## University of Washington

Conformal Invariance and Probability
S. Rohde

## Exercise Set 3

Problem 1. Show that for all $\kappa \neq 4$ there is $\alpha(\kappa)>0$ such that the conformal maps $g_{t}^{-1}: \mathbb{H} \rightarrow \mathbb{H} \backslash K_{t}$ are $\alpha(\kappa)$-Hölder continuous a.s. More precisely, show that for all bounded sets $A \subset \mathbb{H}$ and all $t>0$ there is $C=C(A, t, \omega)$ such that

$$
\left|g_{t}^{-1}(z)-g_{t}^{-1}(w)\right| \leq C|z-w|^{\alpha(\kappa)}
$$

for all $z, w \in A$.

Problem 2. a) Find a bijection between the set of spanning trees on a planar graph $G$, and the spanning trees on its dual $G^{*}$.
b) Let $G=\mathbb{D} \cap \epsilon \mathbb{Z}^{2}$ be a grid approximation to the disc, and let $a$ and $b$ be vertices of $G$ closest to -1 and 1. Let $\gamma$ be a simple path in $G$ from $a$ to $b$, chosen uniformly at random among all such simple paths. Show that $\gamma$ will be "dense" when $\epsilon$ is small: For each $r>0$,

$$
P[\text { there is } z \in \mathbb{D} \text { such that } \gamma \cap D(z, r)=\emptyset] \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0 .
$$

Problem 3. For each $\kappa>0$ and each $z \in \mathbb{H}$, show that $y_{t}=\operatorname{Im}\left(g_{t}(z)\right) \rightarrow 0$ a.s. as $t \rightarrow T_{z}$.

Problem 4. Show that, for $c \notin\{0,-1,-2, \cdots\}$, the hypergeometric series

$$
{ }_{2} F_{1}(a, b, c ; z)=1+\frac{a b}{c 1!} z+\frac{a(a+1) b(b+1)}{c(c+1) 2!} z^{2}+\cdots
$$

converges in the unit disc, satisfies the hypergeometric differential equation

$$
z(1-z) F^{\prime \prime}(z)+(c-(a+b+1) z) F^{\prime}(z)-a b F(z)=0
$$

and can be analytically continued along any curve $\gamma \subset \mathbb{C} \backslash\{0,1\}$.
Problem 5. Let $T=T(a, b, c)$ be an (isosceles) triangle with angles $\alpha=\beta=$ $\left(1-\frac{4}{\kappa}\right) \pi$ and $\gamma=\left(\frac{8}{\kappa}-1\right) \pi$, and consider $S L E_{\kappa}$ in $T$ from $a$ to $b$. Show that, for $4<\kappa<8$, the first intersection with the segment [ $b, c]$ is uniformly distributed.
Problem 6. Show that the probability that $S L E_{4}$ passes a given point $z \in \mathbb{H}$ to the right equals $\frac{\arg z}{\pi}$.

Due date : Wednesday, December 7.

