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1. INTRODUCTION

Previously, I considered conductivity networks where current along each edge was given by a nonlinear
(but monotone and continuous) function of voltage, and showed that the Dirichlet-to-Neumann map is well-
defined. Here, I consider the dual situation, where voltage along each edge is given by a monotone, continuous
function of current. I show that a very similar approach can be made. In particular, we have these results:

e Given boundary currents adding to 0, there is some solution to the von Neumann problem.
e The set of solutions is a convex set.
e The voltage drops in the solution are uniquely determined.

Assume we have a graph I'" with vertices V' and edges E, and vertices partitioned into two sets: the
boundary nodes 0V and the interior nodes int V.

Definition 1.1. A resistance function on I is a collection of real-valued functions f;;(x) for each v;v; € E,
such that

e For every viv; € E, fi;(x) is a continuous and weakly increasing function of x.
e fi;(0)=0
o fij(=z) =—fji(x).

Definition 1.2. A current function on V' to be a function I : V xV — R such that I;; = —1Ij;, for all
vy €intV =V \0oV
> L, = 0.

v adjacent to vj
and I;; = 0 unless v;v; € E.
Current functions form a vectors space W. Note that if I is any current function, then
1
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Definition 1.3. A current function I satisfies Kirchhoff’s Voltage Law witih respect to the resistance func-
tions f if there is a function w: V — R such that for every viv; € E

fij(Liz) = u(vi) — u(vy)

Definition 1.4. Given a function ¢ : 0V — R with Zujeav ¢; = 0, the Neumann problem is to find a
current function I satisfying the Kirchhoff Voltage Law, and satisfying

ijk =0
k
forv; € oV.

The ¢; are called boundary currents. Note that if Zvje v @5 # 0, then there could not be any solution.
The boundary currents must add up to zero.
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2. PSEUDOPOWER (OR ITS DUAL)

For each edge v;v; € E, define the pseudopower function
I
pij(Lij) =2 ; fiz () dt
Since f;j(x) = —fji(—x), we have p;;(z) = pj;(—x). Also, because f;;(0) = 0 and f;;(x) is weakly increasing,
pij(x) > 0. Clearly, p;;(x) is a convex, continuously differentiable function of z. Define the total pseudopower
p(I) = vaj e Pij(Lij). Then pis a convex, continuously differentiable function on W, and is bounded below
by zero.

Let W, be the set of all current functions having a given boundary current ¢. As long as Zvie oy @i =0,
W will be nonempty. (This should be straightforward to prove by induction on the size of the graph).

If p attains a minimum value at some I € Wy, then I is a critical point. Take any cycle C'. Create a new
current function I(€) by I;;(e) = I;; + € if v;v; is in the cycle (in that order), I;;(€) = I;; — € if v;v; is in the
cycle (in that order), and I;; = I;; otherwise. In other words, we increase the flow along around C' by € at
each edge. I(e) is certainly a current function in Wy, and since I was a critical point, we must have

I
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Since this is true for any cycle, we can choose w : V — R such that u; —u; = f;;(1;;) for all v;v; € E.
Therefore, I satisfies the Kirchoff Current Laws. So a global minimum of p on Wy is a solution to the
Neumann problem. Conversely, any critical point of a convex function is a global minimum. Since the global
minima of a convex function form a convex set, the solutions to the Neumann problem form a convex set.
In summary, we have shown:

Theorem 2.1. For boundary currents ¢, I € Wy is a solution to the Neumann problem iff it is a global
minimum of the total pseudopower p on Wy. The solutions form a convex subset of Wy.

3. EXISTENCE

We still need to show that any solutions exist. As noted above, it is not hard to show that W is nonempty
(assuming >, ¢ = 0). Let’s say that a current function is acyclic if there does not exist a cycle in the graph
along which all the currents are positive. For example, it is not the case that for some 1, j, k, I, Lk, Ix; > 0.
Let K4 € Wy be the set of all acyclic current functions. Clearly, K is closed. It is also bounded:

Lemma 3.1. If I € Ky, then for all v,v; € E,
L < Z ||
k

Proof. Let S be the set of vertices upstream from v;. This is meaningful, because I is acyclic. To be more
precise, v € S iff there is a chain of vertices v = v, ve,, ..., v, = v; such that vev.,,, € E and I, , > 0.
Then S does not contain v;, since I is acyclic. The total current flowing from S to V'\ S is equal to the total
boundary current along the boundary of S, so it is at most ), |¢x|. Also, if v,y € E, v, € S, but vy ¢ S,
then I, > 0, since otherwise the chain from v, to v; could be extended to be from v, to v;, contradicting
vg ¢ S. Therefore, I;; is bounded from above by the total amount of current flowing from S to V'\ S, which
as already noted is bounded by >, |¢x|. O

It turns out that the minimum, if it occurs, must occur on K.
Lemma 3.2. For I € Wy, there is some I' € K, such that p(I") < p(I)

Proof. If I is acyclic then we are done, so suppose there is some cycle C' such that I has positive currents
along C. Let u be the smallest current of I along C, and let I; be the current function obtained by decreasing
every current along C' by p. This is still a current function, in Wy. Now decreasing the magnitude of a
current along an edge does not increase the pseudopower there, so p(I1) < p(I). If Iy € K, then we are
done. Otherwise, perform the same operation on I;, and continue until we have a current function in K.
This process always terminates, because at each step we strictly increase the number of edges on which there
is no current. O



Theorem 3.3. The von Neumann problem has a solution if Y, ¢ = 0.

Proof. By Lemma 3.2(!) Ky is nonempty. It is also bounded (by Lemma 3.1) and closed, so p attains a
minimum on it, at some point Iy. Then for any I € Wy, p(I) > p(I') > p(ly) for some I’ € K4, by Lemma
3.2. Therefore, Iy is a global minimum of p, so by Theorem 2.1 I is a solution to the Neumann problem
with boundary currents ¢. O

4. VOLTAGES FIXED

Now, we show that for a given boundary current ¢, the voltage differences across each edge are uniquely
determined. Suppose we have two solutions, I and J. Define an auxiliary directed graph on V, in which
there is an edge from v; to v; if fi;(Li;) < fi;(Ji;). If S is any set of vertices in the graph, it cannot be the
case that every edge from S to V' \ S is in the auxiliary graph, since this would indicate that the current
flowing from S to V'\ S increased, but that should be fixed by the boundary currents.

Suppose that v;v; is an edge in the auxiliary graph. Let S be the set of all vertices that can reach 4
by traveling along the edges of the original graph, without ever going against the direction of the auxiliary
graph. If z € S and y ¢ S, and there is an edge from x to y, there must be an edge in the auxiliary graph
from x to y, or else we could travel from y to v; via x. So every edge from S to V' \ S is in the auxiliary
graph. By the previous comment, this can only happen if V' \ .S = . Then v; € S. So we can travel from
v; to v; without traveling against the arrows. This produces a cycle C such that as we travel around C, we
never travel against the arrow, and at at least one point (where we move from v; to v;), we travel with an
arrow. Therefore, the sum of the voltage drops along C never decreased, and increased in at least one point,
as we switch from I to J. But this is impossible, since the sum of the voltage drops along a cycle should be
0 in both I and J.

Therefore, there are no edges in the auxiliary graph. So for every edge v;v;, fi;(Li;) > fij(Jij). Switching
i and j, we also have

—fii(Lij) = f5i(Lji) > f3i(Jji) = = fij (Jij)
So fij (I”) = fij(Jij) for all edges.

Theorem 4.1. For fized boundary currents ¢, all solutions to the Neumann problem have the same voltage
drop across any given edge.

By combining this with Theorem 3.3, we see that the Neumann-to-Dirichlet map is well defined. In the
case where all the resistance functions are bijections, this combines with my prior result to show that there is
essentially a one to one correspondence between boundary currents (summing to zero) and boundary voltages
(summing to zero).



