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1. Introduction

Previously, I considered conductivity networks where current along each edge was given by a nonlinear
(but monotone and continuous) function of voltage, and showed that the Dirichlet-to-Neumann map is well-
defined. Here, I consider the dual situation, where voltage along each edge is given by a monotone, continuous
function of current. I show that a very similar approach can be made. In particular, we have these results:

• Given boundary currents adding to 0, there is some solution to the von Neumann problem.
• The set of solutions is a convex set.
• The voltage drops in the solution are uniquely determined.

Assume we have a graph Γ with vertices V and edges E, and vertices partitioned into two sets: the
boundary nodes ∂V and the interior nodes intV .

Definition 1.1. A resistance function on Γ is a collection of real-valued functions fij(x) for each vivj ∈ E,
such that

• For every vivj ∈ E, fij(x) is a continuous and weakly increasing function of x.
• fij(0) = 0
• fij(−x) = −fji(x).

Definition 1.2. A current function on V to be a function I : V × V → R such that Iij = −Iji, for all
vj ∈ intV = V \ ∂V ∑

vk adjacent to vj

Ijk = 0.

and Iij = 0 unless vivj ∈ E.

Current functions form a vectors space W . Note that if I is any current function, then

∑
vj∈∂V

∑
vkvj∈E

Ijk =
∑
j

∑
vkvj∈E

Ijk =
∑

vkvj∈E
Ijk =

1
2

 ∑
vkvj∈E

Ijk − Ikj

 = 0.

Definition 1.3. A current function I satisfies Kirchhoff’s Voltage Law witih respect to the resistance func-
tions f if there is a function u : V → R such that for every vivj ∈ E

fij(Iij) = u(vi)− u(vj)

Definition 1.4. Given a function φ : ∂V → R with
∑
vj∈∂V φj = 0, the Neumann problem is to find a

current function I satisfying the Kirchhoff Voltage Law, and satisfying∑
k

Ijk = φj

for vj ∈ ∂V .

The φi are called boundary currents. Note that if
∑
vj∈∂V φj 6= 0, then there could not be any solution.

The boundary currents must add up to zero.
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2. Pseudopower (or its dual)

For each edge vivj ∈ E, define the pseudopower function

pij(Iij) = 2
∫ Iij

0

fij(t) dt

Since fij(x) = −fji(−x), we have pij(x) = pji(−x). Also, because fij(0) = 0 and fij(x) is weakly increasing,
pij(x) ≥ 0. Clearly, pij(x) is a convex, continuously differentiable function of x. Define the total pseudopower
p(I) =

∑
vivj∈E pij(Iij). Then p is a convex, continuously differentiable function on W , and is bounded below

by zero.
Let Wφ be the set of all current functions having a given boundary current φ. As long as

∑
vi∈∂V φi = 0,

Wφ will be nonempty. (This should be straightforward to prove by induction on the size of the graph).
If p attains a minimum value at some I ∈Wφ, then I is a critical point. Take any cycle C. Create a new

current function I(ε) by Iij(ε) = Iij + ε if vivj is in the cycle (in that order), Iji(ε) = Iji − ε if vivj is in the
cycle (in that order), and Iij = Iij otherwise. In other words, we increase the flow along around C by ε at
each edge. I(ε) is certainly a current function in Wφ, and since I was a critical point, we must have

∂I(ε)
∂ε

ε=0 = 0 =
∑

vivj∈C
p′ij(Iij) =

∑
vivj∈C

fij(Iij).

Since this is true for any cycle, we can choose u : V → R such that ui − uj = fij(Iij) for all vivj ∈ E.
Therefore, I satisfies the Kirchoff Current Laws. So a global minimum of p on Wφ is a solution to the
Neumann problem. Conversely, any critical point of a convex function is a global minimum. Since the global
minima of a convex function form a convex set, the solutions to the Neumann problem form a convex set.
In summary, we have shown:

Theorem 2.1. For boundary currents φ, I ∈ Wφ is a solution to the Neumann problem iff it is a global
minimum of the total pseudopower p on Wφ. The solutions form a convex subset of Wφ.

3. Existence

We still need to show that any solutions exist. As noted above, it is not hard to show that Wφ is nonempty
(assuming

∑
k φk = 0). Let’s say that a current function is acyclic if there does not exist a cycle in the graph

along which all the currents are positive. For example, it is not the case that for some i, j, k, Iij , Ijk, Iki > 0.
Let Kφ ⊆Wφ be the set of all acyclic current functions. Clearly, Kφ is closed. It is also bounded:

Lemma 3.1. If I ∈ Kφ, then for all vivj ∈ E,

Iij ≤
∑
k

|φk|

Proof. Let S be the set of vertices upstream from vi. This is meaningful, because I is acyclic. To be more
precise, v ∈ S iff there is a chain of vertices v = vc1 , vc2 , . . . , vcr

= vi such that vcl
vcl+1 ∈ E and Iclcl+1 > 0.

Then S does not contain vj , since I is acyclic. The total current flowing from S to V \S is equal to the total
boundary current along the boundary of S, so it is at most

∑
k |φk|. Also, if vpvq ∈ E, vp ∈ S, but vq /∈ S,

then Ipq ≥ 0, since otherwise the chain from vp to vi could be extended to be from vq to vi, contradicting
vq /∈ S. Therefore, Iij is bounded from above by the total amount of current flowing from S to V \S, which
as already noted is bounded by

∑
k |φk|. �

It turns out that the minimum, if it occurs, must occur on Kφ.

Lemma 3.2. For I ∈Wφ, there is some I ′ ∈ Kφ, such that p(I ′) ≤ p(I)

Proof. If I is acyclic then we are done, so suppose there is some cycle C such that I has positive currents
along C. Let µ be the smallest current of I along C, and let I1 be the current function obtained by decreasing
every current along C by µ. This is still a current function, in Wφ. Now decreasing the magnitude of a
current along an edge does not increase the pseudopower there, so p(I1) ≤ p(I). If I1 ∈ Kφ then we are
done. Otherwise, perform the same operation on I1, and continue until we have a current function in Kφ.
This process always terminates, because at each step we strictly increase the number of edges on which there
is no current. �
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Theorem 3.3. The von Neumann problem has a solution if
∑
k φk = 0.

Proof. By Lemma 3.2(!) Kφ is nonempty. It is also bounded (by Lemma 3.1) and closed, so p attains a
minimum on it, at some point I0. Then for any I ∈ Wφ, p(I) ≥ p(I ′) ≥ p(I0) for some I ′ ∈ Kφ, by Lemma
3.2. Therefore, I0 is a global minimum of p, so by Theorem 2.1 I0 is a solution to the Neumann problem
with boundary currents φ. �

4. Voltages Fixed

Now, we show that for a given boundary current φ, the voltage differences across each edge are uniquely
determined. Suppose we have two solutions, I and J . Define an auxiliary directed graph on V , in which
there is an edge from vi to vj if fij(Iij) < fij(Jij). If S is any set of vertices in the graph, it cannot be the
case that every edge from S to V \ S is in the auxiliary graph, since this would indicate that the current
flowing from S to V \ S increased, but that should be fixed by the boundary currents.

Suppose that vivj is an edge in the auxiliary graph. Let S be the set of all vertices that can reach i
by traveling along the edges of the original graph, without ever going against the direction of the auxiliary
graph. If x ∈ S and y /∈ S, and there is an edge from x to y, there must be an edge in the auxiliary graph
from x to y, or else we could travel from y to vi via x. So every edge from S to V \ S is in the auxiliary
graph. By the previous comment, this can only happen if V \ S = ∅. Then vj ∈ S. So we can travel from
vj to vi without traveling against the arrows. This produces a cycle C such that as we travel around C, we
never travel against the arrow, and at at least one point (where we move from vi to vj), we travel with an
arrow. Therefore, the sum of the voltage drops along C never decreased, and increased in at least one point,
as we switch from I to J . But this is impossible, since the sum of the voltage drops along a cycle should be
0 in both I and J .

Therefore, there are no edges in the auxiliary graph. So for every edge vivj , fij(Iij) ≥ fij(Jij). Switching
i and j, we also have

−fij(Iij) = fji(Iji) ≥ fji(Jji) = −fij(Jij)
So fij(Iij) = fij(Jij) for all edges.

Theorem 4.1. For fixed boundary currents φ, all solutions to the Neumann problem have the same voltage
drop across any given edge.

By combining this with Theorem 3.3, we see that the Neumann-to-Dirichlet map is well defined. In the
case where all the resistance functions are bijections, this combines with my prior result to show that there is
essentially a one to one correspondence between boundary currents (summing to zero) and boundary voltages
(summing to zero).
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