University of Washington

Conformal Invariance and Probability - Math 583
S. Rohde

Exercise Set 1

Problem 1. If a_{n} is a sequence with $a_{n+m} \leq a_{n}+a_{m}$ for all $n, m \geq 0$, show that $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$ exists and equals $\inf _{n} \frac{a_{n}}{n}$. Conclude that $\lim b_{n}^{1 / n}$ exists if b_{n} is a positive sequence with $b_{n+m} \leq b_{n} b_{m}$.

Problem 2. If $\alpha>0$ and b_{n} is a real sequence with

$$
\alpha b_{n+1}^{2}+b_{n+1} \geq b_{n}
$$

for all $n \geq 1$, show that

$$
b_{n} \geq \frac{\min \left(b_{1}, 1 / \alpha\right)}{n}
$$

Problem 3. Denoting b_{n} the number of bridges (excursions) on the hexagonal lattice, show that

$$
\mu_{\text {bridge }} \equiv \lim b_{n}^{1 / n}=\sqrt{2+\sqrt{2}} .
$$

Due date : Monday, April 11.

