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Abstract We consider set covering problems where the underlying set
system satisfies a particular replacement property w.r.t. a given partial
order on the elements: Whenever a set is in the set system then a set
stemming from it via the replacement of an element by a smaller element
is also in the set system.

Many variants of BIN PACKING that have appeared in the literature
are such set covering problems with ordered replacement. We provide
a rigorous account on the additive and multiplicative integrality gap
and approximability of set covering with replacement. In particular we
provide a polylogarithmic upper bound on the additive integrality gap
that also yields a polynomial time additive approximation algorithm if
the linear programming relaxation can be efficiently solved.

We furthermore present an extensive list of covering problems that fall
into our framework and consequently have polylogarithmic additive gaps
as well.

1 Introduction

SET COVER is a prominent combinatorial optimization problem that is very
well understood from the viewpoint of multiplicative approximation. There ex-
ists a polynomial time factor O(logn) approximation for SET COVER [2] and
a corresponding hardness result [9]. Also the (multiplicative) integrality gap of
the standard linear programming relaxation for SET COVER is known to be
O(logn) [14].

Let S be a family of subsets of [n] = {1,...,n}, w : § — Ry be a cost
function and let x(5) € {0,1}" denote characteristic vector of a set S € S. The
SET COVER integer program

min{ Z w(S)zs | Z xs-x(S)>1,2>0,x integral} (1)
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and its linear programming relaxation is also in the focus of this paper. However,
we are interested in the additive gap of a certain class of set covering problems.
This additive gap is the difference between the optimum value of the integer pro-
gram (1) and its linear programming relaxation. While there exists an extensive
amount of literature on the (multiplicative) gap and (multiplicative) approxima-
tion algorithms, the additive gap and algorithms to construct integer solutions
that are within the corresponding additive range have received less attention.

Why is it interesting to study the additive integrality gap of set covering
problems? Suppose, for example that we know of a certain class of set covering
problems that the additive gap is polylogarithmic, log n say. If we then, at the
same time, know that the optimum solution is at least /n, then the linear
programming relaxation of (1) asymptotically approaches the optimum solution
of the integer program yielding a (1+1logn//n)-factor approximation algorithm
if an integer solution respecting the gap can be efficiently computed.

Two prominent covering problems whose additive gap has been studied are
MULTI-EDGE COLORING [12,16] and BIN PACKING.? For BIN PACKING, Kar-
markar and Karp [13] showed that the additive gap is bounded by O(log®n)
and they also provide a polynomial time algorithm that constructs a solution
within this range. There is an extensive amount of literature on variants of BIN
PACKING (see e.g. [7,6,5,8,7,3,19,1]). The question whether the SET COVER lin-
ear programming relaxations of such variants also exhibit small additive gaps is
in the focus of our paper.

It is easy to see that the additive gap of general SET COVER is ©(n). For
example, the VERTEX COVER problem on a disjoint union of triangles exhibits
this additive gap. What makes BIN PACKING so special that polylogarithmic
additive gaps can be shown to hold? It turns out that it is essentially the fact
that in a feasible packing of a bin, we can replace any item by a smaller item
and still remain feasible. In the setting of SET COVER this is reflected by the
following. There is a partial order < of the elements that we term replacement
order. The order is respected by S if

Se8ieSjgsjzi=(S\{i})u{j})es

We will also consider costs w(S) of sets in the family S. These costs are nor-
malized in the sense that w(S) € [0,1] for each S € S. The costs respect the
replacement order if w(S) > w(S’) whenever S’ is obtained from S by replacing
one element ¢ € S with an element j < ¢ and if w(S") < w(S) for any S’ C S.
Given a family S and costs respecting the replacement order <, the SET COVER
WITH ORDERED REPLACEMENT problem is to solve the integer program (1). We
denote the optimum value of (1) and its relaxation by OPT(S) and OPT}(S),
respectively. The additive gap of S is thus OPT(S) — OPTy(S).

Contributions. We provide a rigorous account on additive and multiplicative
integrality gaps and approximability of SET COVER WITH ORDERED REPLACE-
MENT if < is a total order. Our main results are as follows.

3 Even though coined bin “packing”, it is a covering problem.
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— We show that the additive gap is bounded by O(log3 n). This is achieved by
the use of suitable pseudo sizes and grouping. The pseudo sizes are respon-
sible for the additional logn factor compared BIN PACKING. If natural sizes
are available, our bound matches the O(log®n) bound for BIN PACKING.
The grouping technique itself is not novel albeit appears to be simpler as the
one in [13].

— We provide a 2(logn) lower bound on the additive gap which is in contrast
to BIN PACKING, where such a lower bound is not known.

— We show that SET COVER WITH ORDERED REPLACEMENT does not al-
low an asymptotic polynomial time approzimation scheme (APTAS). Also
this distinguishes SET COVER WITH ORDERED REPLACEMENT from BIN
PACKING.

— We show that the multiplicative gap of SET COVER WITH ORDERED RE-
PLACEMENT is O(loglogn). Also this is in sharp contrast to BIN PACKING,
where the multiplicative gap is constant.

— Finally we provide a quasi-polynomial (running time nOlog ”)) factor 2 ap-
proximation algorithm for SET COVER WITH ORDERED REPLACEMENT.

We also bound the additive integrality gap in the case where the replacement
order is not a total order. Recall that the Dilworth number of a partial order is
the smallest number of disjoint chains that cover all elements. Let us denote the
additive integrality gap as:

gap(n,d, k) = max {OPT(S) — OPTy(S)},

where the max ranges over all set systems over ground set [n] (and proper cost
function w : § — [0, 1]), that respect a partial order with Dilworth number d and
contain sets of size at most k.* We show that gap(n,d, k) = O(d?log klog®n).
Our result is an algorithmic result in the following sense. If the linear programing
relaxation of (1) can be efficiently solved, then a solution of (1) respecting the
additive gap can be efficiently computed.

We furthermore demonstrate the applicability of our bounds on the additive
gap by providing an extensive list of problems from the literature that can be
modeled as SET COVER WITH ORDERED REPLACEMENT.

Related work. We discuss many BIN PACKING variants that are covered by
our framework in Section 5. For many of these problems, there exist asymptotic
polynomial time approximation schemes (APTAS) [10,5,3,1] or asymptotic fully
polynomial time approzimation schemes (AFPTAS) [13,7,6,8]. An AFPTAS for
problem (1) is a polynomial time algorithm (in n and 1/¢) that, given an & > 0
computes a solution APX(S) with APX(S) < (1+¢)OPT(S) + f(e), where f
is a fixed function. This function f can be even exponential in 1/¢, see, e.g. [7,8].

1 We sometimes abbreviate gap(n,d) := gap(n, d,n) for systems without cardinality
restrictions and gap(n) := gap(n, 1) if the partial order is total.
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While our additive gap result is incomparable with the quality achieved by an
AFPTAS it however sheds some light on how large n has to be in order for such
an AFPTAS to be competitive with our result in combination with a simple
constant factor approximation algorithm.

We have an additive O(log® n) bound for SET CovER WITH ORDERED RE-
PLACEMENT. If we are considering a particular family of instances with OPT'(S) >
log*(n) for each instance S, then this yields an AFPTAS with f(g) = O((1/¢€)?).
Suppose now that OPT(S) < log*(n) and suppose that there exists an AFPTAS
with an exponential f say f(g) = 21/¢. Then the dimension n has to be doubly
exponential in 1/e before the AFPTAS starts to beat the quality of a factor 2
approximation algorithm.

We would also like to mention recent related work on the additive gap of BIN
PACKING. The paper [4] relates a prominent conjecture of Beck from the field of
discrepancy theory to the question whether the additive gap of BIN PACKING is
constant. If Beck’s conjecture holds true, then the BIN PACKING gap is constant
for 3-partitioning instances. While essentially all results on integrality gaps for
BIN PACKING variants in the literature use the sparse support of basic solutions,
[17] provides bounds based on probabilistic techniques. The work in [17] provides
better additive gaps for example in case of BIN PACKING WITH REJECTION.

2 Bounding the additive gap

In this section we provide upper and lower bounds for the additive integrality
gap of SET COVER WITH ORDERED REPLACEMENT. The upper bound in case
of a total order is O(log®n) while the lower bound is of order £2(logn). This
result shows that in order to have a polylogarithmic additive integrality gap,
it is sufficient to have a total ordering on the elements, like for classical BIN
PACKING.

2.1 The upper bound

We first deal with an upper bound on the additive integrality gap. We recall that
d is the Dilworth number of the partial order, n denotes the number of elements
and k is an upper bound on the cardinality of the sets in the family S. We show
the following general theorem.

Theorem 1. One has gap(n, d, k) = O(d?log klog® n).

As in [13], we will construct an integer solution to (1) from a fractional one
with the claimed additive bound, by doing a sequence of iterations. At each iter-
ation, we will cover part of our elements by rounding down an optimal fractional
solution of a proper updated linear program, modify the residual instance, and
re-optimize.

More precisely, we will consider the following (more general) linear program

min{ Z w(S)zs | Z zg - x(S)>b,x > O}, (2)

SeS ses
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where b € Njj is a non-negative vector. The number b; denotes the multiplicity
of the item i, i.e., how many times it needs to be covered. The reason of having
multiplicity is that during our iterations, we will reduce the number of constraints
of the above linear program at the expense of increasing multiplicity for a subset
of the items. Of course, when multiplicity comes into play, we allow S € S to a
be multiset, since e.g. if a set S’ = {i,j,h} € S and i < j < h, the replacement
order implies S = {i,4,4} to be in S as well.

Let us denote the optimum of this linear program with multiplicity and
corresponding integer program by OPTy(S,b) and OPT(S,b) respectively. As
in [13] we will consider an optimal vertex solution z* of the linear program (2)
and extract the partial covering |z%|, S € S. This partial covering will leave
some elements of the multiset uncovered. This multiset of uncovered elements
defines a residual instance, encoded by b' = g s{z5} - x(S) where {25} =
zt — |o%] denotes the fractional part of z*. The following relation holds even
for arbitrary set covering problems:

OPT(S,b) — OPT§(S,b) < OPT(S,V') — OPTy(S, V). (3)

The key point of considering a residual instance, is that we will modify it to
reduce the number of constraints in the next iteration by using a grouping tech-
nique similar to the one given for BIN PACKING in [13]. However, the grouping
in [13] crucially relies on the size of an element which is part of a BIN PACKING
instance, and that is instead missing in our abstract setting. In order to still
apply grouping techniques, we will define pseudo sizes s; €]0, 1] for each element
7 in our ground set below. These pseudo sizes satisfy the following properties:

(ii) We can cover all the elements of any (not necessarily maximal) chain C at
cost O( ;¢ si) + O(log ﬁ), where® s, 1= min;epy,) S;-

Notice that the usual size of an element in a BIN PACKING instance is also
a pseudo size®. Given a vector of pseudo sizes s, we can define the total size of
the elements by size(b) = bT's. Suppose now that the largest total pseudo size of
aset in §is o = max{) ;.45 | § € S}. An important observation is that the
total size of the residual instance is bounded by

size(b') = v = Z{JJ*(S)}X(S)TS < support(b) - a, (4)
Ses

where support(b) denotes the number of nonzero entries in b.
We are now ready to state the following Lemma, which generalizes the result
of Karmakar and Karp [13].

Lemma 1. Let S be a set system on [n] with cost function w : S — [0,1], <

be a partial order respected by S of Dilworth number d and let b € Nj. Still,

1

6 Here one can cover a subset of elements even with 2 ZiEC s; + 1 bins alonéug;ld the
minimal size does not need to be considered.

> 1.

5 For notational convinience, we always assume that smin < 1/2 so that log
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let s be a vector of pseudo sizes which satisfies properties (i) and (i). Then

OPT(S,b) — OPTy(S,b) = O(alog(1/smin) - dlogn), where a = max{} ;g si |
SeS}.
Proof. Initially, we partition the elements into chains C1,...,Cy w.r.t. the order

>. The bound follows from iterating the following procedure. First, we replace b
by b’ which encodes its residual instance. According to (3), this does not decrease
the additive integrality gap. We then apply the following grouping procedure to
each chain C), with = 1,...,d. The chain C, is partitioned into classes:

Ul = {z eC, | (%)”1 <5< (%)Z} for € =0, ..., [log(1/smimn)]-

For each such class U}, build groups of 4-2%q consecutive elements (the elements
are always counted with multiplicity), starting from the largest element (the last
group could contain less elements), and discard the first and the last group. In
this way, we discard at most 8 - 2¢ - o elements in the class U}'. Those elements
have total size at most 8 - «, hence the total size of discarded elements in chain
C,, is bounded by 8 - a - (log(1/smin) + 1). By (ii) we can cover them at cost
O(a - 1og(1/8min)). This amounts to a cost of O(d - « - 1og(1/smin)) to cover all
discarded elements of all chains.

Then, we “round-up” the elements in each group to the largest element in this
group. In other words, for each group we now consider to have one item type
(the largest one, according to the chain) with multiplicity 4 - 2. This way, we
obtain a new “rounded” instance that is represented by a vector v € Nj. Since
the discarded groups compensate the round-up operation within each group,
one has OPTy(S,b") < OPTy(S,V). Also, OPT(S,V') < OPT(S,b")+0(d- o
log(1/$min)) and thus

OPT(S,V') — OPT;(S, V) < OPT(S,1") — OPT;(S, 1) + O(d - a - log(1/$min))-

We will next show that support(b”) < support(b)/2. The assertion then fol-
lows, since the support of the rounded instance (and hence the corresponding
additive integrality gap) will be 1 after O(logn) iterations of the above described
procedure.

The support of b is the number of non-discarded groups. Each non-discarded
group U}’ contains a number of elements equal to 4-2%q, each of size at least 2,3%
Then the total size of the group is at least 2-«. Thus 2-«-support(d”) < size(d').
But since b’ encodes a residual instance, one has size(b’) < support(b) - a from
(4). That is, support(d”) < support(b)/2 follows. O

Notice that the O(log?n) upper bound of Karmarkar and Karp [13] for BIN
PACKING also follows from this lemma by considering the original sizes given
in the instances as pseudo sizes, and setting d, « and all the initial b;’s to one.
Items of size less than 1/n can be removed and distributed on top of the solution
later. If one needs an additional bin, the gap is even bounded by a constant.
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We now show how to define good pseudo sizes of the items for any given set
system S. Let

w(S)

size(7) := min {Sl | S € S contains only elements j > z}

Note that size(i) > size(j) holds if ¢ > j, that is, property (i) of Lemma 1 holds.
The next Lemma shows that also (ii) holds as well.

Lemma 2. LetS be a set system with replacement property. We can cover all the
elements of a (not necessarily mazimal) chain C at cost at most 2, size(i) +
O(log —).

Smin

Proof. Again let Uy = {i € C | (3)""! < size(i) < (3)'} be the (th size class
of chain C'. We construct a solution for each size class separately. For class /,
consider iteratively the largest uncovered element ¢ and let S(i) be a set, defining
the quantity size(7), i.e. S(i) contains only elements that are at least as large as

d “igs(g‘)) < size(i). By the replacement property, this set S(i) can be used

1 an
to cover the largest |S(¢)| many uncovered elements.
Let Sy,...,95, be the sets selected in this procedure. Note that all the S;, but
possibly S, cover exactly |S;| elements. Then, since ui(ssjl') < 2size(i) for every
J
i € 95, we have

w(S) =YY “;(5,? +w(Sy) < Y 2-size(i) + 1.

j=1 j=14eS; i€U,

1

Smin

Summing over the (log + 1) many size classes then gives the claim. a

We are ready to prove Theorem 1.

Proof (Proof of Theorem 1). Let S be a set system on [n], and < be a partial
order respected by S. We may assume that < consists of d incomparable chains
Cy,...,Cq. We define s; = size(i) for any element i.

We first claim that we can discard all items ¢ with s; < n%: in fact, by the
definition of the pseudo sizes any such element is contained in a set of cost at
most %, hence all such tiny elements can be covered at a total cost of 1.

Let S € S and consider an element ¢ which is the jth largest in SN C),. By

the definition of the pseudo sizes, size(i) < w(j—s) Thus
S
Zsize(i) < dz M < 2dlogk.
= =

Therefore, it follows from Lemma 1 (by setting b = 1) that gap(n,d, k) =
O(d?log klog? n), since a = 2dlog k and syin > 1/n2 O
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We want to remark that the above result is constructive in the sense that once
a fractional solution = and the partial order are given, a feasible integer solution
matching the bound of Theorem 1 can be computed in polynomial time.

If all costs are one, i.e., w(S) =1 for each S € S, then we have size(i) > 1.
Thus we have the following corollary.

Corollary 1. If all costs of feasible sets are one, one has gap(n, d, k) = O(d? log® klogn).

When d = 1, this theorem says gap(n,1,k) = O(log? klogn), which is better
than the result of [4]: gap(n, 1, k) = O(klogn).

2.2 The lower bound

In this section, we give a lower bound for the additive integrality gap of set sys-
tems with replacement property. For simplicity, we first assume that < consists
of only one chain.

Lemma 3. One has gap(n) > 2(logn).

Proof. Let m be a parameter, that we determine later. Define a unit cost set
system S as follows. For any ¢ € {1,...,m}, introduce 3 - 100° many /¢-level
elements U,. Hence U := |J;-, U, with |U,| = 3 - 100" is the set of all elements.
We choose U; = Uy = ... = U, and an arbitrary order within every U,.
Any set S of at most 2 - 100° many ¢-level elements forms an (-level set, e.g.
S=UL {SCUU...UUy | |S] <£2-100}. By taking 3 {-level sets to the
fractional extend of 1, we can cover all £-level elements, hence OPT}(S) < 2 -m.
It remains to lower bound OPT'(S). Let ny be the number of ¢-level sets in any
integer solution. To cover all level ¢-level elements we must either have n, > 2,
or Zj<l nj-2- 1007 > 100¢, i.e. 42j<£ n; - 100°—¢ > 2. In any case, the sum of
the left hand sides must be at least 2: n, + 42j<€ n; - 1009=¢ > 2. We add up
this inequality for £ = 1,...,m and obtain (%)

inz~ (1+4Z 1()10i) > i (n4+4an-100j_€) (ﬁ) 2m
=1 j<t

i>1 =1

103
99

This gives OPT(S) — OPTy(S) > > )% ng — 3m > 22%m — 3m > 0.4 -m. The

number of elements in the instance isn = > ,* | 3-100%, hence m = 2(logn). O

More generally, the following holds:
Theorem 2. gap(n,d) > 2(d - log(n/d)).

Proof. Apply the construction from Lemma 3 to obtain families Sy, .. .,Sy, each
on a disjoint set of n/d elements. Then the union U;l:l §; has Dilworth number
d and the claimed additive gap. a

" We abbreviate U = U’ & ViecU,j €U i j.
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3 Approximation & intractability

In Section 5, we mention many variants of BIN PACKING that admit an APTAS
(or even an AFPTAS) and fall into our general framework of SET COVER WITH
ORDERED REPLACEMENT. It is thus natural to ask whether the SET COVER
WITH ORDERED REPLACEMENT itself has an APTAS. This cannot be expected
for arbitrary partial orders. In this section we show that an APTAS does not
exist, even if the replacement order is a total order. On the positive side how-
ever, we show that there exists a quasi-polynomial time factor 2 approximation
algorithm in this case. This is obtained by first rounding the instance to O(logn)
different item types and then solving the rounded instance exactly by dynamic
programming. However, due to lack of space, we postpone the proof to the full
version of this paper.

From now on, we restrict our view exclusively on set systems, respecting a
total order <. To define such a set system with unit-costs, it will be convenient
to consider just the set of generators. These are the sets that are maximal with
respect to the order. More formally, if there is an injective map ¢ : S — S’
with 7 < (i) for all i € S (i.e. we can obtain a set S from S’ by applying the
replacement rule), then we say that S’ dominates S. Hence a set family S is
called the set of generators for the set system

g(8) ={SC[n]| 35" €S :95 dominates S}

Hence, if S is an arbitrary set family, by definition g(S) respects the replacement
rule. For a proof of the next proposition we refer to the full version of this paper.

Proposition 1. Let S C 2" be a family of sets and = the total order with
1>...>n.

i) If 8" C g(S) is a feasible solution (i.e. |Jges S = [n]) then Y gcs IS N
{1,...;i}| >i fori=1,...,n.

i) If 8" C S are generators with ) g g [S N {1,...,i}| > i Vi € [n], then sets
S’ can be replaced by dominated ones which form a feasible solution of the
same cardinality.

3.1 Ruling out an APTAS

We will now see that unless P = NP, there is no APTAS for a generic problem
defined on a set system that respects a total order.

Theorem 3. For every ¢ > 0 and any C' > 0 there is a generic problem with
unit-cost sets respecting a total order for which it is NP-hard to find a solution
of cost (3 —)OPT + C.

Proof. We will prove the theorem by constructing a set system such that for any
fixed integer k > 0, it is NP-hard to distinguish whether an optimum solution
consists of at most 2k or at least 3k sets. Choosing k := k(e,C) large enough
then gives the claim.
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To establish this hardness result, we will use a reduction from the NP-hard
PARTITION [11] problem. An instance Z of PARTITION, is given by a set of n
items with sizes a; > as > ... > a,, and asks for a partition of the items
into two sets Ay and A,, such that 3, , a; = > .4, a; = A. Given such an
instance, we create groups L1, ..., Ly, where the group L, contains n?P copies of
item 4, i.e. L, = {v;ﬂ- |i=1,...,m;5 =1,...,n%}. Note that the total number
of elements is N := n®*). We define a total order with L; = ... = L; and
”Z,i > ’U;J;:i’ whenever i < i’ (and vllm .= vgi»p for the sake of completeness).
Let S(I,p) := {”Z,i |i€I; j=1,...,n%"} be the set induced by I C [n] in
group L,. We define generators

S:{S(I,p) [Vp=1,...,k; Vlg[n}:iezlaigfl}

Completeness: T € PARTITION = OPT(g(S)) < 2k. Let I C [n] with
> icr @i = Abe a PARTITION solution. Then the 2k sets of the form S([n]\I,p), S(I,p)
forp=1,...,k cover all N elements.

Soundness: T ¢ PARTITION = OPT(¢g(S)) > 3k. We may assume that 3k <
n. Now suppose for the sake of contradiction, there is no PARTITION solution,
but &’ C S is a family of less than 3k generating sets, dominating a feasible
solution, satisfying the second condition in Prop. 1. Then there must be a group
L, such that &’ contains generators S(I1,p),...,S(In,p) with m < 2. Then
from Prop. 1 we obtain that

Prop. 1 m
in® <Y [SA(LU. . UL, 1US({1,.. i}, p))| < Bknen® 724 0P| L0{1, ..}
Ses’ (=1

Hence: )", [I, N {1,...,i}| > [i — 3&] = i, since the left hand side is integral
and 3k < n. Since > ;- [I; N {1,...,i}| > i for all i € [n], we conclude by
applying again Prop. 1, that elements in I1,..., I, can be replaced by smaller
ones and obtain If,..., I}, such that still 37, a; < A but Urw, I, = [n]. Since
m < 2, this is a contradiction. O

4 Multiplicative integrality gaps

Next, we show a ©(loglogn) multiplicative gap for the case of a total order.

Lemma 4. Let S any set family on n elements respecting a total order and let
w:S —[0,1] be a cost function. Then OPT(S) < O(loglogn) - OPTy(S).

Proof. Consider consecutive groups Lo, ..., Ly such that |L;| = 2¢ (group Ly
might have fewer elements), k < logn and all elements in L; are larger than those
in Liy1. Let = € [0,1]% be a fractional solution. We buy set S independently
with probability A - zs where A := max{8 -log(4 + 4logn),4} (in fact we may
assume that A - zg < 1, otherwise we buy |\xg] sets deterministically and then
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another set with probability Axg — |A\xg]). Let Xg be the indicator variable,
telling whether we bought S or not. Define E; := {} ¢ X5 - [SNL;| <2-|L;|}
as the event that we bought less than two times enough sets for the ith group.
Recall the following Chernov bound (see® e.g. [15]):

Let Y1,...,Y,, be independent random variables with Y; € [0,1], Y =
S Y and 0 < 6 < 1. Then Pr[Y < (1 — §)E[Y]] < e~ EI5*/2,

Applying Chernov bound with § := 1/2, Yg := XS‘SQ
obtain

iL‘iI and E[Y] = A, we

Pr[E;] = Pr [Z Xg-|SNL;| < 2-|Li|} < Pr [Z Vs < (1—5)/\} <e M8 < L

Ses ses

By the union bound, Pr[E, U...U E;] < 1. Furthermore Pr[}" ¢ s Xsw(S) >
4X-OPTy] < i by Markov’s inequality. Overall, with probability at least 1/2, we
obtain an integer solution &’ = {S € § | Xg = 1} of cost at most O(loglogn) -
OPTy that reserves at least 2|L;| slots for elements in L;. Those slots are enough
to cover all elements in L;4. a

Note that the result in Lemma 4 provides a randomized polynomial time algo-
rithm, provided that a near-optimal fractional solution z can be obtained.

Lemma 5. There exists a set system S’ C 21" with unit cost sets and respecting
a total order such that OPT(S') > 2(loglogn) - OPT(S').

Proof. Let k € N be a parameter. To construct our instance, we use as start-
ing point a SET COVER instance defined by a set system C with 2¢ — 1 sets
Cy,...,Cor_1 and 2% — 1 elements U = {1,...,2%¥ — 1} such that one needs at
least k sets to cover all elements, while OPT(C) < 2 (see Example 13.4 in the
book of Vazirani [18]).

For every element i € U, create groups L; with |L;| = (2k)". For any C; in
the original set system, define a set S; := (Uiecj L;) with unit cost, and let
S ={51,...,5%k_1}. In other words, we take a standard SET COVER instance
and replace the ith element by (2k)® elements. We define a total order such
that all items in L; are larger than those in L;1; (and any order within the
groups). The claim is that the set system S’ := ¢(S), which is generated by
the sets S, has a covering integrality gap of at least k/2. First note that still
OPTy(S’) < 2. Now suppose for contradiction that there are generators (after
reindexing) Si,...,S5, C S with m < k that satisfy the condition in Prop. 1.
Since m < k, there must be an index ¢ such that i ¢ (Cy U...UC,,). Then

X i Prop. 1 ™ m 1¢C; )
k) <SILd £ SISNEU VL) =Y ST @k < me2(2k)t =
=1 -

7j=1 j=1+¢eC; t<i
Rearranging yields that m > k. Note that the number of elements in the system
k .
Sisn=321"(2k)" <2-(2k)2", hence k = 2(loglogn). O

& To be precise, the claim in [15] is for 0/1 distributed random variables, but the same
proof goes through if 0 <Y; < 1.

=3

~ 4(1+logn)

(2k)’
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5 Applications

We now demonstrate the versatility of our framework by establishing small addi-
tive integrality gaps for several BIN PACKING variants from the literature, listed
in the following. We refer to the full version of this paper for the proofs of the
bounds provided below.

CARDINALITY BIN PACKING. Here we are given a BIN PACKING instance s1, . .., Sy
with an additional parameter k € N. A subset of items S can be assigned to a
bin only if } ;. ¢s; < 1 and [S| < k. There is an AFPTAS due to Epstein &
Levin [7]. With our technique, we obtain: OPT(S) — OPT(S) = O(log klogn).

OPEN END BIN PACKING. We are here given a BIN PACKING instance sy, . .., Sy,
but a set S C [n] is feasible if } ;g\ ;3 5 < 1 holds for every j € S. There
is an AFPTAS for this variant by Epstein & Levin [6]. We can prove that:
OPT(S) — OPT}(S) = O(log” n).

BIN PACKING WITH GENERAL COST STRUCTURE. We are given item sizes
S1y.-.,8n, and a cost function f : {0,...,n} — [0,1], which is a monotoni-
cally nondecreasing concave function with f(0) = 0. The goal is to find sets
Si,...,Sp to cover the items such that >, ies, Si <1 forevery j=1,...,p and
the total cost Y7 f(|S;]) is minimized. This problem admits an AFPTAS [8].
We prove: OPT(S) — OPT¢(S) = O(log® n).

GENERALIZED COST VARIABLE SIZED BIN PACKING. We are given item sizes
81,...,8n, and bin types By, ..., By each one with a different capacity a1, ..., ax
and a different cost ¢y, ..., ¢, € [0, 1]. The goal is to select a minimum cost subset
of bins to pack the items, where a subset of items can be packed into a bin B; if
the sum of their sizes does not exceed the bin capacity a;. See [5] for an APTAS.
Our result is: OPT(S) — OPT(S) = O(log® n).

BIN PACKING WITH REJECTION. We are given a BIN PACKING instance s1, ..., sp,
but additionally any item 4 has a rejection cost ¢;. An item can either be packed,
or discarded at cost ¢;. See [7] for an AFPTAS. We have: OPT(S) —OPTy(S) =

O(y/nlog®?n).
TRAIN DELIVERY. We are given n items, each having a size s; and position
€ [0,1]. The goal is to transport all items to a depot, located at 0, using a

unit capacity train and minimizing the total tour length. The authors in [3] give
an APTAS. We can prove that: OPT(S) — OPT¢(S) = O(v/nlog®?n).

m-DIMENSIONAL VECTOR PACKING. Let V be a set of vectors vy,...,v, €
[0,1]™. The goal is to partition V into bins By,..., By, such that k is min-
imized and ), B, Vi < 1. We say that v; =X vy, 1f v; is componentwise not
smaller than v;. The Dilworth number of V is then the smallest d such that
V can be partitioned into V1,... V¢ such that: Vuv;,v; € V", either v; < v,
or v; = v;. If there is no bound on d, there is no APTAS possible already in
2-dimensions [19]. Differently, for constant d there is an APTAS given in [1]. Our
result is: OPT(S) — OPT(S) = O(d?log® n).
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