
A Random Walk in a Dynamic Environment

Infinitely many points (“trees”) are chosen “randomly” on R, including one at 0. By
randomly we mean a normal distribution: the probability that any given tree lies between a
and b is 1√

π

∫ b
a
e−x

2
dx. Call these trees x0, x−1, x1, · · · in the following manner:

· · · · · ·0 = x0 x1x−1 x2x−2

Our “Johnny Appleseed” begins at t = 0 at 0 = x0. He performs a walk in a dynamic
environment in the following manner:

• He walks towards the furthest of his two neighboring trees. If both neighbors are an
equal distance away, he chooses randomly. (In the future, we will ignore this case, since
the probability that any three randomly chosen numbers are equally distanced is 0).

• Halfway to that tree, he plants a new tree.

• Repeat.

Note that while the placement of the initial trees is random, Johnny’s walk is pre-determined.
For example, his first few steps on the above distribution would look like:

· · · · · ·0 = x0 x1x−1 x2x−2

J

· · · · · ·0 = x0 x1x−1 x2x−2

J

· · · · · ·0 = x0 x1x−1 x2x−2

J

· · · · · ·0 = x0 x1x−1 x2x−2

J

· · · · · ·0 = x0 x1x−1 x2x−2

J

and so on. The red dots represent new trees that Johnny planted. Henceforth, we will refer
to inital trees as black trees and trees planted by Johnny as red trees.

We’ll now introduce some notation:
Let st represent the sequence of steps Johnny takes.
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Let Ik represent the interval [xk, xk+1] between trees, with length dk.

This problem seems hopelessly complex, since the trees that Johnny travels between be-
come increasingly numerous as Johnny plants more and more trees behind him. However,
we can view the problem from a different standpoint that makes it much easier to handle.

Note that the first time Johnny travels through any interval, he divides it in half with a
red tree:

xk xk+1

J

When Johnny ends up at xk and moves right, or at xk+1 and moves left, we say Johnny
is traversing Ik. Now, if Johnny moves left and traverses Ik, he will evenly divide Ik into
four equal parts with red trees. It’s not hard to show that Johnny must travel exactly from
xk+1 to xk or vice versa. In other words, it is never possible that Johnny “turns around”
in-between two black trees.

Let ak represent the number of times Johnny has completely passed through the interval
Ik. Clearly the number of red trees in Ik is exactly 2ak − 1 = Rk. Call the density of red
trees in any Ik, dk/Rk = ρk. Be wary of the abuse of notation: ak, Rk, and therefore ρk are
constantly changing, everything else is fixed.
So now, we see that the problem can be viewed as Johnny simply traveling from black tree
to black tree, while increasing the density of the red trees in-between them. We’ll also prove
something now that will be useful later:
Lemma: Johnny cannot oscillate back and forth forever in some Ik.
WLOG, let the closest neighbor of Ik be xk+2, with dk+1 = ε. Then every time Johnny starts
at xk+1 and traverses Ik twice to return to his starting position, he reduces ρk by a factor of
4. So, there exists some N such that, after N pairs traversals of Ik, ρk/4

N < ε, and Johnny
leaves Ik to go to xk+2.

We’ll now restate the problem. We have some intervals Ik on the real line, separated by
endpoints xk.

· · · · · ·0 = x0 x1x−1 x2x−2

I−2 I−1 I0 I1

We can associate with each interval its density: initially, they are all zero. Now, Johnny
moves from xk to xk+1 if and only if ρk > ρk−1. With each move he halves the density of
the corresponding interval. So now the problem is this: we have a doubly infinite array of
densities: R = {· · · , ρ−2, ρ−1, ρ0, ρ1, ρ2, · · · }. We also have a position, Johnny’s position,
initially between ρ−1 and ρ0 at x0 = 0. Initially, for every element in R, ρk = dk. Our
random walk is:

• Starting at some xk, move to xk−1 or xk+1 if ρk−1 or ρk+1 is larger than the other,
respectively.
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• Halve the respective density.

• Repeat.

We prove the following lemma that nicely orders R:
Lemma: WLOG, if Johnny is at some xk > 0 for the first time, then ρ0 < ρ1 < · · · < ρk.
We can assume strict inequality since we assume no dk are the same.
Furthermore, once the ρ’s are ordered up to k, they can never be unordered. That is, they
might sometimes be unordered for “a few” steps, and immediately ordered afterwards.

· · · · · ·0 = x0 x1x−1 x2x−2

ρ−2 ρ−1 ρ0 ρ1

Well how did Johnny get to xk? Since he started from 0, and this is his first time at xk, he
must have gotten there from xk−1. So ρk−1 < ρk. Well how did he get to xk−1? He couldn’t
have walked backwards from xk, since we assume it’s his first time there. So he must have
gotten there from xk−2, so ρk−2 < ρk−1 < ρk. So far we know Johnny’s walking sequence
must be at least · · · xk−2xk−1xk. Well, here Johnny might have oscillated between xk−2 and
xk−1 for an arbitrarily long amount of steps, depending on dk−1. But since Johnny could not
have oscillated in Ik−2 forever, as shown above, he must have, at one point moved from xk−3
to xk−2, meaning ρk−3 < ρk−2 < ρk−1 < ρk. Finally, we can repeat the above argument as
many times as it takes to get back to x0 = 0, and we get that ρ0 < ρ1 < · · · < ρk.
The second part of the lemma will be proved later when we talk about relatively ordered
arrays.

An extremely similar argument shows that ρ0 < ρ−1 < · · · < ρ−k. We now state our
first big theorem:
Theorem: Johnny goes to ±∞. More formally, for any k, Johnny eventually reaches xk.
To begin the proof, we’ll need to rewrite R. First, look at ρ0 · · · ρk and take the maximum,
call it ρa. Then take ρ−1, ρ−2, · · · until we’ve found some ρ−b > ρa. Now we’ll take the
array {ρ−b, ρ−b+1, · · · , ρa−1, ρa} and transform into a relatively ordered array. This is best
explained by example:

{13, 17,−1, 10, 5, 0,−7,−25, 3,−12} =⇒ {9, 10, 4, 8, 7, 5, 3, 1, 6, 2}

We just replace the kth smallest element by k. We’ll call this new relatively ordered array
of densities M = {µ−k, · · · , µk}. Now after a certain operation, if one ρ becomes less than
another, we just swap the (necessarily) consecutive µ’s in M.
Now we can easily prove the lemma that wasn’t proven above: Once the ρ’s, or equivalently
µ’s, from 0 to k are ordered, they can only be unordered for at most k steps, after which
they will be immediately ordered again. We prove by some examples that are immediately
generalizable to any case. Take {ρ1, ρ2, ρ3} =⇒ {µ1, µ2, µ3} = {1, 2, 3} with Johnny at
x3. We have that ρ2 > ρ3/2, so that 2 and 3 will switch on Johnny’s next move. Our two
cases are ρ1 > ρ2/2 and ρ1 6> ρ2/2. Our examples will be {4, 6, 8} and {1, 6, 8}. The steps
immediately follow:

{4, 6, 8} → {4, 6, 4} → {4, 3, 4} → {2, 3, 4}
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{1, 6, 8} → {1, 6, 4} → {1, 3, 4}

Finally, we can prove a lemma that directly implies our theorem:
Lemma: If Johnny reaches xk, he will reach xk+1. Similarly for x−k.
If Johnny is at xk, we know that ρ0 < ρ1 < · · · < ρk−1 =⇒ µ0 < µ1 < · · · < µk−1. We also
know one more thing: since WLOG Johnny moved right on the first step, µ0 > µ−1, and will
not have changed, by the lemma above. So now, if µk > µk−1, then Johnny will move to the
right, and we are done. Otherwise µk < µk−1, and we move to the left.

Other problems: This variety of random walk is classified as a maximum-half random walk.
That is, Johnny looks to moves towards neighbor with the maximum distance from him,
and places a tree half way through his walk. Other walks to consider are minimum-half and
maximum-uniform. In the latter case, Johnny places a tree a point uniformly randomly over
the distance he travels.
It turns out that the minimum-half problem is easy to completely solve. Formally, we say
Johnny gets stuck if his sequence st converges. In the minimum-half problem, Johnny will
always get stuck.

Assume he won’t. WLOG, on his first move away from 0, he moves right, to the num-
ber 1 = x1. If d1 > 1/2, then Johnny moves back to the red tree at 1/2, and will “quickly”
become stuck at the point

1− 1

2
+

1

4
− 1

8
+ · · · = 2

3

In fact, it’s easy to see that if Johnny now moves left at any point in his walk, he will become
stuck. Therefore, he must always move right during his walk. However, since d1 ≤ 1/2,
s2 ≤ 1 + 1/2 = 3/2. Similarly,

d2 ≤
1

2

(
1

2

)
=

1

4
=⇒ s3 ≤ 1 +

1

2
+

1

4

dn ≤
1

2n
=⇒ sn+1 ≤ 1 +

1

2
+

1

4
+ · · · = 2

and so Johnny’s walk is monotone and bounded, therefore it converges.
Further questions:

4


