SCALAR AND DOT PRODUCTS (§12.2, §12.3)

Recall: If \(\vec{a} = (a_1, a_2, a_3) \), then the magnitude/length is
\[
|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}.
\]

If \(c \in \mathbb{R} \), then \(c\vec{a} = (ca_1, ca_2, ca_3) \).

A vector with magnitude 1 is called a unit vector.

The vector \(\frac{\vec{a}}{|\vec{a}|} \) is a unit vector.
THE DOT PRODUCT

Let \(\vec{a} = (a_1, a_2) \) and \(\vec{b} = (b_1, b_2) \) be vectors in \(\mathbb{R}^2 \), then the dot product (or inner product) is \(\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 \). Similarly, in \(\mathbb{R}^3 \) one has
\[
\vec{a} \cdot \vec{b} = (a_1, a_2, a_3) \cdot (b_1, b_2, b_3) = a_1 b_1 + a_2 b_2 + a_3 b_3.
\]

Example: \((2, 1, -1) \cdot (0, 3, -3) = 2 \cdot 0 + 1 \cdot 3 - 1 \cdot (-3) = 6.\)

Remark: All properties that we derive for the dot product will hold in general \(\mathbb{R}^n \) (in particular in both \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \)).

Properties:

- For any vectors \(\vec{a} \) and \(\vec{b} \), \(\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \).
- For any vector \(\vec{a} \) we have \(\vec{a} \cdot \vec{a} = |\vec{a}|^2 \).
- For any vector \(\vec{a} \), \(\vec{a} \cdot \vec{0} = \vec{0} \cdot \vec{a} = 0 \).
- For vectors \(\vec{a}, \vec{b} \) and a scalar \(c \in \mathbb{R} \), \((c \vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) \).
- For vectors \(\vec{a}, \vec{b}, \vec{c} \) one has \((\vec{a} + \vec{b}) \cdot \vec{c} = (\vec{a} \cdot \vec{c}) + (\vec{b} \cdot \vec{c}) \).
ANGLES

Given two unit vectors \vec{a}, \vec{b}, the angle between \vec{a} and \vec{b} is the length of the circular arc defined by them.

For general vectors \vec{a} and \vec{b}, the angle θ is the same as the angle between $\frac{\vec{a}}{|\vec{a}|}$ and $\frac{\vec{b}}{|\vec{b}|}$.
• If \(\vec{b} = -\vec{a} \) then \(\theta = \pi \)

• If \(\theta = \frac{\pi}{2} \), then \(\vec{a} \) and \(\vec{b} \) are orthogonal or perpendicular. We write \(\vec{a} \perp \vec{b} \)

The shorter arc counts \(\Rightarrow \) angles are always \(0 \leq \theta \leq \pi \).

• If \(\vec{b} = \vec{a} \) or \(\vec{b} = c\vec{a} \) for \(c > 0 \), then \(\theta = 0 \)
SINE AND COSINE

Consider a right triangle with hypothenuse of length 1 and angle θ:
Consider the unit vectors \(\vec{a} = (1, 0) \) and \(\vec{b} = (\cos(\theta), \sin(\theta)) \).

The angle between \(\vec{a} \) and \(\vec{b} \) is \(\theta \).

The dot product is \(\vec{a} \cdot \vec{b} = (1, 0) \cdot (\cos(\theta), \sin(\theta)) = \cos(\theta) \).

For all unit vectors \(\vec{a}, \vec{b} \) with angle \(\theta \) one has

\[
\vec{a} \cdot \vec{b} = \cos(\theta).
\]

For all vectors \(\vec{a}, \vec{b} \) their angle \(\theta \) satisfies

\[
\cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}.
\]
Fact: Suppose \(\vec{a} \) and \(\vec{b} \) have both length > 0. Then \(\vec{a} \perp \vec{b} \) if and only if \(\vec{a} \cdot \vec{b} = 0 \).

Proof. Let \(\theta \in [0, \pi] \) be the angle between \(\vec{a} \) and \(\vec{b} \). Then

\[
\begin{align*}
\vec{a} \cdot \vec{b} &= 0 \\
\iff |\vec{a}| \cdot |\vec{b}| \cdot \cos(\theta) &= 0 \\
\iff \cos(\theta) &= 0 \\
\iff \theta &= \frac{\pi}{2}
\end{align*}
\]
Exercise (Aut 2013, Loveless, Midterm 1, Ex 1)

The forces \vec{a} and \vec{b} are pictured. If $|\vec{a}| = 80$ N and $|\vec{b}| = 100$ N, find the angle the resultant force makes with the positive x-axis. Give your answer rounded to the nearest degree.

Solution:

- The forces are $\vec{a} = (80 \cos(\frac{\pi}{3}), 80 \sin(\frac{\pi}{3})) = (40, 40\sqrt{3})$ and $\vec{b} = (-100, 0)$

- The resultant force is $\vec{u} = \vec{a} + \vec{b} = (40 + (-100), 40\sqrt{3} + 0) = (-60, 40\sqrt{3})$

- We are looking for the angle θ between \vec{u} and $\vec{v} = (1, 0)$

$$\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{-60}{\sqrt{60^2 + (40\sqrt{3})^2} \cdot 1} = \frac{-60}{\sqrt{8400}}$$

- Finally

$$\theta = \cos^{-1}(\frac{-60}{\sqrt{8400}}) \approx 130.89339^\circ \approx 131^\circ$$
Def. Given non-zero vectors \(\vec{a}, \vec{b} \) the **projection** of \(\vec{b} \) onto \(\vec{a} \) is the unique vector \(\text{proj}_{\vec{a}}(\vec{b}) \) that is a scalar of \(\vec{a} \) and has \(\vec{a} \cdot \vec{b} = \text{proj}_{\vec{a}}(\vec{b}) \cdot \vec{a} \).

Example: \(\text{proj}_{(1,0)}(5, 3) = (5, 0) \)

Formula:

\[
\text{proj}_{\vec{a}}(\vec{b}) = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \right) \vec{a} \in \mathbb{R}
\]

Proof.

\[
\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \right) \vec{a} = (\vec{a} \cdot \vec{b}) \cdot \frac{1}{|\vec{a}|^2} (\vec{a} \cdot \vec{a}) = \vec{a} \cdot \vec{b}
\]
We define the **scalar projection** of \(\vec{b} \) onto \(\vec{a} \) as

\[
\text{comp}_{\vec{a}}(\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}
\]

Facts:

- \(|\text{proj}_{\vec{a}}(\vec{b})| = |\text{comp}_{\vec{a}}(\vec{b})| \)
- If \(\theta < \frac{\pi}{2} \), then \(\text{comp}_{\vec{a}}(\vec{b}) > 0 \)
- If \(\theta > \frac{\pi}{2} \), then \(\text{comp}_{\vec{a}}(\vec{b}) < 0 \)