries

Loosely, {nontrivial zeros of Lg} ~ {ap(E) : p prime} in an information
theoretic sense. For example,

Corollary (S.)

—27p 1 Z cos(~y log p)

a, = lim - = _—
P
T—oo lo T
gp 0<y<T v

p=7

4000 a,=-1

2000[

700 406 600 800 1000
2000}
4000}

| . .
M as a function of T for various small p

: . —27p
Figure: g B ZO<7<T
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Some Neat Corollaries

Loosely, {nontrivial zeros of Lg} ~ {ap(E) : p prime} in an information
theoretic sense. For example,

Corollary (S.)

—27p 1 Z cos(~y log p)

= | . —_— —_—
i logp T

a
P v

0<y<T

S

4000+

Q
=

2000}

-2000}

-4000}

as a function of T for various small p

cos( log p)
¥

: . —27p
Figure: g B ZO<7<T
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Some Neat Corollaries

Loosely, {nontrivial zeros of Lg} ~ {ap(E) : p prime} in an information
theoretic sense. For example,

Corollary (S.)

—27p 1 Z cos(~y log p)

ap = lim - e Ve 1)
P
Tox lo T
gpP 0<y<T v
= 19
4000} 5:0
P
20001
200 400 600 800 1000
-2000f
-4000¢

| . .
M as a function of T for various small p

: . —27p
Figure: g B ZO<7<T
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Some Neat Corollaries

Loosely, {nontrivial zeros of Lg} ~ {ap(E) : p prime} in an information
theoretic sense. For example,

Corollary (S.)

—27p 1 Z cos(~y log p)

ap = lim -
T—o0 10
gp 0<y<T v
p = 23
4000 a, =2
“ M
200 400 600 800 1000
-2000¢
-4000¢

| . .
M as a function of T for various small p

: . —27p
Figure: g B ZO<7<T

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 30/ 32



Some Neat Corollaries

Loosely, {nontrivial zeros of Lg} ~ {ap(E) : p prime} in an information
theoretic sense. For example,

Corollary (S.)

—27p 1 Z cos(~y log p)

a, = lim - = e
P
Tox lo T
gp 0<y<T v
= 29
4000} 5:6
P
20001
200 400 600 800 1000
-2000f
-4000¢

| . .
M as a function of T for various small p

: . —27p
Figure: g B ZO<7<T
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Some Neat Corollaries

Conjecture - Alternate BSD Part 1 (Sarnak, Mazur)
For any given E/Q,

—ap |
lim Z i og(p

X—500 Iog (x) >
p<x
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Some Neat Corollaries

Conjecture - Alternate BSD Part 1 (Sarnak, Mazur)
For any given E/Q,

im 1 Z —ap log(p) _,

xooolog(x) =~ p

Where does this comes from?
Take explicit formula:

Zy: Sin(’)’,yﬂ = —n—log (\2/—%) — rlogx —log(1 — 1/x) + ¥e(x)

Divide both sides by log(x) and take limits*.

Simon Spicer (UW) L-Functions and their Zeros July 2, 2013 31/32



Ngiyabonga Kakhulu

Simon Spicer (UW) L-Functions and their Zeros



Ngiyabonga Kakhulu

Hamba Kahlel
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