A Class of PAs with Efficient Contraction

Avi Levy

11/20/12

Abstract

Optimal permutation arrays (PAs) have a sharply transitive group structure. A contraction operation is defined that constructs new permutation arrays from old ones. We characterize the effect of contraction on all sharply transitive group PAs.

1 Introduction

In section 2, we define m-contraction and show that $m \leq 3$ for all PAs. Next in section 3, we restrict our attention to group PAs and prove equivalent conditions for $m=3$. The main result is in section 4 , where we consider sharply transitive group PAs. Theorem 4.1 classifies the contraction of all sharply transitive group PAs.

In this paper, e denotes the identity permutation. PA stands for "permutationa array". When σ, τ are permutations, $d(\sigma, \tau)$ denotes the Hamming distance between σ, τ; it is invariant under permutation composition [put citation].

2 m-Contraction

Definition 2.1. The contraction [put citation] of σ is

$$
\sigma^{\prime}=\left(n \sigma^{-1}(n)\right) \sigma
$$

Definition 2.2. The $P A(n, d)$ is said to m-contract if the contractions of the elements of the $P A(n, d)$ form a $P A(n, d-m)$.

Let σ, τ be permutations on $\{1,2, \cdots, n\}$.
Lemma 2.1. $d\left(\sigma^{\prime}, \tau^{\prime}\right) \geq d(\sigma, \tau)-3$
When equality holds, $\pi^{3}(n)=n, \pi(n) \neq n$ where $\pi=\sigma \tau^{-1}$.
Proof. Let $s=\sigma^{-1}(n), t=\tau^{-1}(n)$

$$
\begin{aligned}
d\left(\sigma^{\prime}, \tau^{\prime}\right) & =d((n s) \sigma,(n t) \tau) \\
& =d(\pi,(n s t)) \\
(*) & \geq d(\pi, e)-d(e,(n s t)) \\
& =d(\sigma, \tau)-d(e,(n s t)) \\
(* *) & \geq d(\sigma, \tau)-3
\end{aligned}
$$

Now, we examine the equality case. Step $(* *)$ implies n, s, t are distinct. Step $(*)$ follows from the triangle inequality, which states that $d(a, b)+d(b, c) \geq$ $d(a, c)$.

$$
\begin{aligned}
& d(a, b)+d(b, c)=d(a, c) \Longleftrightarrow \\
& (a(i) \neq b(i) \Longrightarrow b(i)=c(i))
\end{aligned}
$$

Applied to (*)

$$
d(e,(n s t))+d((n s t), \pi)=d(e, \pi) \Longleftrightarrow \pi:(n s t) \rightarrow(s t n)
$$

Hence $\pi^{3}(n)=n, \pi(n) \neq n$.
As a consequence, this shows that $m \leq 3$ in m-contraction.

3 Conditions for 3-Contraction

In this section, we prove equivalent conditions for 3-contraction of groups.
Definition 3.1. A $P A(n, d)$ is called $a G(n, d)$ if it is also a group.
Theorem 3.1. A $G(n, d) 3$-contracts iff G contains a permutation π such that

1. $\pi^{3}(n)=n$
2. $\pi(n) \neq n$
3. $d(e, \pi)=d$

Proof. Suppose G contains such an element π. Define s, t such that $(n s t)=$ $\left(n \pi(n) \pi^{2}(n)\right)$ Then the contractions of π, π^{2} have distance $d-3$. Indeed,

$$
\begin{aligned}
d\left(\pi^{\prime},\left(\pi^{2}\right)^{\prime}\right) & =d\left((n t) \pi,(n s) \pi^{2}\right) \\
& =d\left(\binom{n s t), \pi)}{(*)} d(e, \pi)-3\right. \\
& =d-3
\end{aligned}
$$

Step (*) requires explanation. In all locations besides n, s, t, permutations e, π differ iff ($n s t$), π differ. At locations n, s, t, e, π differ but ($n s t$), π match. Thus the number of mismatches decreases by 3 . Since we have found a pair of contracted permutations with Hamming distance $d-3$, and Lemma 2.1 implies that this is the minimal distance, this implies that $G(n, d) 3$ contracts.

For the other direction, suppose that the $G(n, d) 3$-contracts. Then there exist permutations $\sigma, \tau \in G$ for which the equality case of Lemma 2.1 holds. Thus, $\pi^{3}(n)=n$ and $\pi(n) \neq n$. Furthermore, $d(\sigma, \tau)-3=d-3 \Longrightarrow$ $d(e, \pi)=d$. Taking $g=\pi \in G$, we have constructed a g satisfying the conditions of this theorem.

4 Classification

Using Theorem 3.1, we classify contractions of all sharply-transitive $G(n, d)$.
Theorem 4.1. Let G be a sharply-transitive $G(n, d)$.

Condition	Contracts to
$d \equiv 0 \bmod 3$	$P A(n-1, d-3)$
$d \neq 0 \bmod 3$	$P A(n-1, d-2)$

Proof. Let the $G(n, d)$ undergo m-contraction. We've shown generally that $m \leq 3$. Now suppose that $m<2$. If this was the case, after contraction there would be $\frac{n!}{(d-1)!}$ permutations of length $n-1$, with pairwise Hamming distance at most $d-1$. This would imply

$$
M(n-1, d-1) \geq \frac{n}{d-1} \frac{(n-1)!}{(d-2)!}>\frac{(n-1)!}{(d-2)!} \geq M(n-1, d-1)
$$

This contradiction follows from the maximality of the sharply-transitive group PAs [put citation here]. We conclude $m \in\{2,3\}$.

The rest of the classification involves the following two cases:

- $d \equiv 0 \bmod 3$

In this case, we will show that 3 -contraction occurs by finding an element that satisfies the conditions of Theorem 3.1. Consider the set

$$
S=\{\pi \in G \mid 1 \leq i \leq n-d \Longrightarrow \pi(i)=i\}
$$

It is straightforward to verify that S is a subgroup of G. Moreover, since G is sharply $n-d+1$-transitive, there is a unique element in S for every value of $\pi(n-d+1)$. Since $\pi(n-d+1)$ takes on each of the d values from $n-d+1$ to n inclusive, there are precisely d elements in S.
By Cauchy's Theorem, $3|d=|S| \Longrightarrow S$ has an element of order 3 [put citation here]. Call this element π. Then $\pi^{3}(n)=n$. Now consider $d(e, \pi)$. The two permutations match for positions $i \leq n-d$, by construction. By $n-d+1$-transitivity, they can not match anywhere else. Thus $d(e, \pi)=d$. As a consequence, $\pi(n) \neq n$. Thus by Theorem 3.1 , the $G(n, d)$ undergoes 3 -contraction.

- $d \not \equiv 0 \bmod 3$

We proceed by assuming for contradiction that $G(n, d) 3$-contracts. By Theorem 3.1, there exists an element π with $\pi^{3}(n)=n$ such that $\pi(n) \neq n$. This implies that n is contained in a 3 -cycle. Thus π contains a 3 -cycle, so its order is a multiple of 3 [put citation here].
Now we construct a group S^{\prime} that mimics the construction of S above, such that $\pi \in S^{\prime}$. Let I be the set of fixed points of π. By $(n-d+1)$ transitivity, $|I|=n-d$. Then define

$$
S^{\prime}=\{\sigma \in G \mid i \in I \Longrightarrow \sigma(i)=i\}
$$

Note that $\pi \in S^{\prime}$. As before, S^{\prime} is a group. By sharp transitivity, $|S|=d$. Thus $3|\operatorname{ord}(\pi)| d$, which is a contradiction. Thus $G(n, d)$ undergoes 2-contraction.

5 Conclusions/Results/Citations

Pending. Will report new lower bounds as a consequence of this theorem with data from our table.

