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Abstract. We consider two-player nonloopy games in which both players

have the same option at each point of the game, and the parity of the length

of the game is determined, but the winner is not determined by the last move.
We develop the additive theory of such games, where the sum of two games

is a biased operation favoring one of the two players, in case the outcomes

of the two games differ. This arrangement occurs naturally in the context
of knot games. We show that modulo indistinguishability, there is a finite

commutative monoid of games, with 37 elements.
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1. Introduction

In the paper A Midsummer Knot’s Dream [3], Henrich et alintroduce a game
To Knot or Not to Knot played on a knot pseudodiagram, in which two players,
King Lear and Ursula, alternatively resolve precrossings. The game ends when all
precrossings have been resolved, with King Lear winning if the resultant knot is
knotted, and Ursula winning if the knot is the unknot.

Given two pseudodiagrams, we can play To Knot or Not to Knot on the con-
nected sum. Equivalently, we could place the two games next to each other and
have each player on her or his turn choose one game to play in, with Ursula winning
only if she wins in both of the shadows.

This sort of combined game, where two games are played in parallel, is very
similar to the concept of a sum of games used in Combinatorial Game Theory,
as developed in Conway’s On Numbers and Games [2] and Guy et al.’s Winning
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Ways [1]. The critical difference is that CGT focuses on games where the winner is
determined by who moves last. Therefore, there is no need to specify the winner of
the game. In games like To Knot or Not to Knot, on the other hand, the last player
is not necessarily the winner – in fact the player to move last can be predicted
from the outset, because the game has fixed length. Instead, the winner in each
endgame must be specified by the game itself, and the sum of two games becomes
an asymmetric affair, favoring King Lear.

Knowing the outcome of two games under perfect play does not necessarily
determine the outcome of the sum of two games. Consequently, one of the main
focuses of CGT is to assign a value of some sort to each game, such that the outcome
of a game is determined by the value, and the value of a sum of games is the sum of
the values. While some games can be studied using numerical values, other games
take their values in other algebraic structures.

This paper presents a similar approach for the addition of knot-type games,
defined in the next section. In a way, this is similar to the alternative ways of
combining games, such as conjunctive and selective sums, studied in Chapter 14 of
On Numbers and Games, and Volume 2 of Winning Ways. It is also similar to the
theory of Misere games – in some situations, such as Misere Kayles, positions take
values in a finite monoid, as happens here (this was shown by Sibert and Conway).

2. Knot-type Games

We consider non-loopy games between two players – Knotter and Unknotter –
which end after a finite number of moves. We impose two important caveats which
are satisfied by all positions that occur in To Knot or Not to Knot.

• The length of the game must be determined in advance. Actually, we just
require that the parity of the length be known in advance. This occurs in
To Knot or Not to Knot because the number of moves remaining in any
position is simply the number of precrossings left in the diagram.
• At each position, both players have the same options. This makes knot-

type games similar to the “impartial” games of CGT, except for the fact
that the endgame specifies which of two players wins. One might call such
games “semipartial.”

Formally, then, we use the following recursive definitions:

Definition 2.1. An odd knot-type game G is a non-empty set of even knot-type
games, the options of G.

Definition 2.2. An even knot-type game G is either one of the symbols u or k,
or a non-empty set of odd knot-type games, the options of G.

Definition 2.3. A knot-type game G is an even or odd knot type game.

Definition 2.4. An endgame is one of the games k or u.

Henceforth, “game” will refer to knot-type games.
The outcome of a game is defined recursively:

Definition 2.5. (half-outcomes)
• A game is a win for K playing second (K2) if it is equal to k, or if all

options are wins for K playing first.
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• A game is a win for K playing first (K1) if it is equal to k, or if some option
is a win for K playing second.
• A game is a win for U playing second (U2) if it is equal to u, or if all

options are wins for U playing first.
• A game is a win for U playing first (U1) if it is equal to u, or if some option

is a win for U playing second.

Definition 2.6. The outcome of a game outcome(G) is
• K if G ∈ K1 ∩K2, that is, G is always a win for the Knotter
• 1 if G ∈ K1 ∩ U1, that is, G is always a win for the first player
• U if G ∈ U1 ∩ U2, that is, G is always a win for the Unknotter
• 2 if G ∈ K2 ∩ U2, that is, G is always a win for the second player.

Because games are defined recursively, we can use induction to prove theorems
about them. For example:

Theorem 2.7. A game G is in K2 iff it is not in U1; it is in U2 iff it is not in
K1.

Proof. Proof by induction on G. For the base cases, if G = k, then G is in K2 but
not U1 and K1 but not U2. If G = u, then G is U1 but not K2 and U2 but not K1.
Otherwise, suppose the hypothesis is true for all options of G. Then (G is in K2)
⇐⇒ (all options of G are in K1) ⇐⇒ (no option of G is in U2) ⇐⇒ (G is not
in U1). Similarly, (G is in U2) ⇐⇒ (all options G are in U1) ⇐⇒ (no option of
G is in K2) ⇐⇒ (G is not in K1). �

It is clear from the previous theorem that each game has exactly one outcome
from the four possibilities.

We use G′ to represent an option of G, in a way similar to that used in ONAG
and Winning Ways. For example:

Definition 2.8. Let G and H be games. The sum G+H is the game {G′+H,G+
H ′}, unless G and H are both endgames, in which case G + H is u iff both G and
H are u, and k otherwise.

The notation {G′ + H,G + H ′} is shorthand for

{G′ + H : G′ ∈ G} ∪ {G + H ′ : H ′ ∈ H}.

Theorem 2.9. Addition of games is commutative: G + H = H + G.

Proof. This is clear in the case that G and G are both endgames, and otherwise

G + H = {G′ + H,G + H ′} = {H + G′, H ′ + G} = H + G,

where the middle step follows by induction. �

Theorem 2.10. If G is a game, then G + u = G

Proof. This is clear if G is an endgame, and otherwise,

G + u = {G′ + u, G + u′} = {G′ + u} = {G′} = G,

by induction and the fact that u has no options. �

Theorem 2.11. Addition of games is associative: (F + G) + H = F + (G + H)
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Proof. If any of F,G, H are the endgame u, then this follows from the previous two
theorems. Otherwise, if F and G are both the endgame k, then

(F + G) + H = {k + H ′} = {(k + k) + H ′} =

{k + (k + H ′)} = {k + (k + H)′} = k + (k + H) = F + (G + H),
using induction to equate (k + k) + H ′ with k + (k + H ′). A similar proof works if
G and H are both k. Otherwise, neither F + G nor G + H is an endgame, so we
have

(F+G)+H = {(F+G)′+H, (F+G)+H ′} = {(F ′+G)+H, (F+G′)+H, (F+G)+H ′}
= {F ′+(G+H), F+(G′+H), F+(G+H ′)} = {F ′+(G+H), F+(G+H)′} = F+(G+H),
using induction as usual. �

To summarize, games form a commutative monoid, with u as the identity. We
also have the following:

Theorem 2.12. The sum of two even games or two odd games is even. The sum
of an even and odd game is odd.

Proof. Left as an exercise to the reader. �

3. Equivalence and the Monoid of Values

The key definition we are going to make is the following:

Definition 3.1. Two games G and H are equivalent (denoted G ∼= H) iff G and
H have the same parity, and for every game X,

outcome(G + X) = outcome(H + X).

In other words, two games are equivalent whenever they are interchangeable in
a sum, without affecting the outcome of the sum. We also require as a caveat that
the games have the same parity. This simplifies the statements of some theorems,
and in §10 we will see that this makes almost no difference.

Theorem 3.2. Equivalence is an equivalence relationship.

Proof. Assign to each game G the function fG from Games to Outcomes by fG(X) =
outcome(G + X). Then clearly, G ∼= H if and only if fG = fH and G and H have
the same parity. �

Definition 3.3. The set of values V is the set of games modulo equivalence. The
value of a game |G| is its image in V .

Theorem 3.4. The set V inherits the structure of a commutative monoid. Also,
there is a map g from values to outcomes, and the map from games to outcomes
factors through g, so that outcome(G) = g(|G|).
Proof. Suppose that G and H are equivalent. Then outcome(G) = outcome(G +
u) = outcome(H + u) = outcome(H). So the outcome of a game is a function of
its value.

Now suppose that G′ ∼= G and H ′ ∼= H. Then for any K,

outcome(G + H + K) = outcome(G′ + H + K) =

outcome(H + G′ + K) = outcome(H ′ + G′ + K),
so G+H ∼= H ′+G′ = G′+H ′. Therefore, equivalence is a congruence relationship,
and the quotient space V inherits the structure of a commutative monoid. �
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4. Star

Let ∗ denote the odd game {u}. This game lasts one move, and the Unknotter
always wins. The sum ∗+ ∗ = {∗′ + ∗} = {u + ∗} = {∗}.
Lemma 4.1. If X is K2, then X + ∗+ ∗ is K2. If X is K1, then X + ∗+ ∗ is K1.

Proof. Proof by induction on X. If X = k, then k + ∗ + ∗ = {{k}} which is K1
and K2. The endgame u is neither K1 nor K2.

Otherwise, suppose X is K2. Then every option X ′ is K1. Meanwhile every
option of X + ∗+ ∗ is either of the form X ′ + ∗+ ∗ or X + ∗. The former is K1 by
induction, and the latter is K1 because it has X ∈ K2 as an option.

Likewise, suppose X is K1. Then some option X ′ is K2, so by induction, X ′+∗+∗
is K2, and this is an option of X + ∗+ ∗, which is therefore K1. �

Lemma 4.2. If X is U2, then X + ∗+ ∗ is U2. If X is U1, then X + ∗+ ∗ is U1.

Proof. Analogous to the previous lemma. �

Theorem 4.3. ∗+ ∗ ∼= 0

Proof. This follows from the previous two lemmas. �

Roughly speaking, the game ∗+ ∗ is equivalent to 0 because any player who has
a strategy in a game G can use the same strategy in G + ∗+ ∗, and reply to moves
in ∗ by replying in ∗. Once G ends, the player may be forced to move in one of the
stars, but by this point the outcome of the game has already been determined.

Because ∗+ ∗ ∼= u, the identity element of the monoid of values, it follows that
∗ acts as an involution on V . In fact, ∗ establishes a one-to-one correspondence
between even and odd elements of V . V can be expressed as a direct product

V ∼= V0 × Z2

where V0 denotes the even elements of V . So we could focus on merely V0 to
determine the structure of V .

Definition 4.4. Let G be a game or value. The odd projection of G, o(G), is G
if G is odd, and G + ∗ if G is even. The even projection of G, e(G), is G if G is
even, and G + ∗ if G is odd.

5. Gradings

In this section we begin the technical work of dividing games into classes and
seeing how they interact. Section 9 summarizes the results of the next four sections.

Definition 5.1. A grading is a partition of the set of games into three sets G0,
G1, and G2, such that

• u ∈ G0

• k ∈ G2

• If X ∈ G0, then all options of X are in G0 ∪G1

• If X ∈ G2, then all options of X are in G1 ∪G2

• A game X is in G1 iff some option of X is in G0 and some option is in
G2.

Note that the class a game falls into is determined recursively by its options,
unless all its options are in G1.

Gradings have the following general properties:
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Lemma 5.2. If X ∈ G2 and Y is any game, then X + Y ∈ G2

Proof. Any option of X +Y is of the form X ′+Y or X +Y ′. The latter is in G2 by
induction. Since X ∈ G2, X ′ ∈ G1 ∪G2, so X ′ + Y ∈ G1 ∪G2 by the next lemma.
Therefore, all options of X + Y are in G1 ∪G2, so X + Y /∈ G1. It remains to show
that X + Y ∈ G2 or some option of X + Y is in G2, because the latter implies that
X + Y /∈ G0.

If Y = u, then X + Y = X + u = X ∈ G2, and we are done. If Y = k, then
either X is an endgame, in which case X + Y = k ∈ G2, or X has some option X ′.
Then X ′ + k ∈ G2 by induction, so some option of X + Y is in G2. If Y is not
an endgame, then there is some option Y ′, and then X + Y ′ is in G2 by induction.
Therefore, some option of X + Y is in G2. �

Lemma 5.3. If X ∈ G1 ∪G2 and Y is any game, then X + Y ∈ G1 ∪G2.

Proof. If X ∈ G2, this follows from the previous lemma. So suppose X ∈ G1. Then
some option X ′ ∈ G2, and so X + Y has an option X ′ + Y which is in G2 by the
previous lemma. Therefore, X + Y /∈ G0. �

Lemma 5.4. If X, Y ∈ G1 ∪G2 then X + Y ∈ G2.

Proof. If both X and Y are endgames, then X = Y = k = X +Y ∈ G2. Otherwise,
any option of X +Y is of the form X +Y ′ or X ′+Y . Since X and Y are in G1∪G2,
so are all options of X + Y , by the previous lemma. Therefore, X + Y /∈ G1. We
already knew by the previous lemma that X + Y /∈ G0. Thus X + Y ∈ G2. �

We summarize the results so far in the following theorem:

Theorem 5.5. If G is a grading and X and Y are games, with X ∈ Gi and
Y ∈ Gj, then X + Y ∈ Gk, where

k ≥ min(2, i + j)

Theorem 5.6. If G is a grading, the classes G0, G1, and G2 are invariant under
addition by ∗.

Proof. We already know that G2 and G1 ∪G2 are closed under addition by ∗. But
addition by ∗ is actually symmetric between the two players, and so is the definition
of a grading. So by symmetry, G0 and G0 ∪G1 are closed under addition by ∗. It
follows that each of G0, G1, and G2 is closed under addition by ∗.

Alternatively, suppose X is some game. If X ∈ G0, then all options of X + ∗ of
the form X ′ + ∗ are in G0 ∪ G1 by induction, and the remaining option X + u is
in G0 by assumption, so X + ∗ cannot be in G1 or G2. The case when X ∈ G2 is
handled similarly. Finally, if X ∈ G1, then some X ′ ∈ G0, so the option X ′+∗ is in
G0 by induction. Similarly, some other option of X is in G2, so the corresponding
option of X + ∗ is in G2. Then X + ∗ has options in both G0 and G2, and is in
G1. �

6. The gradings X, Y , and Z

We recursively partition games into classes as follows:
The endgame u is in X0, Y0, and Z0. The endgame k is in X2, Y2, and Z2.
For an even non-endgame A,
• A ∈ X0 iff no option of A is in X2
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• A ∈ X1 iff some option of A is in X0 and some is in X2

• A ∈ X2 iff some option of A is in X2 but none is in X0

For an odd game B,
• B ∈ X0 iff some option of B is in X0 but none is in X2

• B ∈ X1 iff some option of B is in X0 and some is in X2

• B ∈ X2 iff no option of B is in X0

For an even non-endgame A,
• A ∈ Y0 iff some option of A is in Y0 but none is in Y2

• A ∈ Y1 iff some option of A is in Y0 and some is in Y2

• A ∈ Y2 iff no option of A is in Y0

For an odd game B,
• B ∈ Y0 iff no option of B is in Y2

• B ∈ Y1 iff some option of B is in Y0 and some is in Y2

• B ∈ Y2 iff some option of B is in Y2 but none is in Y0

For an even non-endgame A,
• A ∈ Z0 iff no option of A is in Z2 but some is in Y0

• A ∈ Z1 iff some option of A is in Z0 and some is in Z2

• A ∈ Z2 iff A is not in Z0 or Z1

For an odd game B,
• B ∈ Z0 iff some option of B is in Z0 but none is in Z2

• B ∈ Z1 iff some option of B is in Z0 and some is in Z2

• B ∈ Z2 iff no option of B is in Z0

Theorem 6.1. X, Y , and Z are gradings.

Proof. It is easily checked from the definitions that each of X, Y , and Z is a
partition of the class of games, and all further requirements are easily checked,
except for the requirement on Z2. We need to show that if C ∈ Z2, then all options
of C are in Z1 ∪ Z2. This is clear if C is odd, so suppose C is even. Then if some
C ′ ∈ Z0, the next lemma implies C ′ ∈ Y0. Then if some other option of C is in Z2,
C ∈ Z1, and otherwise C ∈ Z0. So no C ′ ∈ Z0. �

Lemma 6.2. If C is an even game in Z0, then C ∈ Y0

Proof. If C = u, then C ∈ Y0 and we are done. Otherwise, all options of C are in
Z0 ∪ Z1, so by the following lemma no option of C is in Y2. Also, C ∈ Z0 implies
that some option of C is in Y0. So some option of C in Y0 but none is in Y2.
Therefore C ∈ Y0. �

Lemma 6.3. If C is an odd game in Z0 ∪ Z1, then C ∈ Y0 ∪ Y1.

Proof. By the definition of Z0 and Z1, some option of C is in Z0. By the previous
lemma, this option is in Y0. Therefore, C /∈ Y2. �

Using the gradings X, Y , and Z, we define three functions on games:

X(A) = i ⇐⇒ A ∈ Xi

Y (A) = i ⇐⇒ A ∈ Yi

Z(A) = i ⇐⇒ A ∈ Zi

Theorem 6.4. For any game A, Y (A) ≤ Z(A)
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Proof. By Theorem 5.6, Y (A) = Y (A + ∗) and Z(A) = Z(A + ∗). So Y (A) =
Y (o(A)) = Y (e(A)) and Z(A) = Z(o(A)) = Z(e(A)). We consider three cases:

• If Z(A) = 2, there is nothing to show.
• If Z(A) = 1, then Z(o(A)) = 1, so o(A) is an odd game in Z1 ⊂ Z0 ∪ Z1.

Then o(A) is also in Y0∪Y1 by Lemma 6.3. So Y (A) = Y (o(A)) ≤ 1 = Z(A).
• If Z(A) = 0, then Z(e(A)) = 0, so e(A) is an even game in Z0. Then by

Lemma 6.2, e(A) ∈ Y0, so Y (A) = Y (e(A)) = 0 ≤ 0 = Z(A).

�

Analogously for X, we have

Lemma 6.5. Let C be an even game in Z0. Then C ∈ X0.

Proof. If C = u then C ∈ X0. Otherwise, all options of C are in Z0 ∪Z1, so by the
following lemma, all options are in X0 ∪X1, implying that C ∈ X0. �

Lemma 6.6. Let C be an odd game in Z0 ∪ Z1. Then C ∈ X0 ∪X1.

Proof. Since C is in Z0 ∪ Z1, some C ′ ∈ Z0. Then the previous lemma implies
C ′ ∈ X0, so C ∈ X0 ∪X1. �

Theorem 6.7. For any game A, X(A) ≤ Z(A)

Proof. Analogous to the proof that Y (A) ≤ Z(A). �

The importance of X and Y lies in the following:

Theorem 6.8. An even game A is in X0 iff it is in U2, and an odd game B is in
X2 iff it is in K2.

Proof. It is clear from the definitions that

• An even game A is in X0 iff it is u or all of its options are in X0 ∪X1.
• An odd game B is in X0 ∪X1 iff one of its options is in X0.

Meanwhile,

• An even game A is in U2 iff it is u or all of its options are in U1
• An odd game B is in U1 iff one of its options is in U2

So clearly these define the same sets. �

Theorem 6.9. An even game A is in Y2 iff it is in K2, and an odd game B is in
Y0 iff it is in U2.

Proof. Analogous to the previous theorem. �

Thus, we could have alternatively defined X and Y by

• A ∈ X0 iff e(A) ∈ U2 and o(A) ∈ U1
• A ∈ X1 iff e(A) ∈ K1 and o(A) ∈ U1
• A ∈ X2 iff e(A) ∈ K1 and o(A) ∈ K2
• A ∈ Y0 iff e(A) ∈ U1 and o(A) ∈ U2
• A ∈ Y1 iff e(A) ∈ U1 and o(A) ∈ K1
• A ∈ Y2 iff e(A) ∈ K2 and o(A) ∈ K1
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7. Properties of X, Y , and Z

From Theorems 5.5 and 5.6, we know that

(1) X(A + B) ≥ X(A)⊕X(B)

Y (A + B) ≥ Y (A)⊕ Y (B)
Z(A + B) ≥ Z(A)⊕ Z(B)

X(A + ∗) = X(A)
Y (A + ∗) = Y (A)
Z(A + ∗) = Z(A)

where i⊕ j = min(2, i + j). Also, from Theorems 6.4 and 6.7 we know that

X(A) ≤ Z(A) ≥ Y (A)

In this section, we develop rules that nearly determine the values of X, Y , and
Z for sums of games.

Lemma 7.1. If A and B are even games in X0, then A + B ∈ X0.

Proof. If A+B is an endgame, then so are A and B, so both equal u, and A+B =
u ∈ X0. Otherwise, we only need to show that all options of A + B are in X0 ∪X1.
Any option might as well be of the form A′ + B. Since A ∈ X0, A′ ∈ X0 ∪X1, so
the following lemma implies that A′ + B ∈ X0 ∪X1. �

Lemma 7.2. If A is an even game in X0, and B is an odd game in X0 ∪X1, then
A + B ∈ X0 ∪X1.

Proof. Since B is in X0 ∪X1, some option B′ is in X0. Then A + B′ is in X0 by
the previous lemma. So some option of A + B is in X0, and A + B ∈ X0 ∪X1. �

These imply the following theorem:

Theorem 7.3. If A and B are arbitrary games, then

X(A + B) = X(A)⊕X(B)

Proof. Using Equation (1) we only need to show that X(A + B) ≤ X(A)⊕X(B).
This is trivial unless X(A)⊕X(B) < 2. This only happens if both X(A) and X(B)
are less than 2, and at least one is 0. So there are essentially two cases:

• If X(A) = 0 and X(B) = 1, then X(e(A)) = 0 and X(o(B)) = 1, so
e(A) ∈ X0 and o(B) ∈ X0 ∪ X1. By the previous lemma, o(A + B) ∼=
e(A)+ o(B) ∈ X0∪X1. So X(A+B) = X(o(A+B)) ≤ 1 = X(A)⊕X(B).
Here we use the fact that o(A + B) and e(A) + o(B) differ at most by the
addition of some stars.

• If X(A) = 0 and X(B) = 0, then X(e(A)) = X(e(B)) = 0, so e(A), e(B) ∈
X0. Then by a previous lemma, e(A + B) ∼= e(A) + e(B) ∈ X0. Thus
X(A + B) = X(e(A + B)) = 0 ≤ X(A) ⊕ X(B), using the fact that
e(A + B) differs from e(A) and e(B) by the addition of some stars.

�

Unfortunately, we cannot prove the same result for Y . However, there are some
relations between Y and Z:

Lemma 7.4. If A is an odd game in Y0 and B is an even game in Z0, then A + B
is in Y0.
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Proof. Since A + B is odd and not an endgame, we only need to show that no
option is in Y2. This follows from the following two lemmas, and the facts that all
options of A are in Y0 ∪ Y1, and all options of B are in Z0 ∪ Z1. �

Lemma 7.5. If A is an odd game in Y0 and B is an odd game in Z0 ∪ Z1, then
A + B is in Y0 ∪ Y1.

Proof. Since A + B is even, we only need to show that some option of A + B is
in Y0. This follows from the fact that some B′ ∈ Z0, and so A + B′ ∈ Y0 by the
previous lemma. �

Lemma 7.6. If A is an even game in Y0 ∪ Y1 and B is an even game in Z0, then
A + B is in Y0 ∪ Y1.

Proof. If A is an endgame, then A = u, and we need A + B = B to be in Y0 ∪ Y1.
This follows by Lemma 6.2. Otherwise, A is not an endgame, so some option A′ is
in Y0. Then A′ + B ∈ Y0 by Lemma 7.4. �

These imply the following:

Theorem 7.7. If A and B are arbitrary games, then

Y (A + B) ≤ Y (A)⊕ Z(B)

Proof. We break the situation into cases:
• If Y (A)⊕ Z(B) = 0, then Y (A) = Y (o(A)) = 0 and Z(B) = Z(e(B)) = 0.

So o(A) ∈ Y0 and e(B) ∈ Z0. Then by Lemma 7.4, o(A) + e(B) ∈ Y0.
Meanwhile, A + B differs from o(A) + e(B) solely by the addition of some
stars, so Y (A + B) = Y (o(A) + e(B)) = 0 ≤ Y (A)⊕ Z(B)

• If Y (A) = 1 and Z(B) = 0, then e(A) ∈ Y0 ∪ Y1 and e(B) ∈ Z0, so by
Lemma 7.6 e(A) + e(B) ∈ Y0 ∪ Y1. Thus

Y (A + B) = Y (e(A) + e(B)) ≤ 1 = Y (A)⊕ Z(B)

• If Y (A) = 0 and Z(B) = 1, then o(A) ∈ Y0 and o(B) ∈ Z0 ∪ Z1, so by
Lemma 7.5, o(A) + o(B) ∈ Y0 ∪ Y1. Then

Y (A + B) = Y (o(A) + o(B)) ≤ 1 = Y (A)⊕ Z(B)

• In all other cases, Y (A) + Z(B) ≥ 2, so Y (A + B) ≤ 2 = Y (A)⊕ Z(B).
�

It turns out that the same addition law works for X as for Z.

Lemma 7.8. If A and B are even games in Z0, then A + B is in Z0

Proof. If A an endgame, then it is u, so A + B = B ∈ Z0, and we are done.
Otherwise, we need to show that no option of A + B is in Z2, and some is in Y0.
Any option is, without loss of generality, of the form A′ + B. But A′ is not in Z2,
so A′+ B is neither, by the following lemma. So no option of A + B is in Z2. Also,
A is an even non-endgame in Z0, so some option A′ is in Y0. Then A′ is an odd
game in Y0 and B is an even game in Z0, so by Lemma 7.4, A′ + B ∈ Y0. So some
option of A + B is in Y0, and we conclude that A + B ∈ Z0. �

Lemma 7.9. If A is an even game in Z0 and B is an odd game in Z0 ∪ Z1, then
A + B is in Z0 ∪ Z1.
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Proof. By definition of Z, B has an option B′ ∈ Z0. Then A + B′ ∈ Z0 by the
preceding lemma. So A + B ∈ Z0 ∪ Z1, since A + B is odd. �

This implies the following:

Theorem 7.10. For arbitrary games A and B,

Z(A + B) = Z(A)⊕ Z(B)

Proof. Analogous to Theorem 7.3. �

There is one final result about sums, Y , and Z.

Lemma 7.11. Let A and B be odd games in Z2. Then A + B is in Y2.

Proof. Since A+B is not an endgame, we only need to show that any option of A+B
is not in Y0. Consider an arbitrary option, A′ + B without loss of generality. Then
A′ ∈ Z1 ∪ Z2 by definition of Z. So by the following lemma, A′ + B ∈ Y1 ∪ Y2. �

Lemma 7.12. Let A be an even game in Z1 ∪ Z2 and B be an odd game in Z2.
Then A + B ∈ Y1 ∪ Y2.

Proof. If A is an endgame, then A = k, so Y (A+B) ≥ Y (A) = 2 and so A+B ∈ Y2.
Otherwise, we either have

• Some A′ ∈ Z2, in which case A′ + B ∈ Y2 by the previous lemma. Then
since A + B is an odd game with an option in Y2, it is in Y1 ∪ Y2 itself.

• No A′ ∈ Y0, in which case A ∈ Y2, so A + B ∈ Y2 ⊆ Y1 ∪ Y2 by Lemma 5.2.

�

These imply the following:

Theorem 7.13. If A and B are arbitrary games, then

Y (A + B) ≥ Z(A)� Z(B),

where i� j = max(0, i + j − 2).

Proof. As usual, we break into cases:

• If Z(A) = Z(B) = 2, then o(A) and o(B) ∈ Z2, so o(A) + o(B) ∈ Y2, and
so

Y (A + B) = Y (o(A) + o(B)) = 2 = Z(A)� Z(B).

• If Z(A) = 1 and Z(B) = 2, then e(A) ∈ Z1 ∪ Z2 and o(B) ∈ Z2, so by the
previous lemma e(A) + o(B) ∈ Y1 ∪ Y2, and so

Y (A + B) = Y (e(A) + o(B)) ≥ 1 = Z(A)� Z(B).

• The case where Z(A) = 2 and Z(B) = 1 is similar.
• In all other cases, Z(A)� Z(B) = 0, so there is nothing to show.

�
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8. The leftover cases

We have shown the following facts about X, Y , and Z:

X(A) ≤ Z(A)

Y (A) ≤ Z(A)

X(A + B) = X(A)⊕X(B)

Z(A + B) = Z(A)⊕ Z(B)

Y (A + B) ≥ Y (A)⊕ Y (B)

Y (A + B) ≤ Y (A)⊕ Z(B)

Y (A + B) ≤ Z(A)⊕ Y (B)

Y (A + B) ≥ Z(A)� Z(B)
These almost determine the rules for combining X, Y , and Z. From now on we
disregard X because it is mostly unrelated to Y and Z, and we already know how it
behaves with respect to sums. We denote the class of games A which have Y (A) = i
and Z(A) = j by ij. For example, we have 00, 01, 02, 11, 12, and 22. Then

• ii + jk is j′k′, where j′ = i⊕ j and k′ = i⊕ k, since Z(ii + jk) = Z(ii) +
Z(jk) = i⊕ k, and

i⊕ j = Y (ii)⊕ Y (jk) ≤ Y (ii + jk) ≤ Z(ii)⊕ Y (jk) = i⊕ j

• 02 + jk is k2, since Z(02 + jk) = Z(02)⊕ Z(jk) = 2⊕ k = 2, and

k = 2� k = Z(02)� Z(jk) ≤ Y (02 + jk) ≤ Y (02)⊕ Z(jk) = 0⊕ k = k

• i2 + j2 is 22, since

Y (i2 + j2) ≥ Z(i2)� Z(j2) = 2� 2 = 2

These determine all sums except for the remaining two:
• 01 + 01 can be either 02 or 12.
• 01 + 12 can be either 12 or 22.

Unfortunately, the behavior of these two sums depends on a finer subdivision of
the classes 01 and 12.

Definition 8.1. A game A in 01 is in the set 01− if no option is in 12+, and in
01+ otherwise.

Definition 8.2. A game A in 12 is in the set 12+ if no option is in 01−, and in
12− otherwise.

Lemma 8.3. If A and B are two games in 01−, then A + B is in 02.

Proof. We already know that A + B is either in 02 or 12. Thus we only need to
show that A + B /∈ Y1. Suppose it was. Then some option A′ + B is in Y2. Now
A ∈ Y0, so any option A′ ∈ Y0 ∪ Y1. If A′ ∈ Y0, then

Y (A′ + B) ≤ Y (A′)⊕ Z(B) = 0⊕ 1 = 1,

a contradiction. Otherwise, A′ ∈ Y1, so A′ is in either 11 or 12−. In the first case,
A′ + B is in 11 + 01 which is in 12, so A′ + B /∈ Y2. In the latter case, A′ + B is in
12 by the following lemma, so A′ + B /∈ Y2. �

Lemma 8.4. If A is in 01− and B is in 12−, then A + B is in 12.
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Proof. We already know that A + B is in either 12 or 22. So we only need to show
that A + B /∈ Y2. Now since B ∈ 12−, some option B′ is in 01−. Then A + B′ is in
01− + 01−, so by the previous lemma A + B′ ∈ 02 ⊆ Y0. Then an option of A + B
is in Y0, so A + B /∈ Y2. �

Lemma 8.5. If A ∈ 01+ and B ∈ 01, then A + B ∈ 12.

Proof. We already know that A + B is in either 02 or 12, so we only need to show
that A + B /∈ Y0. Since A ∈ 01+, it has an option A′ ∈ 12+. Then by the following
lemma, A′ + B ∈ 22 ⊆ Y2, so A + B cannot be in Y0. �

Lemma 8.6. If A ∈ 12+ and B ∈ 01, then A + B ∈ 22

Proof. We already know that A + B is either in 12 or 22, so we only need to show
that A+B /∈ Y1. Suppose that it was. Then some option of A+B is in Y0. However,
an option of the form A + B′ cannot be in Y0, because Y (A + B′) ≥ Y (A) > 0. So
suppose A′ + B is in Y0. Now since A ∈ Z2, A′ ∈ Z1 ∪ Z2. If A′ ∈ Z2, then

Y (A′ + B) ≥ Z(A′)� Z(B) = 2� 1 = 1,

so A′ + B /∈ Y0. Otherwise, A′ ∈ Z1. Also, Y (A′) ≤ Y (A′ + B) = 0, so A′ ∈ Y0.
Thus A′ is in 01, and in 01+ in particular, by definition of 12+. Then by the
preceding lemma, A′ + B is in 12, and therefore not in Y0. �

Lemma 8.7. If A ∈ 12 and B ∈ 01+, then A + B ∈ 22.

Proof. We already know that A + B is either in 12 or 22, so we only need to show
that A+B /∈ Y1. Suppose that it was. Then some option of A+B is in Y0. However,
an option of the form A + B′ cannot be in Y0, because Y (A + B′) ≥ Y (A) > 0. So
suppose A′ + B is in Y0. Now since A ∈ Z2, A′ ∈ Z1 ∪ Z2. If A′ ∈ Z2, then

Y (A′ + B) ≥ Z(A′)� Z(B) = 2� 1 = 1,

so A′ + B /∈ Y0. Otherwise, A′ ∈ Z1. Also, Y (A′) ≤ Y (A′ + B) = 0, so A′ ∈ Y0.
Thus A′ is in 01. However, A′ + B is in 01 + 01+, which by Lemma 8.5 is in 12,
and therefore not in Y0. �

In summary, we have
• 01− + 01− is 02
• 01− + 01+ is 12
• 01+ + 01+ is 12
• 01− + 12− is 12
• 01− + 12+ is 22
• 01+ + 12− is 22
• 01+ + 12+ is 22

Unfortunately, we do not yet have a complete method for adding values, since
we don’t know, for example, whether 01−+01+ is in 12− or 12+. However, it turns
out that all questions are answered by the use of associativity.

Lemma 8.8. Some game W is in 01−.

Proof. Define the following games
• J = {∗, k + ∗}, which is an even game in 11 (because it is in G1 for any

grading G).
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• K = {J}, an odd game in 02 (because no option is in Y2 or Z0 – see the
definitions)
• W = {u, K}, an even game in 01 (because it has options in both Z0 and

Z2, but no option is in Y2 and some options are in Y0).

Since no option of W is in 12, certainly no option is in 12+, and W ∈ 01−. �

The game W can now be used as a test to tell whether something is in 12− or
12+.

Lemma 8.9. If A ∈ 02 and B ∈ 01, then A + B ∈ 12+

Proof. We already know that A+B ∈ 12, so we only need to show that for W ∈ 01−,
(A + B) + W is 22, not 12. But B + W is in 01 + 01 ⊆ 02, and so A + (B + W ) ∈
02 + 02 ⊆ 22 �

Lemma 8.10. If A ∈ 11 and B ∈ 01−, then A + B ∈ 12−

Proof. We already know that A+B ∈ 12, so we only need to show that for W ∈ 01−,
A + B + W is 12, not 22. But B + W is in 02, and 02 + 11 ⊆ 12. �

Lemma 8.11. If A ∈ 11 and B ∈ 01+, then A + B ∈ 12+

Proof. We already know that A+B ∈ 12, so we only need to show that for W ∈ 01−,
A + B + W is 22, not 12. But B + W is in 12, and 12 + 11 ⊆ 22. �

Lemma 8.12. If A ∈ 11 and B ∈ 02, then A + B ∈ 12+

Proof. Certainly A + B ∈ 12, so we only need A + B + W ∈ 22. Now B + W ∈
02 + 01 ⊆ 12, so A + (B + W ) ∈ 11 + 12 ⊆ 22. �

Lemma 8.13. If A ∈ 01+ and B ∈ 01−, then A + B ∈ 12−

Proof. We need A+B+W ∈ 12. But B+W ∈ 01−+01− ⊆ 02, and 02+01 ⊆ 12. �

Lemma 8.14. If A ∈ 01+ and B ∈ 01+, then A + B ∈ 12+.

Proof. With W as usual, A + B + W ∈ 01+ + (01+ + 01−) ⊆ 01+ + 12− ⊆ 22, so
A + B must be in 12+. �

9. The Monoid of Values

In summary, we have

Theorem 9.1. There is an eight-element commutative monoid M defined on the
set

{00, 01−, 01+, 11, 02, 12−, 12+, 22},

and a function f from knot-type games to M such that f(A + B) = f(A) + f(B)
for all games A and B. A game with f(A) ∈ ij± or ij has Y (A) = i, Z(A) = j.
The monoid M has the following addition table:
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+ 00 01− 01+ 11 02 12− 12+ 22
00 00 01− 01+ 11 02 12− 12+ 22
01− 01− 02 12− 12− 12+ 12+ 22 22
01+ 01+ 12− 12+ 12+ 12+ 22 22 22
11 11 12− 12+ 22 12+ 22 22 22
02 02 12+ 12+ 12+ 22 22 22 22
12− 12− 12+ 22 22 22 22 22 22
12+ 12+ 22 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22

Theorem 9.2. There are at most 38 equivalence classes of games. Every game is
determined up to equivalence by its X-value, its parity, and its representative in the
monoid M .

Proof. We must have X ≤ Z. So there are nineteen possible combinations, ignoring
parity: one for 00, two for each of 01−, 01+, and 11, and three for each of 02, 12−,
12+, and 22. If we define the value of a game A to be (parity(A), X(A), f(A)),
then the value of A + B is completely determined by the value of A and the value
of B. Also, the outcome of a game A is determined by its value as follows: If A
is even, then A ∈ K1 iff X(A) > 0, and A ∈ U1 iff Y (A) < 2. If A is odd, then
A ∈ K1 iff Y (A) > 0, and A ∈ U1 iff X(A) < 2.

Thus, if A and A′ have the same value, then for any game B, the value of A + B
is the same as the value of A′+B, and so the outcomes are also equal. Furthermore,
A and A′ have the same parity. Therefore, they are equivalent. �

In fact, it is tedious, but straightforward to verify that all nineteen possibilities
occur. It then follows:

Theorem 9.3. There are exactly 38 classes of games up to equivalence.

Proof. We just need to show that if two even games have different values of X, Y ,
or Z, or different representatives in M , then they are not equivalent. Now if A is
an even game, then X(A) and Y (A) is determined by the outcomes of A and A+∗,
which depends only on the value of A. So X(·) and Y (·) are well defined on values.
Now, let E be some game in 02. Then

Z(A) = Z(A)� Z(E) ≤ Y (A + E) ≤ Z(A)⊕ Y (E) = Z(A),

so Z(A) is determined by the value of A + E. Therefore, it is determined by the
value of A. So Z(·) is well defined on values. Finally, we can tell whether a game
is in 01− or 01+, or whether it is in 12− or 12+, by adding it to a game W ∈ 01−,
and seeing what the Y-value of the resulting game is. �

10. Weak Equivalence

The usual definition of “equivalence” or “indistinguishability” is simply that
G and H are equivalent if outcome(G + X) = outcome(H + X) for all games.
We modified this slightly, to require that G and H have the same parity. In this
section, we show that without this extra stipulation, there are 37 equivalence classes
of games. In fact, the only equivalence classes which merge are the even and odd
games in X2 ∩ Y2 ∩ Z2.

Definition 10.1. Two games G and H are weakly equivalent (or indistinguish-
able) if for every game X, outcome(G + X) = outcome(H + X).
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As before, this is an equivalence relationship, and the quotient space has the
structure of a commutative monoid.

Theorem 10.2. There are 37 equivalence classes modulo indistinguishability. These
correspond to the 38 equivalence classes of ∼=, except that the even and odd classes
of games G satisfying X(G) = Y (G) = Z(G) = 2 are merged.

Proof. It is clear that if G and H are both in X2 ∩ Y2 ∩Z2, then so is any game of
the form G + X or H + X, using Lemma 5.2. Also, every game in X2 ∩ Y2 is a win
for the knotter. So certainly outcome(G + X) ∼= outcome(H + X).

Conversely, we need to show that if G and H are indistinguishable but not
equivalent, then G and H are both in X2 ∩ Y2 ∩ Z2, which equals X2 ∩ Y2 by
Theorem 6.7 or Theorem 6.4.

If G and H have the same parity, then they are equivalent, by definition of
equivalence. So they do not have the same parity. If we add G to a game in the
class 022, we will get a game in the class 022, 122, or 222, according to the value
of X(G). By the comments at the end of §6, these classes can be alternatively
described as follows:

• 022 is all games G for which outcome(e(G)) = 2 and outcome(o(G)) = 1
• 122 is all games G for which outcome(e(G)) = k and outcome(o(G)) = 1
• 222 is all games G for which outcome(e(G)) = k and outcome(o(G)) = k

So we can tell which of these a game G is in by looking at the outcomes of G and
G + ∗. Thus, if G and H are indistinguishable, and R is an arbitrary game in the
class 022, then by examining the outcomes of G + R and G + R + ∗, which must
equal the outcomes of H + R and H + R + ∗, we conclude that X(G) = X(H).

Again using the comments at the end of §6, it turns out that the outcome of
G and G + ∗ tells us the unordered pair {X(G), Y (G)}. But since we also know
X(G) just by knowing G’s value modulo indistinguishability, we can also determine
Y (G). In other words, if G and H are indistinguishable, they must belong to the
same Xi ∩ Yj .

If G ∈ Xi∩Yj , the comments at the end of §6 completely determine the outcome
of o(G) and e(G) in terms of i and j. Therefore, we can tell whether G = o(G) or
G = e(G), unless o(G) and e(G) have the same outcome. This turns out to occur
when i = j, i.e., when X(G) = Y (G).

So, only knowing G up to indistinguishability allows us to determine the parity
of G, unless G ∈ X0 ∩ Y0 or G ∈ X1 ∩ Y1 or G ∈ X2 ∩ Y2. In the first two cases,
however, we can add G to an arbitrary game R ∈ 022, and get a game in Xi∩Y2 for
i = X(G) < 2. Then the parity of G+R can be determined, and we know the parity
of R, so the parity of G can be determined. So if G and H are indistinguishable,
and either is not in X2 ∩ Y2, then they must be equivalent. �

11. Future Work

The current exposition of the theory in this paper seems very long and tedious.
One wonders if there is a better way to prove the main results. There is certainly
a way to automate the bulk of the proofs, as follows:

• Write down the candidate monoid of values V
• For each x ∈ V , write down the forbidden set Fx ⊆ V of values that the

options of x may not take, and the collection Rx ⊆ P(V ) of sets of values
that the options of x must hit. For example, if G is an even game, it belongs
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to the class 101+ iff (a) none of its options belong to the classes 022, 122, or
222, (b) one of its options belongs to one of the classes 012+, 112+, 212+,
(c) one of its options belongs to 000, (d) one of its options belongs to either
202 or 212. So we would have

F101+ = {022, 122, 222}

R101+ = {{012+, 112+, 212+}, {000}, {202, 212}},
roughly.
• Show that for each x, y ∈ V , Fx + y ⊆ Fx+y and x + Fy ⊆ Fx+y (here, +

denotes a Minkowski sum).
• Show that for each R ∈ Rx+y, there is either an R1 ∈ Rx such that

R1 + y ⊆ R or an R2 ∈ Ry such that x + R2 ⊆ R.
• Show that each game belongs to exactly one class, if we classify games

recursively using the Fx and Rx. (This step seems harder to automate).
• Conclude by a massive inductive argument that V is a quotient space on

games.
• Show that the classes corresponding to each outcome have the correct

games.
There are also some technicalities involving sums of the form G + u and G + k.
For example, we need u to be assigned to the identity element of V , and k to be
assigned to an essentially nilpotent element.

However, this approach is no more enlightening. There might also be symbolic
ways of describing all the lemmas in this paper, which could significantly reduce
the lengths of the proofs. The chief difficulty seems to be in formalizing the sort of
induction that is used throughout.

As far as actually applying this theory, the only evident application is to the
case of knot games. The easiest knot games to analyze are ones corresponding
to the shadows or pseudodiagrams of rational knots, since in this case we have a
method for telling whether a knot is the unknot. This line of inquiry is carried out
in another paper by the same author. Oddly enough, some experimental evidence
suggests that the only values which occur for knot games are 000, 011, 022, 111,
122, and 222. In fact, these may be the only values which occur for a wide class of
games, suggesting that the rest of the theory developed here is somewhat frivolous.

There are several ways to generalize knot-type games. One of the most obvious
is to remove the bizarre parity requirement. Unfortunately, this breaks many of
the mirroring strategies and arguments used in this paper. Two more fruitful
possibilities may be

• Allowing the two players to have separate moves. This is not as much of a
leap as the leap from impartial to partizan games in Combinatorial Game
Theory, since we already have an asymmetry between the two players, and
we can already compare games in a certain sense. In particular, in many
cases, a game has two options, but one is definitely better for the unknotter
and the other is definitely better for the knotter. This happens with the
game {u, k} for example. In this case, we could just as well assume that the
unknotter will only use the move that is better for her, and the knotter will
only use his preferred move. Consequently, the place where complications
might occur in this extended theory is the case where each player’s option
is better for her opponent. For example, if we construct a game in which
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the Unknotter can move to k and the Knotter can move to u, this game
will not be equivalent to one of the ones considered so far.
• Another possibility is to add another operation into the mix: a sum of

games where the unknotter only needs to win one of the two games. This is
the dual operation to the one considered in this paper. Allowing both oper-
ations brings symmetry back into the picture, but may complicate things.
For example, the definition of equivalence needs to be something like this:
two games G and H are equivalent iff, for every sequence {X1, X2, . . . Xn},

outcome(G +k X1 +u X2 +k . . . Xn) =

outcome(H +k X1 +u X2 +k . . . Xn),
where +k and +u are the two sums available.

The symmetry introduced by the second of these possibilities might shed some light
on what a “grading” is. It is interesting to note that in the dual theory, Y plays
the role of X, and X plays the role of Y . Consequently, we will have conditions
like Y (G +u H) = Y (G) � Y (H), and X(G +u H) ≤ W (G) ⊕W (H), where W is
the dual grading to Z. The fact that we have already seen the dual of ⊕, namely
�, also seems peculiar.
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