University of Washington

Conformal Invariance and Probability
S. Rohde

Exercise Set 1

Problem 1. For $\kappa>0$, show that the SLE hulls satisfy $\operatorname{diam} K_{t} \rightarrow \infty, y_{\max }(t) \rightarrow$ ∞, and $x_{\text {max }}(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Problem 2. With $X_{t}=g_{t}(x)-\sqrt{k} B_{t}$ and $x>0$, show that $P\left[0<X_{t}<\right.$ b for all $t \geq 0]=0$.

Problem 3. Show (directy from the definition) that $B_{t}^{2}-t$ is a martingale.

Problem 4. Provide the details to the computation $P\left[B_{T_{a, b}}^{x}=a\right]=(x-b) /(a-b)$, using only optional sampling for bounded stopping times.

Problem 5. Use the definition of the Ito integral to show $\int_{0}^{t} B_{s} d B_{s}=1 / 2 B_{t}^{2}-1 / 2 t$.

Due date : Friday, October 14.

