Recall: The tangent plane for $f(x, y)$ at the point $(x_0, y_0, f(x_0, y_0))$ is defined by

$$T(x, y) = f_x(x_0, y_0) \cdot (x - x_0) + f_y(x_0, y_0) \cdot (y - y_0) + f(x_0, y_0)$$

Idea: For $x \approx x_0$ and $y \approx y_0$, one has $T(x, y) \approx f(x, y)$

The total differential of $z = f(x, y)$ is

$$dz = \frac{\partial z}{\partial x} \cdot dx + \frac{\partial z}{\partial y} \cdot dy$$

Meaning:
change in $z \approx f_x(x_0, y_0) \cdot$ change in $x + f_y(x_0, y_0) \cdot$ change in y
Example: For $z = y \cos(x + y)$:

- find the total differential
- approximate the change in z if x changes from 0 to 0.04 and y changes from $\frac{\pi}{2}$ to $\frac{\pi}{2} + 0.03$

Solution: The partial derivatives are

$$\frac{\partial z}{\partial x} = -y \sin(x + y) \quad \frac{\partial z}{\partial y} = -y \sin(x + y) + \cos(x + y)$$

The total differential is

$$dz = (-y \sin(x + y)) \, dx + (-y \sin(x + y) + \cos(x + y)) \, dy$$

The change in z is approximately

$$\left(-\frac{\pi}{2} \sin(0 + \frac{\pi}{2}) \right) \cdot 0.04 + \left(-\frac{\pi}{2} \sin(0 + \frac{\pi}{2}) + \cos(0 + \frac{\pi}{2}) \right) \cdot 0.03$$

$$= \frac{\pi}{2}(-0.07) \approx -0.1000$$

(for the sake of comparison:

$$f(0.04, \frac{\pi}{2} + 0.03) - f(0, \frac{\pi}{2}) \approx -0.1119$$)
A function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) has a **local maximum** at \((x_0, y_0)\) if \(f(x_0, y_0) \geq f(x, y) \) for all \((x, y)\) near \((x_0, y_0)\).

Example:
Point \((0, 0)\) for
\[
f(x, y) = \frac{A}{2}x^2 + \frac{B}{2}y^2 + Cxy
\]
\(A < 0, B < 0, AB > C^2\)

Example:
Point \((0, 0)\) for
\[
f(x, y) = \frac{A}{2}x^2 + \frac{B}{2}y^2 + Cxy
\]
\(A > 0, B > 0, AB > C^2\)
A point \((x_0, y_0)\) is a **saddle point** of \(f\) if
\[f_x(x_0, y_0) = 0 = f_y(x_0, y_0) \]
but \((x_0, y_0)\) is no local extremum.

Example:

Point \((0, 0)\) for

\[f(x, y) = \frac{A}{2}x^2 + \frac{B}{2}y^2 + Cxy \]

\[AB < C^2 \]
The critical points of \(f(x, y) \) are those points \((x_0, y_0)\) in the domain of \(f \) such that

- Either: \(f_x(x_0, y_0) = f_y(x_0, y_0) = 0 \)
- Or: At least one of \(f_x(x_0, y_0), f_y(x_0, y_0) \) is undefined

Critical points are candidates for local/global optima.

The 2nd Derivative Test

Suppose \((x_0, y_0)\) is in the domain of \(f \) and \(f_x(x_0, y_0) = f_y(x_0, y_0) = 0 \). Let

\[
D(x, y) = \begin{vmatrix}
 f_{xx}(x, y) & f_{xy}(x, y) \\
 f_{xy}(x, y) & f_{yy}(x, y)
\end{vmatrix}
\]

- If \(D(x_0, y_0) > 0 \) and \(f_{xx}(x_0, y_0) > 0 \), then \(f \) has a local minimum at \((x_0, y_0)\)
- If \(D(x_0, y_0) > 0 \) and \(f_{xx}(x_0, y_0) < 0 \), then \(f \) has a local maximum at \((x_0, y_0)\)
- If \(D(x_0, y_0) < 0 \), then \(f \) has a saddle point at \((x_0, y_0)\)

Remark: \(D(x, y) \) is the determinant of the Hessian matrix

Intuition:

Consider case \((x_0, y_0) = (0, 0)\) and \(f(0, 0) = 0 \).

Which polynomial \(q \) has the same derivatives as \(f \)?

\[
q(x, y) = \frac{1}{2} f_{xx}(0, 0) \cdot x^2 + \frac{1}{2} f_{yy}(0, 0) \cdot y^2 + f_{xy}(0, 0) \cdot xy
\]

Then \(q(x, y) \approx f(x, y) \) for \((x, y) \approx (0, 0)\).

If \(q \) has local max at \((0, 0)\) \(\Rightarrow \) \(f \) has local max at \((0, 0)\)
Let \(f(x, y) = \frac{9}{x} + 3xy - y^2 \). Find and classify all critical points using appropriate partial derivative tests.

\[
\begin{align*}
 f_x(x, y) &= -\frac{9}{x^2} + 3y = 0 \implies y = \frac{3}{x^2} \\
 f_y(x, y) &= 3x - 2y = 0 \implies y = \frac{3}{2x}
\end{align*}
\]

Combining gives

\[
\frac{3}{x^2} = \frac{3}{2x} \implies 2 = x^3 \implies x = 2^{1/3}
\]

Then \((x_0, y_0) = (2^{1/3}, \frac{3}{2}2^{1/3})\) is only critical point.

\[
\begin{align*}
 f_{xx} &= \frac{18}{x^3}, \quad f_{yy} = -2, \quad f_{xy} = 3
\end{align*}
\]

Then

\[
D(x_0, y_0) = \begin{vmatrix} 18/2 & 3 \\ 3 & -2 \end{vmatrix} = -27 < 0
\]

Hence the critical point is a saddle point.
Finding global optimum

Example:
Find the absolute maximum and minimum values of the function $h(x, y) = y^2 - 3x^2$ on the domain $R = \{(x, y) : x^2 + y^2 \leq 9\}$.

Recipe:

1) Find all critical points that lie in R
2) Consider the boundary of R as a 1-dimensional function and determine optima
3) Compare function value on all found points
Solution of example:

• **Step 1:**

\[
\begin{align*}
 h_x(x, y) &= -6x = 0 \Rightarrow x = 0 \\
 h_y(x, y) &= 2y = 0 \Rightarrow y = 0
\end{align*}
\]

We found critical point \((0, 0)\) (which lies in \(R\)).

• **Step 2:** For a point \((x, y)\) with \(x^2 + y^2 = 9\), we can write

\[
h(x, y) = \frac{y^2}{x^2} - 3x^2 = 9 - 4x^2 =: g(x)
\]

Then \(g'(x) = -8x = 0 \Rightarrow x = 0\).

This gives critical point \((0, \pm 3)\).

But \(\max\{g(x) : -3 \leq x \leq 3\}\) might be attained for \(x = \pm 3\).

• **Step 3:**

<table>
<thead>
<tr>
<th>point</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>0</td>
</tr>
<tr>
<td>(0,-3)</td>
<td>9</td>
</tr>
<tr>
<td>(0,3)</td>
<td>9</td>
</tr>
<tr>
<td>(-3,0)</td>
<td>-27</td>
</tr>
<tr>
<td>(3,0)</td>
<td>-27</td>
</tr>
</tbody>
</table>

The **global maximum** is 9. The **global minimum** is \(-27\).