Topics in Signed and Nonlinear Electrical Networks

David Jekel

October 23, 2014

Acknowledgements

This paper owes its existence to the summer 2013 math REU at the UW, and some thanks goes to all the faculty, TA's, and students. I especially want to thank Professor Jim Morrow who organized the REU, and Ian Zemke, one of the TAs, both of whom spent a lot of time listening to and critiquing my ideas about annular networks, which first inspired "layerings." After the REU ended, Professor Morrow told me to keep researching electrical networks, and has continued to provide valuable advice. I should also thank the REU students of past years, especially Will Johnson and Konrad Schroder, for the good ideas in their papers which inspired my own.

Remarks

For the most part, past research has focused on electrical networks with positive linear conductances, which model simple circuits with Ohmic resistors. These electrical networks were an analogue to the continuous model for electrical plates, and were used for electrical tomography. On the mathematical side, their combinatorial properties have been connected with graph theory and random walks on graphs. Several REU students have also considered networks with signed and nonlinear conductance or resistance functions. Although nonlinear networks should provide a more accurate model for real-world resistor networks, signed resistors do not have physical applications, at least not to real-world electrical networks.

However, "electrical networks" in this paper are considered as mathematical, not physical, objects and defined in sufficient generality to allow signed and nonlinear resistors. Although this generality is not physically motivated, it is mathematically justified by the interesting results which are true about signed and nonlinear networks. And it takes nothing away from the physical applications of special types of "electrical networks."

For the most part, I develop the theory from the ground up, assuming only undergraduate real analysis, linear algebra, and familiarity with the concepts of groups and manifolds. Sometimes, I refer the reader to outside sources for
standard results, or to Curtis and Morrow's Inverse Problems for Electrical Networks [1] for results on positive linear electrical networks. Familiarity with [1] is also useful for understanding the motivations and proofs of several theorems in this paper.

I will cite student papers from the UW math REU in order to give credit where credit is due, with the caution that these papers are not polished and may contain errors.

Contents

1 Introduction 5
1.1 Graphs with Boundary 5
1.2 Electrical Networks 6
2 Subgraphs and Subnetworks 7
3 Signed Linear Conductances 9
3.1 The Kirchhoff Matrix 9
3.2 Spanning Forests 11
3.3 Singular Networks 14
3.4 Properties of L 17
3.5 Local Electrical Equivalences 18
4 The Dirichlet Problem 22
4.1 Solutions to the Dirichlet Problem 22
4.2 The Dirichlet-to-Neumann Map Λ 27
4.3 Differentiation of Λ and U 28
4.4 Linearizing the Inverse Problem 31
5 The Neumann Problem 31
5.1 Solutions to the Neumann Problem 31
5.2 The Neumann-to-Dirichlet Map Ω 35
6 Reduction Operations 35
6.1 Definition 35
6.2 Reduction to Embedded Flowers 36
6.3 Electrical Properties 38
6.4 Regularity of L 39
6.5 Faithful Networks 41
7 Layerings and the Inverse Problem 43
7.1 Two-Boundary Graphs and Layerings 43
7.2 Recovering Boundary Spikes and Boundary Edges 47
7.3 Sufficient Conditions for Recoverability 49
8 Layerings, Connections, and Mixed Problems 51
8.1 Columns and Connections 51
8.2 The Two-Boundary Relationship 51
8.3 Stubless Layerings 53
9 Critical Circular Planar Networks 57
9.1 Medial Graphs 57
9.2 Total Layerability 58
9.3 The Cut-Point Lemma 62
10 Some Graph Contructions 63
10.1 Covers 63
10.2 Products. 66
11 More Signed Linear Conductances 68
11.1 The Electrical Linear Group $E L_{n}$ 68
11.2 Characterization of $E G_{n}$ and $E L_{n}$ 70
11.3 Generators of $E L_{n}$ and Circular Planarity 77

1 Introduction

1.1 Graphs with Boundary

A graph G consists of two sets V (or $V(G)$) and E (or $E(G)$), a function $\iota: E \rightarrow V$, and a function ${ }^{-}: E \rightarrow E$ with $\bar{e} \neq e$ and $\overline{\bar{e}}=e$. For $e \in E$, $\iota(e)$ is the initial vertex of e and $\tau(e)=\iota(\bar{e})$ is the terminal vertex. Let E^{\prime} be the set formed by identifying each e with \bar{e}. An edge is an element of E^{\prime} and an oriented edge is an element of E. This definition allows multiple edges with the same endpoints.

The valence of a vertex p is the cardinality of $\{e: \iota(e)=p\}$. Two vertices p and q are adjacent if there is an oriented edge e with $\iota(e)=p$ and $\tau(e)=q$. An edge e and a vertex p are incident if p is an endpoint of e. Two edges are incident if they share an endpoint.

A graph with boundary consists of a graph together with a subset $B \subset$ V. Vertices in B are called boundary vertices and vertices in $I=V \backslash B$ are called interior vertices. In this paper, I will use "graph" to mean "graph with boundary" and assume that the graphs have no self-loops, that is, for each oriented edge $\iota(e) \neq \tau(e)$. We will also assume V and E are finite. ${ }^{1}$

A graph G^{\prime} (without boundary) is a subgraph of G if $V\left(G^{\prime}\right) \subset V(G), E\left(G^{\prime}\right) \subset$ $E(G)$, and for $e \in E\left(G^{\prime}\right), \iota(e)$ and $\bar{e} \in E\left(G^{\prime}\right)$, and the ι and $^{-}$functions for G^{\prime} are the restrictions of the ι and $^{-}$functions for G. We say a graph with boundary G^{\prime} is a subgraph of G if

- $V\left(G^{\prime}\right) \subset V(G), E\left(G^{\prime}\right) \subset E(G), I\left(G^{\prime}\right) \subset I(G)$.
- If $e \in E\left(G^{\prime}\right)$, then $\iota(e) \in V(S)$ and $\bar{e} \in E\left(G^{\prime}\right)$, and they are defined the same for H as for G.
- If $p \in I\left(G^{\prime}\right)$ and $e \in E\left(G^{\prime}\right)$ with $\iota(e)=p$, then $e \in E\left(G^{\prime}\right)$.

For a graph G, a path is a sequence of vertices p_{0}, \ldots, p_{K} and oriented edges e_{1}, \ldots, e_{K} such that $\iota\left(e_{k}\right)=p_{k-1}$ and $\tau\left(e_{k}\right)=p_{k}$. We allow a "trivial" path with one vertex and no edges. A path is an embedded path if the vertices p_{0}, \ldots, p_{K} are distinct and the non-oriented edges in the path are distinct. A boundary-toboundary path is an embedded path such that p_{0} and p_{K} are boundary vertices and the other vertices are interior. A cycle is a non-trivial path such that the edges are distinct, and the vertices p_{0}, \ldots, p_{K-1} are distinct with $p_{K}=p_{0}$.

A graph is connected if for any two vertices p and q, there exists a path from p to q. For any graph, there exist connected subgraphs G_{1}, \ldots, G_{N}, called components, such that $V\left(G_{1}\right), \ldots, V\left(G_{N}\right)$ are a partition of $V(G)$, and $E\left(G_{1}\right), \ldots, E\left(G_{N}\right)$ are a partition of $E(G)$, and $B\left(G_{1}\right), \ldots, B\left(G_{N}\right)$ are a partition of $B(G)$.

[^0]
1.2 Electrical Networks

An electrical network $\Gamma=(G, R)$ is a graph with boundary together with a function $R: E \rightarrow \mathcal{P}\left(\mathbb{R}^{2}\right)$, which assigns to each edge e, a set $R_{e} \subset \mathbb{R}^{2}$, called the potential-current relationship (PCR), such that $R_{\bar{e}}=-R_{e}$.

Often, the relationship R_{e} will be given in terms of a conductance function $\gamma_{e}: \mathbb{R} \rightarrow \mathbb{R}$, by setting

$$
R_{e}=\left\{\left(x, \gamma_{e}(x)\right): x \in \mathbb{R}\right\} .
$$

For example, we could use a linear conductance function $\gamma_{e}(x)=a_{e} x$ for some $a_{e} \in \mathbb{R}$. If R_{e} is given by the conductance function γ_{e}, then $R_{\bar{e}}$ is given by the conductance function $\gamma_{\bar{e}}(x)=-\gamma_{e}(-x)$. We can also define R_{e} in terms of a resistance function $\rho_{e}: \mathbb{R} \rightarrow \mathbb{R}$, by setting

$$
R_{e}=\left\{\left(\rho_{e}(y), y\right): y \in \mathbb{R}\right\},
$$

and then we must set $\rho_{\bar{e}}(x)=-\rho_{e}(-x)$. Using a relationship R_{e} rather than a function allows us to consider both "conductance networks," "resistance networks," some combination of the two, or something even more general.

A potential is a function $u: V \rightarrow \mathbb{R}$, or equivalently, a vector $u \in \mathbb{R}^{V}$. The potential at a vertex p will be denoted $u(p)$ or u_{p}. A current function is a function $c: E \rightarrow \mathbb{R}$ such that $c_{\bar{e}}=-c_{e}$ and

$$
\sum_{e: \iota(e)=p} c_{e}=0 \text { for each } p \in I .
$$

A potential u and current function c are compatible if for each edge e,

$$
\left(u_{\iota(e)}-u_{\tau(e)}, c_{e}\right) \in R_{e} .
$$

If this holds for an edge e, then it automatically holds for \bar{e} because

$$
\left(u_{\iota(\bar{e})}-u_{\tau(\bar{e})}, c_{\bar{e}}\right)=-\left(u_{\iota(e)}-u_{\tau(e)}, c_{e}\right) \in-R_{e}=R_{\bar{e}} .
$$

A harmonic function on G is a compatible pair (u, c).
For a current function c, the net current at a vertex p is $\sum_{e::(e)=p} c_{e}$. The net current an interior vertex must be zero by the above definition. For each c, there is a function $\psi_{c}: B \rightarrow \mathbb{R}$ mapping each vertex to its net current. For any current function, the net currents on the boundary vertices must sum to zero because

$$
\sum_{p \in B} \sum_{e: \iota((e)=p} c_{e}=\sum_{p \in V} \sum_{e:: l(e)=p} c_{e}=\sum_{e \in E} c_{e}=\frac{1}{2} \sum_{e \in E}\left(c_{e}+c_{\bar{e}}\right)=0 .
$$

For an electrical network Γ, the set of boundary data is
$L=\left\{(\phi, \psi) \in \mathbb{R}^{B} \times \mathbb{R}^{B}\right.$: there exist compatible u and c with $\left.\phi=\left.u\right|_{B}, \psi=\psi_{c}\right\}$.
Our primary concern will be the relationship between G, R, and L. In particular, we consider the following questions:

- The Dirichlet Problem: Given $\phi \in \mathbb{R}^{B}$, does there exist a harmonic (u, c) with $\left.u\right|_{B}=\phi$? Is it unique?
- The Neumann Problem: Given $\psi \in \mathbb{R}^{B}$, does there exist a harmonic (u, c) with $\psi=\psi_{c}$? Is it unique?
- Regularity: What conditions on R_{e} (or γ_{e} or ρ_{e}) and on G will guarantee that L is a smooth manifold? Does L depend "nicely" on R_{e} ?
- Mixed Problems: Does there exist a harmonic function which has given potentials and given currents on a given subset of B ? How does this relate to the structure of the given graph?
- The Inverse Problem: For a network (G, R), is R uniquely determined by G and L ?

If we allow arbitrary PCR's, the inverse problem usually cannot be solved. Thus, we will generally restrict our attention to a certain set \mathcal{R} of R 's. (One example would be the set of R 's where each R_{e} is given by a bijective conductance function, but the best set of R 's to consider depends on the situation.) We say a network (G, R) is recoverable over $\mathcal{R} \subset \mathcal{P}\left(\mathbb{R}^{2}\right)^{E}$ if $R \in \mathcal{R}$ and there is no other $R^{\prime} \in \mathcal{R}$ such that $L_{\left(G, R^{\prime}\right)}=L_{(G, R)}$. We say the graph G is recoverable over \mathcal{R} if this holds for any $R \in \mathcal{R}$, that is, if the map $R \mapsto L$ is injective on \mathcal{R}.

It will become clear that, although the Dirichlet and Neumann problems require more analysis than graph theory, the inverse problem, mixed problems, and to some extent regularity depend crucially on the structure of the graph.

2 Subgraphs and Subnetworks

A subgraph partition of G is a collection of subgraphs G_{1}, \ldots, G_{N} such that

- $V(G)=\bigcup_{n=1}^{N} V\left(G_{\alpha}\right)$.
- $E(G)=\bigcup_{n=1}^{N} E\left(G_{\alpha}\right)$.
- $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\varnothing$ for $i \neq j$.
- $I\left(G_{i}\right) \cap V\left(G_{j}\right)=\varnothing$ for $i \neq j$.

If S is a subgraph of G, then we define $G \backslash S$ by

- $V(G \backslash S)=V(G) \backslash I(S)$.
- $E(G \backslash S)=E(G) \backslash E(S)$.
- $I(G \backslash S)=I(G) \backslash V(S)$.

Then $G \backslash S$ is a subgraph of $G . S$ and $G \backslash S$ form a subgraph partition of G, and S is a subgraph of $G \backslash(G \backslash S)$; however, they may not be equal, so this is not a complement in the set-theoretic sense.

A subnetwork of an electrical network $\Gamma=(G, R)$ is a network Σ on a subgraph S of G, such that the PCR of an edge in Σ is the same as its PCR in Γ; that is, $\Sigma=\left(S,\left.R\right|_{E(S)}\right)$. A subnetwork partition of Γ is a family of subnetworks $\Sigma_{1}, \ldots, \Sigma_{n}$ such that the underlying graphs form a subnetwork partition of G. If (u, c) is harmonic on Γ, then $\left(\left.u\right|_{V(S)},\left.c\right|_{E(S)}\right)$ is harmonic on Σ.

The following results generalize principles which have often been observed (see [3]):

Proposition 2.1. Let $\Sigma_{1}, \ldots, \Sigma_{N}$ be a subnetwork partition of a network Γ. Let L be the boundary data of Γ and L_{n} be the boundary data of Σ_{n}. Then L is uniquely determined by L_{1}, \ldots, L_{N}.

Proof. Let $B^{\prime}=\bigcup_{n=1}^{N} B\left(S_{n}\right)$. Let $T \subset \prod_{n=1}^{N} L_{n}$ consist of all points $\prod_{n_{1}}\left(\phi_{n}, \psi_{n}\right)$ such that

1. If $p \in B\left(S_{j}\right) \cap B\left(S_{k}\right)$, then $\left(\phi_{j}\right)_{p}=\left(\phi_{k}\right)_{p}$.
2. If $p \in B^{\prime} \cap I(G)$, then

$$
\sum_{n: p \in B\left(S_{n}\right)}\left(\psi_{n}\right)_{p}=0
$$

Define $F: T \rightarrow \mathbb{R}^{B} \times \mathbb{R}^{B}$ by $\prod_{n=1}^{N}\left(\phi_{n}, \psi_{n}\right) \mapsto(\phi, \psi)$, where

- $\phi_{p}=\left(\phi_{n}\right)_{p}$ whenever $p \in B(G) \cap B\left(S_{n}\right)$. This makes sense because $B(G) \subset \bigcup_{n=1}^{N} B\left(S_{n}\right)$, and it is well-defined by our definition of T.
- $\psi_{p}=\sum_{n: p \in B\left(G_{n}\right)}\left(\psi_{n}\right)_{p}$. Again, this works because the sum has finitely many nonzero terms.

I claim that $L=F(T)$. If $(\phi, \psi) \in L$, then there exists a harmonic (u, c) with $\left.u\right|_{B}=\phi$ and $\psi_{c}=\psi$. Then $\left(\left.u\right|_{V\left(S_{n}\right)},\left.c\right|_{E\left(S_{n}\right)}\right)$ is harmonic on Σ_{n}, and its boundary data $\left(\phi_{n}, \psi_{n}\right)$ is in L_{n}. Also, the $\left(\phi_{n}, \psi_{n}\right)$'s will satisfy conditions (1) and (2), so that $\prod_{n=1}^{N}\left(\phi_{n}, \psi_{n}\right) \in T$. Thus, $(\phi, \psi)=F\left(\prod_{n=1}^{N}\left(\phi_{n}, \psi_{n}\right)\right) \in F(T)$. Conversely, if $\left(u_{n}, c_{n}\right)$ is harmonic on Σ_{n} with boundary data $\left(\phi_{n}, \psi_{n}\right)$ and $\prod_{n=1}^{N}\left(\phi_{\alpha}, \psi_{\alpha}\right) \in T$, then conditions (1) and (2) will guarantee that they can be glued together to a harmonic function (u, c) on Γ, so that $F\left(\prod_{n=1}^{N}\left(\phi_{n}, \psi_{n}\right)\right) \in L$. Since T and F only depend on L_{1}, \ldots, L_{N}, the proof is complete.

Definition. Two networks Γ and Γ^{\prime} are electrically equivalent if $B(G)=B\left(G^{\prime}\right)$ and $L_{\Gamma}=L_{\Gamma^{\prime}}$.

Corollary 2.2 (Subnetwork Splicing). Let $\Sigma_{1}, \ldots, \Sigma_{N}$ and $\Sigma_{1}^{\prime}, \ldots, \Sigma_{N}^{\prime}$ be subnetwork partitions of Γ and Γ^{\prime} respectively. If $B(G)=B\left(G^{\prime}\right)$ and Σ_{n} is electrically equivalent to Σ_{n}^{\prime}, then Γ and Γ^{\prime} are electrically equivalent.

Definition. If S is a subgraph of G, and $\mathcal{R} \subset \mathcal{P}\left(\mathbb{R}^{2}\right)^{E(G)}$, then let $\left.\mathcal{R}\right|_{E(S)}=$ $\left\{\left.R\right|_{E(S)}: R \in \mathcal{R}\right\}$.

Corollary 2.3 (Recoverability of Subgraphs). Suppose S is a subgraph of G and $\mathcal{R} \subset \mathcal{P}\left(\mathbb{R}^{2}\right)^{E(G)}$. If $R \in \mathcal{R}$ and (G, R) is recoverable over \mathcal{R}, then $\left(S,\left.R\right|_{E(S)}\right)$ is recoverable over $\left.\mathcal{R}\right|_{E(S)}$. If the graph G is recoverable over \mathcal{R}, then S is recoverable over $\left.\mathcal{R}\right|_{E(S)}$

Proof. Assume $\mathcal{R} \neq \emptyset$. Suppose $\Sigma=\left(S, R_{S}\right)$ and $\Sigma^{\prime}=\left(S, R_{S}^{\prime}\right)$ with $R_{S} \neq R_{S}^{\prime} \in$ $\left.\mathcal{R}\right|_{E(S)}$, and that Σ and Σ^{\prime} are electrically equivalent. We can extend R_{S} and R_{S}^{\prime} to functions R and R^{\prime} on $E(G)$ such that $R_{e}=R_{e}^{\prime}$ for $e \in E(G) \backslash E(S)$. Let $S^{*}=G \backslash S$, and Σ^{*} be the subnetwork on S^{*} with PCR's given by R_{e}. Then Σ and Σ^{*} are a partition of (G, R), and Σ^{\prime} and Σ^{*} are a partition of $\left(G, R^{\prime}\right)$, so (G, R) and $\left(G, R^{\prime}\right)$ are electrically equivalent.

3 Signed Linear Conductances

3.1 The Kirchhoff Matrix

Let Γ be an electrical network where

$$
R_{e}=\left\{(x, y): y=a_{e} x\right\}
$$

for some $a_{e} \in \mathbb{R}, a_{e} \neq 0$. Since $R_{\bar{e}}=-R_{e}$, we must have $a_{\bar{e}}=a_{e}$. This R_{e} is given by conductance function $\gamma_{e}(x)=a_{e} x$ or equivalently, resistance function $\rho_{e}(y)=y / a_{e}$. Assume the vertices have been indexed by integers $1,2, \ldots,|V|$. Define the Kirchhoff matrix $K \in \mathbb{R}^{V \times V}$ by setting

$$
\kappa_{p q}=-\sum_{\substack{e: \iota(e)=p, \tau(p)=q}} a_{e}, \text { for } p \neq q
$$

and

$$
\kappa_{p p}=-\sum_{q \neq p} \kappa_{p q}
$$

Then K is symmetric and has row sums zero. For $u \in \mathbb{R}^{V}, p \in V$,

$$
(K u)_{p}=u_{p} \sum_{q \neq p} \kappa_{p q}-\sum_{q \neq p} u_{q} \sum_{\substack{e: \iota(e)=p, \tau(p)=q}} a_{e}=\sum_{e: \iota(e)=p} a_{e}\left(u_{p}-u_{\tau(e)}\right) .
$$

Thus, if u has a compatible current function, $(K u)_{p}$ gives the net current on vertex p. Thus, u is a harmonic potential if and only if $(K u)_{p}=0$ for $p \in I$. By dividing the vertices into boundary and interior, we can write K in block form as

$$
K=\binom{K_{B, V}}{K_{I, V}}=\left(\begin{array}{cc}
K_{B, B} & K_{B, I} \\
K_{I, B} & K_{I, I}
\end{array}\right)
$$

So u is a harmonic potential if and only if $u \in \operatorname{ker} K_{I, V}$.

The Dirichlet and Neumann problems have an interpretation in terms of linear algebra. In the following, we will assume G is connected. There is no real loss of generality, since a harmonic function on G restricts to a harmonic function on any connected component, and harmonic functions on the connected components combine to form a harmonic function on G. And components with no boundary vertices are of little interest. If G has multiple connected components G_{1}, \ldots, G_{N} and we reorder the vertices of G so that the vertices of G_{1} are first, then $V\left(G_{2}\right)$, and so on, then the Kirchhoff matrix will decompose into blocks

$$
K=\left(\begin{array}{cccc}
K_{1} & 0 & \cdots & 0 \\
0 & K_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & K_{N}
\end{array}\right)
$$

so the behavior of the whole can easily be understood from the behavior of the smaller blocks.

Consider the Dirichlet problem. For $\phi \in \mathbb{R}^{B}$, we want to find a harmonic potential u with $\left.u\right|_{B}=\phi$. This is the same as letting $u=(\phi, w)$, where w satisfies

$$
K_{I, B} \phi+K_{I, I} w=0
$$

This will have a unique solution if and only if $K_{I, I}$ is invertible. As we will see, this does not always happen. But suppose $K_{I, I}$ is invertible. Then $w=$ $-K_{I, I}^{-1} K_{I, B} \phi$. The current on each edge can be computed from the conductance functions. The net current on the boundary vertices is

$$
\psi=K_{B, B} \phi+K_{B, I} w=\left(K_{B, B}-K_{B, I} K_{I, I}^{-1} K_{I, B}\right) \phi
$$

The matrix $\Lambda=K_{B, B}-K_{B, I} K_{I, I}^{-1} K_{I, B}$ is the Schur complement $K / K_{I, I} . \Lambda$ is called the response matrix and it acts as a Dirichlet-to-Neumann map $\mathbb{R}^{B} \rightarrow \mathbb{R}^{B}$ sending boundary potentials to the boundary net currents of the corresponding harmonic function. Then $L=\left\{(\phi, \Lambda \phi): \phi \in \mathbb{R}^{B}\right\}$.

The Neumann problem has a similar interpretation. For $\psi \in \mathbb{R}^{B}$, we want to find a potential u such that

$$
K u=\binom{\psi}{0}
$$

Of course, if ψ came from a valid current function, its entries must sum to zero as mentioned in the Introduction. We cannot expect the solution to the Neumann problem to be unique either. Indeed, if we take a harmonic function and raise the potentials on all the vertices by some constant, then the new function will be harmonic and have the same boundary currents.

So we revise the Neumann problem as follows: Let $A \subset \mathbb{R}^{V}$ be the set of functions whose entries sum to zero. For $(\psi, 0)^{T} \in A$, does there exist a unique harmonic (u, c) with $u \in A$ and $K u=(\psi, 0)^{T}$? The answer is yes if and only if $\left.K\right|_{A}$ is invertible. Since the image of K is contained in A, this happens if and only if $\operatorname{rank} K=\operatorname{dim} A$, which is $|V|-1$.

3.2 Spanning Forests

Our main tool to determine when certain submatrices of K are invertible is the following combinatorial result, which generalizes the matrix-tree theorem attributed to Kirchhoff. A more general version of this formula is found in [2].

Let G be a graph. A spanning tree T is a subgraph (without boundary) such that T is connected, every vertex is in T, and T has no cycles. A spanning forest F is a subgraph such that every vertex is in T and T has no cycles; the components of F have no cycles, and are therefore trees.

Let P and Q be disjoint subsets of B with $|P|=|Q|=n$. Let $\mathcal{F}(P, Q)$ be the set of forests F such that each connected component either contains exactly one vertex from P and one from Q or it contains exactly one vertex from $B \backslash(P \cup Q)$. Let $K_{P \cup I, Q \cup I}$ be the submatrix of K with rows indexed by $P \cup I$ and columns by $Q \cup I$, ordered according to a given indexing of vertices by the integers $1, \ldots,|V|$. Let p_{1}, \ldots, p_{n} be the vertices of P and q_{1}, \ldots, q_{n} the vertices of Q ordered according to the same indexing. For any $F \in \mathcal{F}(P, Q)$, there is a permutation $\tau \in S_{n}$ such that p_{j} and $q_{\tau(j)}$ are in the same component of F; call this permutation τ_{F}.

Theorem 3.1. Let P and Q be disjoint subsets of B with $|P|=|Q|=n$. Then

$$
\operatorname{det} K_{P \cup I, Q \cup I}=(-1)^{n} \sum_{F \in \mathcal{F}(P, Q)} \operatorname{sgn} \tau_{F} \prod_{e \in E^{\prime}(F)} a_{e} .
$$

Proof. Let $m=|I|$. Let p_{1}, \ldots, p_{n+m} be the vertices of $P \cup I$ and q_{1}, \ldots, q_{n+m} be the vertices of $Q \cup I$, so that $P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ and for $j>n, p_{j}=q_{j} \in I$. Suppose $\sigma \in S_{n+m}$; if $p_{j}=q_{\sigma(j)}$, then p_{j} must be interior. Let m_{σ} be the number of indices with $p_{j}=q_{\sigma(j)}$. By definition, det $K_{P \cup I, Q \cup I}$ is

$$
\begin{aligned}
& \sum_{\sigma \in S_{n+m}} \operatorname{sgn} \sigma \prod_{j=1}^{n+m} \kappa_{p_{j}, q_{\sigma(j)}} \\
&= \sum_{\sigma \in S_{n+m}} \operatorname{sgn} \sigma\left(\prod_{\substack{p_{j} \neq q_{\sigma(j)}}} \sum_{\substack{e: l(e)=p_{j} \\
\tau(e)=q_{\sigma(j)}}}\left(-a_{e}\right)\right. \\
&= \sum_{\sigma \in S_{n+m}}(-1)^{n+m-m_{\sigma}} \operatorname{sgn} \sigma\left(\prod_{p_{j}=q_{\sigma(j)}} a_{e}\right) \\
&\left.\sum_{\substack{e:(e)=p_{j}}} a_{e}\right)\left(\prod_{\substack{ \\
p_{j} \neq q_{\sigma(j)} \\
\\
\tau(e)(e)=q_{\sigma(j)}}} \sum_{p_{j}=q_{\sigma(j)}} a_{e}\right)
\end{aligned}
$$

Our goal is to expand each of the sums inside the product. Fix σ; choosing one term from each of the inner sums amounts to choosing for each j an edge e_{j} such that (1) $\iota\left(e_{j}\right)=p_{j}$ and (2) if $p_{j} \neq q_{\sigma(j)}$, then $\tau(e)=q_{\sigma(j)}$. Let \mathcal{Y} be the collection of all sets $Y=\left\{e_{1}, \ldots, e_{n+m}\right\}$ such that $\iota\left(e_{j}\right)=p_{j}$. We say $\sigma \in S_{n+m}$
and $Y \in \mathcal{Y}$ are compatible if (1) and (2) are satisfied for every $e_{j} \in Y$. Then

$$
\begin{aligned}
\operatorname{det} K_{P \cup I, Q \cup I} & =\sum_{\sigma \in S_{n+m}}(-1)^{n+m-m_{\sigma}} \operatorname{sgn} \sigma \sum_{\substack{\text { compatible } \\
Y \in \mathcal{Y}}} \prod_{e \in Y} a_{e} \\
& =\sum_{Y \in \mathcal{Y}} \sum_{\substack{\text { compatible } \\
\sigma \in S_{n+m}}}(-1)^{n+m-m_{\sigma}} \operatorname{sgn} \sigma \prod_{e \in Y} a_{e}
\end{aligned}
$$

Suppose that Y contains a sequence of edges $e_{j_{1}}, \ldots, e_{j_{k}}$ with $\tau\left(j_{\ell}\right)=\iota\left(j_{\ell+1}\right)$ for $\ell=1, \ldots, k-1$ and $\tau\left(e_{j_{k}}\right)=\iota\left(e_{j_{1}}\right)$. (Either such a sequence forms a cycle or $k=2$ and it is a pair e, \bar{e}.) If σ is compatible with Y, there are two possibilities: Either (1) $\sigma\left(j_{\ell}\right)=j_{\ell}$ for all ℓ or (2) $j_{1} \mapsto j_{2} \mapsto \ldots \mapsto j_{k} \mapsto j_{1}$ is a cycle of σ. In fact, there is a one-to-one correspondence between compatible permutations satisfying (1) and those satisfying (2), and we can partition the compatible permutations into pairs $\{\sigma, \xi \sigma\}$, where $\xi \in S_{n+m}$ is the cycle $j_{1} \mapsto j_{2} \mapsto \ldots \mapsto$ $j_{k} \mapsto j_{1}$, such that σ satisfies (1) and $\xi \sigma$ satisfies (2). Then $m_{\xi \sigma}=m_{\sigma}-k$ and $\operatorname{sgn} \xi=(-1)^{k+1}$, so

$$
(-1)^{n+m-m_{\xi \sigma}} \operatorname{sgn}(\xi \sigma)=(-1)^{n+m-m_{\sigma}-k}(-1)^{k+1} \operatorname{sgn} \sigma=-(-1)^{n+m-m_{\sigma}} \operatorname{sgn} \sigma
$$

Thus,

$$
\sum_{\substack{\text { compatible } \\ \sigma \in S_{n+m}}}(-1)^{n+m-m_{\sigma}} \operatorname{sgn} \sigma=0
$$

because the terms for σ and $\xi \sigma$ cancel.
Therefore, it suffices to consider elements $Y \in \mathcal{Y}$ which do not contain cycles or pairs $\{e, \bar{e}\}$. For any such Y, there is a unique spanning forest F with $E(F)=Y \cup \bar{Y}$. I claim that

1. If Y is compatible with σ, then the corresponding F is in $\mathcal{F}(P, Q)$,
2. There is a one-to-one correspondence between compatible (Y, σ) pairs and forests F, and
3. For each (Y, σ), we have $(-1)^{n+m-m_{\sigma}} \operatorname{sgn} \sigma=(-1)^{n} \operatorname{sgn} \tau_{F}$.

To prove (1), it suffices to show that every component of F includes exactly one vertex from $B \backslash P$, that is, one vertex from Q or one from $B \backslash\{P \cup Q\}$. For each p_{j}, there is a unique outgoing $e_{j} \in Y$ with $\iota\left(e_{j}\right)=p_{j}$. We start at p_{j} and construct a path following the oriented edges of Y. As long as the last vertex is in $P \cup I$, we can continue the path. Since Y has no cycles or conjugate pairs, we cannot repeat vertices, so eventually we will reach a vertex in $B \backslash P$, so every component has one vertex from $B \backslash P$. Suppose for the sake of contradiction that it had more than one. Then there would be $r, r^{\prime} \in B \backslash P$ and a path from r to r^{\prime} using oriented edges $\epsilon_{1}, \ldots, \epsilon_{K} \in Y \cup \bar{Y}$. We can assume without loss of generality that r and r^{\prime} are the only vertices in $B \backslash P$ in the path. If $e \in Y$, then $\iota(e) \in P \cup Q$. Thus, $\epsilon_{1} \notin Y, \epsilon_{K} \in Y$. Let k be the first index such that
$\epsilon_{k} \in Y$. Then $\epsilon_{k-1} \in \bar{Y}$, so ϵ_{k} and $\bar{\epsilon}_{k-1}$ are two edges in Y with the same initial vertex, which contradicts our definition of \mathcal{Y}.
(2) Choose F, and we will show there is a unique (Y, σ) which corresponds to F. We obtain Y from $E(F)$ by choosing one orientation for each edge. For an $e \in E(F)$, there is an embedded path from $\iota(e)$ to some $r \in B \backslash P$; this embedded path must be unique because F is a forest. There is also an embedded path from $\tau(e)$ to r, and one of the two paths must use e or \bar{e}. We choose the orientation which matches the orientation of the path. These orientations are uniquely determined: If we assume $e \in Y$ for some Y but that the orientation of e does not match the orientation of the path, then we reach a contradiction by the same argument as above.

To construct σ, we decompose τ_{F} into disjoint cycles $\eta_{1}, \ldots, \eta_{K}$. For each η_{k}, we define a cycle $\sigma_{k} \in S_{n+m}$ as follows: Let η_{k} be given by $i_{1} \mapsto i_{2} \mapsto i_{R} \mapsto i_{1}$ (the dependence on k has been suppressed in the notation). There is a unique embedded path in F from $p_{i_{r}}$ to $q_{i_{r+1}}$ and the other vertices in the path are interior, so the vertices in all the paths have the form

$$
\begin{aligned}
& p_{i_{1}}, p_{j_{1,1}}=q_{j_{1,1}}, p_{j_{1,2}}=q_{j_{1,2}}, \ldots, p_{j_{1, k_{1}}}=q_{j_{1, n_{1}}}, q_{i_{2}} \\
& p_{i_{2}}, p_{j_{2,1}}=q_{j_{2,1}}, p_{j_{2,2}}=q_{j_{2,2}}, \ldots, p_{j_{2, k_{2}}}=q_{j_{2, n_{2}}}, q_{i_{3}} \\
& \ldots \\
& p_{i_{R}}, p_{j_{R, 1}}=q_{j_{R, 1}}, p_{j_{R, 2}}=q_{j_{R, 2}}, \ldots, p_{j_{R, k_{2}}}=q_{j_{R, n_{R}}}, q_{i_{1}} .
\end{aligned}
$$

We define the cycle ξ_{k} by

$$
\begin{gathered}
i_{1} \mapsto j_{1,1} \mapsto j_{1,1} \mapsto j_{1,2} \mapsto \ldots \mapsto j_{1, n_{1}} \mapsto i_{2} \\
i_{2} \mapsto j_{2,1} \mapsto j_{2,1} \mapsto j_{2,2} \mapsto \ldots \mapsto j_{2, n_{2}} \mapsto i_{3} \\
\ldots j_{R, n_{R}} \mapsto i_{1} .
\end{gathered}
$$

Then let $\sigma=\xi_{1} \xi_{2} \ldots \xi_{n}$. To show σ is uniquely determined, suppose σ is product of cycles ξ_{1}, \ldots, x_{k}. Suppose ξ_{k} given by $j_{1} \mapsto j_{2} \mapsto \ldots \mapsto j_{L} \mapsto j_{1}$. If each j_{ℓ} was greater than n (corresponding to an interior vertex), then we would have $p_{j_{\ell}}=q_{j_{\ell}} \in I$ and the edges $e_{j_{1}}, \ldots, e_{j_{L}} \in Y$ would form a cycle or pair $\{e, \bar{e}\}$, contradicting our assumptions about Y. Thus, some of the indices in the cycle are $\leq n$; it follows that ξ_{k} must represent boundary-to-boundary paths just as in our original construction, and the paths are uniquely determined by F
(3) Consider a cycle η_{k} which maps $i_{1} \mapsto i_{2} \mapsto i_{R} \mapsto i_{1}$, and let $j_{i, 1}, \ldots, j_{i, n_{r}}$ be as above. Let $z_{k}=\sum_{r=1}^{R} n_{r}$, which is the number of interior vertices in the paths corresponding to η_{k}. Then $\operatorname{sgn} \xi_{k}=(-1)^{z_{k}} \operatorname{sgn} \eta_{k}$. The total number of interior vertices in the paths is $\sum_{k=1}^{K} z_{k}$. The interior vertices not in the paths are exactly the vertices p_{j} for which $\sigma(j)=j$. Hence, $\sum_{k=1}^{K} z_{k}=m-m_{\sigma}$. Therefore,

$$
\operatorname{sgn} \sigma=\operatorname{sgn}\left(\xi_{1} \ldots \xi_{n}\right)=(-1)^{\sum_{k} z_{k}} \operatorname{sgn}\left(\eta_{1} \ldots \eta_{n}\right)=(-1)^{m-m_{\sigma}} \operatorname{sgn} \tau_{F}
$$

Thus, $(-1)^{n+m-m_{\sigma}} \operatorname{sgn} \sigma=(-1)^{n} \operatorname{sgn} \tau_{F}$. Therefore,

$$
\sum_{Y \in \mathcal{Y}} \sum_{\substack{\text { compatible } \\ \sigma \in S_{n+m}}}(-1)^{n+m-m_{\sigma}} \operatorname{sgn} \sigma \prod_{e \in Y} a_{e}=(-1)^{n} \sum_{F \in \mathcal{F}(P, Q)} \operatorname{sgn} \tau_{F} \prod_{e \in E^{\prime}(F)} a_{e}
$$

Corollary 3.2. Let $\mathcal{F}=\mathcal{F}(\varnothing, \varnothing)$. Then $\operatorname{det} K_{I, I}=\sum_{F \in \mathcal{F}} \prod_{e \in E^{\prime}(F)} a_{e}$.
Proof. The proof is the same except that $n=0$ and there is no τ_{F}.
Corollary 3.3 (Matrix-Tree Theorem). Let G be a connected graph (without boundary). Let K be the Kirchhoff matrix of the electrical network where each edge has conductance $a_{e}=1$. For $p, q \in V,(-1)^{p-q} \operatorname{det} K_{V \backslash\{p\}, V \backslash\{q\}}$ is the number of spanning trees of G.

Proof. If $p=q$, then make G into a graph with boundary by setting $B=\{p\}$. Reindex the vertices so that p occurs first; this does not change the determinant. Then by the previous theorem,

$$
\operatorname{det} K_{V \backslash\{p\}, V \backslash\{p\}}=\operatorname{det} K_{I, I}=\sum_{F \in \mathcal{F}} \operatorname{sgn} \tau_{F} .
$$

Since p is the only boundary vertex, each forest is a spanning tree, so the result is the number of spanning trees. If $p \neq q$, set $B=\{p, q\}$. Reindex the vertices so that p and q occur first; this does not change the determinant, but it does change $(-1)^{p-q}$ to -1 . Compute

$$
\operatorname{det} K_{V \backslash\{p\}, V \backslash\{q\}}=\operatorname{det} K_{I \cup\{q\}, I \cup\{p\}}=-\sum_{F \in \mathcal{F}(\{q\},\{p\})} \operatorname{sgn} \tau_{F} .
$$

Again, since p and q are the only boundary vertices, each spanning forest is a spanning tree, and τ_{F} is the identity.

3.3 Singular Networks

A network for which the Dirichlet problem does not have a unique solution is called Dirichlet-singular; if the (revised) Neumann problem does not have a unique solution, it is Neumann-singular. Using the spanning forest formula, we will show that the Dirichlet and Neumann problems have a unique solution for reasonable graphs when $a_{e}>0$, but if we allow a_{e} to be positive or negative, one can generally find values of a_{e} which create a Dirichlet-singular or Neumannsingular network. We assume throughout that G is connected and has some boundary vertices.

As the reader can verify, this implies that there is at least one spanning forest in \mathcal{F}. Hence, if $a_{e}>0$,

$$
\operatorname{det} K_{I, I}=\sum_{F \in \mathcal{F}} \prod_{e \in E^{\prime}(F)} a_{e}>0
$$

Therefore, the Dirichlet problem has a unique solution.
However, for most graphs there will be (possibly negative) values of $a_{e} \neq 0$ for which $K_{I, I}$ is not invertible. Suppose every interior vertex has valence ≥ 2. Then there are at least two forests F_{1} and F_{2} in \mathcal{F}. It is clear from the proof of Theorem 3.1 that each forest has the same number of edges. So there is an edge $e_{0} \in E\left(F_{1}\right) \backslash E\left(F_{2}\right)$. Let W be the set of $a=\left\{a_{e}\right\}_{e \in E}$ with $a_{\bar{e}}=a_{e}$ and $a_{e}>0$ for $e \neq e_{0}, a_{e_{0}}<0$. In the spanning forest formula, the term for F_{1} is negative for $a \in W$ and the term for F_{2} is positive. Let $\epsilon<1 /|\mathcal{F}|$. If we choose $a \in W$ with $\left|a_{e}\right|=1$ for $e \in F_{1}$ and $\left|a_{e}\right|=\epsilon$ for all other e, then $\operatorname{det} K_{I, I}<0$ because the F_{1} term dominates. If we set $\left|a_{e}\right|=1$ for $e \in F_{2}$ and $\left|a_{e}\right|=\epsilon$ for other e, then $\operatorname{det} K_{I, I}>0$. Since W is connected, the intermediate value theorem implies that there is an $a \in W$ with $\operatorname{det} K_{I, I}=0$.

So most graphs have signed conductances which make them Dirichlet-singular. A more delicate question is, what are the possible values of dim ker $K_{I, I}$? This depends on the graph, but in some cases, it is easy to find a lower bound: Suppose G_{1}, \ldots, G_{N} form a subgraph partition of G and $B\left(G_{k}\right) \subset B(G)$ for all k. Suppose there are Dirichlet-singular conductances for each G_{k}, and let the conductances on G be the same as the conductances on the G_{k} 's. Since ker $K_{I, I}$ is nontrivial for each G_{k}, there is a nonzero harmonic potential u_{k} on G_{k}, and we can extend it to G by setting it to zero on the other vertices. The potentials thus defined are linearly independent because u_{k} is nonzero on G_{k}, but u_{j} for $j \neq k$ is zero on G_{k}. Thus, dim ker $K_{I, I} \geq N$.

If $a_{e}>0$, the Neumann problem has a unique solution. By similar reasoning as in Corollary 3.3, for any p, q,

$$
(-1)^{p-q} \operatorname{det} K_{V \backslash\{p\}, V \backslash\{q\}}=\sum_{\substack{\text { spanning } \\ \text { trees } T}} \prod_{e \in E^{\prime}(T)} a_{e}
$$

Since G is connected, it has a spanning tree, so the right hand side is positive if $a_{e}>0$. So K has rank $|V|-1$ and the Neumann problem has a unique solution. This also shows that the determinant of any $|V|-1$ by $|V|-1$ submatrix of K is the same up to sign, so to see whether the Neumann problem has a unique solution, it suffices to check one of them.

If G is a tree (that is, it has no cycles), then there is only one spanning tree of G, which is all of G, so the Neumann problem has a unique solution. However, if G has a cycle, there is more than one spanning tree, so by the same argument as before, there exist signed a_{e} 's which produce a Neumann-singular network.

What are the possible values of dim ker K ? It must be ≥ 1. Now suppose G_{1}, \ldots, G_{N} form a subgraph partition of G, such that each G_{k} is connected and any cycle of G is contained in some G_{k}. Suppose there exist Neumannsingular conductances on each G_{k}, and use them to define conductances on G. Then for each G_{k}, there exists a non-constant harmonic potential u_{k} on G_{k} with net current zero on every vertex. We can extend u_{k} to G by defining it to be constant on each G_{k}; this will be consistent because every cycle is contained in some G_{k}. Then the u_{k} 's are linearly independent, so $\operatorname{dim} \operatorname{ker} K \geq N+1$.

Figure 1: Singular conductances on the triangle-in-triangle network. Boundary vertices are colored in.

For some networks, it is possible for a nonzero harmonic function to have potential and current zero on the boundary, even if there are no components without boundary vertices. Consider the "triangle-in-triangle" network with boundary vertices $\{1, \ldots, 6\}$ and interior vertices $\{7,8,9\}$ and edges with coefficients a_{e} shown in the figure. The Kirchhoff matrix is

$$
\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
-1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 \\
1 & 0 & -1 & 1 & 0 & -1 & 0 & 0 & 0
\end{array}\right) .
$$

Let χ_{p} be the vector with 1 on vertex p and zero elsewhere. Then $\chi_{7}+\chi_{8}+\chi_{9}$ is a harmonic potential which is zero on the boundary and the corresponding current function has net current zero on the boundary.

3.4 Properties of L

For linear conductances, the space of harmonic functions \mathcal{H} is a linear subspace of $\mathbb{R}^{V} \times \mathbb{R}^{E}$, and L is a linear subspace of $\mathbb{R}^{B} \times \mathbb{R}^{B}$. The harmonic potentials are the kernel of $K_{I, V}$, which has dimension at least $|V|-|I|=|B|$. If (u, c) is harmonic, then the boundary potentials and currents are given by $\left.u\right|_{B}$ and $\left.(K u)\right|_{B}$. Let $\Phi: \operatorname{ker} K_{I, V} \rightarrow \mathbb{R}^{2 n}: u \mapsto\left(\left.u\right|_{B},\left.(K u)\right|_{B}\right)$. Then $L=\Phi\left(\operatorname{ker} K_{I, V}\right)$. Hence, $\operatorname{dim} L \leq \operatorname{dim} \operatorname{ker} K_{I, V}$. If there is a harmonic function with zero potential and current on the boundary, as in the last example, then $\operatorname{ker} \Phi$ is nontrivial, so this inequality is strict.

In general, we would expect \mathcal{H} and L to have dimension $|B|$; this is the case if either the Dirichlet problem or the Neumann problem has a unique solution. Sometimes $\operatorname{dim} \mathcal{H}>|B|$; however, in all cases,

Proposition 3.4. $\operatorname{dim} L=|B|$.
Proof. The kernel of Φ consists of harmonic potentials which are zero on the boundary have zero current on the boundary, that is, $\operatorname{ker} \Phi$ consists of elements of $\operatorname{ker} K$ whose boundary entries are zero. Hence, $\operatorname{ker} \Phi$ is isomorphic to ker $K_{V, I}$. By the rank-nullity theorem and symmetry of K,

$$
\begin{aligned}
\operatorname{rank} \Phi+\operatorname{dim} \operatorname{ker} \Phi & =\operatorname{dim} \operatorname{ker} K_{I, V} \\
& =|V|-\operatorname{rank} K_{I, V} \\
& =|V|-\operatorname{rank} K_{V, I} \\
& =|V|-|I|+\operatorname{dim} \operatorname{ker} K_{V, I} \\
& =|B|+\operatorname{dim} \operatorname{ker} \Phi .
\end{aligned}
$$

Thus, $\operatorname{dim} L=\operatorname{rank} \Phi=|B|$.

If the Dirichlet problem has a unique solution, then the Dirichlet-to-Neumann $\operatorname{map} \Lambda=K_{B, B}-K_{B, I} K_{I, I}^{-1} K_{I, B}$ is symmetric. So if $\left(\phi_{1}, \psi_{1}\right)$ and $\left(\phi_{2}, \psi_{2}\right)$ are the boundary data of harmonic functions, then

$$
\phi_{1} \cdot \psi_{2}=\phi_{1}^{T} \Lambda \phi_{2}=\phi_{2}^{T} \Lambda \phi_{1}=\phi_{2} \cdot \psi_{1}
$$

Actually, this holds even for Dirichlet-singular networks:
Proposition 3.5. $\phi_{1} \cdot \psi_{2}=\phi_{2} \cdot \psi_{1}$ for $\left(\phi_{1}, \psi_{1}\right),\left(\phi_{2}, \psi_{2}\right) \in L$.
Proof. Suppose $\left(\phi_{1}, \psi_{1}\right)$ and $\left(\phi_{2}, \psi_{2}\right)$ are in L, and let u_{1} and u_{2} be the corresponding harmonic potentials. Let $w_{1}=\left.u_{1}\right|_{I}$ and $w_{2}=\left.u_{2}\right|_{I}$. Then $\psi_{j}=$ $K_{B, B} \phi_{j}+K_{I, B} w_{j}$. Since $u_{j} \in \operatorname{ker} K_{I, V}$, we have $0=K_{I, V} u_{j}=K_{I, B} \phi_{j}+K_{I, I} w_{j}$, which implies $K_{I, B} \phi_{j}=-K_{I, I} w_{j}$. Hence, applying the symmetry of K,

$$
\begin{aligned}
\phi_{1} \cdot \psi_{2}=\phi_{1}^{T} \psi_{2} & =\phi_{1}^{T}\left(K_{B B} \phi_{2}+K_{B I} w_{2}\right) \\
& =\phi_{1}^{T} K_{B, B} \phi_{2}+\left(K_{I, B} \phi_{1}\right)^{T} w_{2} \\
& =\phi_{1}^{T} K_{B, B} \phi_{2}-\left(K_{I, I} w_{1}\right)^{T} w_{2} \\
& =\phi_{1}^{T} K_{B, B} \phi_{2}-w_{1}^{T} K_{I, I} w_{2} \\
& =\phi_{2}^{T} K_{B, B} \phi_{1}-w_{2}^{T} K_{I, I} w_{1} \\
& =\phi_{2} \cdot \psi_{1} .
\end{aligned}
$$

3.5 Local Electrical Equivalences

A series is the following configuration:

If $a+b \neq 0$, then it is electrically equivalent to

$$
\frac{a b}{a+b}
$$

In other words, a series can be reduced to a single edge, and the resistances add: The original resistances were $1 / a$ and $1 / b$, and the new resistance is $1 / a+1 / b$. This shows that the series is not recoverable; in fact, there is a one-parameter family of conductances on the series graph which produce the same boundary behavior.

If $a+b=0$, then the series is Dirichlet-singular. The two boundary vertices must have the same potential. The potential of the interior vertex is independent of the boundary potentials, but depends on the current flowing from one boundary vertex to the other. In this case, changing the conductances to $c a$ and $c b$ for some $c \neq 0$ will produce an electrically equivalent network.

Any network which has a series as a subnetwork is not recoverable over the signed linear conductances. If $a+b \neq 0$, we can produce an electrically equivalent network by replacing the series subnetwork with a single-edge subnetwork, as
follows from Corollary 2.2. This transformation is called a series reduction and we call it one type of local electrical equivalence. We also call the inverse operation is also a local electrical equivalence.

Suppose $a+b=0$ and p and q are the endpoints of the series, and r is the middle vertex. If the series is a subnetwork of a larger network in which p is an interior vertex, then we can produce an electrically equivalent network by "collapsing" the series-identifying p and q and removing r and the edges in the series. This is because any harmonic function must have the same potential on p and q, and the amount of current flowing from p to q is independent of the potentials. This is another type of local electrical equivalence.

A parallel circuit is the following configuration:

If $a+b \neq 0$, then this is equivalent to a single edge with conductance $a+b$. If $a+b=0$, then it is equivalent to a network with no edges. Substituting a parallel edge for a single edge or no edge is another local electrical equivalence.

A Y (left) and a Δ (right) are the following types of networks:

For any Y with $a+b+c \neq 0$, there is a unique equivalent Δ with

$$
A=\frac{b c}{a+b+c}, \quad B=\frac{a c}{a+b+c}, \quad C=\frac{a b}{a+b+c} .
$$

This can be proved by computing the response matrix Λ for each network. If $a+b+c=0$, then in the Y the Dirichlet problem does not always have a solution; however, this is impossible in a Δ, so there is no equivalent Δ. For any Δ with $1 / A+1 / B+1 / C \neq 0$, there is a unique equivalent Y with

$$
a=\frac{A B+B C+C A}{A}, \quad b=\frac{A B+B C+C A}{B}, \quad c=\frac{A B+B C+C A}{C} .
$$

However, if $1 / A+1 / B+1 / C=0$, then the Δ is Neumann-singular because it is a tree, so there is no equivalent Y. A $Y-\Delta$ transformation is the transformation that replaces a Y subnetwork with an equivalent Δ subnetwork or vice versa.
$Y-\Delta$ transformations preserve recoverability over the positive linear conductances. For suppose G^{\prime} is obtained from G by a $Y-\Delta$ transformation and G^{\prime}
is recoverable over the positive linear conductances. For any positive linear conductances on G, we can find equivalent conductances on G^{\prime}. These conductances are uniquely determined by L over the positive linear conductances. In particular, the conductances on the Y or Δ in G^{\prime} are determined, but then we can find the conductances on the corresponding Δ or Y in G, so G is also recoverable.

We say two graphs are $Y-\Delta$ equivalent if there is a sequence of $Y-\Delta$ transformations which will change one into the other. This is an equivalence relation. If G is $Y-\Delta$ equivalent to G^{\prime} and G^{\prime} has a series or parallel configuration, then G^{\prime} is not recoverable, and hence G is not recoverable over the positive linear conductances. This is one of the best methods for showing a graph is not recoverable, and it is applied in [1] to circular planar networks.

The final type of local electrical equivalence is the $\star-\mathcal{K}$ transformation described in [6] and [3]. An n-star is a graph with n boundary vertices and one interior vertex, and one edge from the interior vertex to each boundary vertex. The complete graph \mathcal{K}_{n} is a graph with n boundary vertices and one edge between each pair of distinct boundary vertices. For example, here are networks on 4 -star and \mathcal{K}_{4} graphs:

Index the vertices of the n-star and \mathcal{K}_{n} by $1, \ldots, n$. Let a_{j} be the conductance of the star edge incident to j and $b_{i, j}$ the conductance of the edge in the \mathcal{K}_{n} between vertices i and j. Let $\sigma=a_{1}+\cdots+a_{n}$. For any star with $\sigma \neq 0$, there is an equivalent \mathcal{K}_{n} with conductances $b_{i, j}=a_{i} a_{j} / \sigma$. If $\sigma=0$, then the star is Dirichlet-singular and hence not equivalent to a \mathcal{K}_{n}. If $n \geq 4$, most \mathcal{K}_{n} 's are not equivalent to a star, unlike the $n=3$ case of $Y-\Delta$ transformations:
Lemma 3.6. Let $n \geq 4$. A network on a \mathcal{K}_{n} is equivalent to a star if and only if

- It satisfies the quadrilateral rule: $b_{i, j} b_{k, \ell}=b_{i, k} b_{j, \ell}$ for distinct i, j, k, ℓ.
- It is not Neumann-singular.

Proof. If the network is equivalent to a star, then for distinct i, j, k, ℓ,

$$
b_{i, j} b_{k, \ell}=\frac{a_{i} a_{j} a_{k} a_{\ell}}{\sigma^{2}}=b_{i, k} b_{j, \ell}
$$

A star is a tree and is therefore not Neumann-singular.
Suppose conversely that a \mathcal{K}_{n} network satisfies these three conditions. Fix i and choose distinct $k, \ell \neq i$, and let

$$
a_{i}=\sum_{j \neq i} b_{i, j}+\frac{b_{i, k} b_{i, \ell}}{b_{k, \ell}}
$$

The quadrilateral rule guarantees that the right hand side is independent of k and ℓ. This is the current on vertex i of the potential $\chi_{i}-\left(b_{i, \ell} / b_{k, \ell}\right) \chi_{k}$ on the \mathcal{K}_{n} network. This function has net current 0 on vertex ℓ, but since $b_{i, \ell} / b_{k, \ell}$ is independent of ℓ, it has current 0 on all $\ell \neq k$. Since the potential is not constant, there must be nonzero net current on i and k, so a_{i} must be nonzero.

Observe $\operatorname{sgn}\left(b_{i, k} b_{k, \ell} b_{i, \ell}\right)=\operatorname{sgn}\left(b_{i, k} b_{i, \ell} / b_{i, k}\right)$ is independent of k and ℓ. However, since it is symmetric in i, k, and ℓ, it is also independent of i. Suppose $\operatorname{sgn}\left(b_{i, k} b_{k, \ell} b_{i, \ell}\right)=1$. For each i, choose c_{i} such that

- $\left|c_{i}\right|=\sqrt{b_{i, k} b_{i, \ell} / b_{k, \ell}}$ for distinct $k, \ell \neq i$.
- $\operatorname{sgn} c_{1}=1$.
- For $i \neq 1, \operatorname{sgn} c_{i}=\operatorname{sgn} b_{1, i}$.

Then for $i \neq j$, we can choose k distinct from i, j and

$$
\left|c_{i} c_{j}\right|=\sqrt{\frac{b_{i, j} b_{i, k}}{b_{j, k}}} \sqrt{\frac{b_{i, j} b_{j, k}}{b_{i, k}}}=\left|b_{i, j}\right|
$$

Also, $\operatorname{sgn}\left(c_{i} c_{j}\right)=\operatorname{sgn} b_{i, j}$; this is clear if i or j equals 1 , and otherwise,

$$
\operatorname{sgn}\left(c_{i} c_{j}\right)=\operatorname{sgn} b_{1, i} \operatorname{sgn} b_{1, j}=\operatorname{sgn} b_{i, j} .
$$

Then

$$
a_{i}=\sum_{j \neq i} b_{i, j}+\frac{b_{i, k} b_{i, \ell}}{b_{k, \ell}}=\sum_{j \neq i} c_{i} c_{j}+c_{i}^{2}=c_{i} \sum_{j=1}^{n} c_{j} .
$$

Since $a_{i} \neq 0$, the sum is nonzero; hence,

$$
\sigma=\sum_{i=1}^{n} c_{i} \sum_{j=1}^{n} c_{j}=\left(\sum_{i=1}^{n} c_{i}\right)^{2} \neq 0
$$

The \mathcal{K}_{n} is equivalent to the star because

$$
\frac{a_{i} a_{j}}{\sigma}=\frac{\left(c_{i} \sum_{k=1}^{n} c_{k}\right)\left(c_{j} \sum_{k=1}^{n} c_{k}\right)}{\left(\sum_{k=1}^{n} c_{k}\right)^{2}}=c_{i} c_{j}=b_{i, j}
$$

The case where $\operatorname{sgn}\left(b_{i, k} b_{k, \ell} b_{i, \ell}\right)=-1$ follows from recognizing that a star with conductances $-a_{i}$ will produce a complete graph with conductances $-b_{i, j}$.

For any finite graph G, there is a sequence of $\star-\mathcal{K}$ moves and parallel circuit reductions that will transform it into a graph with no interior vertices. Let Γ be a signed linear network on G, and suppose that at each step, the star is nonsingular, so an equivalent \mathcal{K} can be found. After the final step, the response matrix is exactly the Kirchhoff matrix because there are no interior vertices. So the \star - \mathcal{K} transformation provides a way to compute the response matrix from the Kirchhoff matrix in small steps, and in some cases, this is a useful technique for determining recoverability over positive linear conductances.

4 The Dirichlet Problem

4.1 Solutions to the Dirichlet Problem

We consider the Dirichlet problem on the following type of network: For each edge e of a graph G, let $\gamma_{e}: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing function with $\gamma_{e}(0)=0$ and $\gamma_{\bar{e}}(x)=-\gamma_{e}(-x)$. Let $\gamma_{e}\left(x^{-}\right)=\lim _{x^{\prime} \rightarrow x^{-}} \gamma_{e}\left(x^{\prime}\right)$ and $\gamma\left(x^{+}\right)=\lim _{x^{\prime} \rightarrow x} \gamma_{e}\left(x^{\prime}\right)$; these limits exist and $\gamma_{e}\left(x^{-}\right) \leq \gamma_{e}\left(x^{+}\right)$. Let

$$
R_{e}=\left\{(x, y) \in \mathbb{R}^{2}: \gamma_{e}\left(x^{-}\right) \leq y \leq \gamma_{e}\left(x^{+}\right)\right\}
$$

For $\phi \in \mathbb{R}^{B}, \mathcal{H}_{\phi}$ be the set of solutions to the Dirichlet problem, that is, the set of harmonic (u, c) with $\left.u\right|_{B}=\phi$. Let $\mathcal{U}_{\phi}=\pi_{1}\left(\mathcal{H}_{\phi}\right)$ be the set of potentials of functions $(u, c) \in \mathcal{H}_{\phi}$ and let $\mathcal{C}_{\phi}=\pi_{2}\left(\mathcal{H}_{\phi}\right)$ be the set of current functions.

The following theorem was proved by Will Johnson [4] in the case where γ_{e} is continuous:

Theorem 4.1.

i. There exists a $(u, c) \in \mathcal{H}_{\phi}$ satisfying $\min _{p \in B} \phi_{p} \leq \min _{q \in I} u_{q} \leq \max _{q \in I} u_{q} \leq \max _{p \in B} \phi_{p}$.
ii. Every $u \in \mathcal{U}_{\phi}$ is compatible with every $c \in \mathcal{C}_{\phi}$.
iii. \mathcal{U}_{ϕ} and \mathcal{C}_{ϕ} are convex sets.
iv. For each edge e, either the potential drop $u_{\iota(e)}-u_{\tau(e)}$ or the current c_{e} is uniquely determined. If γ_{e} is continuous, the current is uniquely determined. If γ_{e} is strictly increasing, the potential drop is uniquely determined.

For convenience, I will say that any function u satisfies the maximum principle if $\min _{p \in B} \phi_{p} \leq \min _{q \in I} u_{q} \leq \max _{q \in I} u_{q} \leq \max _{p \in B} \phi_{p}$. To prove the theorem, we need the following definitions and results from convex analysis:

Definition. $S \subset \mathbb{R}^{d}$ is convex if for all $x, y \in S$ and $t \in[0,1],(1-t) x+t y \in S$.
Definition. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for any $x, y \in \mathbb{R}^{d}$ and $t \in[0,1]$,

$$
f((1-t) x+t y) \leq(1-t) f(x)+t f(y)
$$

Definition. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. A vector $v \in \mathbb{R}^{d}$ is a called a subgradient of f at x if

$$
f(y)-f(x) \leq v \cdot(y-x) \text { for all } x \in \mathbb{R}^{d}
$$

The subdifferential $\partial f(x)$ is the set of all subgradients of f at x.
Lemma 4.2. If f is convex, then for any $x, \partial f(x)$ is nonempty and convex.
Lemma 4.3. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is increasing, then $g(x)=\int_{0}^{x} f(t) d t$ is convex and $\partial g(x)=\left[f\left(x^{-}\right), f\left(x^{+}\right)\right]$.

Lemma 4.4. If f_{1}, \ldots, f_{n} are convex, then $f=f_{1}+\cdots+f_{n}$ is convex, and

$$
\partial f(x)=\partial f_{1}(x)+\cdots+\partial f_{n}(x)
$$

where addition denotes addition of sets.
Proof of Theorem 4.1. For $e \in E$, define $Q_{e}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
Q_{e}(x)=\int_{0}^{x} \gamma_{e}(t) d t
$$

Then Q_{e} is nonnegative convex function with $Q_{\bar{e}}(x)=Q_{e}(-x)$ and $Q_{e}(0)=0$. Define the total pseudopower $Q: \mathbb{R}^{V} \rightarrow \mathbb{R}$ by

$$
Q(u)=\frac{1}{2} \sum_{e \in E} Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)=\sum_{e \in E^{\prime}} Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)
$$

The last expression makes sense because $Q_{\bar{e}}\left(u_{\iota(\bar{e})}-u_{\tau(\bar{e})}\right)=Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)$.
For $\phi \in \mathbb{R}^{B}$ and $w \in \mathbb{R}^{I}$, I will write $u=(\phi, w)$ for $\left.u\right|_{B}=\phi$ and $\left.u\right|_{I}=w$. Fix ϕ and let $Q_{\phi}(w)=Q(u)$, where $u=(\phi, w)$. Q_{ϕ} is also convex. We can write

$$
Q_{\phi}(w)=\sum_{e \in E^{\prime}} F_{\phi, e}(w), \text { where } F_{\phi, e}(w)=Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)
$$

Let χ_{p} be the vector in \mathbb{R}^{I} with a 1 on vertex p and 0 elsewhere, and let

$$
\chi_{e}= \begin{cases}\chi_{\iota(e)}-\chi_{\tau(e)}, & \text { if } \iota(e) \in I, \tau(e) \in I \\ \chi_{\iota(e)}, & \text { if } \iota(e) \in I, \tau(e) \in B \\ -\chi_{\tau(e)}, & \text { if } \iota(e) \in B, \tau(e) \in I \\ 0, & \text { if } \iota(e) \in B, \tau(e) \in B\end{cases}
$$

Then it is not too hard to show

$$
\begin{aligned}
\partial F_{\phi, e}(w) & =\chi_{e} \cdot \partial Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right) \\
& =\chi_{e} \cdot\left[\gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{-}\right), \gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{+}\right)\right]
\end{aligned}
$$

Thus,

$$
\partial Q_{\phi}(w)=\sum_{e \in E^{\prime}} \partial F_{\phi, e}(w)=\sum_{e \in E^{\prime}} \chi_{e} \cdot\left[\gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{-}\right), \gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{+}\right)\right]
$$

I claim that (ϕ, w) has a compatible current function if and only if $0 \in$ $\partial Q_{\phi}(w)$. Indeed, if $0 \in Q_{\phi}(w)$, then for each $e \in E^{\prime}$, we can choose $c_{e} \in$ $\left[\gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{-}\right), \gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{+}\right)\right]$such that

$$
\sum_{e \in E^{\prime}} c_{e} \chi_{e}=0
$$

For each $p \in I$, examining the p-entry of this equation yields

$$
\sum_{\substack{e \in E^{\prime} \\ \iota(e)=p}} c_{e}-\sum_{\substack{e \in E^{\prime} \\ \tau(e)=p}} c_{e}=0
$$

which means the net current on p is 0 . Hence c defines a current function which is compatible with u. By reversing this reasoning, we see that if c is a current function compatible with u, then $0 \in \partial Q_{\phi}(w)$.

Observe that $0 \in \partial Q_{\phi}(w)$ if and only if w is a global minimum of Q_{ϕ}, so our goal is show that a minimum is achieved. Let $m=\min _{p \in B} \phi_{p}$ and $M=\max _{p \in B} \phi_{p}$. Since $[m, M]^{I}$ is compact, Q_{ϕ} achieves a minimum on $[m, M]^{I}$ at some point w^{*}. I claim w^{*} is a global minimum of Q_{ϕ}. Suppose $w \in \mathbb{R}^{I}$. Let $\tilde{w} \in \mathbb{R}^{I}$ be given by

$$
\tilde{w}_{p}= \begin{cases}m, & w_{p}<m \\ w_{p}, & m \leq w_{p} \leq M \\ M, & w_{p} \geq M\end{cases}
$$

Let $u=(\phi, w)$ and $\tilde{u}=(\phi, \tilde{w})$. Then for each e,

$$
\left|\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right| \leq\left|u_{\iota(e)}-u_{\tau(e)}\right|, \quad \operatorname{sgn}\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)=\operatorname{sgn}\left(u_{\iota(e)}-u_{\tau(e)}\right)
$$

Now Q_{e} is increasing for $x \geq 0$ and decreasing for $x \leq 0$; therefore,

$$
Q_{e}\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right) \leq Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)
$$

Hence, $Q(\tilde{u}) \leq Q(u)$. Since $\tilde{w} \in[m, M]^{I}$, we have

$$
Q_{\phi}(w) \geq Q_{\phi}(\tilde{w}) \geq Q_{\phi}\left(w^{*}\right)
$$

so w^{*} is indeed a global minimum. Thus, $u^{*}=\left(\phi, w^{*}\right)$ has a compatible current function c^{*}. By construction, u^{*} satisfies $m \leq \min _{q \in I} u_{q}^{*} \leq \max _{q \in I} u_{q}^{*} \leq M$, so (i) is proved.

To prove (ii), it suffices to show that if u and \tilde{u} are in \mathcal{U}_{ϕ} and u is compatible with c, then \tilde{u} is also compatible with c. Because c_{e} is a subderivative of Q_{e} at $u_{\iota(e)}-u_{\tau(e)}$, we have

$$
Q_{e}\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)-Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)-c_{e}\left(\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)-\left(u_{\iota(e)}-u_{\tau(e)}\right)\right) \geq 0
$$

Summing the left hand side over $e \in E^{\prime}$ yields

$$
Q_{\phi}(\tilde{w})-Q_{\phi}(w)-\sum_{e \in E^{\prime}} c_{e}\left(\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)-\left(u_{\iota(e)}-u_{\tau(e)}\right)\right)
$$

and the first two terms cancel because \tilde{w} and w must both achieve the global minimum of Q_{ϕ}. The other sum is

$$
\begin{aligned}
\sum_{e \in E^{\prime}} c_{e}\left(\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)-\left(u_{\iota(e)}-u_{\tau(e)}\right)\right) & =\sum_{e \in E^{\prime}} c_{e}\left(\left(\tilde{u}_{\iota(e)}-u_{\iota(e)}\right)-\left(\tilde{u}_{\tau(e)}-u_{\tau(e)}\right)\right) \\
& =\sum_{e \in E} c_{e}\left(\tilde{u}_{\iota(e)}-u_{\iota(e)}\right) \\
& =\sum_{p \in V} \sum_{\substack{e \in E \\
\iota(e)=p}} c_{e}\left(\tilde{u}_{p}-u_{p}\right) .
\end{aligned}
$$

This is zero because If $p \in I$, then $\sum_{\iota(e)=p} c_{e}=0$, but if $p \in B$, then $\tilde{u}_{p}-u_{p}=$ $\phi_{p}-\phi_{p}=0$. Hence,

$$
\sum_{e \in E^{\prime}}\left(Q_{e}\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)-Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)-c_{e}\left(\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)-\left(u_{\iota(e)}-u_{\tau(e)}\right)\right)\right)=0
$$

but each term is nonnegative, so each term must be zero. Since $c_{e} \in \partial Q_{e}\left(u_{\iota(e)}-\right.$ $\left.u_{\tau(e)}\right)$, we have for any $x \in \mathbb{R}$,

$$
\begin{aligned}
Q_{e}(x) & -Q_{e}\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)-c_{e}\left(x-\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)\right) \\
& =Q_{e}(x)-Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)-c_{e}\left(x-\left(u_{\iota(e)}-u_{\tau(e)}\right)\right) \\
& \geq 0
\end{aligned}
$$

Therefore, c_{e} is a subderivative of Q_{e} at $\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}$, and hence

$$
\gamma_{e}\left(\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)^{-}\right) \leq c_{e} \leq \gamma_{e}\left(\left(\tilde{u}_{\iota(e)}-\tilde{u}_{\tau(e)}\right)^{+}\right),
$$

and \tilde{u} is compatible with c.
For (iii), note that the set of minimizers of a convex function is convex, so the set of w 's which minimize Q_{ϕ} is convex. Thus, if u and \tilde{u} are in \mathcal{U}_{ϕ}, then so is $(1-t) u+t \tilde{u}=(\phi,(1-t) w+t \tilde{w})$. Thus, \mathcal{U}_{ϕ} is convex. Next, suppose c and \tilde{c} are in \mathcal{C}_{ϕ}. Then by (ii), there is a u which is compatible with both c and \tilde{c}. Then $(1-t) c+t \tilde{c}$ will be a valid current function because it has net current zero on the interior vertices, and it will be compatible with u, because if $c_{e}, \tilde{c}_{e} \in\left[\gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{-}, \gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{+}\right]\right.\right.$, then so is $(1-t) c_{e}+t \tilde{c}_{e}$. Thus, \mathcal{C}_{ϕ} is convex.

For (iv), choose an edge e. Suppose the current on e is not uniquely determined, so that there exist $c, \tilde{c} \in \mathcal{C}_{\phi}$ with $c_{e}<\tilde{c}_{e}$. Any $u \in \mathcal{U}_{\phi}$ must be compatible with both c and \tilde{c}, so

$$
c_{e}, \tilde{c}_{e} \in\left[\gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{-}\right), \gamma_{e}\left(\left(u_{\iota(e)}-u_{\tau(e)}\right)^{+}\right)\right] .
$$

Since γ_{e} is increasing, this can only happen for one value of $u_{\iota(e)}-u_{\tau(e)}$, and it is impossible if γ_{e} is continuous. If γ_{e} is strictly increasing, then different potential drops on e cannot produce the same current, so (ii) implies that any $u \in \mathcal{U}_{\phi}$ has the same potential drop on e.

Now that we have existence and something like uniqueness of a solution, a natural question to ask is whether u depends continuously on ϕ in some sense. The maximum principle asserts that we can make u depend continuously on ϕ at 0 , and indeed, we can find a value of u that depends continuously on ϕ. For $u \in \mathbb{R}^{V}$, let $\|u\|_{\infty}$ be the uniform norm $\max _{p \in V}\left|u_{p}\right|$, and make the same definition for $\phi \in \mathbb{R}^{B}$. Then

Proposition 4.5. There exists a continuous $U: \mathbb{R}^{B} \rightarrow \mathbb{R}^{V}$ such that $U(\phi) \in \mathcal{U}_{\phi}$ and

$$
\left\|U\left(\phi_{1}\right)-U\left(\phi_{2}\right)\right\|_{\infty}=\left\|\phi_{1}-\phi_{2}\right\|_{\infty}
$$

To prove this, we need a few results from analysis:
Definition. A sequence of functions $\left\{f_{n}\right\}$ from $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ is equicontinuous if for any $x \in \mathbb{R}^{d}$ and $\epsilon>0$, there exists $\delta>0$ such that

$$
|y-x|<\delta \text { implies }\left|f_{n}(y)-f_{n}(x)\right|<\epsilon \text { for all } n
$$

Definition. A sequence of functions $\left\{f_{n}\right\}$ is pointwise bounded if for any $x \in \mathbb{R}^{d}$, $\left\{f_{n}(x)\right\}$ is a bounded set.

Lemma 4.6 (Arzela-Ascoli Theorem). Suppose $f_{n}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ is a sequence which is equicontinuous and pointwise bounded. Then there is a subsequence which converges uniformly on compact sets to a continuous function f.

Proof of Proposition 4.5. We can assume without loss of generality that every component of the graph has a boundary vertex. Indeed, on a component with no boundary vertex, we can always set $U(\phi)$ to be identically zero.

First consider the case where γ_{e} is strictly increasing. Then by (iv), the potential drop on each edge is uniquely determined, and if every component has a boundary vertex, the potentials themselves are uniquely determined. Let $\left(u^{*}, c^{*}\right)$ be a harmonic function on Γ. Define

$$
\widehat{\gamma}_{e}(x)=\gamma_{e}\left(u_{\iota(e)}^{*}-u_{\tau(e)}^{*}+x\right)-c_{e}^{*}
$$

Then $\widehat{\gamma}_{e}$ is strictly increasing and because c_{e}^{*} is between the right and left-hand limits of $\gamma_{e}\left(u_{\iota(e)}^{*}-u_{\tau(e)}^{*}\right)$, we can make it zero-preserving by changing the value at 0 if necessary. Let $\widehat{\Gamma}$ be the corresponding electrical network. If (u, c) is a harmonic potential on Γ, then $\left(u-u^{*}, c-c^{*}\right)$ is a harmonic potential on $\widehat{\Gamma}$. Since the potential of the solution to Dirichlet problem on $\widehat{\Gamma}$ is unique and it must satisfy the maximum principle, we have

$$
\left\|u-u^{*}\right\|_{\infty} \leq\left\|\phi-\phi^{*}\right\|_{\infty}, \text { where } \phi=\left.u\right|_{B}, \quad \phi^{*}=\left.u^{*}\right|_{B}
$$

Thus, if $U(\phi)$ is the harmonic potential with boundary potentials ϕ, then U is continuous and satisfies the desired estimate.

Now suppose γ_{e} is weakly increasing. Let $\gamma_{n, e}(x)=\gamma_{e}(x)+x / n$, so that $\gamma_{n, e}$ is strictly increasing and $Q_{n, e}(x)=Q_{e}(x)+x^{2} / 2 n$. Note $Q_{n, e} \rightarrow Q_{e}$ and
$Q_{n} \rightarrow Q$ uniformly on compact sets. Let $U_{n}(\phi)$ be the unique harmonic potential for $\gamma_{n, e}$. Because $\left\|U_{n}\left(\phi_{1}\right)-U_{n}\left(\phi_{2}\right)\right\|_{\infty}=\left\|\phi_{1}-\phi_{2}\right\|_{\infty}$ and $\left\|U_{n}(\phi)\right\|_{\infty}=\|\phi\|_{\infty}$, the sequence $\left\{U_{n}\right\}$ is equicontinuous and pointwise bounded. Therefore, by the Arzela-Ascoli theorem, there is a subsequence $\left\{U_{n_{k}}\right\}$ converging uniformly on compact sets to a continuous function U.

Suppose u is any potential with $\left.u\right|_{B}=\phi$. Since $Q_{n_{k}} \geq Q$ and $U_{n_{k}}(\phi)$ minimizes Q over potential functions with boundary values ϕ,

$$
Q_{n_{k}}(u) \geq Q_{n_{k}}\left(U_{n_{k}}(\phi)\right)=\left(Q_{n_{k}}\left(U_{n_{k}}(\phi)\right)-Q\left(U_{n_{k}}(\phi)\right)\right)+Q\left(U_{n_{k}}(\phi)\right)
$$

By uniform convergence on compact sets, $Q_{n_{k}}\left(U_{n_{k}}(\phi)\right)-Q\left(U_{n_{k}}(\phi)\right) \rightarrow 0$ and by continuity of $Q, Q\left(U_{n_{k}}(\phi)\right) \rightarrow Q(U(\phi))$. Thus, taking $k \rightarrow \infty$ yields $Q(u) \geq$ $Q(U(\phi))$. Hence, $U(\phi)$ minimizes Q over potential functions with boundary values ϕ, so it is a harmonic potential for conductances γ. Also,

$$
\left\|U\left(\phi_{1}\right)-U\left(\phi_{2}\right)\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|U_{n_{k}}\left(\phi_{1}\right)-U_{n_{k}}\left(\phi_{2}\right)\right\|_{\infty}=\left\|\phi_{1}-\phi_{2}\right\|_{\infty}
$$

4.2 The Dirichlet-to-Neumann Map Λ

Let Γ be as in the previous section, and in addition assume that γ_{e} is continuous. Then there exists a solution (u, c) to the Dirichlet problem and c is uniquely determined. In particular, the net current ψ on the boundary vertices is uniquely determined by the boundary potentials ϕ. Hence, there a well-defined Dirichlet-to-Neumann map $\Lambda: \mathbb{R}^{B} \rightarrow \mathbb{R}^{B}: \phi \mapsto \psi$.

Since γ_{e} is continuous, Q_{e} is C^{1} and

$$
\nabla Q(u)=\nabla_{u} \sum_{e \in E^{\prime}} Q_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)=\sum_{e \in E^{\prime}} \chi_{e} \gamma_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)
$$

So

$$
\partial_{p} Q(u)=\frac{\partial}{\partial u_{p}} Q(u)=\sum_{\substack{e \in E \\ \iota(e)=p}} \gamma_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)
$$

and in particular, if (u, c) is a solution to the Dirichlet problem,

$$
\partial_{p} Q(u)= \begin{cases}0, & \text { if } p \in I \\ \psi_{p}, & \text { if } p \in B\end{cases}
$$

Hence, if $\pi_{B}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{B}$ is projection onto the boundary vertices, then

$$
\Lambda(\phi)=\pi_{B} \circ \nabla Q(u) \text { for any } u \in \mathcal{U}_{\phi}
$$

And if $U(\phi)$ is a harmonic potential depending continuously on ϕ, as in Proposition 4.5 , then

$$
\Lambda(\phi)=\pi_{B} \circ \nabla Q \circ U(\phi)
$$

which shows that Λ is continuous. It also depends "continuously" on γ :

Proposition 4.7. Suppose that γ_{n} and γ_{0} are continuous, increasing conductances on a graph G and Λ_{n} and Λ_{0} are the corresponding Dirichlet-to-Neumann maps. If $\gamma_{n, e} \rightarrow \gamma_{0, e}$, then $\Lambda_{n} \rightarrow \Lambda_{0}$ uniformly on compact sets.

We need the following lemmas, whose proofs are left as exercises:
Lemma 4.8. Suppose g_{n} and g are increasing functions $\mathbb{R} \rightarrow \mathbb{R}$ and $g_{n} \rightarrow g$. If g is continuous, then the convergence is uniform on compact sets.

Lemma 4.9. Let $f_{n}: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$ and $g_{n}: \mathbb{R}^{d_{2}} \rightarrow \mathbb{R}^{d_{3}}$ be continuous. If $f_{n} \rightarrow f$ uniformly on compact sets and $g_{n} \rightarrow g$ uniformly on compact sets, then $g_{n} \circ f_{n} \rightarrow g \circ f$ uniformly on compact sets.
Lemma 4.10. Let $f_{n}: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$. If every subsequence of $\left\{f_{n}\right\}$ has in turn a subsequence converging uniformly on compact sets to f, then $f_{n} \rightarrow f$ uniformly on compact sets.

Proof of Proposition 4.7. Observe that if $\pi_{I}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{I}$ is the projection onto the interior vertices, then $u=(\phi, w)$ is in \mathcal{U}_{ϕ} if and only if w minimizes Q_{ϕ} if and only if $\pi_{I} \circ \nabla Q(u)=\nabla Q_{\phi}(w)=0$.

Let Q_{n} and Q_{0} be the pseudopower corresponding to γ_{n} and γ_{0}, and let $U_{n}(\phi)$ and $U_{0}(\phi)$ be harmonic potentials as in Proposition 4.5. Since $\gamma_{n, e} \rightarrow \gamma_{0, e}$ uniformly on compact sets, the same is true for ∇Q_{n} and ∇Q_{0}. Let $\left\{\Lambda_{n_{k}}\right\}$ be any subsequence of $\left\{\Lambda_{n}\right\}$. Since $\left\{U_{n_{k}}\right\}$ is equicontinuous and pointwise bounded, there is a subsequence $\left\{U_{n_{k_{j}}}\right\}$ converging uniformly on compact sets to a function U_{0}. Since $Q_{n} \rightarrow Q_{0}$ uniformly on compact sets, we see that U_{0} is a harmonic potential by the same argument as in Proposition 4.5. By Lemma 4.9, $\nabla Q_{n_{k_{j}}} \circ U_{n_{k_{j}}} \rightarrow \nabla Q_{0} \circ U_{0}$ on compact sets; hence,

$$
\Lambda_{n_{k_{j}}}=\pi_{B} \circ \nabla Q_{n_{k_{j}}} \circ U_{n_{k_{j}}} \rightarrow \pi_{B} \circ \nabla Q_{0} \circ U_{0}=\Lambda_{0}
$$

uniformly on compact sets.
It is actually not necessary to assume that all the γ_{e} 's are continuous. If we assume instead that γ_{e} is continuous for every edge incident to a boundary vertex, then by Theorem 4.1 (iv), the boundary currents are uniquely determined. They also depend continuously on ϕ.

Proposition 4.7 also generalizes: If $\gamma_{n, e}$ is increasing but not necessarily continuous, then pointwise convergence of $\gamma_{n, e} \rightarrow \gamma_{0, e}$ implies $Q_{n, e} \rightarrow Q_{0, e}$ uniformly on compact sets. Since $Q_{n} \rightarrow Q_{0}$ uniformly on compact sets, U_{0} will still be a harmonic potential. If we assume $\gamma_{n, e}$ and γ_{e} are continuous when e is incident to a boundary vertex, and hence $\gamma_{n, e} \rightarrow \gamma_{e}$ uniformly on compact sets, then we still obtain $\Lambda_{n_{k_{j}}} \rightarrow \Lambda_{0}$ uniformly on compact sets.

4.3 Differentiation of Λ and U

The goal of this section is to differentiate (or linearly approximate) the Dirichlet-to-Neumann map Λ. Assume each γ_{e} is differentiable. For $u \in \mathbb{R}^{V}$, define a set
of linear conductance functions $d_{u} \gamma$ by

$$
\left(d_{u} \gamma\right)_{e}(x)=\gamma_{e}^{\prime}\left(u_{\iota(e)}-u_{\tau(e)}\right) x
$$

These conductances satisfy

$$
\left(d_{u} \gamma\right)_{\bar{e}}(x)=\gamma_{\bar{e}}^{\prime}\left(u_{\tau(e)}-u_{\iota(e)}\right) x=\gamma_{e}^{\prime}\left(u_{\iota(e)}-u_{\tau(e)}\right) x=-\left(d_{u} \gamma\right)_{e}(-x)
$$

because

$$
\gamma_{\bar{e}}^{\prime}(x)=\frac{d}{d x} \gamma_{\bar{e}}(x)=-\frac{d}{d x} \gamma_{e}(-x)=\gamma_{e}^{\prime}(-x)
$$

Let Λ_{γ} be the Dirichlet-to-Neumann map for the network on G with conductances γ, and let $\Lambda_{d_{u} \gamma}$ be the Dirichlet-to-Neumann map for the network on G with conductances $d_{u} \gamma$. Then

Theorem 4.11. Λ_{γ} is differentiable with respect to ϕ. For a given ϕ, the differential $D_{\phi} \Lambda_{\gamma}: \mathbb{R}^{B} \rightarrow \mathbb{R}^{B}$ is given by $D_{\phi} \Lambda_{\gamma}=\Lambda_{d_{u} \gamma}$, where u is any harmonic potential with $\left.u\right|_{B}=\phi$.

We need the following lemma on linear conductances:
Lemma 4.12. Let $a_{e} \geq 0, a_{\bar{e}}=a_{e}$, and $a=\left\{a_{e}\right\}_{e \in E}$. For linear conductances $\gamma_{e}(x)=a_{e} x$ with $a_{e} \geq 0$, the Dirichlet-to-Neumann map Λ_{γ} is a linear transformation given by a response matrix M_{a}, which depends continuously on a.

Proof. If the conductances are linear, then a linear combination of harmonic functions is a harmonic function, so the Dirichlet-to-Neumann map is linear. Hence, it is given by a matrix M_{a}.

To show continuity, suppose $a_{n}=\left\{a_{n, e}\right\}_{e \in E}$, and that $a_{n, e} \rightarrow a_{e}$. If $\gamma_{n, e}(x)=a_{n, e} x$ and $\gamma_{e}(x)=a_{e} x$, then $\gamma_{n, e} \rightarrow \gamma_{e}$. Thus, by Proposition 4.7, $\Lambda_{\gamma_{n}} \rightarrow \Lambda_{\gamma}$ uniformly on compact sets. This implies that the matrices $M_{a_{n}}$ converge to M_{a} entry-wise.

Proof of Theorem 4.11. Using a similar translation argument as in Proposition 4.5 , we can reduce to the case where $\phi=0$ and $u=0$. For $u \in \mathbb{R}^{V}$, define coefficients

$$
a_{u, e}= \begin{cases}\frac{\gamma_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)}{u_{\iota(e)}-u_{\tau(e)}}, & \text { if } u_{\iota(e)} \neq u_{\tau(e)} \\ \gamma_{e}^{\prime}(0), & \text { if } u_{\iota(e)}=u_{\tau(e)}\end{cases}
$$

Let $a_{u}=\left\{a_{u, e}\right\}_{e \in E}$ and $\left(\Delta_{u} \gamma\right)_{e}(x)=a_{u, e} x$ and $\Delta_{u} \gamma=\left\{\left(\Delta_{u} \gamma\right)_{e}\right\}_{e \in E}$. Then $\Delta_{u} \gamma$ defines a set of a linear conductances and $\Lambda_{\Delta_{u} \gamma}(\phi)=M_{a_{u}} \phi$. Also, at $u=0, \Delta_{0} \gamma=d_{0} \gamma$. Since $a_{u, e}$ depends continuously on u, we know $M_{a_{u}}$ depends continuously on u. For each edge e,

$$
\left(\Delta_{u} \gamma\right)_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)=\frac{\gamma_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)}{u_{\iota(e)}-u_{\tau(e)}}\left(u_{\iota(e)}-u_{\tau(e)}\right)=\gamma_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)
$$

if $u_{\iota(e)}=u_{\tau(e)}$, and if $u_{\iota(e)}=u_{\tau(e)}$, then both sides are zero. In particular, if u is compatible with a current function c on the network with conductances γ,
then it is compatible with c on the network with conductances $\Delta_{u} \gamma$. So if ϕ and ψ represent the boundary potentials and net currents for (u, c), we have

$$
\Lambda_{\gamma}(\phi)=\psi=\Lambda_{\Delta_{u} \gamma}(\phi)=M_{a_{u}} \phi .
$$

Let $U(\phi)$ be a solution of the Dirichlet problem satisfying the maximum principle. Then

$$
\Lambda_{\gamma}(\phi)=M_{a_{U(\phi)}} \phi
$$

and since $M_{a_{u}}$ depends continuously on $u, \lim _{\phi \rightarrow 0} M_{a_{U(\phi)}}=M_{a_{0}}$. Therefore, Λ_{γ} is differentiable at 0 , and the differential $D_{0} \Lambda_{\gamma}$ is the linear transformation given by the matrix $M_{a_{0}}$, which is exactly $\Lambda_{d_{0} \gamma}$.

In the case where $\gamma_{e}^{\prime}>0$, we can say more. In the following, we identify the linear transformation $D_{\phi} \Lambda$ with its matrix.

Proposition 4.13. Suppose every component of G has a boundary vertex. Let γ_{e} be differentiable with $\gamma_{e}^{\prime}>0$. Let $H_{u} Q$ be the Hessian matrix of the total pseudopower at $u \in \mathbb{R}^{V}$. Then
i. The Dirichlet problem has a unique solution.
ii. For any $u \in \mathbb{R}^{V}, H_{u} Q_{I, I}$ is invertible.
iii. Let $U(\phi)$ be the potential for the solution to the Dirichlet problem and $W(\phi)=\pi_{I} \circ U(\phi)$. Then $D_{\phi} W=-\left(H_{U(\phi)} Q\right)_{I, I}^{-1}\left(H_{U(\phi)} Q\right)_{I, B}$.
iv. $D_{\phi} \Lambda$ is the Schur complement $H_{U(\phi)} Q /\left(H_{U(\phi)} Q\right)_{I, I}$.

Proof. The solution to the Dirichlet problem is unique because γ_{e} is strictly increasing. By computation, the mixed partial

$$
\partial_{p} \partial_{q} Q(u)= \begin{cases}\sum_{\substack{e: \iota(e)=p \\ \tau(e)=q}} \gamma_{e}^{\prime}\left(u_{\iota(e)}-u_{\tau(e)}\right), & p \neq q \\ \sum_{e: \iota(e)=p} \gamma_{e}^{\prime}\left(u_{\iota(e)}-u_{\tau(e)}\right), & p=q .\end{cases}
$$

Thus, $H_{u} Q$ is exactly the Kirchhoff matrix of the network with linear conductances $d_{u} \gamma$. Invertibility of $\left(H_{u} Q\right)_{I, I}$ follows from our discussion of positive linear conductances. For (iii), it suffices to consider the case $\phi=0$. Since $u=U(\phi)$ is a harmonic potential with respect to $\Delta_{u} \gamma$,

$$
W(\phi)=-\left(K_{\Delta_{u} \gamma}\right)_{I, I}^{-1}\left(K_{\Delta_{u} \gamma}\right)_{I, B} \phi
$$

where $K_{\Delta_{u} \gamma}$ is the Kirchhoff matrix for the linear conductances $\Delta_{u} \gamma$. Thus,

$$
D_{0} W=-\left(K_{d_{0} \gamma}\right)_{I, I}\left(K_{d_{0} \gamma}\right)_{I, B}=-\left(H_{0} Q\right)_{I, I}^{-1}\left(H_{0} Q\right)_{I, B}
$$

(iv) follows from the chain rule:

$$
\begin{aligned}
D_{\phi} \Lambda & =D_{\phi} \pi_{B} \circ \nabla Q(U(\phi)) \\
& =\left(H_{u} Q\right)_{B, B}+\left(H_{u} Q\right)_{B, I} \circ D_{\phi} W \\
& =\left(H_{u} Q\right)_{B, B}-\left(H_{u} Q\right)_{B, I}\left(H_{u} Q\right)_{I, I}^{-1}\left(H_{u} Q\right)_{B, I}
\end{aligned}
$$

4.4 Linearizing the Inverse Problem

Proposition 4.13 allows us to "linearize" the inverse problem for differentiable conductances. Suppose that G is recoverable over positive linear conductances, and that γ_{e} is differentiable with positive derivative. Let $(U(\phi), C(\phi))$ be the solution to the Dirichlet problem. Linear recoverability guarantees that $H_{U(\phi)} Q$ is uniquely determined by $D_{\phi} \Lambda$ (which is uniquely determined by L). From $H_{U(\phi)} Q$, we can find $D_{\phi} W$ and $D_{\phi} U$, and hence $D_{\phi} C$. A function is uniquely determined by its derivative and the value at one point, and we know $U(0)=$ 0 and $C(0)=0$; thus, U and C are uniquely determined by Λ. Therefore, $\gamma_{e}\left(U_{\iota(e)}-U_{\tau(e)}\right)$ is determined by Λ.

Suppose that for any $t \in \mathbb{R}$, there exists a harmonic (u, c) with $u_{\iota(e)}-u_{\tau(e)}=$ t. Then for each $t, \gamma_{e}(t)$ is determined by Λ, so γ is determined by Λ. Thus, Γ is recoverable over differentiable conductances with positive derivatives.

However, for a given t, there may not be a harmonic (u, c) with $u_{\iota(e)}-u_{\tau(e)}=$ t. For example, consider a Y with boundary vertices $\{1,2,3\}$ and interior vertex 4 , with oriented edge e_{j} from 4 to j. Suppose $\left|\gamma_{e_{1}}(t)\right| \leq M$ and $\left|\gamma_{e_{2}}(t)\right| \leq M$ are bounded, but $\gamma_{e_{3}}$ is unbounded. If $\gamma_{e_{3}}(t)>2 M$, then there is no way to make

$$
\gamma_{e_{1}}\left(u_{4}-u_{1}\right)+\gamma_{e_{2}}\left(u_{4}-u_{2}\right)+\gamma_{e_{3}}\left(u_{4}-u_{3}\right)=0, \quad u_{4}-u_{3}=t
$$

Thus, the network is not recoverable over differentiable conductances with positive derivatives.

We will return in $\S 6.5$ to the question of when there exists a harmonic function with a specified potential drop on a specified edge. But in a sense, knowing U and C is almost as good as recovering the conductances, since it completely describes the behavior of the network. Thus, we will say a network is weakly recoverable over a class of PCR's if the space of harmonic functions is uniquely determined by L. Then

Proposition 4.14. If G is recoverable over the positive linear conductances, then it is weakly recoverable over differentiable conductances with $\gamma_{e}^{\prime}>0$ and $\gamma_{e}(0)=0$.

Future research could apply this approach to the inverse problem to graphs which are not recoverable over the positive linear conductances.

5 The Neumann Problem

5.1 Solutions to the Neumann Problem

We approach the Neumann problem in a similar way to the Dirichlet problem. For each edge e of a graph G, let $\rho_{e}: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing function with $\rho_{e}(0)=0$ and $\rho_{\bar{e}}(y)=-\rho_{e}(-y)$. Let

$$
R_{e}=\left\{(x, y) \in \mathbb{R}^{2}: \rho_{e}\left(y^{-}\right) \leq x \leq \rho_{e}\left(y^{+}\right)\right\}
$$

For $\psi \in \mathbb{R}^{B}$, let $\mathcal{H}_{\psi}, \mathcal{U}_{\psi}$, and \mathcal{C}_{ψ} be as in the previous section.
This theorem was proved by [4] in the case where ρ_{e} is continuous.

Theorem 5.1. Suppose $\psi \in \mathbb{R}^{B}$ and its entries sum to zero on every connected component of G.
i. There exists $a(u, c) \in \mathcal{H}_{\phi}$ satisfying $\max _{e \in E}\left|c_{e}\right| \leq \frac{1}{2} \sum_{p \in B}\left|\psi_{p}\right|$.
ii. Every $u \in \mathcal{U}_{\psi}$ is compatible with every $c \in \mathcal{C}_{\psi}$.
iii. \mathcal{U}_{ψ} and \mathcal{C}_{ψ} are convex sets.
iv. For each edge e, either the potential drop $u_{\iota(e)}-u_{\tau(e)}$ or the current c_{e} is uniquely determined. If ρ_{e} is continuous, the potential drop is uniquely determined. If ρ_{e} is strictly increasing, the current is uniquely determined.

Proof. Let $\mathcal{X} \subset \mathbb{R}^{E}$ be the space of current functions and \mathcal{Y} the space of current functions with net current zero on each boundary vertex. For $e \in E$, define $Q_{e}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
Q_{e}(y)=\int_{0}^{y} \rho_{e}(t) d t
$$

Then Q_{e} is nonnegative convex function with $Q_{\bar{e}}(y)=Q_{e}(-y)$ and $Q_{e}(0)=0$. Define the total pseudopower $Q: \mathcal{X} \rightarrow \mathbb{R}$ by

$$
Q(u)=\frac{1}{2} \sum_{e \in E} Q_{e}\left(c_{e}\right)=\sum_{e \in E^{*}} Q_{e}\left(c_{e}\right)
$$

where $E^{*} \subset E$ be a set with one oriented edge for each edge in E^{\prime}.
Fix $\psi \in \mathbb{R}^{B}$. As the reader can verify, there exists a current function c_{0} whose net currents are given by ψ. Let Q^{*} be the restriction of Q to $c_{0}+\mathcal{Y}$, the space of current functions with boundary net current ψ. Define $F_{e}: c_{0}+\mathcal{Y} \rightarrow \mathbb{R}$ by $F_{e}(c)=Q_{e}\left(c_{e}\right)$. Let

$$
\partial F_{e}(c)=\left\{h \in \mathcal{Y}: F_{e}\left(c^{\prime}\right)-F_{e}(c) \geq h \cdot\left(c^{\prime}-c\right) \text { for } c^{\prime} \in c_{0}+\mathcal{Y}\right\}
$$

If $\chi_{e} \in \mathbb{R}^{E}$ is the vector which is 1 on e and 0 on the other edges, then

$$
\partial F_{e}(c)+\mathcal{Y}^{\perp}=\chi_{e}\left[\rho_{e}\left(c_{e}^{-}\right), \rho_{e}\left(c_{e}^{+}\right)\right]+\mathcal{Y}^{\perp}
$$

Since \mathcal{Y} is a finite-dimensional real inner product space, Lemma 4.4 applies and

$$
\partial Q^{*}(c)=\sum_{e \in E^{*}} \partial F_{e}(c)
$$

Hence,

$$
\begin{aligned}
\partial Q^{*}(c)+\mathcal{Y}^{\perp} & =\sum_{e \in E^{*}} \chi_{e}\left[\rho_{e}\left(c_{e}^{-}\right), \rho_{e}\left(c_{e}^{+}\right)\right]+\mathcal{Y}^{\perp} \\
& =\sum_{e \in E^{*}} \frac{1}{2}\left(\chi_{e}-\chi_{\bar{e}}\right)\left[\rho_{e}\left(c_{e}^{-}\right), \rho_{e}\left(c_{e}^{+}\right)\right]+\mathcal{Y}^{\perp}
\end{aligned}
$$

because $\chi_{e}+\chi_{\bar{e}} \in \mathcal{Y}^{\perp}$.
I claim that $c \in c_{0}+\mathcal{Y}$ has a compatible potential function if and only if $0 \in \partial Q^{*}(c)$. Indeed, if $0 \in Q_{\phi}(w)$, then for each $e \in E^{*}$, we can choose $h_{e} \in$ $\left[\rho_{e}\left(c_{e}^{-}\right), \rho_{e}\left(c_{e}^{+}\right)\right]$such that $g=\sum_{e \in E^{*}}\left(\chi_{e}-\chi_{\bar{e}}\right) \in \mathcal{Y}_{\perp}$. Note $g_{\bar{e}}=-g_{e}$, so for all $e, g_{e} \in\left[\rho_{e}\left(c_{e}^{-}\right), \rho_{e}\left(c_{e}^{+}\right)\right]$. Suppose e_{1}, \ldots, e_{n} form a cycle. Then $\sum_{j=1}^{n}\left(\chi_{e_{j}}-\chi_{\bar{e}_{j}}\right)$ is in \mathcal{Y}. Since $g \in \mathcal{Y}^{\perp}$,

$$
0=g \cdot \sum_{j=1}^{n}\left(\chi_{e_{j}}-\chi_{\bar{e}_{j}}\right)=2 \sum_{j=1}^{n} g_{e_{j}}
$$

Since g sums to zero over every cycle, we can find $u \in \mathbb{R}^{V}$ such that $g_{e}=$ $u_{\iota(e)}-u_{\tau(e)}$, and u is a potential compatible with c. Conversely, suppose u is a potential compatible with c. Let $g_{e}=u_{\iota(e)}-u_{\tau(e)}$. Any $c^{\prime} \in \mathcal{Y}$ can be written as a linear combination of functions of the form $\sum_{j=1}^{n}\left(\chi_{e_{j}}-\chi_{\bar{e}_{j}}\right)$ for a cycle e_{1}, \ldots, e_{n}. Since g sums to zero over every cycle, $g \in \mathcal{Y}^{\perp}$. Also, $g \in \partial Q^{*}(c)+\mathcal{Y}^{\perp}$, so $0 \in \partial Q^{*}(c)$.

Now $0 \in \partial Q^{*}(c)$ if and only if c is a global minimum of Q^{*}, so our goal is show a minimum is achieved. Let \mathcal{Z} be the set of current functions $c \in c_{0}+\mathcal{Y}$ such that there is no cycle of oriented edges e_{1}, \ldots, e_{n} with $c_{e_{j}}>0$ for all j. Then \mathcal{Z} is closed. I claim it is also bounded, and in fact, that every $c \in \mathcal{Z}$ satisfies the maximum principle $\max _{e \in E}\left|c_{e}\right| \leq \frac{1}{2} \sum_{p \in B}\left|\psi_{p}\right|$. Fix $c \in \mathcal{Z}$ and $e_{0} \in E$, and we will prove $\left|c_{e}\right| \leq \frac{1}{2} \sum_{p \in B}\left|\psi_{p}\right|$. If $c_{e_{0}}=0$, we are done, so assume $c_{e_{0}} \neq 0$, and assume without loss of generality $c_{e_{0}}>0$. Let P be the set of vertices p such that there exists a path from p to $\iota\left(e_{0}\right)$ along oriented edges with strictly positive current (including $\iota\left(e_{0}\right)$), and let R be the set of edges along these paths (including e_{0}). If $p \in P$ and $\tau(e)=p$ and $c_{e}>0$, then $e \in R$. Thus,

$$
\sum_{\substack{e \in R \\ \iota(e)=p}} c_{e}-\sum_{\substack{e \in R \\ \tau(e)=p}} c_{e}=\sum_{\substack{e \in R \\ \iota(e)=p}} c_{e}-\sum_{\substack{e \in E \\ c_{e}>0 \\ \tau(e)=p}} c_{e} \leq \sum_{\substack{e \in E \\ c_{e}>0 \\ \iota(e)=p}} c_{e}-\sum_{\substack{e \in E \\ c_{e}>0 \\ \tau(e)=p}} c_{e}=\sum_{e: \iota(e)=p} c_{e} .
$$

Summing over $p \in P$ gives

$$
\sum_{\substack{e \in R \\ \iota(e)=p}} c_{e}-\sum_{\substack{e \in R \\ \tau(e)=p}} c_{e} \leq \sum_{p \in P} \sum_{e: \iota(e)=p} c_{e}=\sum_{p \in P \cap B} \psi_{p}
$$

All edges in R except e_{0} have both endpoints in P, and e_{0} has $\iota\left(e_{0}\right) \in P$, $\tau\left(e_{0}\right) \notin P$. Thus, all the terms on the left hand side cancel except $c_{e_{0}}$, and hence,

$$
c_{e_{0}} \leq \sum_{p \in P \cap B} \psi_{p} \leq \sum_{p \in P \cap B} \max \left(0, \psi_{p}\right) \leq \sum_{\substack{p \in B \\ \psi_{p}>0}} \psi_{p}
$$

Since $\sum_{p \in B} \psi_{p}=0$,

$$
\sum_{\substack{p \in B \\ \psi_{p}>0}}\left|\psi_{p}\right|=\sum_{\substack{p \in B \\ \psi_{p}<0}}\left|\psi_{p}\right|=\frac{1}{2} \sum_{p \in B}\left|\psi_{p}\right|,
$$

and hence $\left|c_{e}\right| \leq \frac{1}{2} \sum_{p \in B}\left|\psi_{p}\right|$.
This shows \mathcal{Z} is bounded and hence compact. Thus, Q^{*} attains a minimum at some $c^{*} \in \mathcal{Z}$. I claim c^{*} is a global minimum. Suppose $c \in c_{0}+\mathcal{Y}$ and $c \notin \mathcal{Z}$. Then there is some cycle with edges e_{1}, \ldots, e_{n} such that $c_{e_{j}}>0$. Let m be the minimum over j of $c_{e_{j}}$. Define c^{\prime} by letting $c_{e_{j}}^{\prime}=c_{e_{j}}-m$, $c_{\bar{e}_{j}}^{\prime}=c_{\bar{e}_{j}}+m$, and $c_{e}^{\prime}=c_{e}$ for all other e. Then $\left|c_{e}^{\prime}\right| \leq\left|c_{e}\right|$ and $\operatorname{sgn} c_{e}^{\prime}=\operatorname{sgn} c_{e}$; hence, $Q_{e}\left(c^{\prime}\right) \leq Q_{e}(c)$, and $Q^{*}\left(c^{\prime}\right) \leq Q^{*}(c)$. If $c^{\prime} \notin \mathcal{Z}$, then we can repeat the process; at each step, we decrease the number of edges on which current is flowing, so the process must end after finitely many steps, and we have a $c^{\prime \prime} \in \mathcal{Z}$ with $Q^{*}\left(c^{\prime \prime}\right) \leq Q^{*}(c)$. So the global minimum is achieved in \mathcal{Z}, at c^{*}. Therefore, c^{*} has a compatible potential function, and we already showed it satisfies the maximum principle, so (i) is proved.

To prove (ii), it suffices to show that if c and \tilde{c} are in \mathcal{C}_{ϕ} and c is compatible with u, then \tilde{c} is also compatible with u. Because $u_{\iota(e)}-u_{\tau(e)}$ is a subderivative of Q_{e} at c_{e}, we have

$$
Q_{e}\left(\tilde{c}_{e}\right)-Q_{e}\left(c_{e}\right)-\left(u_{\iota(e)}-u_{\tau(e)}\right)\left(\tilde{c}_{e}-c_{e}\right) \geq 0
$$

Summing the left hand side over $e \in E^{*}$ yields

$$
Q^{*}(\tilde{c})-Q^{*}(c)-\sum_{e \in E^{*}}\left(u_{\iota(e)}-u_{\tau(e)}\right)\left(\tilde{c}_{e}-c_{e}\right)
$$

and the first two terms cancel because \tilde{c} and c must both achieve the global minimum of Q^{*}. The other sum is

$$
\begin{aligned}
\sum_{e \in E^{*}}\left(u_{\iota(e)}-u_{\tau(e)}\right)\left(\tilde{c}_{e}-c_{e}\right) & =\sum_{e \in E} u_{\iota(e)}\left(\tilde{c}_{e}-c_{e}\right) \\
& =\sum_{p \in V} \sum_{e: \iota(e)=p} u_{p}\left(\tilde{c}_{e}-c_{e}\right) \\
& =\sum_{p \in V} u_{p}\left(\sum_{e: \iota(e)=p} \tilde{c}_{e}-\sum_{e: \iota(e)=p} c_{e}\right)=0
\end{aligned}
$$

because c and \tilde{e} have the same net current on each vertex. Hence,

$$
\sum_{e \in E^{\prime}}\left(Q_{e}\left(\tilde{c}_{e}\right)-Q_{e}\left(c_{e}\right)-\left(u_{\iota(e)}-u_{\tau(e)}\right)\left(\tilde{c}_{e}-c_{e}\right)\right)=0
$$

but each term is nonnegative, so each term must be zero. Since $u_{\iota(e)}-u_{\tau(e)} \in$ $\partial Q_{e}\left(c_{e}\right)$, the same argument as in the Dirichlet problem shows that $u_{\iota(e)}-u_{\tau(e)} \in$ $\partial Q_{e}\left(\tilde{c}_{e}\right)$, and hence \tilde{c} is compatible with u.

The arguments for (iii) and (iv) are the same as before, and the details are left to the reader.

Proposition 5.2. Let A be the set of $\psi \in \mathbb{R}^{B}$ whose entries sum to zero on each connected component of G. There exists a continuous $C: \mathbb{R}^{B} \rightarrow \mathbb{R}^{E}$ such
that $C(\psi) \in \mathcal{C}_{\psi}$ and

$$
\max _{e \in E}\left|C\left(\psi_{1}\right)-C\left(\psi_{2}\right)\right| \leq \frac{1}{2} \sum_{p \in B}\left|\left(\psi_{1}\right)_{p}-\left(\psi_{2}\right)_{p}\right| .
$$

Proof. The argument is the same as for Proposition 4.5.

5.2 The Neumann-to-Dirichlet Map Ω

Let Γ be as in the previous section, and in addition assume that ρ_{e} is continuous and each component of G has a boundary vertex. For any $\psi \in A$, there is solution (u, c) to the Neumann problem and the potential drops are uniquely determined. Thus, there is unique potential function u such that the boundary potentials sum to zero on each connected component. Hence, there a welldefined Neumann-to-Dirichlet map $\Omega: A \rightarrow A: \psi \mapsto \phi$. We also have the following results; the proofs are straightforward adaptations of the analogous proofs for the Dirichlet problem, and are left to the reader:

Proposition 5.3. Ω is continuous.
Proposition 5.4. Suppose that ρ_{n} and ρ_{0} are continuous, increasing resistance functions on a graph G and Ω_{n} and Ω_{0} are the corresponding Neumann-toDirichlet map. If $\rho_{n, e} \rightarrow \rho_{0, e}$, then $\Omega_{n} \rightarrow \Omega_{0}$ uniformly on compact sets.

Theorem 5.5. Ω_{ρ} is differentiable with respect to ψ. The differential $d_{\psi} \Omega_{\rho}$: $A \rightarrow A$ is given by $d_{\phi} \Omega_{\rho}=\Omega_{d_{c} \rho}$, where c is any element of \mathcal{C}_{ψ}.

6 Reduction Operations

6.1 Definition

A boundary spike is an edge $\{e, \bar{e}\}$ such that $\iota(e) \in B, \tau(e) \in I$, and $\iota(e)$ has valence 1 . If G has a boundary spike e and G^{\prime} satisfies

$$
V\left(G^{\prime}\right)=V(G) \backslash\{\iota(e)\}, E\left(G^{\prime}\right)=E(G) \backslash\{e, \bar{e}\}, I\left(G^{\prime}\right)=I(G) \backslash\{\tau(e)\}
$$

then the transformation $G \mapsto G^{\prime}$ is a called a boundary spike contraction. The reverse transformation is called a boundary spike expansion.

A boundary edge is an edge $\{e, \bar{e}\}$ with $\iota(e) \in B$ and $\tau(e) \in B$. If e is a boundary edge and G^{\prime} satisfies

$$
V\left(G^{\prime}\right)=V(G), E\left(G^{\prime}\right)=E(G) \backslash\{e, \bar{e}\}, I\left(G^{\prime}\right)=I(G)
$$

then the transformation $G \mapsto G^{\prime}$ is a boundary edge deletion. The reverse transformation is called a boundary edge addition.

A disconnected boundary vertex is a boundary vertex with valence 0 . If p is such a vertex, and

$$
V\left(G^{\prime}\right)=V(G) \backslash\{p\}, E\left(G^{\prime}\right)=E(G), I\left(G^{\prime}\right)=I(G)
$$

then the transformation $G \mapsto G^{\prime}$ is a disconnected boundary vertex deletion. The opposite is disconnected boundary vertex addition.

Boundary spike contraction, boundary edge deletion, and disconnected boundary vertex deletion are called reduction operations. We say G is reducible to H if there is a sequence of reduction operations that will transform G into H. In this case, H must be a subgraph of G. We say G and H are reduction-equivalent if there is a sequence of reduction operations and their inverses which transforms G into H. This is an equivalence relation.

The motivation for considering reduction operations is the "layer-stripping" approach to the inverse problem. The idea is to determine the PCR's on boundary spikes and boundary edges, then to contract the spikes or delete the edges, and then to repeat this process on the reduced graph. If G is reducible to the empty graph, then we will eventually recover all the PCR's of all edges of G, assuming that at each step we can determine the set of boundary data of the reduced graph.

6.2 Reduction to Embedded Flowers

Not all graphs are reducible to the empty graph. In particular, a flower is graph with no boundary spikes, boundary edges, or disconnected boundary vertices. A flower cannot be reduced the empty graph unless it is already the empty graph.

Every (finite) graph can be reduced to a flower. Indeed, if it is not a flower, we can perform a reduction operation, which will either decrease the number of vertices or decrease the number of edges. If we keep performing reduction operations we will eventually either reach the empty graph or some subgraph of G which cannot be reduced, which is a flower. It turns out that the flower we reach is independent of the sequence of reduction operations:

Theorem 6.1.

i. Every graph G is reducible to a unique flower $G^{\text {*2 }}$.
ii. G and H are reduction-equivalent if and only if $G^{\mathbf{*}}=H^{\mathbf{*}}$.
iii. If H is a subgraph of G, then $H^{\boldsymbol{*}}$ is a subgraph of $G^{\boldsymbol{*}}$.

We start with a few lemmas:
Lemma 6.2. If G is reducible to H and S is a subgraph of G, then S is reducible to $S \cap H$, where $S \cap H$ is defined by

$$
\begin{aligned}
V(S \cap H) & =V(S) \cap V(H) \\
E(S \cap H) & =E(S) \cap E(H) \\
I(S \cap H) & =I(S) \cap I(H)
\end{aligned}
$$

Proof. Suppose S is a subgraph of G. Let $G=G_{0}, G_{1}, \ldots, G_{N}=H$ be a sequence of graphs where G_{n+1} is obtained from G_{n} by a single decomposition operation. Let $S_{n}=G_{n} \cap S$. We want to show that S_{n} is reducible to S_{n+1}. There are several cases:

1. Suppose G_{n+1} is obtained from G_{n} by deleting a disconnected boundary vertex p. If $p \notin V\left(S_{n}\right)$, then $S_{n}=S_{n+1}$, so we are done. If $p \in V\left(S_{n}\right)$, then it is a disconnected boundary vertex as a consequence of the definition of subgraph. Thus, S_{n} is reducible to S_{n+1}.
2. Suppose G_{n+1} is obtained from G_{n} by deleting a boundary edge e. If $e \notin E\left(S_{n}\right)$, then $S_{n}=S_{n+1}$, and we are done. Otherwise, e must be a boundary edge of S_{n}, so S_{n} is reducible to S_{n+1}.
3. Suppose G_{n+1} is obtained from G_{n} by a contracting a boundary spike e. If $\iota(e) \notin V\left(S_{n}\right)$, then $e \notin E\left(S_{n}\right)$ and $\tau(e)$ is either a boundary vertex of S_{n} or is not in $V\left(S_{n}\right)$; thus, $S_{n}=S_{n+1}$, and we are done. If $\iota(e) \in V\left(S_{n}\right)$, but $e \notin E\left(S_{n}\right)$, then $\tau(e)$ is either a boundary vertex of S_{n} or is not in $V\left(S_{n}\right)$; also, $\iota(e)$ is a disconnected boundary vertex, so we can delete it to obtain S_{n+1}. If $e \in E\left(S_{n}\right)$, then $\iota(e)$ must be a boundary vertex of S_{n}. If $\tau(e)$ is interior in S_{n}, then e is a spike in S_{n}, which we can contract. If $\iota(e)$ is a boundary vertex in S_{n}, then e is a boundary edge and $\iota(e)$ has degree 1 . Thus, we can obtain S_{n+1} by deleting the boundary edge e, then deleting the disconnected boundary vertex $\iota(e)$.

Corollary 6.3. If G is reducible to the empty graph, then so is every subgraph of G.

Lemma 6.4. If G is a flower and G is reduction-equivalent to H, then G is a subgraph of H. In particular, if two flowers are reduction-equivalent, they are equal.

Proof. There is a sequence of graphs $G=G_{0}, G_{1}, \ldots, G_{N}=H$, where G_{n+1} is obtained from G_{n} by a single operation. We prove the lemma for each G_{n} by induction. We already know it is true for G_{0}. Suppose it is true for G_{n}. Then either G_{n} is a subgraph of G_{n+1} or G_{n+1} is a subgraph of G. If G_{n} is a subgraph of G_{n+1}, we are done because G is a subgraph of G_{n}. Otherwise, G_{n+1} is obtained from G_{n} by contracting a boundary spike, deleting a boundary edge, or deleting a disconnected boundary vertex. The boundary spike or boundary edge or disconnected boundary vertex in question cannot be part of G, because then by similar reasoning as in the previous proposition, it would be a boundary spike or boundary edge or disconnected boundary vertex of G, which is impossible because G is a flower. Therefore, G must be a subgraph of G_{n+1}.

Proof of Theorem. We already showed G can be reduced to a flower, and uniqueness follows from Lemma 6.4. Clearly, G is reduction-equivalent to G^{*} and H to $H^{\text {* }}$. Thus, G is equivalent to H if and only if G^{*} is equivalent to $H^{\boldsymbol{*}}$ if and only if $G^{\boldsymbol{*}}=H^{\boldsymbol{*}}$.

For (iii), suppose H is a subgraph of G. Since G is reducible to G^{*}, we know H is reducible to $G^{\boldsymbol{*}} \cap H$. Then $G^{\boldsymbol{*}} \cap H$ must be reduction-equivalent to $H^{\boldsymbol{*}}$. By Lemma 6.4, $H^{\boldsymbol{*}}$ must be a subgraph of $G^{\boldsymbol{*}} \cap H$, which is a subgraph of G^{*}.

6.3 Electrical Properties

If we want to solve the inverse problem by layer-stripping, we need to know that when we perform a reduction operation, the set of boundary data of the reduced network is uniquely determined by the boundary data of the original network and the PCR of the edge removed. This is the purpose of the following lemmas:

Lemma 6.5. Let Γ^{\prime} be the subnetwork of Γ obtained by contracting a spike e, and let L and L^{\prime} be the corresponding sets of boundary data. Suppose R_{e} is given by a resistance function ρ_{e}. Then L^{\prime} is uniquely determined by L and ρ_{e}.
Proof. Define $\Xi: \mathbb{R}^{B\left(G^{\prime}\right)} \times \mathbb{R}^{B\left(G^{\prime}\right)} \rightarrow \mathbb{R}^{B(G)} \times \mathbb{R}^{B(G)}$ by $\left(\phi^{\prime}, \psi^{\prime}\right) \mapsto(\phi, \psi)$, where

- For $p \in B(G)=B\left(G^{\prime}\right)=B(G) \backslash\{\iota(e)\}$, we have $\phi_{p}=\phi_{p}^{\prime}$ and $\psi_{p}=\psi_{p}^{\prime}$.
- $\phi_{\iota(e)}=\phi_{\tau(e)}^{\prime}+\rho_{e}\left(\psi_{p}\right)$.
- $\psi_{\iota(e)}=\psi_{\tau(e)}^{\prime}$.

I claim $L^{\prime}=\Xi^{-1}(L)$. Suppose $\left(\phi^{\prime}, \psi^{\prime}\right) \in L^{\prime}$ and it is the boundary data of a harmonic $\left(u^{\prime}, c^{\prime}\right)$ on Γ^{\prime}. We can extend (u, c) to a harmonic function (u, c) on Γ by setting $c_{e}=\psi_{\tau(e)}^{\prime}$ and $u_{\iota(e)}=u_{\tau(e)}+\rho_{e}\left(\psi_{\iota(e)}^{\prime}\right)$. This harmonic function has boundary data $(\phi, \psi)=\Xi\left(\phi^{\prime}, \psi^{\prime}\right)$, so $\left(\phi^{\prime}, \psi^{\prime}\right) \in \Xi^{-1}(L)$. Conversely, suppose $(\phi, \psi) \in L$ is the boundary data of a harmonic (u, c) on Γ. Since e is a spike, c_{e} must equal $\psi_{\iota(e)}$. Hence, $u_{\iota(e)}-u_{\tau(e)}=\rho_{e}\left(\psi_{\iota(e)}\right)$. Thus, when we restrict (u, c) to Γ^{\prime}, the boundary data becomes $\Xi^{-1}(\phi, \psi)$, so $\Xi^{-1}(\phi, \psi) \in L^{\prime}$.

Lemma 6.6. Let Γ^{\prime} be the subnetwork of Γ obtained by deleting a boundary edge e, and let L and L^{\prime} be the corresponding sets of boundary data. Suppose R_{e} is given by a conductance function γ_{e}. Then L^{\prime} is uniquely determined by L and γ_{e}.
Proof. Observe $B(G)=B\left(G^{\prime}\right)$. Define $\Xi: \mathbb{R}^{B\left(G^{\prime}\right)} \times \mathbb{R}^{B\left(G^{\prime}\right)} \rightarrow \mathbb{R}^{B(G)} \times \mathbb{R}^{B(G)}$ by $\left(\phi^{\prime}, \psi^{\prime}\right) \mapsto(\phi, \psi)$, where

- $\phi=\phi^{\prime}$.
- For $p \in B(G) \backslash\{\iota(e), \tau(e)\}$, we have $\psi_{p}=\psi_{p}^{\prime}$.
- $\psi_{\iota(e)}=\psi_{\iota(e)}^{\prime}+\gamma_{e}\left(\phi_{\iota(e)}-\phi_{\tau(e)}\right)$.
- $\psi_{\tau(e)}=\psi_{\tau(e)}^{\prime}-\gamma_{e}\left(\phi_{\iota(e)}-\phi_{\tau(e)}\right)$.

Then $L^{\prime}=\Xi^{-1}(L)$. The proof is similar to the previous one and is left to the reader.

Clearly, if Γ^{\prime} is obtained from Γ by deleting a disconnected boundary vertex, L^{\prime} is determined by L. Thus, we have the following corollary: If Γ is reducible to Γ^{\prime} and each PCR is given by a bijective conductance function, then L^{\prime} is uniquely determined by L and the γ_{e} 's of the edges removed in the reduction.

6.4 Regularity of L

Suppose G is reducible to the empty graph through a sequence of reduction operations. Then we can assume that the disconnected boundary vertex deletions occur last, since leaving a disconnected boundary vertex in the graph longer does not prevent boundary spike contractions or boundary edge deletions. Thus, there is a sequence of boundary spike contractions and boundary edge deletions that reduce G to a graph with no edges and only boundary vertices.

Suppose Γ is a network on G with bijective conductance functions. Let $G=G_{0}, G_{1}, \ldots, G_{N}$ be the sequence of graphs obtained by reduction operations such that G_{N} has no edges or interior vertices, and let $L=L_{0}, \ldots, L_{N}$ their sets of boundary data. Each graph has the same number of boundary vertices as G. On G_{N}, any potentials are possible, but the net currents must all be zero, so the boundary relationship $L_{N}=\mathbb{R}^{B\left(G_{N}\right)} \times\{0\}^{B\left(G_{N}\right)}$.

If G_{n-1} is obtained from G_{n}, then there is a function Ξ_{n} mapping boundary data on G_{n} to boundary data on G_{n-1}, as seen in the proof of Lemmas 6.5 and 6.6. Thus, $L_{n-1}=\Xi_{n}\left(L_{n}\right)$, and

$$
L=\Xi_{1} \circ \Xi_{2} \circ \cdots \circ \Xi_{N}\left(\mathbb{R}^{B\left(G_{N}\right)} \times\{0\}^{B\left(G_{N}\right)}\right)
$$

Thus, we have the following result:
Proposition 6.7. Suppose G is reducible to the empty graph. Let Γ be a network on G with bijective conductances.

1. If each γ_{e} is continuous, then L is homeomorphic to $\mathbb{R}^{|B|}$.
2. If each γ_{e} is C^{k} with $\gamma_{e}^{\prime} \neq 0$, then the homeomorphism is a C^{k}. Hence, L is a C^{k} manifold of dimension $n=|B|$ embedded in $\mathbb{R}^{B} \times \mathbb{R}^{B}$
3. In this case, if L_{γ} is the set of boundary data for conductances γ, and if (ϕ, ψ) is the boundary data of a harmonic function (u, c), then the tangent space is $T_{(\phi, \psi)}\left(L_{\gamma}\right)=L_{d_{u} \gamma}$.
4. Let $\mathcal{H} \subset \mathbb{R}^{V} \times \mathbb{R}^{E}$ be the space of harmonic functions on Γ. If γ_{e} and ρ_{e} are C^{k}, then \mathcal{H} is a C^{k} manifold of dimension n, and the tangent space is $T_{(u, c)}\left(\mathcal{H}_{\gamma}\right)=\mathcal{H}_{d_{u} \gamma}$.
5. If two harmonic functions have the same boundary data, they are equal.

Proof.

1. If γ_{e} is continuous and bijective, then so is $\rho_{e}=\gamma_{e}^{-1}$. Also, each Ξ_{n} is continuous. For adding a boundary spike, the inverse of Ξ_{n} is the same as Ξ_{n} but with the $-\rho_{e}$ substituted for ρ_{e}. For adding a boundary edge, the inverse is obtained by changing the sign of the conductance γ_{e}. So each Ξ_{n} is a homeomorphism, so restricting $\Xi=\Xi_{1} \circ \cdots \circ \Xi_{N}$ to $\mathbb{R}^{B\left(G_{N}\right)} \times\{0\}^{B\left(G_{N}\right)}$ provides a homeomorphism onto L, and $\mathbb{R}^{B\left(G_{N}\right)} \times\{0\}^{B\left(G_{N}\right)}$ is naturally homeomorphic to $\mathbb{R}^{|B|}$.
2. If each γ_{e} and ρ_{e} is C^{n}, then so are Ξ_{n} and Ξ_{n}^{-1}.
3. Let $x \in \mathbb{R}^{B\left(G_{N}\right)}$ be the restriction of u to $B\left(G_{N}\right)$. By direct computation, the differential $d \Xi_{n}$ for γ at a point $\Xi_{n+1} \circ \cdots \circ \Xi_{N}\left(x_{u}, 0\right)$ is the same as the Ξ_{n} for the linear conductances $d_{u} \gamma$. Thus, $D \Xi=D \Xi_{1} \circ \cdots \circ D \Xi_{N}$ is the same as the Ξ-map for the linear conductances. So if Ξ_{γ} represents the map for conductances γ, we have $D_{(x, 0)} \Xi_{\gamma}=\Xi_{d_{u} \gamma}$. Since the potentials on $B\left(G_{N}\right)$ provide a parametrization of L_{γ},

$$
T_{(\phi, \psi)}\left(L_{\gamma}\right)=D_{(x, 0)} \Xi_{\gamma}\left(\mathbb{R}^{B\left(G_{N}\right)} \times 0\right)=\Xi_{d_{u} \gamma}\left(\mathbb{R}^{B\left(G_{N}\right)} \times 0\right)=L_{d_{u} \gamma}
$$

4. We can also parametrize \mathcal{H}_{γ} in terms of the potentials on $B\left(G_{N}\right)$. This is because each vertex is in $B\left(G_{n}\right)$ for some n, so at some step of the above argument, it was given as an entry of $\Xi_{n} \circ \cdots \circ \Xi_{N}(x, 0)$. Similarly, each edge was a boundary edge or spike at some step.
5. Each Ξ_{n} was bijective, so the boundary data on G determines the boundary data on each G_{n}, and hence the potentials and currents on the whole network.

Part (3) is an analogue of the formulas for differentiating the Dirichlet-toNeumann and Neumann-to-Dirichlet maps. The analogous result for the inverse problem is:

Corollary 6.8. If G is layerable recoverable over signed linear conductances, then it is weakly recoverable over bijective, zero-preserving C^{1} conductances with $\gamma_{e}^{\prime} \neq 0$.

Proof. Since L is a C^{1} manifold, we can compute the tangent space at each point (ϕ, ψ). From this, $L_{d \gamma_{u}}$ is determined, and by recoverability, $d \gamma_{u}$ is uniquely determined, and hence we can find the derivative of (u, c) with respect to (ϕ, ψ). This, together with the fact that $(u, c)=0$ when $(\phi, \psi)=0$, uniquely determines (u, c) as a function of (ϕ, ψ).

As we saw, (4) and (5) of the Proposition do not hold for all graphs, not even for linear conductances. Actually, (1), (2), and (3) can fail for some graphs with bijective C^{∞} conductances with nonzero derivatives. Consider the following graph:

Let $\rho_{e_{1}}(t)=\rho_{e_{3}}(t)=t+\frac{1}{2} \sin t$ (the orientation of the edge does not matter since the function is odd), and let $\rho_{e_{2}}(t)=\rho_{e_{3}}(t)=-t$. These are bijective C^{∞} resistance functions with a C^{∞} inverse. The series with resistance functions $\rho_{e_{1}}$ and $\rho_{e_{2}}$ is equivalent to a single-edge with resistance $\rho_{e_{1}}+\rho_{e_{2}}$. Thus, the network is equivalent to a parallel connection

in which each edge has resistance function $\rho(t)=\frac{1}{2} \sin t$. Let e_{1} and e_{2} be the oriented edges shown in the picture. Thus, (u, c) is harmonic if and only if

$$
u_{1}-u_{2}=\frac{1}{2} \sin c_{e_{1}}=\frac{1}{2} \sin c_{e_{2}}
$$

Now $\sin c_{e_{1}}=\sin c_{e_{2}}$ is equivalent to $c_{e_{2}}=c_{e_{1}}+2 \pi n$ or $c_{e_{2}}=\pi-c_{e_{1}}+2 \pi n$. If $c_{e_{1}}=c_{e_{2}}+2 \pi n$, then the net current $\psi_{1}=c_{e_{1}}+c_{e_{2}}=2 c_{e_{1}}+2 \pi n$ and $\psi_{2}=-\psi_{1}$ and $u_{1}-u_{2}$ must be $\frac{1}{2} \sin \psi_{1} / 2$. If $c_{e_{2}}=\pi-c_{e_{1}}+2 \pi n$, then $\psi_{1}=(2 n+1) \pi$ and $\psi_{2}=-\psi_{1}$ and $u_{1}-u_{2}$ could be any number in $[-1,1]$. Thus,

$$
\begin{aligned}
L= & \left\{(\phi, \psi): \phi_{1}-\phi_{2}=\frac{1}{2} \sin \psi_{1} / 2, \psi_{1}=-\psi_{2}\right\} \\
& \cup\left\{(\phi, \psi): \phi_{1}-\phi_{2} \in[-1,1], \psi_{1}=(2 n+1) \pi, \psi_{2}=-\psi_{1}\right\}
\end{aligned}
$$

This is not a smooth manifold because there is neighborhood of the points with $\phi_{1}-\phi_{2}= \pm 1$ and $\psi_{1}=(2 n+1) \pi$ which is homeomorphic to \mathbb{R}^{2}.

6.5 Faithful Networks

In $\S 4.4$, we wanted to guarantee that for some $t \in \mathbb{R}$ and $e \in E$, there was a harmonic (u, c) with $u_{\iota(e)}-u_{\tau(e)}=t$. We can now answer that question for many graphs. We say a network is faithful if for any $e \in E$, for any $(x, y) \in R_{e}$, there exists a harmonic (u, c) with $u_{\iota(e)}-u_{\tau(e)}=x$ and $c_{e}=y$. If a network is faithful and is weakly recoverable over \mathcal{R}, then it is recoverable over \mathcal{R}.

Proposition 6.9. Let Γ be a network on a graph G which is reducible to the empty graph, and suppose every vertex is contained a boundary-to-boundary path. Suppose R_{e} satisfies

- $(0,0) \in R_{e}$.
- If $(x, y),\left(x^{\prime}, y^{\prime}\right) \in R_{e}$, then $x \leq x^{\prime}$ if and only if $y \leq y^{\prime}$.
- For any x, there exists y with $(x, y) \in R_{e}$ and for any y, there exists x with $(x, y) \in R_{e}$.

Then Γ is faithful.
Proof. As the reader may verify, for any such R_{e} we can find an increasing, zero-preserving γ_{e} and ρ_{e} such that

$$
R_{e}=\left\{(x, y): \gamma_{e}\left(x^{-}\right) \leq y \leq \gamma_{e}\left(x^{+}\right)\right\}=\left\{(x, y): \rho_{e}\left(y^{-}\right) \leq x \leq \rho_{e}\left(y^{+}\right)\right\}
$$

Let $G_{0}, G_{1}, \ldots, G_{N}$ be a sequence of graphs such that $G_{0}=G, G_{N}$ has no edges or interior vertices, and G_{n} is obtained from G_{n-1} by deleting a boundary edge e_{n} or contracting a boundary spike e_{n}. Choose n and $(x, y) \in R_{e_{n}}$. I claim there is a harmonic (u, c) on G_{n-1} with $u_{\iota(e)}-u_{\tau(e)}=x$ and $c_{e}=y$. There are two cases:

- Suppose e_{n} is a boundary edge in G_{n-1}. Since the Dirichlet problem has a solution, we can find a harmonic (u, c) with $u_{\iota\left(e_{n}\right)}-u_{\tau\left(e_{n}\right)}=x$. If $c_{e} \neq y$, we can change it to y without affecting the net current on the interior vertices.
- Suppose e_{n} is a boundary spike in G_{n-1}. Since every vertex in G is contained in a boundary-to-boundary path, this is also true of any subgraph of G and in particular G_{n-1}. Hence, any component of G_{n-1} with an interior vertex has at least two boundary vertices. Since $\tau(e)$ is interior, the component with e has at least two boundary veritices. So we can choose ψ with $\psi_{\iota(e)}=y$ such that the entries of ψ sum to zero on each component of G_{n-1}. Let (u, c) be a solution to the Neumann problem for ψ. If $u_{\iota(e)}-u_{\tau(e)} \neq x$, we can change $u_{\iota(e)}$ to make it so without affecting the net currents.

It is easy to verify that a harmonic function on G_{k} extends to G_{k-1}. Thus, by induction, we can extend (u, c) to G. Since every oriented edge is either some e_{n} or some \bar{e}_{n}, we are done.

Corollary 6.10. Let R_{e} be as above. Suppose G_{1}, \ldots, G_{N} are a subgraph partition of G with $B(G)=\bigcup_{k=1}^{N} B\left(G_{k}\right)$. If the networks $\Gamma_{1}, \ldots, \Gamma_{N}$ are faithful, so is Γ. The same holds if G_{1}, \ldots, G_{N} are a subgraph partition such that every cycle of G is contained in some G_{k}, and each G_{k} is connected and has at least two boundary vertices.

Proof. Suppose G_{1}, \ldots, G_{N} are a subgraph partition of G with $B(G)=\bigcup_{k=1}^{N} B\left(G_{k}\right)$. Suppose e is an edge in G_{n} and $(x, y) \in R_{e}$. There exists a harmonic $\left(u_{n}, c_{n}\right)$ on Γ_{n} with $\left(u_{n}\right)_{\iota(e)}-\left(u_{n}\right)_{\tau(e)}=x$ and $\left(c_{n}\right)_{e}=y$. Since the Dirichlet problem has a solution, for $k \neq n$, we can find a harmonic $\left(u_{k}, c_{k}\right)$ on Γ_{k} with $\left(u_{k}\right)_{p}=\left(u_{n}\right)_{p}$ for $p \in B\left(G_{n}\right) \cap B\left(G_{k}\right)$ and $\left(u_{k}\right)_{p}=0$ for $p \in B\left(G_{k}\right) \backslash B\left(G_{n}\right)$. Since $B(G)=\bigcup_{k=1}^{N} B\left(G_{k}\right)$, these join to form a harmonic function on G.

Suppose G_{1}, \ldots, G_{N} are a subgraph partition of G such that every cycle of G is contained in some G_{k}. For $e \in E\left(G_{n}\right)$ and $(x, y) \in R_{e}$, we can find a harmonic $\left(u_{n}, c_{n}\right)$ on Γ_{n} with $\left(u_{n}\right)_{\iota(e)}-\left(u_{n}\right)_{\tau(e)}=x$ and $\left(c_{n}\right)_{e}=y$. Using the existence of a solution to the Neumann problem, we can extend (u_{n}, c_{n}) to a harmonic (u, c) on Γ.

Corollary 6.11. If G is reducible to the empty graph and recoverable over the positive linear conductances, then it is recoverable over bijective, differentiable, zero-preserving conductances with $\gamma_{e}^{\prime}>0$.

Proof. Every vertex must be contained in a boundary-to-boundary path. If this were not the case, then there would be a nontrivial connected subgraph of G with only one boundary vertex; every harmonic function on this subgraph must be constant. Hence, changing the conductances on this subgraph would not affect L; thus, G would not be recoverable over the positive linear conductances. It follows by Proposition 6.9 that Γ is faithful. By Proposition 4.14, it is weakly recoverable over bijective, differentiable, zero-preserving conductances with $\gamma_{e}^{\prime}>$ 0 ; therefore, it is recoverable.

7 Layerings and the Inverse Problem

7.1 Two-Boundary Graphs and Layerings

We now describe a construction which will allow us to recover bijective zeropreserving conductances on a large class of graphs, and it has several other useful consequences.

A two-boundary graph is a graph together with two sets of vertices $B_{\text {upper }}$ and $B_{\text {lower }}$. Every two-boundary graph corresponds to a graph with boundary with $B=B_{\text {upper }} \cup B_{\text {lower }}$. But a graph with boundary may correspond to many different two-boundary graphs. We do not assume $B_{\text {upper }}$ and $B_{\text {lower }}$ are disjoint.

Suppose G, G_{1}, and G_{2} are two-boundary graphs. Then $G=G_{1} \bowtie G_{2}$ means that

- $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$.
- $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.
- $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\varnothing$.
- $V\left(G_{1}\right) \cap V\left(G_{2}\right)=B_{\text {lower }}\left(G_{1}\right)=B_{\text {upper }}\left(G_{2}\right)$.
- $B_{\text {upper }}(G)=B_{\text {upper }}\left(G_{1}\right)$.
- $B_{\text {lower }}(G)=B_{\text {lower }}\left(G_{2}\right)$.

A consequence is that, when considered as graphs with boundary, G_{1} and G_{2} are subgraphs of G, and in fact, a subgraph partition of G.

Let G be a two-boundary graph and Γ be an electrical network on (the graph with boundary corresponding to) G. We define the two-boundary relationship $X \subset\left(\mathbb{R}^{B_{\text {upper }}} \times \mathbb{R}^{B_{\text {upper }}}\right) \times\left(\mathbb{R}^{B_{\text {lower }}} \times \mathbb{R}^{B_{\text {lower }}}\right)$ as follows. Suppose $x=\left(x_{u}, x_{c}\right) \in$ $\mathbb{R}^{B_{\text {upper }}} \times \mathbb{R}^{B_{\text {upper }}}$ and $y=\left(y_{u}, y_{c}\right) \in \mathbb{R}^{B_{\text {lower }}} \times \mathbb{R}^{B_{\text {lower }}}$. Then $(x, y) \in X$ if and only if there exists a $(\phi, \psi) \in L$ such that

$$
\begin{aligned}
\left.\phi\right|_{B_{\text {upper }}} & =x_{u} \\
\left.\phi\right|_{B_{\text {lower }}} & =y_{u} \\
\left.\psi\right|_{B_{\text {upper }} \backslash B_{\text {lower }}} & =-\left.x_{c}\right|_{B_{\text {upper }} \backslash B_{\text {lower }}} \\
\left.\psi\right|_{B_{\text {upper }} \cap B_{\text {lower }}} & =\left.y_{c}\right|_{B_{\text {upper }} \cap B_{\text {lower }}}-\left.x_{c}\right|_{B_{\text {upper }} \cap B_{\text {lower }}} \\
\left.\psi\right|_{B_{\text {lower }} \backslash B_{\text {upper }}} & =\left.y_{c}\right|_{B_{\text {lower }} \backslash B_{\text {upper }}}
\end{aligned}
$$

Here x represents voltage and current data on $B_{\text {upper }}$ (with the sign of the net current changed) and y represents voltage and net current data on $B_{\text {lower }}$. If a vertex p is in $B_{\text {upper }} \cap B_{\text {lower }}$, then $(x, y) \in \Xi$ implies that $\left(x_{v}\right)_{p}=\left(y_{v}\right)_{p}$, and that the net current on p is $\left(y_{c}\right)_{p}-\left(x_{c}\right)_{p}$. We think of y_{c} as representing current flowing into the network on the lower boundary and x_{c} as representing current flowing out of the network on the upper boundary. If p is in both boundary sets, then current can flow directly from one boundary to the other through p.

If $\Gamma=\Gamma_{1} \bowtie \Gamma_{2}$, then, by similar reasoning as in the section about subnetworks, X is

$$
X_{2} \odot X_{1}=\left\{(x, y): \text { there exists } z \text { such that }(x, z) \in X_{1} \text { and }(z, y) \in X_{2}\right\}
$$

Using " \bowtie," we can express complicated networks as combinations of simpler ones. Our building blocks are networks on the following four types of twoboundary graphs, called elementary layers:

1. A horizontal-edge layer is a two-boundary graph with $V=B_{\text {upper }}=B_{\text {lower }}$ and $E \neq \varnothing$. Its edges are called horizontal edges.
2. A vertical-edge layer is a two-boundary graph such that each connected component is either a single valence- 0 vertex $p \in B_{\text {upper }} \cap B_{\text {lower }}$, or it consists of two vertices $p \in B_{\text {upper }} \backslash B_{\text {lower }}$ and $q \in B_{\text {lower }} \backslash B_{\text {upper }}$ with a single edge $\{e, \bar{e}\}$ with $\iota(e)=p, \tau(e)=q$.
3. A upper-stub layer is a two-boundary graph with $V=B_{\text {upper }} \supsetneq B_{\text {lower }}$ and $E=\varnothing$. The vertices in $B_{\text {upper }} \backslash B_{\text {lower }}$ are called upper stubs.
4. A lower-stub layer is a two-boundary graph with $V=B_{\text {lower }} \supsetneq B_{\text {upper }}$ and $E=\varnothing$. The vertices in $B_{\text {lower }} \backslash B_{\text {upper }}$ are called lower stubs.

The advantage of elementary layers is that their X relationships are simple to describe.

If G is a graph with boundary, then a layering of G is a sequence of elementary layers G_{1}, \ldots, G_{N} such that

- $G_{1} \bowtie \cdots \bowtie G_{K}$ is a two-boundary graph corresponding to G;
- If G_{j} is a upper-stub layer and G_{k} is a lower-stub layer, then $j<k$.

If G has no edges and only boundary vertices, then we say that there is a layering of G with $B_{\text {upper }}(G)=B_{\text {lower }}(G)=V(G)$ such that there are zero elementary layers in the layering. This is a trivial case, but the definition will make the statements and proofs of results simpler to write.

For example, see Figure 2. For a nontrivial layering, the following properties are consequences of the definition:

- $B(G)=B_{\text {upper }}\left(G_{1}\right) \cup B_{\text {lower }}\left(G_{K}\right)$.
- For each $n, B_{\text {upper }}\left(G_{n}\right)=B_{\text {lower }}\left(G_{n-1}\right)$.
- If a vertex p is in G_{i} and G_{k} and $i<j<k$, then it is in G_{j},
- If $p \in I(G)$, then p must be incident to two vertical edges.

For finite graphs, any vertical-edge layer can be written as $G_{1} \bowtie \cdots \bowtie G_{K}$, where each G_{k} is a vertical edge layer with only one edge, and the same applies to horizontal-edge layers. Thus, we can assume if we wish that each vertical- or horizontal-edge layer in a layering has only one edge, and similarly each upperor lower-stub layer has only one stub.

An upper-boundary spike is an oriented edge e with $\iota(e) \in B_{\text {upper }}$ and $\tau(e) \notin$ $B_{\text {upper }}$. An upper-boundary edge is an edge with $\iota(e)$ and $\tau(e) \in B_{\text {upper }}$, and an upper-boundary stub is a disconnected boundary vertex in $B_{\text {upper }} \backslash B_{\text {lower }}$. If $G=G_{1} \bowtie G_{2}$ where G_{1} is a horizontal-edge layer with one edge, then G_{2} is obtained from G by an upper-boundary edge deletion; conversely, if G has an upper boundary edge, then it can be expressed as $G_{1} \bowtie G_{2}$, where G_{1} is a horizontal-edge layer. The same holds when G_{1} is an upper-stub layer with one stub, and G_{2} is obtained from G by deleting an upper-boundary stub; and when G_{1} is a vertical-edge layer, and G_{2} is obtained from G by removing an upperboundary spike e. For the vertical-edge layer, removing the upper-boundary spike may not actually be a spike contraction when we consider G as a graph with boundary: If $\tau(e) \in I$, then upper boundary spike is removed by a spike contraction, but if $\tau(e) \in B_{\text {lower }}$, then it is removed by a boundary edge deletion followed by a disconnected boundary vertex deletion of $\iota(e)$. We make the same definitions and observations for the lower boundary.

Joining elementary layers thus provides an interpretation of reduction operations in terms of subgraph partitions. In particular, a graph G is reducible to the empty graph if and only if there exists a layering of G.

Figure 2: A layering of a graph. The upper boundary is shown in blue and the lower boundary in red. The horizontal-edge layers are G_{1}, G_{3}, G_{7}, and G_{9}; the vertical-edge layers are G_{2}, G_{8}, and G_{10}; the upper-stub layer is G_{4} and the lower-stub is G_{6}.

7.2 Recovering Boundary Spikes and Boundary Edges

If $e \in E$, then an e-horizontal layering is a layering G_{1}, \ldots, G_{K} such that

- $e \in E\left(G_{j}\right)$ for some horizontal-edge layer G_{j}.
- G_{j} comes between the upper- and lower-stub layers. That is, if G_{k} is an upper-stub layer, then $k<j$, and if G_{j} is a lower-stub layer, then $k>j$.

Similarly, an e-vertical layering is a layering G_{1}, \ldots, G_{K} such that $e \in E\left(G_{j}\right)$ for some vertical edge layer G_{j} which comes between the upper- and lower-stub layers. Assume $\iota(e)$ is in the upper boundary of G_{j} and $\tau(e)$ is in the lower boundary.

Lemma 7.1. Let $\Gamma=(G, R)$ be an electrical network with bijective, zeropreserving conductances. Suppose e is a boundary spike and there is an ehorizontal layering of G. Then γ_{e} is uniquely determined by L.

Proof. Let G_{1}, \ldots, G_{K} be an e-horizontal layering. With some abuse of notation, I will use G to mean the two-boundary graph with $B_{\text {upper }}(G)=B_{\text {upper }}\left(G_{1}\right)$ and $B_{\text {lower }}(G)=B_{\text {lower }}\left(G_{K}\right)$. Note $\iota(e)$, the boundary vertex of the spike, must be in $B_{\text {upper }}(G) \cap B_{\text {lower }}(G)$.

Let $t \in \mathbb{R}$. I claim that there exists a harmonic (u, c) with

- $u_{\iota(e)}=t$.
- For $p \in B_{\text {upper }}(G) \backslash\{\iota(e)\}, u_{p}=0$.
- For $p \in B_{\text {upper }}(G) \backslash B_{\text {lower }}(G)$, the net current on p is zero.

Further, I claim that for any such $(u, c), u_{\tau(e)}$ must be zero. Hence, the net current on $\iota(e)$ is $\gamma_{e}\left(u_{\iota(e)}-u_{\tau(e)}\right)=\gamma_{e}(t)$. This implies that $\gamma_{e}(t)$ is uniquely determined by L; indeed, we only have to find some $(\phi, \psi) \in L$ which satisfies the boundary conditions listed above; we know that such a (ϕ, ψ) exists, and that whichever we choose, it will have $\psi_{\iota(e)}=\gamma_{e}(t)$. Since t was arbitrary, γ_{e} will be uniquely determined by L.

To prove the claims, let $x \in \mathbb{R}^{B_{\text {upper }}} \times \mathbb{R}^{B_{\text {upper }}}$ be the upper boundary data which has potential t on $u_{\iota(e)}$ and 0 elsewhere and current 0 on $B_{\text {upper }}$. Solving the above boundary value problem is equivalent to finding a (u, c) with upper boundary data x. (For $p \in B_{\text {upper }} \cap B_{\text {lower }}$ specifying the upper boundary current does not determine the net current since we did not specify the lower boundary current.) We construct (u, c) inductively, first defining it on G_{1}, then on $G_{1} \bowtie G_{2}$, and so on until we reach G_{K}. We rely on the fact that the relationship X of G equals $X_{K} \odot X_{K-1} \odot \cdots \odot X_{1}$, where X_{k} is the relationship of G_{k}.

For $n=1, \ldots, j-1$, we claim that there is a unique harmonic $\left(u_{n}, c_{n}\right)$ on $G_{1} \bowtie \cdots \bowtie G_{n}$ with upper boundary data x, and all potentials and currents are zero except that $u_{\iota(e)}=t$. Note that G_{1} is either a upper-stub, horizontal-edge, or vertical-edge network. In each case, any harmonic function on G_{1} with upper
boundary data zero must have lower boundary data zero, since we are dealing with bijective, zero-preserving conductances (and clearly, setting the potential and current to zero does define a harmonic function). However, the same holds if we change the potential of $\iota(e)$ to t. Indeed, if $1<j$, there are no edges incident to $\iota(e)$ in G_{1}, and $\iota(e)$ is on both boundaries of G_{1}. So the lower boundary data on G_{1} must be zero except on $\iota(e)$. The same argument applies for each G_{n}, $n=1, \ldots, j-1$. Each vertex and edge of $G_{1} \bowtie \cdots \bowtie G_{j-1}$ was in one of the layers, so it has potential or current zero, except for $\iota(e)$.

Note $\tau(e) \in B_{\text {lower }}\left(G_{j}\right)=B_{\text {upper }}\left(G_{1} \bowtie \cdots \bowtie G_{j-1}\right)$. The lower boundary data of $G_{1} \bowtie \cdots \bowtie G_{j-1}$ has potential 0 except on $\iota(e)$, and in particular, the potential on $\tau(e)$ must be zero.

Finally, we extend our harmonic function to $G_{1} \bowtie \cdots \bowtie G_{n}$ for $n \geq j$. If there is a harmonic $\left(u_{n}, c_{n}\right)$ on $G_{1} \bowtie \cdots \bowtie G_{n}$, we let its lower boundary data be $y_{n} . G_{n+1}$ is a lower-stub, horizontal-edge, or vertical edge layer with bijective conductances. For any such network, we can find a harmonic function on G_{n+1} with upper boundary data y_{n} (this function is not unique for a lowerstub layer), and joining it with $\left(u_{n}, c_{n}\right)$ produces a harmonic function on $G_{1} \bowtie$ $\cdots \bowtie G_{n+1}$.

Lemma 7.2. Let $\Gamma=(G, R)$ be an electrical network with bijective, zeropreserving conductances. Suppose e is a boundary edge and there is an e-vertical layering of G. Then γ_{e} is uniquely determined by L.

Proof. Let G_{1}, \ldots, G_{K} be an e-vertical layering. Observe that $\iota(e) \in B_{\text {upper }}(G)$ and $\tau(e) \in B_{\text {lower }}(G)$. Let $t \in \mathbb{R}$. I claim that there exists a harmonic (u, c) with

- A net current of t on $\iota(e)$.
- For $p \in B_{\text {upper }}(G), u_{p}=0$.
- For $p \in B_{\text {upper }}(G) \backslash B_{\text {lower }}(G) \backslash\{\iota(e)\}$, the net current on p is zero.

Further, I claim that for any such (u, c), the potential is zero on all neighbors of $\iota(e)$ except $\tau(e)$. This will imply that

$$
u_{\iota(e)}-u_{\tau(e)}=\gamma_{e}^{-1}(t)=\rho_{e}(t)
$$

Thus, $\rho_{e}(t)$ and hence γ_{e} are uniquely determined by L.
Let x be the upper boundary data with potentials and net currents zero except that the net current on $\iota(e)$ is $-t$. The boundary value problem above is equivalent to finding a harmonic (u, c) with upper boundary data x. As before, we define (u, c) inductively on $G_{1} \bowtie \cdots \bowtie G_{n}$, for $n=1, \ldots, K$. The potential and current must be zero on $G_{1} \bowtie \cdots \bowtie G_{j-1}$, except that the net current for $\iota(e)$ on the upper and lower boundary is $-t$. Since e is a vertical edge in G_{j}, $\iota(e)$ is not in $V\left(G_{n}\right)$ for any $n>j$. Thus, any edges incident to e must have been in the layers G_{1}, \ldots, G_{j-1}, so the potential on all neighbors of $\iota(e)$ except $\tau(e)$ is zero.

7.3 Sufficient Conditions for Recoverability

We can now state precisely what conditions we need in order to recover bijective, zero-preserving conductances using layerings. We say a graph G is recoverably layerable if there is a sequence of subgraphs $G=G_{0}, G_{1}, \ldots G_{K}$ such that

- G_{k+1} is obtained from G_{k} by a boundary spike contraction or boundary edge deletion.
- G_{K} has no edges, and all vertices are boundary vertices.
- If it G_{k+1} obtained by contracting a spike e, then there is an e-horizontal layering of G_{k}.
- If it G_{k+1} is obtained by deleting a boundary edge e, then there is an e-vertical layering of G_{k}.

Let e_{n} be the edge removed from G_{n} to obtained G_{n+1}, and let L_{n} be the set of boundary data for G_{n}. By Lemmas 7.1 and 7.2 , the conductance of e_{n} is uniquely determined by L_{n}; by Lemmas 6.5 and $6.6, L_{n+1}$ is uniquely determined by L_{n} and $\gamma_{e_{n}}$. Thus, by induction $\gamma_{e_{n}}$ is uniquely determined by L for all n, which means G is recoverable over the bijective, zero-preserving conductances.

A more symmetric and (it turns out) stronger condition is total layerability. We say G is totally layerable if for each edge e, there exists an e-horizontal layering, and an e-vertical layering. We will prove later that all critical circular planar graphs are totally layerable, as well as many others.

Proposition 7.3. If G is totally layerable, then it is recoverably layerable.
To prove this, note that a totally layerable graph must be layerable. Thus, there is a spike or boundary edge e. We can also find an e-horizontal or e-vertical layering. It only remains to show that after contracting the spike or deleting the boundary edge, the reduced graph is also totally layerable. To do this, we use the following lemma:

Lemma 7.4. Suppose S is a subgraph of G and $e \in E(S)$. If there is an ehorizontal (respectively e-vertical) layering of G, then there is an e-horizontal (respectively e-vertical) layering of S.

Proof. S can be obtained from G in three steps:

1. Change all vertices of $I(G) \backslash I(S)$ to boundary.
2. Delete all edges in $E(G) \backslash E(S)$, which must be boundary edges.
3. Delete all vertices in $V(G) \backslash V(S)$, which must be disconnected boundary vertices.

Thus, it suffices to show that if G^{\prime} is obtained from G by changing a single interior vertex to boundary, deleting a single boundary edge, or deleting a disconnected boundary vertex, and if G_{1}, \ldots, G_{K} is an e-horizontal / e vertical layering of G, then we can find such a layering for G^{\prime}.

Suppose G^{\prime} is obtained by changing an interior vertex p to boundary. Let G_{1}, \ldots, G_{K} be an e-horiztonal or e-vertical layering of G, and assume each layer has one edge or one stub. Let G_{j} be the layer which includes e. Then p is contained in some layer G_{n}, and either $n \leq j$ or $n \geq j$. Assume $n \leq j$; the other case is symmetrical. Since p is interior, there must be some vertical edge layer G_{m} with $p \in B_{\text {lower }}\left(G_{m}\right) \backslash B_{\text {upper }}\left(G_{m}\right)$. Then $m \leq n \leq j$. Let q be the adjacent vertex in $B_{\text {upper }}\left(G_{m}\right)$, and let e^{\prime} be the edge from q to p. We define elementary layers G_{k}^{\prime} as follows:

- For $k<m$, we obtain G_{k}^{\prime} from G_{k} by adding p to both the upper and lower boundary.
- Let G_{m}^{\prime} be the horizontal edge layer with $V\left(G_{m}^{\prime}\right)=V\left(G_{m}\right)$ and the single edge e^{\prime}. Let $G_{m}^{\prime \prime}$ be the upper-stub layer with $B_{\text {upper }}\left(G_{m}^{\prime \prime}\right)=V\left(G_{m}\right)$ and $B_{\text {lower }}\left(G_{m}^{\prime \prime}\right)=B_{\text {lower }}\left(G_{m}\right)=V\left(G_{m}\right) \backslash\{q\}$.

Then $G_{1}^{\prime}, \ldots, G_{m-1}^{\prime}, G_{m}^{\prime}, G_{m}^{\prime \prime}, G_{m+1}, \ldots, G_{K}$ form a layering of G^{\prime}. Each G_{k}^{\prime} for $k<m$ is the same type of elementary layer as G_{k}. The only upper-stub layer we added was $G_{m}^{\prime \prime}$ which comes before G_{j}, and e is in the same type of layer it was before (horizontal or vertical). Thus, the new layering is an e-horizontal or e-vertical layering as desired.

Suppose G^{\prime} is obtained from G by deleting a boundary edge e^{\prime}. Let G_{1}, \ldots, G_{K} and G_{j} be as before. Then e^{\prime} is in some G_{n}. Then we modify the layering by removing G_{n} to obtain a layering for G^{\prime}. If e^{\prime} is a vertical edge, assume $\iota\left(e^{\prime}\right)$ is on the upper boundary and $\tau\left(e^{\prime}\right)$ is on the lower boundary. For each $k<n, G_{k}$ must have $\iota\left(e^{\prime}\right)$ on both the upper and lower boundary. Let G_{k}^{\prime} be obtained from G_{k} by adding $\tau\left(e^{\prime}\right)$ to both boundaries. For $k>n, G_{k}$ must have $\tau\left(e^{\prime}\right)$ on both boundaries. Let G_{k}^{\prime} be obtained from G_{k} by adding $\iota\left(e^{\prime}\right)$ to both boundaries. Then $G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{n-1}^{\prime}, G_{n+1}^{\prime}, \ldots, G_{K}^{\prime}$ form a layering of G^{\prime}, and if the original layering was an e-vertical / e-horiztonal layering, so is the new one.

The case where G^{\prime} is obtained from G by deleting a disconnected boundary vertex is easy and is left to the reader.

Corollary 7.5. A subgraph of a totally layerable graph is totally layerable. A subgraph of a recoverably layerable graph is recoverably layerable.

Proof. The first statement follows easily from the lemma and definition of total layerability. For the second, use a similar technique to Lemma 6.2; the details are left to the reader.

8 Layerings, Connections, and Mixed Problems

8.1 Columns and Connections

Let P and Q be sets of boundary vertices. A connection from P to Q is a collection of disjoint boundary-to-boundary paths such that each path has its intial vertex in P and its terminal vertex in Q; each vertex in P is in exactly one of the paths, and each vertex in Q is in exactly one of the paths. There may be a vertex $p \in P \cap Q$; in this case, any connection from P to Q must include the length-0 path from p to itself. Thus, there is a one-to-one correspondence between connections from P to Q and connections from $P \backslash Q$ to $Q \backslash P$. If there is a connection from P to Q, then P and Q must have the same cardinality.

Let $M(P, Q)$ be the maximum number of paths in any connection that exists from some $P^{\prime} \subset P$ to some $Q^{\prime} \subset Q$. [1] shows that if G is a circular planar graph with positive linear conductances, then $M(P, Q)=\operatorname{rank} \Lambda_{P, Q}$, where Λ is the response matrix. This section generalizes their results by using layerings to relate $M(P, Q)$ to certain properties of L.

If G is a graph with boundary such that $B=P \cup Q$, then a layering from P to Q is a layering with $P=B_{\text {upper }}\left(G_{1}\right)$ and $Q=B_{\text {lower }}\left(G_{K}\right)$. For a layering from P to Q, the vertical edges can be joined together into embedded paths, which we call columns. For a given column, there are three possibilities:

- The column forms a boundary-to-boundary path with one endpoint in P and the other in Q.
- The column has one endpoint in P and the other is an upper stub.
- The column has one endpoint in Q and the other is a lower stub.

The width of the layering is the number of columns which form boundary-toboundary paths.

Proposition 8.1. If there is a layering from P to Q, then the width of the layering is $M(P, Q)$.

Proof. Let w be the width. The columns which form boundary-to-boundary paths furnish a connection of size w from some subset of P to some subset of Q, so $M(P, Q) \geq w$. To show the reverse inequality, note that since the upperstub layers come before the lower-stub layers, there must be some G_{n} such that $B_{\text {lower }}\left(G_{n}\right)=B_{\text {upper }}\left(G_{n+1}\right)$ has w elements, one from each of the columns which form boundary-to-boundary paths. Any path from a vertex in P to a vertex in Q must pass through every layer of the layering, so it must have a vertex in $B_{\text {lower }}\left(G_{n}\right)$. Thus, there can be at most w disjoint paths from a vertex in P to a vertex in Q, and $M(P, Q) \leq w$.

8.2 The Two-Boundary Relationship

Let P and Q be sets of boundary vertices with $B=P \cup Q$. Consider G as a twoboundary graph with $B_{\text {upper }}(G)=P$ and $B_{\text {lower }}(G)=Q$. Let $X \subset\left(\mathbb{R}^{B_{\text {upper }}} \times\right.$
$\left.\mathbb{R}^{B_{\text {upper }}}\right) \times\left(\mathbb{R}^{B_{\text {lower }}} \times \mathbb{R}^{B_{\text {lower }}}\right)$ be the two-boundary relationship defined in 7.1. Let π_{1} and π_{2} be the projections onto $\mathbb{R}^{B_{\text {upper }}} \times \mathbb{R}^{B_{\text {upper }}}$ and $\mathbb{R}^{B_{\text {lower }}} \times \mathbb{R}^{B_{\text {lower }}}$. For $x \in \mathbb{R}^{B_{\text {upper }}} \times \mathbb{R}^{B_{\text {upper }}}$, let $X^{x}=\{y:(x, y) \in X\}$, and for $y \in \mathbb{R}^{B_{\text {lower }}} \times \mathbb{R}^{B_{\text {lower }}}$, let $X_{y}=\{x:(x, y) \in X\}$. Then

Proposition 8.2. Let Γ be an eletrical network with bijective continuous conductances. Suppose there exists a layering from P to Q, and let X be as above. Let w be the width of the layering, s_{u} the number of upper stubs, and s_{ℓ} the number of lower stubs. Then
i. $\pi_{1}(X)$ is homeomorphic to $\mathbb{R}^{2 w+s_{u}}$.
ii. $\pi_{2}(X)$ is homeomorphic to $\mathbb{R}^{2 w+s_{\ell}}$.
iii. For any $x \in \pi_{1}(X), X^{x}$ is homeomorphic to $\mathbb{R}^{n_{\ell}}$.
$i v$. For any $y \in \pi_{2}(X), X_{y}$ is homeomorphic to $\mathbb{R}^{n_{u}}$.
Proof. Let G_{1}, \ldots, G_{K} be a layering from P to Q, such that each layer has one edge or one stub. Choose n such that for any upper-stub layer $G_{k}, k \leq n$, for any lower-stub layer $G_{k}, k>n$. Let X_{k} be the two-boundary relationship for G_{k}, so that $X=X_{K} \odot X_{K-1} \odot \cdots \odot X_{1}$. We parametrize X in terms of three things: $\xi \in \mathbb{R}^{B_{\text {lower }}\left(G_{n}\right)} \times \mathbb{R}^{B_{\text {lower }}\left(G_{n}\right)}, \eta \in \mathbb{R}^{S_{u}}$, and $\zeta \in \mathbb{R}^{S_{\ell}}$.

Choose ξ, η, ζ. Let $\xi_{k}=\xi$. If G_{n} is a horizontal-edge or vertical-edge layer, then there is a unique ξ_{k-1} with $\left(\xi_{n-1}, \xi_{n}\right) \in X_{n}$. If G_{n} is an upper-stub layer and p is the stub, then there is a unique ξ_{n-1} with $\left(\xi_{n-1}, \xi_{n}\right) \in X_{n}$, and the potential on p equal to η_{p}. We apply the same reasoning to G_{n-1}, G_{n-2}, and so on. Then we let $x=\xi_{0}$.

Similarly, if G_{n+1} is a horizontal-edge or vertical-edge layer, then there is a unique ξ_{n+1} with $\left(\xi_{n}, \xi_{n+1}\right) \in X_{n+1}$. If G_{n+1} is a lower-stub layer with stub p, then there is a unique ξ_{n+1} with $\left(\xi_{n}, \xi_{n+1}\right) \in X_{n+1}$ and potential ζ_{p} on p. Apply the same reasoning to G_{n+2}, \ldots, G_{K}, and let $y=\xi_{K}$.

The (x, y) thus constructed depends continuously on ξ, η, ζ. Actually, x only depends on ξ and η, and y depends on ξ and ζ. Conversely, for $k=1, \ldots, n$, ξ_{k} depends continuously on ξ_{k-1}, so ξ and η depend continuously on x, and similarly, ξ and ζ depend continuously on y. We have parametrized all of X. Since $\pi_{1}(X)$ is the set of x 's and $\pi_{2}(X)$ is the set of y 's, we have proven (i) and (ii).

For (iii), fix $x \in \pi_{1}(X)$. Then ξ and η are uniquely determined by x; however, ζ does not depend on x, so the set of y 's with $(x, y) \in X$ can be parametrized by ζ, and is thus homeomorphic to $\mathbb{R}^{n_{\ell}}$. The proof of (iv) is symmetrical.

Corollary 8.3. Under the above conditions, $M(P, Q)$ can be computed from L, and

$$
2 M(P, Q)=\operatorname{dim} \pi_{1}(X)-\operatorname{dim} X_{y}=\operatorname{dim} \pi_{2}(X)-\operatorname{dim} X^{x}
$$

Proof. Dimension here means the dimension of a topological manifold: If S is locally homeomorphic to \mathbb{R}^{k}, then we say $\operatorname{dim} S=k$. This is well-defined by the "invariance of domain" theorem from topology. The corollary follows
immediately, since $w=M(P, Q)$ and since X can be computed from L and vice versa.

Corollary 8.4. Let Γ be an electrical network with signed linear conductances, and suppose the Dirichlet problem has a unique solution. Let Λ be the response matrix, and let $P^{\prime}=P \backslash Q, Q^{\prime}=Q \backslash P$. If there is a layering from P to Q, then $\operatorname{rank} \Lambda_{P^{\prime}, Q^{\prime}}=M\left(P^{\prime}, Q^{\prime}\right)$.

8.3 Stubless Layerings

A stubless layering of a graph G is a layering with no upper-stub or lowerstub networks. For stubless layerings, the relationship between layerings, mixed problems, and connections is much stronger:

Theorem 8.5. Let G be a graph in which every interior vertex has degree ≥ 2. Let $B=P \cup Q$ and $P^{\prime}=P \backslash Q=B \backslash Q$ and $Q^{\prime}=Q \backslash P=B \backslash P$. The following are equivalent:

1. There is a stubless layering from P to Q.
2. For all bijective conductances, potentials on P and net currents on P^{\prime} determine a unique harmonic function.
3. For all (nonzero) signed linear conductances, potentials on P and net currents on P^{\prime} determine a unique harmonic function.
4. There is a unique connection from P to Q, and this connection uses all the interior vertices.

Remark. Let $(*)$ be the condition that potentials on P and net currents on P^{\prime} determine a unique harmonic function. In (2) and (3) it is important that (*) holds for all conductances. Even if it holds for most signed linear conductances, the stubless layering may not exist.

Proof. (1) $\Longrightarrow(2)$. Let X be the two-boundary relationship corresponding to P and Q. Since there are no stub layers, the reasoning in the previous Proposition implies that for bijective conductances, $\pi_{1}(X)$ is all of $\mathbb{R}^{P} \times \mathbb{R}^{P}$ and any $x \in \mathbb{R}^{P} \times \mathbb{R}^{P}$ determines a unique harmonic function on the network.
$(2) \Longrightarrow(3)$ by definition.
$(3) \Longrightarrow(4)$. For signed linear conductances $\left\{a_{e}\right\},(*)$ is equivalent to the submatrix $K_{P^{\prime} \cup I, Q^{\prime} \cup I}$ being invertible. Recall that

$$
\operatorname{det} K_{P^{\prime} \cup I, Q^{\prime} \cup I}=(-1)^{n} \sum_{F \in \mathcal{F}(P, Q)} \operatorname{sgn} \tau_{F} \prod_{e \in F} a_{e}
$$

I claim that if $(*)$ holds for all signed linear conductances, then $\mathcal{F}(P, Q)$ has exactly one element. Clearly, it has at least one element, since otherwise $\operatorname{det} K_{P^{\prime} \cup I, Q^{\prime} \cup I}$ is always zero. Suppose it has two elements F_{1} and F_{2}. There
is some edge $e_{0} \in F_{1} \backslash F_{2}$ or vice versa. Thus, we can assign a sign ± 1 to each edge, such that

$$
(-1)^{n} \operatorname{sgn} \tau_{F_{1}} \prod_{e \in F_{1}} \operatorname{sgn} e=1, \quad(-1)^{n} \operatorname{sgn} \tau_{F_{2}} \prod_{e \in F_{2}} \operatorname{sgn} e=-1
$$

Thus, by the same argument as in $\S 3.3$, there exist signed conductances with $\operatorname{det} K_{P^{\prime} \cup I, Q^{\prime} \cup I}=0$. So $\mathcal{F}(P, Q)$ has only one element.

Let F be this element. Each component contains either one vertex in $P \cap Q$, or it contains one vertex in P^{\prime} and one in Q^{\prime}. Each component is a tree, but I claim that each component is actually a path. If some component were not a path, then there would be an interior vertex p with only one edge e in F incident to it. By assumption, there is another edge e^{\prime} incident to p. The other endpoint of e^{\prime} is in some component of F, so $F \backslash\{e\} \cup\left\{e^{\prime}\right\}$ is another spanning forest. The components of F thus provide a connection from P to Q. The connection is unique because if there were another connection, then we could add edges to complete it to a different spanning forest. Thus, (3) implies (4).
$(4) \Longrightarrow(1)$. Suppose there is a unique connection from P to Q, and that this connection uses all the interior vertices. Our goal is to produce a stubless layering whose columns are the paths in the connection. Call the edges in the paths "vertical" and the other edges "horizontal." Let E^{*} be the set of oriented edges e such that either (a) e is horizontal or (b) e is vertical and oriented in the same direction as the paths, from P to Q. For $e, e^{\prime} \in E^{*}$ define $e \prec e^{\prime}$ if $\tau(e)=\iota\left(e^{\prime}\right)$ and at least one of the oriented edges is vertical.

I claim that there does not exist a sequence $e_{1}, \ldots, e_{K} \in E^{*}$ with

$$
e_{1} \prec e_{2} \prec \cdots \prec e_{K} \prec e_{1} .
$$

Call such a sequence a precedence loop. Suppose for the sake of contradiction a precedence loop exists, and that $e_{1}, \ldots, e_{K} \in E^{*}$ is the precedence loop with the minimum number of horizontal edges. The idea is to use the precedence loop to construct a different connection from P to Q, as shown in Figure 3. However, we have many details to attend to first. Observe:

- Every precedence loop must have horizontal edges.
- If there were $j<k$ with $e_{j}=e_{k}$, then $e_{1}, \ldots, e_{j}, e_{k+1}, \ldots, e_{K}$ and e_{j+1}, \ldots, e_{k} would both be precedence loops. So e_{j+1}, \ldots, e_{k} would be a precedence loop with fewer horizontal edges. Thus, the oriented edges in our precedence loop must be distinct.
- Call a subset of $\{1, \ldots, K\}$ an interval if it has the form $\{j, \ldots, k\}$ or $\{1, \ldots, j, k, \ldots, K\}$ for some $1 \leq j<k \leq K$. If α is a path of the connection, let $I_{\alpha}=\left\{k: e_{k}\right.$ is in $\left.\alpha\right\}$. Then I_{α} is an interval. For suppose not. By reindexing if necessary, we can assume e_{K} is not in α. Then there exist $j<k<\ell<m$ such that e_{j-1} is a horizontal edge, e_{j}, \ldots, e_{k} are in α, e_{k+1} is a horizontal edge; $e_{\ell-1}$ is a horizontal edge, e_{ℓ}, \ldots, e_{m} are in α, and e_{k+1} is a horizontal edge. We can assume that e_{j}, \ldots, e_{k} occur earlier

Figure 3: Proof of Theorem 8.5: (4) \Longrightarrow (1)

in α than e_{ℓ}, \ldots, e_{m} (earlier meaning closer to P). So there is a sequence of edges $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$ in α with $e_{1}^{\prime} \prec e_{2}^{\prime} \prec \cdots \prec e_{n}^{\prime}, e_{1}^{\prime}=e_{j}$, and $e_{n}^{\prime}=e_{m}$. Thus, we obtain a precedence loop

$$
e_{1}, \ldots, e_{j-1}, e_{j}=e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}=e_{m}, e_{m+1}, \ldots, e_{K},
$$

which has fewer horizontal edges than the original, since we removed at least one horizontal edge e_{k+1} and added only vertical edges.

- Let $v_{j}=\tau\left(e_{j}\right)$. Each v_{j} is in exactly one α. Since each v_{j} must be the endpoint of some vertical edge, it follows from the previous observation that for a given α, the set of j with v_{j} in α is an interval. Thus, none of the v_{j} 's in the same path can be equal to each other.

Now we use the loop to create a different connection from P to Q. Let p_{1}, \ldots, p_{N} be the vertices in P and q_{1}, \ldots, q_{N} be the vertices in Q. Let α_{n} be the path from p_{n} to q_{n}. If the precedence loop does not contain any edges of α_{n}, let $\alpha_{n}^{\prime}=\alpha_{n}$. If the loop contains some edges e_{j}, \ldots, e_{k} from α_{n}, let α_{n}^{\prime} start at p_{n}, follow α_{n} until it reaches the first vertex in the loop $\left(v_{j-1}\right)$, then follow the horizontal edge \bar{e}_{j-1} to a vertex (v_{j-2}) in a different path α_{m}, and finally follow α_{m} until it reaches q_{m}. It follows from the properties listed above that the paths α_{n}^{\prime} are disjoint.

Therefore, (4) implies that there is no precedence loop. Thus, there must be some $e_{1} \in E^{*}$ such that $e^{\prime} \nprec e$ for all $e^{\prime} \in E^{*}$.

- Suppose e_{1} is vertical. Then there are no vertical or horizontal edges incident to $\iota(e)$. Therefore, e_{1} is an upper boundary spike. We define a vertical-edge layer G_{1} with $B_{\text {upper }}\left(G_{1}\right)=P$ and $B_{\text {lower }}\left(G_{1}\right)=P \backslash\left\{\iota\left(e_{1}\right)\right\} \cup$ $\left\{\tau\left(e_{1}\right)\right\}$ and $E\left(G_{1}\right)=\left\{e_{1}, \bar{e}_{1}\right\}$.
- Suppose e_{1} is horizontal. Then there is no vertical edge $e \in E^{*}$ with $\tau(e)$ equal to one of the endpoints of e_{1}. Thus, e_{1} must be an upperboundary edge. We define a horizontal-edge layer G_{1} with $B_{\text {upper }}\left(G_{1}\right)=$ $B_{\text {lower }}\left(G_{1}\right)=P$ and $E\left(G_{1}\right)=\left\{e_{1}, \bar{e}_{1}\right\}$.

Next, we find an edge e_{2} such that for all $e \in E^{*}, e \neq e_{1}$, we have $e \nprec e_{2}$. In a similar way, we define an elementary layer with edge e_{2}, and continue inductively until all edges of G have been exhausted. The resulting layers G_{1}, \ldots, G_{K} form a stubless layering of G from P to Q.

This result is rather surprising. Two purely geometric conditions (1) and (4) are equivalent to the algebraic conditions (2) and (3). And it is not at all obvious that (2) and (3) should be equivalent since bijective conductances can behave much worse than signed linear conductances. Nor is it immediate that (1) and (4) are equivalent, and one consequence of this is that a unique connection in a flower cannot use all the interior vertices. However, it is relatively easy to show directly that $(1) \Longrightarrow(4)$, and I leave this as an exercise.

9 Critical Circular Planar Networks

9.1 Medial Graphs

For any graph G, there is a corresponding topological space \mathcal{G}, the quotient space obtained from $E \times[0,1]$ by identifying (e, t) with $(\bar{e}, 1-t)$ and identifying $(e, 0)$ and $\left(e^{\prime}, 0\right)$ if $\iota(e)=\iota\left(e^{\prime}\right)$. An embedding of a graph on a surface with boundary S is a function $f: \mathcal{G} \rightarrow \bar{S}$ which is a homeomorphism onto its image, such that

- $f(x) \in \partial S$ if and only if x corresponds to a boundary vertex.
- Each component of $S \backslash f(\mathcal{G})$ is homeomorphic to an open disc.

In the future, we will identify G, \mathcal{G}, and $f(\mathcal{G})$.
The components of $S \backslash G$ are called cells. The boundary of each cell is a union of edges of G and pieces of ∂S. Two cells \mathcal{X} and \mathcal{Y} are adjacent if they share an edge (that is, there is an edge contained in $\overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$). A two-coloring of the cells is an assignment to each cell of a color "white" or "black," such that adjacent cells have opposite colors. Not all graphs admit such a coloring.

If S is a surface with boundary, then a medial graph on S is a graph embedded on S such that each interior vertex has valence 4 and each boundary vertex has valence 1, together with a two-coloring of the cells. If C is a curve on \bar{S} or any subset of \bar{S}, we say a medial cell \mathcal{X} touches C if $\overline{\mathcal{X}} \cap C \neq \varnothing$. If G is embedded on S, then we say a medial graph \mathcal{M} is compatible with G if the following conditions are satisfied:

- Each edge of G contains exactly one interior vertex of \mathcal{M}, not at either of the endpoints of the edge, and each interior vertex of \mathcal{M} is contained in one edge of G.
- The edges of \mathcal{M} only intersect G at their endpoints.
- Each black cell of \mathcal{M} contains exactly one vertex of G, and each vertex of G is contained in a black cell.
- Each white cell of \mathcal{M} is contained a cell of G, and each cell of G contains exactly one white cell of \mathcal{M}.
- A vertex of G is a boundary vertex if and only if its medial cell touches ∂S.

According to this definition, there may be more than one medial graph for a given G with a given embedding.

If e and e^{\prime} are medial edges incident to an interior vertex v of a medial graph on S, we say e and e^{\prime} are adjacent (at v) if there is a cell \mathcal{X} with $e, e^{\prime} \subset \partial \mathcal{X}$. Otherwise, e and e^{\prime} are opposite (at v). A geodesic arc is a path in \mathcal{M} with vertices and oriented edges $v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{K}, v_{K}$ such that e_{k} and e_{k+1} are opposite at v_{k} and e_{1}, \ldots, e_{K} are distinct. A geodesic is a geodesic arc such that either $v_{0}=v_{K}$ or v_{0} and v_{K} are both boundary vertices.

If G is embedded on S with a medial graph \mathcal{M}, then subgraph partitions of G naturally arise from partitions of the surface S. Suppose C is a simple curve on S which divides it into two regions S_{1} and S_{2} which are themselves surfaces with boundary. Assume no vertices of \mathcal{M} are on C, that C intersects each edge of \mathcal{M} in finitely many points, and that for each medial cell $\mathcal{X}, \mathcal{X} \cap S_{1}$ and $\mathcal{X} \cap S_{2}$ are homeomorphic to D. For $j=1,2$, define a graph G_{j} by letting $V\left(G_{j}\right)$ be the set of vertices whose medial cells intersect $S_{j}, E\left(G_{j}\right)$ the set of oriented edges whose medial vertices are in S_{j}, and $B\left(G_{j}\right)$ the set of vertices whose medial cells touch ∂S_{1}. Then G_{1} and G_{2} form a subgraph partition of G. Similarly, we can divide S into surfaces S_{1}, \ldots, S_{K} and find a corresponding subgraph partition of G.

We can embed G_{j} into S_{j} by restricting the embedding of G and altering it slightly. Then there is compatible medial graph \mathcal{M}_{j} whose cells are the intersections of the cells of \mathcal{M} with S_{j}. However, the embeddings for G_{1} and G_{2} thus constructed may or may not be consistent with each other. For example, if G is divided into three subgraphs G_{1}, G_{2}, G_{3}, one medial black cell may be cut into three regions with no common boundary points, and in this case it is impossible to find a position for the vertex which will work for all three subgraphs. In this case, it is best not to worry about the position of the vertices, but instead focus on the medial cells.

For a graph G and surface S and $C \subset \partial S$, let B_{C} be the set of vertices whose medial cells touch C. If G, G_{1}, and G_{2} are as above, define two-boundary graphs by letting

$$
\begin{aligned}
B_{\text {upper }}\left(G_{1}\right) & =B_{\partial S_{1} \cap \partial S}\left(G_{1}\right) \\
B_{\text {lower }}\left(G_{1}\right) & =B_{C}\left(G_{1}\right) \\
B_{\text {upper }}\left(G_{2}\right) & =B_{C}\left(G_{2}\right) \\
B_{\text {lower }}\left(G_{2}\right) & =B_{\partial S_{2} \cap \partial S}\left(G_{2}\right) .
\end{aligned}
$$

Then $G=G_{1} \bowtie G_{2}$. In particular, we may be able to create layerings of a graph embedded on S by constructing curves which divide S into surfaces S_{1}, \ldots, S_{K} such that each G_{k} is an elementary layer.

9.2 Total Layerability

A graph is circular planar if it can be embedded in the unit disc D, where ∂D is the unit circle. Equivalently, it is circular planar if it can be embedded in some surface with boundary S with \bar{S} homeomorphic to \bar{D}. If G is circular planar and every component has a boundary vertex, then there exists a compatible medial graph on D; the case where G is connected is proven in [1] and we leave the rest to the reader.

A lens in a medial graph is a closed path in \mathcal{M} formed by one or two geodesic arcs with distinct edges. A medial graph is lensless if it has no lenses; equivalently, it is lensless if every geodesic is a boundary-to-boundary path and no two geodesics intersect more than once.

A CP graph with a lensless medial graph is called critical (in [1], criticality is a different condition, but it is equivalent to the medial graph being lensless). [1] proves that a circular planar graph is recoverable over positive linear conductances if and only if there is a compatible lensless medial graph, and in fact, if the medial graph has a lens, then the graph is $Y-\Delta$ equivalent to a graph with a parallel or series connection. [4] shows that critical circular planar (CCP) graphs are recoverable over bijective zero-preserving conductances. We will give an alternative proof of this last result by showing that CCP graphs are totally layerable.

We start with some definitions and lemmas: Suppose that $C_{\text {upper }}$ and $C_{\text {lower }}$ are two arcs which partition ∂D. Let $B_{\text {upper }}$ and $B_{\text {lower }}$ be the sets of vertices of G whose medial cells touch $C_{\text {upper }}$ and $C_{\text {lower }}$ respectively. Then $B_{\text {upper }}$ and $B_{\text {lower }}$ are called a circular pair. They intersect in at most two vertices. We will construct layerings between circular pairs.

Lemma 9.1. Let G be $C C P$ with medial graph \mathcal{M}. Let $C_{\text {upper }}, C_{\text {lower }}, B_{\text {upper }}$, and $B_{\text {lower }}$ be as above. Suppose every geodesic has at least one endpoint on $C_{\text {upper }}$. Then there exists a layering from $B_{\text {upper }}$ to $B_{\text {lower }}$ with no lower-stub layers.

Proof. We can assume that if a black medial cell \mathcal{X} touches $C_{\text {upper }}$, then $\overline{\mathcal{X}} \cap$ $C_{\text {upper }}$ is an arc of $C_{\text {upper }}$, and the same holds for the lower boundary. Indeed, if there is a black medial cell such that $\overline{\mathcal{X}} \cap C_{\text {upper }}$ consists of two or more arcs, then it is not hard to change the medial cell so that $\overline{\mathcal{X}} \cap C_{\text {upper }}$ has only one arc, and we can do this without affecting $B_{\text {upper }}$ and $B_{\text {lower }}$ or the hypotheses of the lemma, and the same holds for the lower boundary.

Our goal is to construct the layering inductively. First, we show that if there is at least one edge in G or one geodesic with both endpoints on the upper-boundary, then there exists an upper-boundary spike, upper-boundary edge, or upper-boundary stub. Observe the following:

- Suppose a geodesic consists of one medial edge and has both endpoints on the upper boundary. Then this geodesic together with an arc of $C_{\text {upper }}$ bound a medial cell, and the corresponding vertex of G is an upperboundary stub. We will call this cell a upper-boundary stub-cell.
- Suppose there is a triangular medial cell bounded by two medial edges and an arc of $C_{\text {upper }}$. Then two medial vertices of the cell are on $C_{\text {upper }}$ and the other is interior. We call such a medial cell an empty upper-boundary triangle. Then the corresponding vertex of G is a valence 1 vertex in $B_{\text {upper }} \backslash B_{\text {lower }}$. Hence, the edge of G corresponding to the medial vertex of the triangle is an upper-boundary spike or upper-boundary edge.
- If there is a white empty upper-boundary triangle, and v is the interior medial vertex of the cell, then the edge of G corresponding to v is an upper-boundary edge.

Therefore, it suffices to show that there is an upper-boundary stub-cell or an empty upper-boundary triangle. If there is an upper-boundary stub-cell, we are done.

Suppose there is no upper-boundary stub-cell. Then there is at least one edge in G; then there is a medial vertex v at which two geodesics g_{0} and g_{0}^{\prime} intersect. Choose an orientation of g_{0} with a starting point on $C_{\text {upper }}$, and let g_{1} be the first geodesic which g_{0} intersects. Since g_{0} and g_{1} have an endpoint on the upper boundary, there are geodesic arcs g_{0}^{\prime} and g_{1}^{\prime} contained in g_{0} and g_{1} such that g_{0}^{\prime} and g_{1}^{\prime} have one endpoint at v and one on $C_{\text {upper }}$. Since \mathcal{M} is lensless, g_{0}^{\prime} and g_{1}^{\prime} only intersect at v. There there is an arc C_{0} of the upper boundary such that C_{0}, g_{0}, and g_{1} form a simple closed curve and by the Jordan curve theorem, they bound a triangular region T_{0}. Orient g_{1}^{\prime} starting at $C_{\text {upper }}$ and ending at v, and let g_{2} be the first geodesic g_{1}^{\prime} intersects. Then there is a triangular region $T_{1} \subset T_{2}$ bounded by an arc of g_{1} and an arc of g_{2} and an arc of $C_{\text {upper }}$. Continuing inductively to define g_{3}, g_{4}, \ldots and $T_{2}, T_{3}, T_{4}, \ldots$ Each T_{n} is a union of medial cells and edges, so there must be some n for which $T_{n}=T_{n+1}$. Let $R_{0}=T_{n}$. Then the geodesic arcs which bound R_{0} must consist of only one medial edge apiece.

So either R_{0} is an empty upper-boundary triangle or it fully contains some geodesics. In the first case, we are done. In the second, R_{0} must contain more than one geodesic; otherwise, it would contain a stub-cell, contrary to our assumption. Thus, we can we find an edge of G contained in R_{0}. Then we repeat the above argument to find a new triangle $R_{1} \subset R_{0}$ bounded by two medial edges and an arc of $C_{\text {upper }}$. If this is not an empty upper-boundary triangle, then there is an $R_{2} \subset R_{1}$, and so on. The process must terminate after finitely many steps because each R_{n} contains strictly fewer medial cells than R_{n-1}. Thus, some R_{n} is an empty boundary triangle. Therefore, G must have an upper-boundary spike, upper-boundary edge, or upper-boundary stub.

Given G, we construct the layering as follows: If every geodesic has one endpoint on each boundary and there are no interior vertices in the medial graph, then every vertex of G is on both boundaries, and G has no edges. So there exists a trivial layering of G. Otherwise, there is an upper-boundary spike, upperboundary edge, or upper-boundary stub. Thus, we can write $G=G_{1} \bowtie G^{\prime}$ where G_{1} is a vertical-edge, horizontal-edge, or upper-stub layer.

In fact, the subgraph partition can be constructed by dividing the disc into two pieces using a curve $C_{\text {upper }}^{\prime}$ with the same endpoints as $C_{\text {upper }}$ and $C_{\text {lower }}$. In the case of an upper-boundary stub, we make $C_{\text {upper }}^{\prime}$ stay close to $C_{\text {upper }}$ except near the upper-boundary stub-cell, so that the region bounded by $C_{\text {upper }}^{\prime}$ and $C_{\text {upper }}$ contains the stub-cell, but all interior vertices of \mathcal{M} are contained in the other region. Similarly, for an empty upper-boundary triangle, we make $C_{\text {upper }}^{\prime}$ stay close to $C_{\text {upper }}$ except to "skirt" the triangle. Then the region D^{\prime} bounded by $C_{\text {lower }}$ and $C_{\text {upper }}^{\prime}$ is homeomorphic to D and has an embedded medial graph \mathcal{M}^{\prime} formed by intersecting the cells of \mathcal{M} with D^{\prime}. Then G^{\prime} can be embedded in D^{\prime} with medial graph \mathcal{M}^{\prime}.

It is easy to verify that G^{\prime} and \mathcal{M}^{\prime} satisfy the original hypotheses. Thus, we can continue inductively to divide G into into elementary layers until there are
no more edges in G and no more geodesics with both endpoints on the upper boundary curve.

Theorem 9.2. Critical circular planar graphs are totally layerable.
Proof. Let G be CCP with a lensless medial graph \mathcal{M}. Let e be any oriented edge of G, and let v be the corresponding medial vertex. Let g be one of the geodesics which intersects at v, and let r and s be its endpoints. Let r^{\prime} be a point on the boundary circle on the counterclockwise side of r, so that r^{\prime} is closer to r than any geodesic endpoint (other than r itself), and let s^{\prime} similarly be on the counterclockwise side of s. Let $C_{\text {upper }}$ be the counterclockwise arc from r^{\prime} to s^{\prime} and let $C_{\text {lower }}$ be the counterclockwise arc from s^{\prime} to r^{\prime}.

Then g divides D into two regions; call the region bounded by g and $C_{\text {upper }}$ "above g " and the other region "below g." Let C be a curve which starts at r^{\prime} crosses g once and ends at s^{\prime}; let it cross g on the medial edge incident to v which is closest to r^{\prime}; we can arrange that C is so close to g that there are no medial vertices above g and below C, or below g and above C. Let C^{\prime} start at r^{\prime}, cross g on the medial edge incident to v closest to s^{\prime}, and end at s^{\prime}; we can arrange that C^{\prime} is always above C and the only medial vertex in the region between them is v.

Then the subgraph of G corresponding to the region between C and C^{\prime} is either a vertical-edge layer or horizontal-edge layer with C as the lower boundary curve and C^{\prime} as the upper boundary curve. If it is a vertical-edge layer, then by putting r^{\prime} and s^{\prime} on the clockwise side of g instead and performing a similar contruction would produce a horiztonal-edge layer, and vice versa. Let G_{0} be this elementary layer; let H be the subgraph in the region bounded by C and $C_{\text {lower }}$ and let H^{\prime} be the subgraph in the region bounded by C^{\prime} and $C_{\text {upper }}$.

Since each other geodesic only intersects g once, we can arrange that no geodesic intersects C twice or C^{\prime} twice. Then every geodesic in H^{\prime} has one endpoint on $C_{\text {upper }}$. Hence, by the Lemma, there is a layering $H_{1}^{\prime}, \ldots, H_{j}^{\prime}$ of H^{\prime} with $C_{\text {upper }}$ as the upper boundary curve and C^{\prime} as the lower boundary curve, and no lower-stub layers. Similarly, there is a layering $H_{1}, \ldots, H_{k}^{\prime}$ of H with C as the upper boundary curve and $C_{\text {lower }}$ as the lower boundary curve, and no upper-stub layers. Then $H_{1}^{\prime}, \ldots, H_{j}^{\prime}, G_{0}, H_{1}, \ldots, H_{k}$ is a layering of G from $B_{\text {upper }}$ to $B_{\text {lower }}$ which is an e-vertical or e-horizontal layering, depending on which type of layer G_{0} is. Thus, there are e-horizontal and e-vertical layerings of G.

Remark. The layerings G_{1}, \ldots, G_{K} constructed in the above proofs have a corresponding division of D into regions S_{1}, \ldots, S_{K} such that G_{k} is the subgraph of G corresponding to the region S_{k}. For each S_{k}, there are arcs $C_{\text {upper }}\left(S_{k}\right)$ and $C_{\text {lower }}\left(S_{k}\right)$ of the boundary curve which correspond to $B_{\text {upper }}\left(G_{k}\right)$ and $B_{\text {lower }}\left(G_{k}\right)$, and $C_{\text {lower }}\left(S_{k}\right)=C_{\text {upper }}\left(S_{k-1}\right)$.

9.3 The Cut-Point Lemma

[1] shows the following: Suppose G is a CCP graph with positive linear conductances. If we know the response matrix Λ and the order of the boundary vertices and geodesic endpoints on the boundary circle, then we can determine the graph up to $Y-\Delta$ equivalence. The key observations, in my terminology, are:

1. Suppose P and Q are a circular pair corresponding to a partition $C_{\text {upper }}$ and $C_{\text {lower }}$ of the boundary circle. Then the maximum size connection $M(P, Q)$ can be determined from L.
2. The number of geodesics which have both endpoints on $C_{\text {upper }}$ is uniquely determined by $M(P, Q)$.
3. If we know the number of geodesics with both endpoints on $C_{\text {upper }}$ for all possible choices of $C_{\text {upper }}$, we can determine which points on the boundary circle are endpoints of the same geodesic.
4. This will determine G up to $Y-\Delta$ equivalence.

We will generalize (1) to nonlinear conductances and present another proof of the "cut-point lemma" used in (2). For (3) and (4), refer to [1].

Lemma 9.3. Let G be $C C P$. If P and Q are a circular pair, then there is a layering from P to Q.

Proof. If P and Q are a circular pair, then there are $\operatorname{arcs} C_{\text {upper }}$ and $C_{\text {lower }}$ which partition the boundary circle. If a geodesic g has both endpoints on $C_{\text {upper }}$, then there is a region R_{g} bounded by g and some arc of $C_{\text {upper }}$; if h has both endpoints on $C_{\text {lower }}$ it cannot intersect g; otherwise, it would have to both enter and exit R_{g}, and hence would intersect g in two places, creating a lens. Thus, the geodesics with both endpoints on the upper boundary and those with both endpoints on the lower boundary cannot intersect. As the reader may verify, it is possible to construct a simple curve C with endpoints r and s such that the geodesics with both endpoints on the upper boundary are contained in the region R_{1} bounded by C and $C_{\text {upper }}$, the geodesics with both endpoints on the lower boundary are contained in the region R_{2} bounded by C and $C_{\text {lower }}$, and no geodesic intersects C more than once. Then as in the previous section we construct a layering of the subgraph G_{1} in R_{1} with $C_{\text {upper }}$ as the upper boundary curve and C as the lower boundary curve and no lower-stub layers, and a layering of the subgraph G_{2} in the other region with no upper-stub layers. These join to form a layering of G from P to Q.

Corollary 9.4. Let G be $C C P$, and let Γ be a network on G with bijective continuous conductances. If P and Q are a circular pair, then $M(P, Q)$ is uniquely determined by L.

Proof. This follows from Corollary 8.3.

Corollary 9.5 (Cut-Point Lemma). Let $C_{\text {upper }}$ and $C_{\text {lower }}$ be a partition of the boundary circle into arcs. Let P and Q be the corresponding sets of boundary vertices. The number of geodesics with both endpoints on $C_{\text {upper }}$ is $|P|-$ $M(P, Q)$.

Proof. Let G_{1}, \ldots, G_{K} be a layering from P to Q constructed as above. As before, there are corresponding regions S_{1}, \ldots, S_{K} in D and upper and lower boundary curves for each S_{k}. Let $G_{k}^{\prime}=G_{1} \bowtie \cdots \bowtie G_{k}$, and let S_{k}^{\prime} be the corresponding region. For each k, let m_{k} be the maximum size connection in G_{k} from the upper boundary, let r_{k} be the number of geodesics with both endpoints on the upper boundary, and let $n_{k}=\left|B_{\text {upper }}\left(G_{k}\right)\right|$. Let j be the index where $C_{\text {upper }}\left(S_{j}\right)=C$. For $k \leq j$, we prove that $r_{k}=n_{k}-m_{k}$ by induction. Since $G_{j} \bowtie \cdots \bowtie G_{K}$ has no upper-stub layers, the maximum connection (that is, the width of the layering) is the number of upper-boundary vertices, so $m_{j}=n_{j}$; there are no geodesics with both endpoints on the upper boundary, so $r_{j}=0=n_{j}-m_{j}$, which completes the base case. If G_{k-1} is a vertical-edge or horizontal-edge layer, then $m_{k-1}=m_{k}, n_{k-1}=n_{k}$, and $r_{k-1}=r_{k}$. If G_{k-1} is an upper-stub layer, then G_{k-1}^{\prime} has one more geodesic on the upper boundary than G_{k}^{\prime}; it also has one more vertex on the upper boundary; but the maximum connection is unchanged. Hence, $r_{k-1}=r_{k}+1=n_{k}-m_{k}+1=n_{k-1}-m_{k-1}$. It follows that the number of geodesics with both endpoints on $C_{\text {upper }}$, which is r_{1}, equals $n_{1}-m_{1}=|P|-M(P, Q)$.

The upshot is that we can determine the $Y-\Delta$ equivalence class of a CCP network from L and the arrangement of the boundary vertices for bijective continuous conductances. If they are bijective, continuous, and zero-preserving, we can in theory attempt the recovery process for each member of the $Y-\Delta$ equivalence class and discover by trial and error which ones could have been the original graph G. In the positive linear case, any member could have been the original graph, but this is not true in general. A question for further research is when exactly the original graph is uniquely determined by L.

10 Some Graph Contructions

10.1 Covers

Let G and H be graphs, with or without boundary. A graph morphism f : $H \rightarrow G$ consists of two functions $f_{V}: V(H) \rightarrow V(G)$ and $f_{E}: E(H) \rightarrow E(G)$ such that $\iota\left(f_{E}(e)\right)=f_{V}(\iota(e))$ and $\overline{f_{E}(e)}=f_{E}(\bar{e})$. A graph morphism is a covering map if for each vertex p, f_{E} restricted to $\{e: \iota(e)=p\}$ is bijective. For graphs with boundary, we require in addition that $f_{V}(p) \in B(G)$ if and only if $p \in B(H)$. If there is a covering map $f: H \rightarrow G$, then H is said to be a cover of G.

I will write f for both f_{V} and f_{E} since the meaning will be clear from the context. If $f: H \rightarrow G$ is a graph morphism and G^{\prime} is a subgraph of G, then we
define $f^{-1}\left(G^{\prime}\right)$ by

$$
\begin{aligned}
& V\left(f^{-1}\left(G^{\prime}\right)\right)=f^{-1}\left(V\left(G^{\prime}\right)\right) \\
& E\left(f^{-1}\left(G^{\prime}\right)\right)=f^{-1}\left(E\left(G^{\prime}\right)\right) \\
& B\left(f^{-1}\left(G^{\prime}\right)\right)=f^{-1}\left(B\left(G^{\prime}\right)\right)
\end{aligned}
$$

If G^{\prime} is a two-boundary graph and is a subgraph of G as a graph with boundary, we define $f^{-1}\left(G^{\prime}\right)$ similarly, with

$$
\begin{aligned}
& B_{\text {upper }}\left(f^{-1}\left(G^{\prime}\right)\right)=f^{-1}\left(B_{\text {upper }}\left(G^{\prime}\right)\right) \\
& B_{\text {upper }}\left(f^{-1}\left(G^{\prime}\right)\right)=f^{-1}\left(B_{\text {upper }}\left(G^{\prime}\right)\right)
\end{aligned}
$$

Suppose $f: \tilde{G} \rightarrow G$ is a covering map. The following are easy to verify:

- If G_{1}, \ldots, G_{K} are a subgraph partition of G, then $f^{-1}\left(G_{1}\right), \ldots, f^{-1}\left(G_{K}\right)$ are a subgraph partition of \tilde{G}.
- G is reducible to the empty graph if and only if \tilde{G} is reducible to the empty graph.
- If $G=G_{1} \bowtie G_{2}$, then $\tilde{G}=f^{-1}\left(G_{1}\right) \bowtie f^{-1}\left(G_{2}\right)$.
- The preimage of an elementary layer is an elementary layer of the same type.
- If G_{1}, \ldots, G_{K} are a layering of G, then $f^{-1}\left(G_{1}\right), \ldots, f^{-1}\left(G_{K}\right)$ are a layering of \tilde{G}.
- If G is recoverably layerable, then so is \tilde{G}.
- If G is totally layerable, then so is \tilde{G}.

It is easy to construct covers of a given graph G. Choose an integer n, and define the sets vertices and edges for our cover by

$$
\begin{aligned}
& V(\tilde{G})=V(G) \times\{1, \ldots, n\} \\
& E(\tilde{G})=E(G) \times\{1, \ldots, n\} \\
& B(\tilde{G})=B(G) \times\{1, \ldots, n\}
\end{aligned}
$$

We still need to define ι and $^{-}$for \tilde{G}. For $p \in V(G)$, denote the corresponding vertices of \tilde{G} by p_{1}, \ldots, p_{n}, and for $e \in E(G)$, let e_{1}, \ldots, e_{n} be the corresponding edges. Let $\iota\left(e_{j}\right)=(\iota(e))_{j}$. For each $e \in E(G)$, choose a permutation $\sigma_{e} \in S_{n}$, such that $\sigma_{\bar{e}}=\sigma_{e}^{-1}$, and let $\overline{e_{j}}=(\bar{e})_{\sigma_{e}(j)}$. Then setting $f\left(p_{j}\right)=p$ and $f\left(e_{j}\right)=e$ defines a covering map $\tilde{G} \rightarrow G$.

Actually, any (finite) cover of a connected graph G can be constructed this way. Suppose G is connected and $\iota(e)=p$ in G. For each $p^{\prime} \in f^{-1}(p)$, there is exactly one $e^{\prime} \in f^{-1}(e)$ with $\iota\left(e^{\prime}\right)=p^{\prime}$. Thus, $f^{-1}(p)$ and $f^{-1}(e)$ have the same cardinality. Since G is connected, $f^{-1}(p)$ and $f^{-1}(e)$ have the same cardinality

Figure 4: Removing a lens using a covering map.

A lens in \mathcal{M}. Corresponding geodesics in $h^{-1}(\mathcal{M})$.
for all vertices and edges. Let n be the cardinality (called the rank or number of sheets of the cover). For each vertex p, let p_{1}, \ldots, p_{n} be the elements of $f^{-1}(p)$ and for each edge e, let e_{j} be the element of $f^{-1}(e)$ with $\iota\left(e_{j}\right)=f^{-1}\left((\iota(e))_{j}\right)$. Note ${ }^{-}$is bijective and maps $f^{-1}(e)$ onto $f^{-1}(\bar{e})$; thus, there must be some permutation $\sigma_{e} \in S_{n}$ with $\overline{e_{j}}=(\bar{e})_{\sigma_{e}(j)}$, and of course, $\sigma_{\bar{e}}=\sigma_{e}^{-1}$.

This construction allows us to produce totally layerable graphs from other totally layerable graphs. For instance, we could start with a critical circular planar graph G, choose some large n, and choose appropriate permutations σ_{e}, so that the resulting cover \tilde{G} is a large, non-circular-planar, but totally layerable graph.

Actually, a cover \tilde{G} may be totally layerable even if G is not. Suppose for example that G is a connected circular planar graph, and it has a medial graph \mathcal{M} with only one lens, which is formed by two geodesics as shown in Figure 10.1. Suppose G is embedded in the unit disc in \mathbb{C} such that no vertex lies on the origin, and the lens contains the origin. Let $h: \mathbb{C} \rightarrow \mathbb{C}$ be given by $z \mapsto z^{2}$. Then $h^{-1}(G)$ is a two-fold cover of G embedded in the unit disc, and $h^{-1}(\mathcal{M})$ is a compatible lensless medial graph. This method will not work directly if there are multiple lenses which do not contain a common point, since removing one lens will create two copies of all the other lenses. However many times we repeat the process, there will still be more lenses.

In general, if S is a surface with boundary and $h: \tilde{S} \rightarrow S$ is a topological covering map, then for any graph G embedded on $S, \tilde{G}=h^{-1}(G)$ is a covering graph of G, and if \mathcal{M} is a medial graph for G, then $h^{-1}(\mathcal{M})$ is a medial graph for G. For general surfaces with boundary, it is not known what conditions on the medial graph will guarantee total layerability; however, if such conditions are discovered, topological covering maps may be a useful tool for creating totally layerable covers of certain graphs. In particular, the map $h: z \mapsto z^{n}$ could be used for graphs embedded in the annulus $\{1<|z|<2\} \subset \mathbb{C}$. One could
also consider constructing covering graphs in a purely graph-theoretical way to remove "obstacles" to total layerability.

10.2 Products

If G and H are graphs with boundary, let $G \times H$ be the graph with

- $V(G \times H)=V(G) \times V(H)$.
- $B(G \times H)=(B(G) \times V(H)) \cup(V(G) \times B(H))$.
- $E(G \times H)=(E(G) \times V(H)) \cup(V(G) \times E(H))$.
- If $e \in E(G)$ and $q \in V(H)$, then $\overline{(e, q)}=(\bar{e}, q)$ and $\iota((e, q))=(\iota(e), q)$. Similarly, if $p \in V(G)$ and $e \in E(H)$, then $\overline{(p, e)}=(p, \bar{e})$ and $\iota((p, e))=$ ($p, \iota(e)$).

Layerings of G and H naturally produce layerings of $G \times H$. Suppose G_{1}, \ldots, G_{K} is a layering of G. We construct a layering of $G \times H$ as follows: The first layer S_{0} will be a horizontal edge layer with vertices $B_{\text {upper }}\left(G_{1}\right) \times V(H)$ and edges $B_{\text {upper }}\left(G_{1}\right) \times E(H)$. Then for each n,

- If G_{k} is an upper-stub, lower-stub, or horizontal-edge layer, add a layer S_{k} with

$$
\begin{aligned}
B_{\text {upper }}\left(S_{k}\right) & =\left(B_{\text {upper }}\left(G_{k}\right) \times V(H)\right) \cup(V(G) \times B(H)), \\
B_{\text {lower }}\left(S_{k}\right) & =\left(B_{\text {lower }}\left(G_{k}\right) \times V(H)\right) \cup(V(G) \times B(H)), \\
E\left(S_{k}\right) & =E\left(G_{k}\right) \times V(H) .
\end{aligned}
$$

- If G_{k} is a vertical-edge layer, add a vertical-edge layer S_{k} with

$$
\begin{aligned}
B_{\text {upper }}\left(S_{k}\right) & =\left(B_{\text {upper }}\left(G_{k}\right) \times V(H)\right) \cup(V(G) \times B(H)), \\
B_{\text {lower }}\left(S_{k}\right) & =\left(B_{\text {lower }}\left(G_{k}\right) \times V(H)\right) \cup(V(G) \times B(H)), \\
E\left(S_{k}\right) & =E\left(G_{k}\right) \times I(H),
\end{aligned}
$$

then a horizontal-edge layer S_{k}^{\prime} with

$$
\begin{aligned}
& V\left(S_{k}^{\prime}\right)=\left(B_{\text {lower }}\left(S_{k}\right) \times V(H)\right) \cup(V(G) \times B(H)) \\
& E\left(S_{k}^{\prime}\right)=\left(E\left(G_{k}\right) \times B(H)\right) \cup\left(B_{\text {lower }}\left(G_{k}\right) \times E(H)\right)
\end{aligned}
$$

We will call the layering given by the S_{k} 's and S_{k}^{\prime} 's the product layering induced by G_{1}, \ldots, G_{n}. If H_{1}, \ldots, H_{N} is a layering of H, then we can define a similar layering of $G \times H$, switching the roles of G and H. A consequence of these product layerings is that $G \times H$ is generally "at least as layerable as" G and H.

Proposition 10.1.

i. If either G or H is layerable, then so is $G \times H$.
ii. If either G is recoverably layerable and H has no parallel edges, then $G \times H$ and $H \times G$ are recoverably layerable.
iii. If for every $e \in E(G)$ there is an e-vertical layering of G and for every $e \in E(H)$ there is an e-vertical layering of H, then $G \times H$ is totally layerable. In particular, this holds if G and H are totally layerable.

Proof.
i. For any layering of G or H, there is an induced layering of $G \times H$.
ii. Suppose G is recoverably layerable; the other case is symmetrical. Let H^{\prime} be the graph obtained from H by changing all the boundary vertices to interior. Then $G \times H$ is a subgraph of $G \times H^{\prime}$, so it suffices to show $G \times H^{\prime}$ is recoverably layerable.
Let J_{0}, \ldots, J_{N} be a sequence of graphs with $J_{0}=G$, and $J_{N}=\varnothing$, and each J_{k} obtained from J_{k-1} by a reduction operation, such that if J_{k} is obtained by contracting a spike e, then there is an e-horizontal layering of J_{n-1}, and if J_{n} is obtained by deleting a boundary edge e, then there is an e-vertical layering of J_{n-1}.
Suppose J_{n} is obtained from J_{n-1} by deleting a boundary edge e. Let G_{1}, \ldots, G_{K} be an e-vertical layering of J_{n-1}. Then the induced layering of $J_{n-1} \times H^{\prime}$ is an (e, q)-vertical layering for each $(e, q) \in\{e\} \times V\left(H^{\prime}\right)$. When we delete the boundary edges $\{e\} \times V\left(H^{\prime}\right)$ from $J_{n-1} \times H$, we obtain $J_{n} \times H^{\prime}$.
Suppose J_{n} is obtained from J_{n-1} by contracting a boundary spike e. To obtain $J_{n} \times H^{\prime}$ from $J_{n-1} \times H^{\prime}$, we must first delete the boundary edges $\{\iota(e)\} \times E\left(H^{\prime}\right)$, then contract the boundary spikes $\{e\} \times V\left(H^{\prime}\right)$. Let G_{1}, \ldots, G_{K} be an e-horizontal layering of G with $e \in E\left(G_{k}\right)$. Choose $e^{\prime} \in E\left(H^{\prime}\right)$. Note $\iota(e)$ is on both the upper and lower boundary of J_{n-1}, so $\left(\iota(e), \iota\left(e^{\prime}\right)\right)$ and $\left(\iota(e), \tau\left(e^{\prime}\right)\right)$ are on both boundaries of $J_{n-1} \times H^{\prime}$ in the induced layering. Also, $\left(\iota(e), e^{\prime}\right)$ is in the initial layer S_{0}. We modify the layering as follows, relying on the fact that the only edges incident to $\left(\iota(e), \iota\left(e^{\prime}\right)\right)$ are $\left(e, \iota\left(e^{\prime}\right)\right)$ and edges in $\{\iota(e)\} \times E\left(H^{\prime}\right)$, and if $e^{\prime \prime} \in E(H)$ with $\iota\left(e^{\prime \prime}\right)=\tau\left(e^{\prime}\right)$, then $\left(\iota(e), \iota\left(e^{\prime \prime}\right)\right)$ is on both boundaries:

- Remove $\left(\iota(e), e^{\prime}\right)$ from $E\left(S_{0}\right)$, and for any $e^{\prime \prime} \in E(H)$ incident to $\tau\left(e^{\prime}\right)$, remove $\left(\iota(e), e^{\prime \prime}\right)$.
- For $j=0, \ldots, k-1$, remove $\left(\iota(e), \tau\left(e^{\prime}\right)\right)$ from each layer S_{j} and (where applicable) S_{j}^{\prime}.
- Remove $\left(e, \tau\left(e^{\prime}\right)\right)$ from S_{k}.
- Insert a vertical-edge layer S_{k}^{*} with $\left(\iota(e), e^{\prime}\right)$ as a vertical edge.
- Insert a horizontal-edge layer with edges $\left(e, \tau\left(e^{\prime}\right)\right)$ and $\left(\iota(e), e^{\prime \prime}\right)$ for $e^{\prime \prime} \in E(H)$ incident to $\tau\left(e^{\prime}\right)$.
- For $j=k+1, \ldots, k$, remove $\left(\iota(e), \iota\left(e^{\prime}\right)\right)$ from each layer S_{j} and (where applicable) S_{j}^{\prime}.

This produces an $\left(\iota(e), e^{\prime}\right)$-vertical layering. When we delete the boundary edges $\{\iota(e)\} \times E\left(H^{\prime}\right)$ from $J_{n-1} \times H^{\prime}$, the edges $\{e\} \times V\left(H^{\prime}\right)$ become boundary spikes, and the induced layering from G_{1}, \ldots, G_{K} produces a (e, q)-horizontal layering for each $q \in V\left(H^{\prime}\right)$.
If J_{n} is obtained from J_{n-1} by deleting a disconnected boundary vertex, there is nothing to prove.
iii. Let G^{\prime} and H^{\prime} be the graphs obtained by changing the boundary vertices of G and H to interior. Choose $(e, q) \in E(G) \times V(H)$. If G_{1}, \ldots, G_{N} is an e-vertical layering of G, then the induced product layering of $G \times H^{\prime}$ is an (e, q)-vertical layering, and since $G \times H$ is a subgraph of $G \times H^{\prime}$, there is an induced e-vertical layering of $G \times H$. To find an (e, q)-horizontal layering, choose $e^{\prime} \in E(H)$ with $\tau\left(e^{\prime}\right)=q$. Let H_{1}, \ldots, H_{N} be an e^{\prime}-vertical layering of H with $e^{\prime} \in E\left(H_{k}\right)$. In the induced layering of $G^{\prime} \times H,(e, q)$ occurs in the second product layer corresponding to H_{k} (called S_{k}^{\prime} earlier). Thus, the induced layering of $G^{\prime} \times H$ is an (e, q)-horizontal layering, and it induces an (e, q)-horizontal layering of $G \times H$. If $(p, e) \in V(G) \times E(H)$, then there are (p, e)-vertical and (p, e)-horizontal layerings of $G \times H$ by a symmetrical argument.

Products thus provide another method of producing large and complicated totally layerable or recoverably layerable graphs from smaller ones. Less symmetrical graphs can be created by taking subgraphs of products.

11 More Signed Linear Conductances

11.1 The Electrical Linear Group $E L_{n}$

In [5], Lam and Pylyavskyy define an "electrical linear group" $E L_{2 n}$, whose "positive part" acts on circular planar networks with $n+1$ boundary vertices with positive linear conductances. The group is isomorphic to the symplectic group. Here we define a slightly different electrical linear group. We also approach it differently since we have dealt with signed conductances on non-planar networks from the outset. We show its relationship to the symplectic group in a more explicit and elementary way using electrical networks rather than Lie theory.

Suppose Γ is a network on a vertical-edge layer G with a single edge, and the resistance of the edge is $\rho_{e}(t)=a t$, where $a_{e} \neq 0$. Index the columns of the layer by $1, \ldots, n$, and let p_{j} and q_{j} be the upper and lower boundary vertices on the j th column. Let k be the index of the column with the edge, so that the edge connects p_{k} and q_{k}, and $p_{j}=q_{j}$ for $j \neq k$. Any $x \in \mathbb{R}^{2 n}$ can represent upper boundary data on Γ; for $j=1, \ldots, n$, we let x_{j} represent the potential on p_{j} and x_{n+j} the upper-boundary current on p_{j} (with the appropriate sign). Similarly, any element of $\mathbb{R}^{2 n}$ can also represent data on the lower boundary. If x and y represent the upper- and lower- boundary data of a harmonic function on Γ, then

- For $j \neq k, x_{j}=y_{j}$ and $x_{n+j}=y_{n+j}$.
- $y_{k}=x_{k}+a x_{n+k}$ and $y_{n+k}=x_{n+k}$.

Hence,

$$
y=\left(\begin{array}{cc}
I & a E_{k, k} \\
0 & I
\end{array}\right) x
$$

where each block is $n \times n$ and $E_{k, k}$ is an $n \times n$ matrix with 1 on the k, k entry and zeroes elsewhere. We will call this $2 n \times 2 n$ matrix $V_{k}(a)$. Then $V_{k}(a+b)=V_{k}(a) V_{k}(b)$ and hence $V_{k}(a)^{-1}=V_{k}(-a)$.

Similarly, if Γ is a network on a horizontal-edge layer G with vertices p_{1}, \ldots, p_{n} and an edge between p_{j} and p_{k} with conductance $\gamma_{e}(t)=a t$ for $a \neq 0$, and if x and y represent data on the upper and lower boundaries, then

$$
y=\left(\begin{array}{cc}
I & 0 \\
a\left(E_{j, j}-E_{j, k}-E_{k, j}+E_{k, k}\right) & I
\end{array}\right) x .
$$

We call this matrix $H_{j, k}(a)$. Then $H_{j, k}(a+b)=H_{j, k}(a) H_{j, k}(b)$ and $H_{j, k}(a)^{-1}=$ $H_{j, k}(-a)$.

The electrical linear group $E L_{n}$ is the group generated by the matrices $V_{k}(a)$ and $H_{j, k}(b)$ for real $a, b \neq 0$ and $j, k \in\{1, \ldots, n\}$ with $j \neq k$. Suppose $\Xi \in E L_{n}$ is given by $\Xi=\Xi_{M} \ldots \Xi_{1}$, where each Ξ_{m} is one of the generators $V_{k}(a)$ or $H_{j, k}(b)$. Then each Ξ_{m} corresponds to a vertical- or horizontal-edge layer G_{m}. By identifying $B_{\text {lower }}\left(G_{m}\right)$ and $B_{\text {upper }}\left(G_{m+1}\right)$ according to the given indexing of the columns in each layer, we construct a network $G=G_{1} \bowtie \cdots \bowtie G_{M}$. The matrix Ξ maps upper-boundary data on G to lower-boundary data on G.

Thus, each stubless-layerable network with n columns indexed by $1, \ldots, n$ corresponds to a $\Xi \in E L_{n}$. However, multiple stubless-layerable graphs may have the same Ξ matrix. For example, we can join two vertical-edge layers together to produce $\Xi=V_{k}(a) V_{k}(b)$, but this is the same as $V_{k}(a+b)$, and hence could represent a network with a single vertical edge. Each Ξ matrix thus represents a large class of stubless-layerable networks. A stubless-layerable network with $B_{\text {upper }}=B_{\text {lower }}$ and no edges corresponds to the identity matrix.

There is another interpretation of $E L_{n}$ in terms of reduction operations and their inverses. Suppose Γ is a network with n boundary vertices, indexed $1, \ldots, n$ and Γ^{\prime} is obtained by adjoining a spike e on vertex k with $\rho_{e}(t)=a t$. Assume the new boundary vertex $\iota(e)$ inherits the index k from $\tau(e)$. Then if $x=(\phi, \psi) \in \mathbb{R}^{2 n}$ represents the boundary data of a harmonic function on Γ, then the extension of (u, c) to Γ^{\prime} has boundary data represented by $y=V_{k}(a) x$, and $L^{\prime}=V_{k}(a)(L) . \quad V_{k}(-a)=V_{k}(a)^{-1}$ means that in terms of L, adjoining a spike of resistance $-\rho_{e}$ is the inverse of adjoining a spike of resistance ρ_{e}, and it is the same as contracting a spike of resistance ρ_{e}. Similar statements hold for $H_{j, k}(a)$ and boundary edge additions, and adding a boundary edge of conductance $-\gamma_{e}$ is the inverse of adding a boundary edge with conductance γ_{e}.

The two interpretations of $E L_{n}$ in terms of stubless-layerable networks and reduction operations are related. Suppose Γ is an electrical network with boundary vertices indexed $1, \ldots, n$; consider Γ as a two-boundary network with $B_{\text {upper }}=$
\varnothing and $B_{\text {lower }}=B$. If Γ^{\prime} is obtained from Γ by adjoining a spike, then $\Gamma^{\prime}=\Gamma \bowtie$ Γ^{*} where Γ^{*} is a vertical-edge layer. Similarly, adding a boundary edge corresponds to joining a horizontal-edge layer. Thus, a sequence of spike adjunctures and boundary-edge additions corresponds to a stubless-layerable network and vice versa.

If we let $E G_{n}$ be the collection of sets $L \subset \mathbb{R}^{2 n}$ representing boundary data of linear electrical networks, then $E L_{n}$ acts on $E G_{n}$ via $\Xi \cdot L=\Xi(L)$. The action corresponds to applying a sequence of inverse reduction operations (or joining elementary layers) to an electrical network with boundary data L.

An analogous group can be constructed with nonlinear electrical networks, where the potential-current relationship is given by a resistance function on the vertical edges and a conductance function on the horizontal edges. We leave the details to the reader.

11.2 Characterization of $E G_{n}$ and $E L_{n}$

We say a $2 n \times 2 n$ matrix Ξ is symplectic if

$$
\Xi^{T} \Omega \Xi=\Omega, \quad \text { where } \Omega=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right) .
$$

The $2 n \times 2 n$ symplectic matrices form a group called $\mathrm{Sp}_{2 n}(\mathbb{R})$.
Let $x_{0}=(1, \ldots, 1,0, \ldots, 0)^{T}$ represent the vector with the first n entries 1 and the last n entries 0 . It is straightforward to show that any $\Xi \in E L_{2 n}$ is symplectic and fixes x_{0} : This is true of $V_{k}(a)$ and $H_{j, k}(a)$ by direct computation, and hence true of any product of these matrices.

This makes sense given that $\Xi \in E L_{n}$ represents a sequence of inverse reduction operations. The standard symplectic form on $\mathbb{R}^{2 n}$ is

$$
\omega(x, y)=x^{T} \Omega y
$$

Ξ is symplectic if and only if $\omega(\Xi x, \Xi y)=\omega(x, y)$ for all $x, y \in \mathbb{R}^{2 n}$. We saw earlier that L is the set of boundary data for an electrical network with signed linear conductances, then for $\left(\phi_{1}, \psi_{1}\right),\left(\phi_{2}, \psi_{2}\right) \in L$, we have $\phi_{1} \cdot \psi_{2}=$ $\phi_{2} \cdot \psi_{1}$. This says exactly that if $x, y \in L$, then $\omega(x, y)=0$. The fact that Ξ is symplectic guarantees that this property is preserved under a sequence of inverse reduction operations. And Ξ must fix x_{0} because a harmonic function with constant potential 1 on an electrical network extends to a harmonic function with constant potential 1 when we add boundary spikes or boundary edges to the network. Ξ must also map a vector $x \in \mathbb{R}^{2 n}$ whose "current" entries sum to zero to another vector whose "current" entries sum to zero; indeed, the sum of the "current" entries is $\omega\left(x_{0}, x\right)$, and $\omega\left(x_{0}, \Xi x\right)=\omega\left(\Xi x_{0}, \Xi x\right)=\omega\left(x_{0}, x\right)$.

These properties also make sense if we view Ξ as two-boundary map for a stubless-layerable network. Actually, if Γ is any two-boundary network with linear conductances with a well-defined bijective map Ξ from upper-boundary data to lower-boundary data, then Ξ must be symplectic; this follows from rewriting $\phi_{1} \cdot \psi_{2}=\phi_{2} \cdot \psi_{1}$ in terms of the upper and lower boundaries.
must also fix x_{0} because the function with constant potential 1 is harmonic. And the sum of the upper-boundary currents must equal to the sum of the lower-boundary currents.

With these facts in hand, we are ready to characterize both $E G_{n}$ and $E L_{n}$. Theorem 11.1. $L \subset \mathbb{R}^{2 n}$ is an element of $E G_{n}$ if and only if
i. L is an n-dimensional linear subspace;
ii. For $(\phi, \psi) \in L$, the entries of ψ sum to zero;
iii. For $\left(\phi_{1}, \psi_{1}\right)$ and $\left(\phi_{2}, \psi_{2}\right) \in L$, we have $\phi_{1} \cdot \psi_{2}=\phi_{2} \cdot \psi_{1}$.

Proof. We have already proved that any $L \in E G_{n}$ must satisfy these properties. Suppose L satisfies (i), (ii), and (iii). Let $\left(\phi_{1}, \psi_{1}\right), \ldots,\left(\phi_{n}, \psi_{n}\right)$ be a basis for L. Let $\pi_{1}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$ be the projection onto the first n entries. Let $\ell=\operatorname{dim} \pi_{1}(L)$ and $m=n-\ell$. Let M be the matrix

$$
M=\left(\begin{array}{llll}
\phi_{1} & \phi_{2} & \ldots & \phi_{n} \\
\psi_{1} & \psi_{2} & \ldots & \psi_{n}
\end{array}\right)
$$

so that L is the column space of M. Observe that $\ell \geq 1$; if ℓ were zero, then the top half of the matrix would be 0 ; but the bottom half has column sums zero, and hence is not invertible; so $\ell=0$ implies the $\left(\phi_{j}, \psi_{j}\right)$'s are not linearly independent.

By applying Gaussian elimination to M using column operations, and then reindexing B if necessary, we can assume M has the form

$$
\left(\begin{array}{cc}
I & 0 \\
* & 0 \\
* & * \\
* & * *
\end{array}\right)
$$

where the dimensions of the blocks are

$$
\left(\begin{array}{cc}
\ell \times \ell & \ell \times m \\
m \times \ell & m \times m \\
\ell \times \ell & \ell \times m \\
m \times \ell & m \times m
\end{array}\right)
$$

Note: Reindexing B means reindexing the rows in the upper half and reindexing the rows in the lower half in the same way. This does not affect the hypotheses of the theorem. Since we are only concerned with the column space of M, we are free to perform any invertible column operations, which correspond to changing our basis for L.

I claim that if $\ell<n$ the $* *$ block of M is invertible. Suppose not. Then the columns of $* *$ are linearly dependent, so there is a nontrivial linear combination $\psi^{*}=\sum_{j=\ell+1}^{n} \psi_{j}$ such that the entry $\left(\psi^{*}\right)_{j}=0$ for $j=\ell+1, \ldots, n$. Now $\left(0, \psi^{*}\right) \in L$. For $k=1, \ldots, \ell$, observe by (iii) that

$$
0=0 \cdot \psi_{k}=\phi_{k} \cdot \psi^{*}=\sum_{j=1}^{\ell}\left(\phi_{k}\right)_{j} \cdot\left(\psi^{*}\right)_{j}+\sum_{j=\ell+1}^{n}\left(\phi_{k}\right)_{j} \cdot\left(\psi^{*}\right)_{j}=\left(\psi^{*}\right)_{k}+0
$$

Hence, $\left(\psi^{*}\right)_{k}=0$. This is true for all k, so $\psi^{*}=0$. But this implies that $\psi_{\ell+1}, \ldots, \psi_{n}$ are linearly dependent, contradicting our choice of $\left(\phi_{1}, \psi_{1}\right), \ldots,\left(\phi_{n}, \psi_{n}\right)$. Hence, ** must be invertible. Thus, by performing column operations on the columns $\ell+1, \ldots, n$, we can put M in the form

$$
\left(\begin{array}{ll}
I & 0 \\
* & 0 \\
* & * \\
* & I
\end{array}\right)
$$

Let $M^{\prime}=V_{\ell+1}(1) V_{\ell+2}(1) \ldots V_{n}(1) M$, and let $L^{\prime}=V_{\ell+1}(1) V_{\ell+2}(1) \ldots V_{n}(1)(L)$ be its column space. Because each $V_{j}(1)$ is symplectic and fixes x_{0}, we know that L^{\prime} satisfies (i), (ii), and (iii). M^{\prime} has the form

$$
\left(\begin{array}{ll}
I & 0 \\
* & I \\
* & * \\
* & I
\end{array}\right)
$$

and further column operations will reduce M^{\prime} to a matrix

$$
M^{\prime \prime}=\left(\begin{array}{cc}
I & 0 \\
0 & I \\
* & * \\
* & I
\end{array}\right)
$$

Let A be the lower half of $M^{\prime \prime}$. Property (iii) implies A is symmetric, and (ii) implies it has column sums zero. Thus, we can write A in the form

$$
A=\sum_{i=1}^{\ell} \sum_{j=i+1}^{n} a_{i, j}\left(E_{i, i}-E_{i, j}-E_{j, i}+E_{j, j}\right)
$$

Then by direct computation,

$$
M^{\prime \prime}=\binom{I}{K}=\left(\prod_{i=1}^{\ell} \prod_{j=i+1}^{k} H_{i, j}\left(a_{i, j}\right)\right)\binom{I}{0}
$$

Thus,

$$
L^{\prime}=\left(\prod_{i=1}^{\ell} \prod_{j=i+1}^{n} H_{i, j}\left(a_{i, j}\right)\right)\left(\mathbb{R}^{n} \times\{0\}^{n}\right)
$$

and

$$
L=\left(\prod_{k=\ell+1}^{n} V_{k}(-1)\right)\left(\prod_{i=1}^{\ell} \prod_{j=i+1}^{n} H_{i, j}\left(a_{i, j}\right)\right)\left(\mathbb{R}^{n} \times\{0\}^{n}\right) .
$$

But $\mathbb{R}^{n} \times\{0\}^{n}$ is the set of boundary data for an electrical network with n boundary vertices and no interior vertices, and each transformation $H_{i, j}\left(a_{i, j}\right)$ or
$V_{k}(-1)$ represents adding a boundary edge or boundary spike (except if $a_{i, j}=0$, then $H_{i, j}\left(a_{i, j}\right)=I$ and we do not add any edge to the network). Equivalently, we can think of A as the Kirchhoff matrix of a network with no interior vertices; this network has boundary data L^{\prime}; then adding spikes to vertices $\ell+1, \ldots, k$ produces a network with boundary data L.

Several other results fall out of the proof:
Corollary 11.2. Let Γ be a signed linear electrical network. There exists $P \subset B$ such that potentials on P and net currents on $B \backslash P$ uniquely determine the other boundary data.

Proof. Index the vertices $1, \ldots, n$, and let M and ℓ and m be as above. By further column operations, we can put M in the form

$$
\left(\begin{array}{ll}
I & 0 \\
* & 0 \\
* & * \\
0 & I
\end{array}\right)
$$

Let $P=\{1, \ldots, \ell\}$. The columns $\left(\phi_{j}, \psi_{j}\right)$ are a basis for L, and if $(\phi, \psi)=$ $\sum_{j=1}^{n} \alpha_{j}\left(\phi_{j}, \psi_{j}\right)$, then $\alpha_{1}, \ldots, \alpha_{\ell}$ represent potentials on P and $\alpha_{\ell+1}, \ldots, \alpha_{n}$ represent net currents on $B \backslash P$.

Corollary 11.3. Over the signed linear conductances, every network is electrically equivalent to a layerable network with $\leq \frac{1}{2} n(n-1)+1$ edges, where $n=|B|$.

Proof. Let Γ be any network, and index the boundary vertices by $1, \ldots, n$, then $L \in E G_{n}$. Let Γ^{\prime} be the network with the same L constructed in the proof of the theorem. The number of vertical edges added is $m=n-\ell$ and the number of horizontal edges is the number of nonzero entries of A above the diagonal, which is at most $\frac{1}{2} \ell(\ell-1)+\ell m$. Thus, the total number of edges is at most
$m+\frac{1}{2}(n-m)(n-m-1)+(n-m) m=\frac{1}{2} n(n-1)-\frac{1}{2} m(m-3) \leq \frac{1}{2} n(n-1)+1$.

Corollary 11.4. $E G_{n}$ is a smooth manifold of dimension $\frac{1}{2} n(n-1)$.
Proof. The networks constructed in the theorem in fact give us parametrizations of the $E G_{n}$. Let $Y=\{(i, j): 1 \leq i<j \leq n\}$, which has $\frac{1}{2} n(n-1)$ elements. For $Z \subset\{1, \ldots, n\}$, let $F_{Z}: \mathbb{R}^{Y} \rightarrow E G_{n}$ be given by

$$
\left\{a_{i, j}\right\}_{(i, j) \in Y} \longmapsto\left(\prod_{k \in Z} V_{k}(-1)\right)\left(\prod_{(i, j) \in Y} H_{i, j}\left(a_{i, j}\right)\right)\left(\mathbb{R}^{n} \times\{0\}^{n}\right)
$$

It follows from the proof of the theorem that the images of the F_{Z} 's cover $E G_{n}$.

To complete the proof, it suffices to show that $F_{Z}^{-1} \circ F_{Z^{\prime}}$ is well-defined and C^{∞} on $F_{Z^{\prime}}^{-1} \circ F_{Z}\left(\mathbb{R}^{Y}\right)$. Suppose that $a \in \mathbb{R}^{Y}$, and let $\Gamma_{1}(a)$ be the network with no interior vertices and Kirchhoff matrix $K_{1}(a)=\sum_{(i, j) \in Y} a_{i, j}\left(E_{i, i}-E_{i, j}-\right.$ $\left.E_{j, i}+E_{j, j}\right)$; let $L_{1}(a)$ be its set of boundary data. Let

$$
L_{2}(a)=\left(\prod_{k \in Z^{\prime}} V_{k}(1)\right)\left(F_{Z}(a)\right)=\left(\prod_{k \in Z} V_{k}(1)\right)\left(\prod_{k \in Z} V_{k}(-1)\right)\left(L_{1}(a)\right) .
$$

If $a \in F_{Z^{\prime}}^{-1} \circ F_{Z}\left(\mathbb{R}^{Y}\right)$ and $F_{Z^{\prime}}(b)=F_{Z}(a)$, then $L_{2}(a)$ will be the set of boundary data of the network with no interior vertices and Kirchhoff matrix $K_{1}(b)$. Hence, $a \in F_{Z^{\prime}}^{-1} \circ F_{Z}\left(\mathbb{R}^{Y}\right)$ if and only if the relationship $L_{2}(a)$ can be described by a Dirichlet-to-Neumann map, which will be the Kirchhoff matrix of a network $\Gamma_{1}(b)$, and the entries of the Kirchhoff matrix will be the entries of $F_{Z^{\prime}}^{-1} \circ F_{Z}\left(\mathbb{R}^{Y}\right) \in \mathbb{R}^{V}$. Note $L_{2}(a)$ is the relationship for the network $\Gamma_{2}(a)$ formed by taking $\Gamma_{1}(a)$ and adjoining spikes of conductance -1 to vertices in Z, then spikes of conductance 1 to vertices in Z^{\prime}. Let $K_{2}(a)$ be the Kirchhoff matrix of $\Gamma_{2}(a)$. If $L_{2}(a)$ is given by a Dirichlet-to-Neumann map $\Lambda_{2}(a)$, then the boundary potentials uniquely determine the boundary net currents, and since $\Gamma_{2}(a)$ is layerable, these uniquely determine the potentials and currents on the whole network; thus, the Dirichlet problem has a unique solution. Hence, $K_{2}(a)_{I, I}$ is invertible, and $\Lambda_{2}(a)=K_{2}(a) / K_{2}(a)_{I, I}$ depends smoothly on a. But the entries of any b with $F_{Z^{\prime}}(b)=F_{Z}(a)$ must be the above-diagonal entries of $\Lambda_{2}(a)$; so there is a unique $b \in F_{Z^{\prime}}^{-1} \circ F_{Z}(a)$, and it depends smoothly on a.

Thus, $E G_{n}$ is a submanifold of the Grassmann manifold $G_{n, 2 n}$ which is the set of n-dimensional subspaces of $\mathbb{R}^{2 n}$. We suggest calling $E G_{n}$ the electrical Grassmann manifold. For $\Xi \in E L_{n}$, the mapping $L \mapsto \Xi(L)$ is a diffeomorphism $E G_{n} \rightarrow E G_{n}$, so $E L_{n}$ is a diffeomorphism group acting on $E G_{n}$.

Next, we characterize $E L_{n}$:
Theorem 11.5. $E L_{n}$ is the group of symplectic matrices which fix x_{0}.
Proof. We have already shown that any $\Xi \in E L_{n}$ is symplectic and fixes x_{0}. We only have to show that any matrix with those properties is in $E L_{n}$. The proof goes by induction on n. For $n=1$, it is easy because any symplectic matrix that fixes $(1,0)^{T}$ must be of the form

$$
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)=V_{1}(a) .
$$

For the induction step, suppose $n \geq 2$ and Ξ is a symplectic $2 n \times 2 n$ matrix fixing $x_{0} \in \mathbb{R}^{2} n$. Our goal is to find $\Xi_{1}, \ldots, \Xi_{K} \in E L_{n}$ such that $\Xi^{\prime}=\Xi_{K} \ldots \Xi_{1} \Xi$ is of the form:

$$
\Xi^{\prime}=\left(\begin{array}{llll}
* & 0 & * & 0 \\
0 & 1 & 0 & 0 \\
* & 0 & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where each " $*$ " is $(n-1) \times(n-1)$. In other words, if χ_{j} is the standard basis vector in $\mathbb{R}^{2 n}$ with a 1 on the j th entry, we want the nth and $2 n$th rows to be χ_{n} and $\chi_{2 n}$ and the same for the columns. This is the behavior we would expect from a stubless-layerable network where the nth column had a single disconnected boundary vertex which was on both the upper and lower boundaries. Assuming we can obtain such a Ξ^{\prime}, we let $\Xi^{\prime \prime}$ be the matrix obtained by deleting the nth and $2 n$th rows and columns. Then $\Xi^{\prime \prime}$ is a $2(n-1) \times 2(n-1)$ symplectic matrix that fixes $x_{0} \in \mathbb{R}^{2 n-2}$, so by the induction hypothesis, $\Xi^{\prime \prime}$ is the twoboundary map of a stubless-layerable network with $n-1$ columns. By adding another column with a single vertex, we obtain Ξ^{\prime} as the two-boundary map of a stubless-layerable network. Hence, $\Xi^{\prime} \in E L_{n}$ and $\Xi=\Xi_{1}^{-1} \Xi_{2}^{-1} \ldots \Xi_{K}^{-1} \Xi^{\prime}$ is in $E L_{n}$.

Thus, it suffices to show that for $n \geq 2$, we can obtain Ξ^{\prime} from Ξ by multiplying by elements of $E L_{n}$. Our first goal is to find Ξ_{1}, \ldots, Ξ_{m} such that $\Xi_{m} \ldots \Xi_{1} \Xi$ fixes $\chi_{2 n}$. This is the behavior we would expect from a stubless-layerable network where the nth column had only one vertex on both boundaries, but the vertex was not necessarily disconnected from the other columns. Let $x=\Xi \chi_{2 n}$; it suffices to show that by multiplying by elements of $E L_{n}$ we can transform x into $\chi_{2 n}$. There are several cases:

1. Suppose that $x_{n} \neq 0$ and that $x_{n+1}, \ldots, x_{2 n-1} \neq 0$. Let

$$
y=\left(\prod_{k=1}^{n-1} V_{k}\left(x_{k} / x_{n+k}\right)\right) x
$$

Then $y_{1}, \ldots, y_{n-1}=0, y_{n}=x_{n} \neq 0$. Next, let

$$
z=\left(\prod_{k=1}^{n-1} H_{k, n}\left(y_{n+k} / y_{n}\right)\right) y
$$

Then $z_{1}, \ldots, z_{n-1}=0$ and $z_{n+1}, \ldots, z_{2 n-1}=0$. But $\omega\left(x_{0}, z\right)=\omega\left(x_{0}, x\right)=$ 1 , so $z_{2 n}=1$. Thus, multiplying by $V_{n}\left(-z_{n}\right)$ will make the nth entry zero, yielding $\chi_{2 n}$.
2. If $x_{n}=0$ but $x_{2 n} \neq 0$ and $x_{n+1}, \ldots, x_{2 n-1} \neq 0$, then we can multiply by $V_{n}(1)$ to make $x_{n} \neq 0$, then proceed to Case 1 .
3. Suppose that some of "currents" x_{n+1}, \ldots, x_{n+k} are zero, but the "potentials" x_{1}, \ldots, x_{n} are not all equal. If $x_{n+j}=0$, we can find a k with $x_{j} \neq x_{k}$. Then multiply by $H_{j, k}(c)$ to make it nonzero; if $x_{n_{k}} \neq 0$, then we can choose c so that it will still be nonzero. Once we have done this for every j, proceed to Case 2.
4. Suppose that x_{1}, \ldots, x_{n} are all equal to c. Since $x_{0}=(c, \ldots, c, 0, \ldots, 0)^{T}$ is fixed by Ξ and all matrices in $E L_{n}$, it is not possible that $x_{n+1}, \ldots, x_{2 n}$ are all zero. Hence, we can multiply by some $V_{k}(1)$ to make the new $x_{k} \neq c$. Then proceed to Case 3.

Our next task is find $\Xi_{m+1} \ldots \Xi_{\ell}$ such that $\Xi^{\prime}=\Xi_{\ell} \ldots \Xi_{m+1} \Xi^{*}$ fixes both χ_{n} and $\chi_{2 n}$. Let $x=\Xi \chi_{n}$, and consider the following cases:

1. Suppose that the "currents" $x_{n+1}, \ldots, x_{2 n}$ are all nonzero. Observe

$$
x_{n}=\omega\left(x, \chi_{2 n}\right)=\omega\left(\Xi^{*} \chi_{n}, \Xi^{*} \chi_{2 n}\right)=\omega\left(\chi_{n}, \chi_{2 n}\right)=1
$$

Let

$$
y=\prod_{k=1}^{n-1} V_{k}\left(-x_{k} / x_{n+k}\right)
$$

so that $y_{1}, \ldots, y_{n-1}=0$ and $y_{n}=1$. Then let

$$
z=\prod_{k=1}^{n-1} H_{k, n}\left(y_{n+k}\right)
$$

Then $z_{1}=y_{1}, \ldots, z_{n}=y_{n}$, and $z_{n+1}, \ldots, z_{2 n-1}=0$. But $\omega\left(x_{0}, z\right)=$ $\omega\left(x_{0}, \chi_{n}\right)=1$, so $z_{2 n}=0$. Hence,

$$
z=\prod_{k=1}^{n-1} H_{k, n}\left(-y_{n+k}\right) \prod_{k=1}^{n-1} V_{k}\left(-x_{k} / x_{n+k}\right) x=\chi_{n}
$$

2. If some of "currents" x_{n+1}, \ldots, x_{n+k} are zero, but the "potentials" x_{1}, \ldots, x_{n} are not all equal, we can multiply by $H_{j, k}$'s to make all the "currents" nonzero. Then proceed to Case 1.
3. Suppose that x_{1}, \ldots, x_{n} are all equal to 1 . One of the "currents" must be nonzero; in fact, at least two of them are nonzero. Hence, we can multiply by $V_{k}(1)$ for some $k \neq n$ to make the new $x_{k} \neq 1$. Then proceed to Case 2.

In all these cases, we never multiplied by a $V_{n}(a)$ matrix. Thus, each $\Xi_{m+1}, \ldots, \Xi_{\ell}$ fixes $\chi_{2 n}$ and Ξ^{\prime} fixes $\chi_{2 n}$ as well as χ_{n}.

Because $\left(\Xi^{\prime}\right)^{T} \Omega \Xi^{\prime}=\Omega$, we know $\left(\Xi^{\prime}\right)^{T}=\Omega^{-1}\left(\Xi^{\prime}\right)^{-1} \Omega$. Since Ξ^{\prime} fixes χ_{n} and $\chi_{2 n}$, we know $\left(\Xi^{\prime}\right)^{T}$ fixes $\Omega^{-1} \chi_{n}=-\chi_{2 n}$ and $\Omega^{-1} \chi_{2 n}=\chi_{n}$. Thus, the nth and $2 n$th columns of Ξ^{\prime} are χ_{n} and $\chi_{2 n}$, and the n and $2 n$th columns of $\left(\Xi^{\prime}\right)^{T}$ are χ_{n} and $\chi_{2 n}$. So Ξ^{\prime} has the desired form.

We can view the process in the above proof as a fancy form of row reduction using the symplectic matrices $H_{j, k}(a)$ and $V_{k}(a)$ instead of elementary matrices. We showed that any symplectic matrix fixing x_{0} could be reduced to the identity multiplying by these "electrical elementary matrices." This provides a nonstandard proof that the determinant of a symplectic matrix is 1 ; since each of the electrical elementary matrices has determinant 1 , it is true for $\Xi \in E L_{n}$. But it is not hard to show that Ω and $E L_{n}$ generate $\mathrm{Sp}_{2 n}$, and $\operatorname{det} \Omega=1$.

Another corollary is that $E L_{n}$ is a smooth manifold of dimension $n(2 n-1)$. This can be proved using Lie theory, but we can also find explicit parametrizations in the same vein as Corollary 11.4. We sketch the process and leave the
details to the reader. For each Ξ_{0}, construct a factorization as in the theorem. We parametrize a neighborhood of Ξ_{0} in $E L_{n}$, taking as our parameters the conductance/resistance coefficients from Case 1 of each step. These are uniquely determined and depend smoothly on the entries of Ξ in a neighborhood of Ξ_{0}.

At the nth step of the induction, there were $n-1+n-1+1=2 n-1$ edges in the first part (finding Ξ_{1}, \ldots, Ξ_{m} from Ξ), and $n-1+n-1=2 n-2$ edges in the second part (finding $\Xi_{m+1}, \ldots, \Xi_{\ell}$). That makes for $4 n-3$ parameters in the nth induction step. And in the base case $n=1$, there was $1=4-3$ edges. Summing over the induction steps gives the total number of parameters:

$$
\sum_{j=1}^{n}(4 j-3)=4 \cdot \frac{1}{2} n(n+1)-3 n=2 n^{2}+2 n-3 n=n(2 n-1)
$$

This is the same as $\operatorname{dim} E G_{2 n}$, the number of parameters we would expect for a network with $2 n$ boundary vertices.

The action of $E L_{n}$ on $E G_{n}$ is transitive, that is, for every $L_{1}, L_{2} \in E G_{n}$, there is a $\Xi \in E L_{n}$ with $\Xi\left(L_{1}\right)=L_{2}$. Indeed, we saw in Theorem 11.1 that are $\Xi_{1}, \Xi_{2} \in E L_{n}$ with $L_{1}=\Xi_{1}\left(\mathbb{R}^{n} \times\{0\}\right)$ and $L_{2}=\Xi_{2}\left(\mathbb{R}^{n} \times\{0\}\right)$. Hence, $L_{2}=\Xi_{2}^{-1} \Xi_{1}\left(L_{1}\right)$. However, the action is not faithful: There exist nontrivial elements of $E L_{n}$ which fix every element of $E G_{n}$. These elements are the kernel of the homomorphism Υ from $E L_{n}$ to the group of bijections $E G_{n} \rightarrow E G_{n}$ given by $\Xi \mapsto F_{\Xi}$, where $F_{\Xi}: E G_{n} \rightarrow E G_{n}: L \mapsto \Xi(L)$. The reader can verify that the kernel consists of matrices of the form

$$
\left(\begin{array}{cc}
I+\mathbf{1} \alpha^{T} & \mathbf{1} \beta^{T}+\beta \mathbf{1}^{T} \\
0 & I-\alpha \mathbf{1}^{T}
\end{array}\right)
$$

where $\mathbf{1}$ is the vector with every entry 1 and $\alpha, \beta \in \mathbb{R}^{n}$ with $\sum_{k=1}^{n} \alpha_{k}=0$.

11.3 Generators of $E L_{n}$ and Circular Planarity

We defined $E L_{n}$ with the generators $V_{k}(a)$ and $H_{j, k}(a)$ for $j \neq k$ and $a \in \mathbb{R} \backslash\{0\}$. However, it would have been sufficient to include only the $H_{j, k}(a)$'s with $k=j+1$ (which is in fact what Lam and Pylyavsky did):

Proposition 11.6. $E L_{n}$ is generated by elements of the form $V_{k}(a)$ and $H_{k, k+1}(a)$.
Proof. It suffices to show that $H_{j, k}(a)$ can be written as a product of elements of the form $V_{m}(a)$ and $H_{m, m+1}(a)$. To do this, we use the following identity:

$$
H_{i, k}(a)=V_{j}(-1 / a) H_{i, j}(-a) V_{j}(1 / 2 a) H_{j, k}(2 a) V_{j}(-1 / 4 a) H_{i, j}(2 a) V_{j}(1 / 2 a) H_{j, k}(-a)
$$

We begin with an elementary layer representing $H_{i, k}(a)$; for simplicity, I will show only the columns i, j, k; the conductance coefficient is printed next to the edge:

This is equivalent to $V_{j}\left(-\frac{1}{a}\right) V_{j}\left(\frac{1}{a}\right) H_{i, k}(a)$:

$i \quad j$
k

We insert cancelling horizontal edges to obtain

$$
\begin{aligned}
& V_{j}\left(-\frac{1}{a}\right) H_{i, j}(-a) H_{j, k}(-a) H_{i, j}(a) H_{j, k}(a) V_{j}\left(\frac{1}{a}\right) \\
& H_{i, k}(a) H_{i, j}(-a) H_{j, k}(-a) H_{i, j}(a) H_{j, k}(a) .
\end{aligned}
$$

By a $\star-\mathcal{K}$ transformation, this is equivalent to

$$
V_{j}\left(-\frac{1}{a}\right) H_{i, j}(-a) H_{j, k}(-a) V_{j}\left(\frac{1}{4 a}\right) H_{i, j}(4 a) H_{j, k}(4 a) V_{j}\left(\frac{1}{4 a}\right) H_{i, j}(-a) H_{j, k}(-a) .
$$

i
$j \quad k$

Although not strictly necessary, we simplify with two $Y-\Delta$ moves:

$$
V_{j}\left(-\frac{1}{a}\right) H_{i, j}(-a) V_{j}\left(\frac{1}{2 a}\right) H_{j, k}(2 a) V_{j}\left(-\frac{1}{8 a}\right) V_{j}\left(-\frac{1}{8 a}\right) H_{i, j}(2 a) V_{j}\left(\frac{1}{2 a}\right) H_{j, k}(-a)
$$

and a series reduction to

$$
V_{j}\left(-\frac{1}{a}\right) H_{i, j}(-a) V_{j}\left(\frac{1}{2 a}\right) H_{j, k}(2 a) V_{j}\left(-\frac{1}{4 a}\right) H_{i, j}(2 a) V_{j}\left(\frac{1}{2 a}\right) H_{j, k}(-a)
$$

Thus, for any j, k with $j<k-1$, we can write $H_{j, k}$ in terms of $H_{j, k-1}$'s, $H_{k-1, k}$'s, and V_{k-1} 's. Then proceeding inductively, we can write $H_{j, k-1}$ in terms of $H_{j, k-2}$'s, $H_{k-2, k-1}$'s, and V_{k-2} 's, and so on. Any $H_{j, k}$ can be expressed in terms elements of the form $H_{m, m+1}(a)$ and $V_{m}(a)$.

The significance is that if G is circular planar with the boundary vertices embedded in counterclockwise order, then adjoining a boundary edge between k and $k+1$ will preserve circular planarity. Thus, we have the following result in the spirit of [7]:

Corollary 11.7. Over the signed linear conductances, every network is electrically equivalent to a circular planar network. Every $\Xi \in E L_{n}$ can be represented by circular planar stubless-layerable network.

Proof. We already showed that any $L \in E G_{n}$ could be represented by a layerable network. The layerable network can be obtained from a network with n disconnected boundary vertices by adding boundary spikes and boundary edges. By the Proposition, we can find an equivalent sequence of boundary spike and boundary edge additions such that boundary edges are only added between adjacent columns. Since a network with n disconnected boundary vertices is circular planar, so is the network obtained by applying these operations.

Similarly, every stubless-layerable network is equivalent to a stubless-layerable network where horizontal edges only occur between adjacent columns, which is circular planar.

However, not every network is equivalent to critical circular planar network. Consider the following network:

Suppose that $a+b+c=0$ and $1 / b+1 / c+1 / d=0$. Then the network is both Dirichlet-singular and Neumann-singular. However, there does not exist a critical circular planar network, or indeed any network recoverable over positive linear conductances, which has three boundary vertices and is both Dirichletand Neumann-singular. To be Dirichlet-singular, it must have an interior vertex, and the interior vertex must have degree ≥ 3. Since any such network cannot have more than 3 edges, the only possibility is a Y. However, a Y cannot be Neumann-singular. This example also shows that not every network is equivalent to a network with $\leq \frac{1}{2} n(n-1)$ edges, as we might hope.

Admittedly, the construction in the above proposition is rather inefficient for finding a circular planar network equivalent to a given network, in the sense that it produces many extra edges, and these edges are difficult to remove by $Y-\Delta$ transformations. The final network also has no relationship to the original
network since we discarded it and started instead with the representative of its boundary data L from Theorem 11.1. Thus, one goal for future research might be to find efficent ways of transforming a signed linear network into a circular planar network using local electrical equivalences.

References

[1] Edward B. Curtis and James A. Morrow. Inverse Problems for Electrical Networks. World Scientific. 2000.
[2] Robin Forman. "Determinants of Laplacians on Graphs." Topology Vol. 32, No. 1, pp. 35-46, 1993.
[3] David Ingerman. "Theory of Equivalent Networks and Some of its Applications."
http://www.math.washington.edu/~reu/papers/1992/ingerman/ingerman.pdf
[4] Will Johnson. "Circular Planar Resistor Networks with Nonlinear and Signed Conductors."
http://arxiv.org/abs/1203.4045
[5] Thomas Lam and Pavlo Pylyavkyy. "Electrical Networks and Lie Theory." http://arxiv.org/pdf/1103.3475v2.pdf
[6] Jeffrey Russell. " \star and \mathcal{K} Solve the Inverse Problem."
http://www.math.washington.edu/~reu/papers/2003/russell/recovery.pdf
[7] Konrad Schroder. "Mixed-Sign Conductor Networks." http://www.math.washington.edu/~reu/papers/1993/schroder/sign.pdf

[^0]: ${ }^{1}$ Infinite electrical networks have been considered, and many of the techniques in this paper generalize to infinite networks.

