A Class of PAs with Efficient Contraction

Avi Levy

11/20/12

Abstract

Optimal permutation arrays (PAs) have a sharply transitive group structure. A contraction operation is defined that constructs new permutation arrays from old ones. We characterize the effect of contraction on all sharply transitive group PAs.

1 Introduction

In section 2, we define *m*-contraction and show that $m \leq 3$ for all PAs. Next in section 3, we restrict our attention to group PAs and prove equivalent conditions for m = 3. The main result is in section 4, where we consider sharply transitive group PAs. Theorem 4.1 classifies the contraction of all sharply transitive group PAs.

In this paper, e denotes the identity permutation. PA stands for "permutationa array". When σ, τ are permutations, $d(\sigma, \tau)$ denotes the Hamming distance between σ, τ ; it is invariant under permutation composition [put citation].

2 *m*-Contraction

Definition 2.1. The contraction [put citation] of σ is

$$\sigma' = \left(n \ \sigma^{-1}(n)\right) \sigma$$

Definition 2.2. The PA(n, d) is said to m-contract if the contractions of the elements of the PA(n, d) form a PA(n, d - m).

Let σ, τ be permutations on $\{1, 2, \cdots, n\}$.

Lemma 2.1. $d(\sigma', \tau') \ge d(\sigma, \tau) - 3$ When equality holds, $\pi^3(n) = n, \pi(n) \ne n$ where $\pi = \sigma \tau^{-1}$.

Proof. Let $s = \sigma^{-1}(n), t = \tau^{-1}(n)$

$$d(\sigma', \tau') = d((n \ s)\sigma, (n \ t)\tau)$$

= $d(\pi, (n \ s \ t))$
(*) $\geq d(\pi, e) - d(e, (n \ s \ t))$
= $d(\sigma, \tau) - d(e, (n \ s \ t))$
(**) $\geq d(\sigma, \tau) - 3$

Now, we examine the equality case. Step (**) implies n, s, t are distinct. Step (*) follows from the triangle inequality, which states that $d(a, b) + d(b, c) \ge d(a, c)$.

$$d(a,b) + d(b,c) = d(a,c) \iff \left(a(i) \neq b(i) \implies b(i) = c(i)\right)$$

Applied to (*)

$$d\left(e,(n\ s\ t)\right) + d\left((n\ s\ t),\pi\right) = d\left(e,\pi\right) \iff \pi: (n\ s\ t) \to (s\ t\ n)$$

Hence $\pi^3(n) = n, \pi(n) \neq n$.

As a consequence, this shows that $m \leq 3$ in *m*-contraction.

3 Conditions for 3-Contraction

In this section, we prove equivalent conditions for 3-contraction of groups.

Definition 3.1. A PA(n,d) is called a G(n,d) if it is also a group.

Theorem 3.1. A G(n,d) 3-contracts iff G contains a permutation π such that

1. $\pi^{3}(n) = n$ 2. $\pi(n) \neq n$ 3. $d(e, \pi) = d$

Proof. Suppose G contains such an element π . Define s, t such that $(n \ s \ t) = (n \ \pi(n) \ \pi^2(n))$ Then the contractions of π, π^2 have distance d - 3. Indeed,

$$d(\pi', (\pi^2)') = d((n \ t)\pi, (n \ s)\pi^2)$$

= d((n \ s \ t), \pi)
(*) = d(e, \pi) - 3
= d - 3

Step (*) requires explanation. In all locations besides n, s, t, permutations e, π differ iff $(n \ s \ t), \pi$ differ. At locations $n, s, t, \ e, \pi$ differ but $(n \ s \ t), \pi$ match. Thus the number of mismatches decreases by 3. Since we have found a pair of contracted permutations with Hamming distance d-3, and Lemma 2.1 implies that this is the minimal distance, this implies that G(n, d) 3-contracts.

For the other direction, suppose that the G(n, d) 3-contracts. Then there exist permutations $\sigma, \tau \in G$ for which the equality case of Lemma 2.1 holds. Thus, $\pi^3(n) = n$ and $\pi(n) \neq n$. Furthermore, $d(\sigma, \tau) - 3 = d - 3 \implies d(e, \pi) = d$. Taking $g = \pi \in G$, we have constructed a g satisfying the conditions of this theorem.

4 Classification

Using Theorem 3.1, we classify contractions of all sharply-transitive G(n, d).

Theorem 4.1.	Let G	be	a sharply-	transitive	G([n,d]).
--------------	---------	----	------------	------------	----	-------	----

Condition	Contracts to		
$d \equiv 0 \mod 3$	PA(n-1, d-3)		
$d \not\equiv 0 \mod 3$	PA(n-1, d-2)		

Proof. Let the G(n, d) undergo *m*-contraction. We've shown generally that $m \leq 3$. Now suppose that m < 2. If this was the case, after contraction there would be $\frac{n!}{(d-1)!}$ permutations of length n-1, with pairwise Hamming distance at most d-1. This would imply

$$M(n-1, d-1) \ge \frac{n}{d-1} \frac{(n-1)!}{(d-2)!} > \frac{(n-1)!}{(d-2)!} \ge M(n-1, d-1)$$

This contradiction follows from the maximality of the sharply-transitive group PAs [put citation here]. We conclude $m \in \{2, 3\}$.

The rest of the classification involves the following two cases:

• $d \equiv 0 \mod 3$

In this case, we will show that 3-contraction occurs by finding an element that satisfies the conditions of Theorem 3.1. Consider the set

$$S = \{ \pi \in G | 1 \le i \le n - d \implies \pi(i) = i \}$$

It is straightforward to verify that S is a subgroup of G. Moreover, since G is sharply n - d + 1-transitive, there is a unique element in S for every value of $\pi(n - d + 1)$. Since $\pi(n - d + 1)$ takes on each of the d values from n - d + 1 to n inclusive, there are precisely d elements in S.

By Cauchy's Theorem, $3|d = |S| \implies S$ has an element of order 3 [put citation here]. Call this element π . Then $\pi^3(n) = n$. Now consider $d(e,\pi)$. The two permutations match for positions $i \leq n - d$, by construction. By n-d+1-transitivity, they can not match anywhere else. Thus $d(e,\pi) = d$. As a consequence, $\pi(n) \neq n$. Thus by Theorem 3.1, the G(n,d) undergoes 3-contraction.

• $d \not\equiv 0 \mod 3$

We proceed by assuming for contradiction that G(n,d) 3-contracts. By Theorem 3.1, there exists an element π with $\pi^3(n) = n$ such that $\pi(n) \neq n$. This implies that n is contained in a 3-cycle. Thus π contains a 3-cycle, so its order is a multiple of 3 [put citation here].

Now we construct a group S' that mimics the construction of S above, such that $\pi \in S'$. Let I be the set of fixed points of π . By (n - d + 1)-transitivity, |I| = n - d. Then define

$$S' = \{ \sigma \in G | i \in I \implies \sigma(i) = i \}$$

Note that $\pi \in S'$. As before, S' is a group. By sharp transitivity, |S| = d. Thus $3|\operatorname{ord}(\pi)|d$, which is a contradiction. Thus G(n, d) undergoes 2-contraction.

5 Conclusions/Results/Citations

Pending. Will report new lower bounds as a consequence of this theorem with data from our table.