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SECTION ONE

Introduction

Problems of minimizing convex functions on convex subsets

of real vector spaces, which.afe called convex programs, have
attracted attention in recent years, especially because of their
importance in economics, network theory and other disciplines. Our
aim here is to develop a new general theory of such problems in the
finite-dimensional case, using an approach inspired by that of
Fenchel [19]. Computational procedures will not be considered. We
shall be interested rather in characterizing solutions in various
ways, and in extending the duality principles which play so prominent
a role in the study of certain classes of problems, such as linear
programs. Before describing our results, we shall set the stage
by reviewing some well known facts.

Let E and E* be two copies of the finite-dimensional real

n
vector space R , with

* * *
[x,x ] = §l§1+,°,+§n§n
: 5k %k * ¥
for x = glsaoo,énf €E and x = igl,,,,,gn»;eg "
%
(Instead of identifying E and E , we think of the elements of each
space as corresponding to the linear functions on the other by
* *
means of the bilinear functional [x,x ].) Similarly, let F and F
m
be two copies of R , with
[ * * %
v,y ] = MM+ -+ 7
The ordinary vector partial orderings are to be used in these spaces;

%
thus x' 2 x is to mean that §3 = gj for j=1l,...,n. Let A = ((Oﬁi)) be an

* * *
m x n real matrix with transpose A = ((Oﬁi))’ where Oﬁi = Q&jw




Treating all vectors as ''column vectors,' we view x :Ax as a
‘ ) * * % *
linear transformation from E to F with adjoint y -A'y from F
*
to E ,» SO that
* * X * ok
(1.1) (Ax,y ] = [x,A y ] for all xcE and y €F .

This notation will be assumed throughout the paper.

* ok
For fixed vectors b €E and ce¢F, the canonical dual linear

programs [237 are the two constrained extremum problems defined by
(1.2a) minimize fx,b*w subject to x = 0 and AX 2 c,
(1.2b) maximize {c,y*] subject to y* « 0 and A*y* < b*

The remarkable property of this pair of problems is that, whenever
one has a solution, then so does the other and the minimum and
maximum are equal. Moreover, if the constraints in both problems
can be satisfied, then.both have solutidns. These facts, proved
by Gale, Kuhn and Tucker {21] in 1951, constitute the duality

theorem for linear programs. Sometimes the last fact is referred

to separately as the existence theorem.

A minimax property of the solutions to the dual linear programs

depends on the following notion.

DEFINITION 1-A
* *
Let B and C be non-empty subsets of E and F , respectively,

3
and let L(xX,y ) be a real-valued function given for all x€B and
* % *
y ¢€C . A pair of vectors xxo.yo is said to be a (global)
. *
saddle~point for L (minimizing over B and maximizing over C ) if

T
xO€B, y0€C , and

* * * * ok
(1.3) L(xo.y ) < L(xo,yo) < L(x,yo) for all xeB and y «C .




If a saddle-point exists, then

* * X
(1.4) Ay = inf sup L(x,y ) = L{(x,»¥ )} = sup inf L(x,y )
0 ok 00 x %

X¢B ¥ €C Y «C x¢B

is called the minimax value of L. (It is well known that (1.3)

implies (1.4); e.g. see [27, p.227.)
Associated with (1.2a) and (1.2b) is a third problem

(1.5) find a saddle-point of the function

* - * - * . - %5
L(x,y ) = {x,b ] + le,y 1 - lAx,y ¢

*
>0,

v

* * |
on B = x!|x20 and C = y |y

It is customary to called L the Lagrangian function, because of an

analogy with the classical theory of Lagrange multipliers which will
be explained in a moment. It is known [23, p.777 that \xo,yg\“

is a solution to (1.5) if and only if io is a solution to (1.2a)

and y; is a solution to (1.2b). Moreover, when such solutions
exist, the minimax value of the Lagrangian function in (1.5)

coincides with the common extreme value in the dual problems (1.2a)

and (1.2b).
%
Finally, % is a solution to {(1.2a) and Yo is a solution (1.2b)
*
if and only if (xo;yo, is a solution to the following system
of inequalities:
*  x *
(1.6) x 20, y20, Ax~c 20, b~-Ay =0

* o _ %* L )
(Ax-c,y ] =0, [x,pb-ay ]=o0
(see [23, proof of Theorem 5}). Because of the result mentioned
above, (1.6) also characterizes the saddle-points in (1.5). We

shall speak of relations (1.6) as the equilibrium conditions for the

dual linear programs. Gale [20, p.19] uses similar terminology when



discussing the significance of (1.6) in economics.

Problem (1.5) allows us to view the dual relationship between
(1.2a) and (1.2b) as an expression of a '"conflict of interest."
Indeced, a problem of finding.saddlcipoints such as those defined
in 1-A can always be interpreted as a game between fwo players (1)

* "
and (IX) whose strategy spaces are B and ¢ |27, p.16!. Assume that

* - ox

‘hen (I) plays the strategy xeB, and (I1) plays the strategy y €C ,
*

the result is a payment L(x,y ) to (II). A pair of strategies

* -,
xquo't satisfying (1.3) then corresponds to a state of equilibrium.
. *
1= long as (I) plays XO’ he never has to pay more than L(XO’yG)’ but

n2c would risk a higher payment if he deviated from Xy At the same
*

b3
time, (11) can guarantec himsclf at least L(Xg’yo) by keeping to Yo

cut would risk receiving less if he played a different strategy.

Since the saddle-points in (1.5) can be found by solving (1.2a)
znd (1.2b) separately, we can think of the latter as the strategy
oroblems to be solve by two opposing “'playcrs.” The duality theorem
for linear programs reflects the intuitive idea that neither "player”
—2n determine his best strategy without implicitly determining at the
zame time the best strategy which can be used against him. The equality
cctween the extrema in (1.2a) and (1.2b) and the minimax value in (1.5)
-xpresses the fact that loss to one '"player" is gain to the other.

Tn1s game analogy provide further justification for speaking of the

-clations (1.6) as the equilibrium conditions.




Similar heuristic interpretations can be given even for classical
constrained extremum problems. Suppose that f,gl,---,gm are
Ziiferentiable functions on E and consider the problem:

1.8) minimize f(x) subject to gl(X5 = 0,---.gm(x) = 0,

7 order that x be a solution to this problem, it is necessary (under
su1table regularity assumptions) that x satisfy the given constraints
z2d the directional derivative of f vanish at x in every direction in

waich the 8; are all constant, i.e. that

23 S §EJ<X) = 0 for each z _<"l""’ n/
. o8y

such that > Zi —= (x) = 0 for i=1,,.,.,m.
Y,

=¥ clementary linear algebra, this implies that x is a solution to (1.38)

only if
1.9) gi(x) = 0 for i=1l,...,m, and
af \ ¥ ag.
ézj(x) = 2.;1171 fé?f (x) for j=1,...,n

* *
for certain scalars nl,...,nm.

Toc new unknowns in (1.9) are called Lagrange multipliers. The

_zzrangian function for (1.8) is defineu by

¥

* N * * *
1.10) L(x,y ) = £(x) - _,'gnigi(x) for y =My eeam
degy

neans of L, we can re-state (1.9) as
*
ék* (x,¥y ) = 0 for i=1,...,m and

an.

1

1.8')

%*
%% (x,¥ ) = 0 for j=1,...,n.

Tlz:e are necessary conditions for a stationary point of L.

wct2zlly, however, the solutions to the minimization problem (1.8)




correspond not to minima of L, but to "local” saddle-points which

can be defined much as in 1-A, Heuristically, in other words, they
correspond to local equilibria in a conflict of interest situatioq.
Relations (1.9) are the "equilibrium conditions." No obvious dual
problem presents itself in.this éase, but an implicit dual is described
informally by Courant and Hilbert [10, vol. I, p.231. ff.].

In 1951, Kuhn and Tucker {28? considered problems of the form
(1.11) minimize f(x) subject to x = O, gl(x) p:- O,.,.,gm(x) =0,
#here f is convex and the gi are concave. (The set of vectors
satisfying the inequalities is then convex in E.) Using certain
regularity assumptions including differentiability, they showed
that solutions of (1.11) correspond to the saddle-points of the
Lagrangian function |

LORy) = £00 - ) Mg (x) for x > 0 ana y* = 0,
and can be characterized by alsystem of inequalities, i.e. a ;et
°f equilibrium conditions in our terminology. They did not devise
2 problem dual to (1.11), however.

Generally speaking, the question of the existence of duals to
siven problems has turned out to be difficult and often ambiguous.

In the case of (1.11) where the gi are linear, for example, several types
o2 duals have been constructed, each having its own advantages and
“rawbacks (see [2, p.99], [11, F1, [131). For many other

croblems, no dual at all is known,

In this paper we hope to develop a duality theory which can be

-sed to deduce most known results, including the strongest results




for linear programs, and yet can be applied to a large variety of

new problems. Let f be a finite-valued convex functions on a non-emply
convex set B in E, and let g be a finite-valued concave function

on a non-empty convex set C in F. ?he basic problem we shall

consider is

(1.12a) minimize f(x) - g(Ax) subject to x<B and AxeC.

According to a theorem of Fenchel [18], the function f on B

& *
corresponds to a conjugate convex function f on a convex set B

* ;
in E ; similarly, g on C corresponds to a conjugate concave function

* *® %
g on a convex set ¢ in F . The problem dual to (1.12a) in our
theory will be

* * * ok k * ok * ok
(1.12b) maximize g (y ) - £ (A y ) subject to y ¢C and Ay

sk
€EB .
(These problems will take on a somewhat simpler form later, due to
a2 device of extending convex and concave functions to the whole space
by means of infinite values.) We shall also associate with these
dual problems a "game' problem:
(1.12¢) find a saddle~point of the Lagrangian function
x ok ) * * ok
L{x,y) = £(x) + g (y ) - [Ax,y 1 for xe¢B and y ¢C
Finally, using a generalized concept of "differential" ('gradient")
#hich is explained in *2, we shall define equilibrium conditiors
«hich appear formally as
% % * ok
(1.124d) Ax = 3g (y ) and Ay = 3f(x)
Problem (1.12a) reduces to (1.2a) if one chooses
*w
f(x) = [x,b ] for x¢B = x|x20 ,

g(y) = 0 for yeC = yly=zc

[
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Then (as we show in :3) (1.7b), (1.7c¢) and (1.7d) reduce to
(1.2b), (1.5) and (1.6) respectively.

The first three problems above, but not the problem of solving
the generalized "equilibrium conditions' were studied by Fenchel
"19, p.105-115] in the case Qhere ﬁ = F, E* = F*, and A = I is
the identity matrix. (An account of Fenchel's results is also
ziven in Karlin's book [27, p.227-229].) Fenchel proved in this
special case that, if problems (1.12a) and (1.12b) are "strongly
consistent” in the sense that B and C have relative interior
2oints in common, and dually for B* and C*, then both problems
fave solutions and the extrema are equal. He also proved that then
the solutions of (1.12a) and (1.12b) correspond to saddle~-points

in (1.12¢c). A weaker theorem of Fenchel [19, p.106]}, [27, p.229],

dich says that the extrema in (1.12a) and (1.12b) are equal

i

.though not necessarily attained) whenever the constraints in
2oth problems can be satisfied, is not correct. (This will be
cstablished by counter-example in 4).

We shall show in :4, using very similar "strong consistency'

-onditions, that Fenchel's results can be extended to the general

wn

e in which the spaces can be of different dimensions and A

meed not be the identity matrix. A substitute for the false

-uality theorem will also be derived. Since "strong consistency”

-: sometimes too restrictive an assumption, €.g. in linear programming

-neory, we shall develop in =5 a weaker sufficient condition, which

v call "stable consistency.” This new type of consistency makes use

Pl
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of the regularity properties of certain classes of ''stable' and
“completely stable” convex functions. The latter includes, among
others, all the quadratic convex functions and the "polyhedral'”
convex functioné described by the author in {31]. For the case of
(1.2a) in which f and g afe "completely stable', we shall prove
theorems that are in every respect as strong as those for linear
programs, Moreover, as will be shown in =~ 6, the class of
"completely stable' convex functions is closed under a number of
useful combinatorial operations. Therefore the strongest theorems
can always be applied to (1.12a) when f and g have been constructed
from known "completely stable' functions by means of such
operations.

Various special cases of the theory will be considered in
detail in 37 and :8. A new existence theorem for solutions to
certain network problems, proved at the end of -8, deserves

particular mention.




et
o

SECTION TWC

Convex Functions

The portions of the theory of convex functions that play a
central role throughout this paper will be treated here. The facts
about the closure, conjugate anﬁ differentisl of a2 convex function
are of particular importance. 7The last of these three notions
is new, at lesst in the generalized form in which we shall develop
it; it is based on the familiar principle that, @zt most points,
the graph of o convex function hos one or more non-vertical tangents.
The other two notions originate with Fenchel (187, Through the
device of extending all convex functions to the whole space by
allowing them to tuke on the value +x, we are able to present
Fenchel's results in a notstionally simpler form. This device
hzs already been used in a similsr context by Hormander 26
and Morcau [427.

Let C be a convex sctl in o (where 2 is a copy of R as
§

cxplained 1n <1). The topolegicsl clusure of ¢ will be denoted

oy ¢l C. The relative interior ri C of C ig its interior relstive

to the smallest linear manifold (tronslate of o subspace) containing

it, while its relative boundary rb € is the set differcence between

cl Cand ri C. It is well known that ¢l C and ri ¢ are convex

scts, and

U

[2.1) cl{ri C) = ¢l C and ri{cl ¢y = vi C.
[0 particular, a non-empty convex set alwsys has a non-empty relative

interior. (Sce |15, p.9-16'.) The=e¢ facts would not generally be true
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if E were not finite-dimensional Relative interiors are considered

in detail in Appendix A.
A convex cone is a convex set K such that ?».xcK whenever x<K

, and 0 < <R,

w
Xy

DEFINITION 2-A
A function f, defined on a non-empty convex sct € in Z and

having values in the extended real interval -« = f(x)

will be called a convex function on C if

x. +(1-X1)x = + (1-x
f(uxl ( ) 2) Ba ( )“2 whenever
¢R, f(xz) % “2€R’ 0 < 3 <1,

(2.2)
1

x-GC, x,<C, r(xl) £ u
in which case the ambiguous

Unless f assumes both +» and -,
combination = ~ « would arise, (2.2)’can be simplified to
(2.2') f(kx1+(1—h)x2) s Af(xl) + (l-h)f(xz) for xlcc, xztc, 0= L<1,
The following obvious conventions are to be used in (2.2') and
clsewhere in calculations that involve +x and -w=:
(2.3) fA o= oo 4 A= o if —o < p S
om0 =m0 o b= o~ A —e B <,
Nrteo= =k =(«oif 0 <H <
0 1f =0 < X < 0,
ANe(mo)=(=w) )k =\=0 if 0 < A < o,
00 1f = < ) < 0,
(The

those in (2.3) will not appear.

Combinations other than
be introduced in a special

convention O*x = « will, however,
It is easily verified that ordinary algebraic

context N1§7.)
lzws, such as the associativity of addition, are still satisfied when
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(2.3) 1is used; at all events, every calculation in which we employ
infinite values can be formalized by replacing expressions of form
(2.2') by those of form (2.2) which involve only real numbers.

Given a convex function .29 on C, we can define f on E by
setting £(x) = fo(x) for x€C and f(x) = = for xkc. Then £ is a
convex function on E; this follows trivially from Definition 2-A.
Thus, without loss of generality, we can limit the discussion below
o convex functions defined on all of E, provided we do allow

such functions to be infinite-valued.

Properties of a convex function f on E can often be viewed

W
W

geometric properties of its upper graph set, which we define by

+4) gph £ =§<xtu> ler: £(x) < H'GR}SEQR.

I, 2 E, denotes the vector space: whose elements are the pairs <&1,x

1 2 27!

.) It is easy to see, for example, that the convexity

E»

X € €E
D S Sl R
2 £ is equivalent to the convexity of gph f in E®R. Another

.mportant set which we associate with f is its effective domain:

dom f = {x] f(x)<oo.§§.E.
iince dom f is essentially the projection of gph f into E, it is

'

One can always ''close'" a convex function in the following sense.

JEFINITION 2-B
The closure of a convex function f on E is the function cl f
tefined by

cl £(x) = 1lim inf £(z) for each xc<E.

Zz—>X
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If cl £ = £, £ is said to be closed. (In other words, a convex

function f on E is closed if and only if it is lower semi-continuous.)

This definition is simpler than Fenchel's [18], because f
is everywhere defined; a similar_définition is given by Moreau [42].
Trivially, cl £ < £, Furthermore, cl f£(x) < peR if and only if there
£xist sequences kaax and uk—au such that f(xk) < ukER for all k.

Sy definition (2.4), this means that the point <x,ud ¢ gph(cl f)

n

a limit of points <xk,pg> € gph f. Therefore

2.5) gph(cl £) = cl(gph £f).

2us the closure operation for convex functions merely reflects the
losure operation for convex sets. It follows at once from (2.5)

22t cl(el £f) = ¢l £, that cl f is closed convex function on E, and

'
[}

2zt f is closed if and only if gph f is closed. Definition 2-B

-mplies that

2.6) dom f Sdom(cl f)<=cl(dom £f),

@t simple examples show that f can be closed without dom f being closed.
The following properties are trivial extensions of properties

zroved by Fenchel [19, p.75 and p.78]:

2.7) cl £(x) = £(x) whenever x£ rb(dom f),
2.8) cl £(x) = lim_ f£(x +x(x0-x)) if x € ri(dom £),
A—>0
I.87) f(x) = lim+ f(x+x(xo-x)) if ¢l £ = £ and X,€ dom f£.
A=>0

me Ilrst of these is a consequence of the well known fact that a
~.1ite-valued convex function on an open set is continuous (see [5, p.92]
13, p.46]). By (2.7) and (2.8), a closed convex function on E

completely determined by its values on the relative interior of its
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effective domain. Very little can be said, however, about the

behavior of a non-closed f on rb(dom f)., For example, suppose E

m

. . _ 2 2
two-dimensional and let f(gl,fz) = 0 for gl + Ez <1, f(gl.éz) = ®

2

2 2 N .
for £ + €2 > 1, assigning arbitrary non-negative values to f for

"1
£] + 5; = 1. Then f is a convex function on E. But if f is required
0 be closed, the arbitrariness disappears and only the value O can be
assigned for Ef + E; = 1,

We say that a convex function f on E is proper if f(x) > -
for all x€E and £(x) < » for at least one x€E. Otherwise we say
that f is improper. Geometrically, f is proper if and only if
zph f is non-empty and contains no vertical lines. It is apparent
irom Definition 2-A that f(x) = -~ for_all x€ ri(dom f) when f is
.=proper. Hence
2.9) cl £(x) = ’-m for xe cl(dom £f) | if £ is improper.

o for x£ cl(dom f)

This implies, via (2.7), that cl f is proper if and only if f is
croper. For the most part, we shall be concerned only with proper
convex functions; improper functions, however, are important
.= several proofs (e.g. in 4-B).

We shall now describe the properties of Fenchel's fundamental
-onjugate operation [18], which induces a polar correspondence between

~= closed proper convex functions on E and those on the dual

*x
space E

%
The conjugate of a convex function f on E is the function £
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sk
on E defined by

* ok * * %
(2.10) f (x) = supx {[x,x ]-f(x)} for each x €E .

%k *
The second conjugate of f is the conjugate f of £ ,

X k%
f**(x) = sup , {[X,X - (x )% for each x€E.
o :

Observe that the supremum in the definition of f*, while formally
extended over all of E, could be expressed equivalently as a supremum
over dom f (provided f is not identically +w). From Definitions 2-B
and 2-C we have

* % *
(cl £) (x ) = supiEx,x J-1im inf. £(2z)
X

L ~» X

sup lim sup{iz,x*]-f(z)%

X Z 3 X

sup{[z,x*]‘f(z)} ='f*(x*),

z

so that
* *
(2.11) (el £) = £ ,
It is immediate from (2.10) that
* *
(2.12) fl < fz implies fl 2 fz.

There is a simple geometric idea behind the conjugate operation.
* X * B %

Let x €E , 4 €R, and let h(x) = [x,x ]-p . Then h is an affine convex
function on E and gph h is a "non-vertical' closed half-space in E &R.
Moreover gph f=gph h if and only if f£(x) 2 h(x) for all xcE, i.e.

* * * %

oz sup {[xx £G0] = £ (x).
2 £ is proper, it is plausible that the closed convex set cl(gph f)
1= the intersection of all such half-spaces gph h, which means by

=.3) that cl £ is the supremum of all such affine functions h, i.e.

* * ok
cl £(x) = sup *‘{tx,x 1-£ (x )} .
X
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*%
By the last expression, by definition, is £ (x). Using the

familiar separation theorems for convex sets, this argument can be
formalized to obtain the following theorem. (We shall omit the
formal proof, since it closely.pdrallels Fenchel's in [18], except
for notation. An iﬁfinite-dimensional version 6f the theorem may be

found in Moreau [42].)

THEOREM 2-D
b 3
Let £ be a proper convex function on E. Then f is a

* * %
closed proper convex function on E and f = ¢l £,

The theorem is almost, but not quite, true for improper
* Xk
convex functions. If f is identically 4o, then trivially f (x ) = -
) * *k
Zor all x and £ (x) = cl f(x) = 4o for all x. But if f assumes
* % * koK

ne value -, then £ (X ) = 4o for all x and f (x) = -» for
211 x, whereas cl f is given by (2.9). Thus, in the latter case,

£ and cl f agree on cl(dom f) but not elsewhere.

COROLLARY 2-E

* *
Let fl and fz be proper convex functions on E. Then fl 2 f2

:£ and only if cl fl < cl fé. In particular, the conjugate operation

tzIines a one-to-one order-inverting correspondence between the

*
c.2z==c proper convex functions on E and those on E .
Breeng £ This is immediate from (2.11), (2.12) and Theorem 2-D,

Zonjugate pairs. of closed proper convex functions also

~=zp0nd to "best inequalities' of a certain type:
y
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THEZOREM 2-F
Let £ be a closed proper convex function on E, with conjugate

= *
Z on E . Then

* L x . O
2.13) £(x) + £ (x ) = [x,x ] for all x€E and X €E .

*
-reover, for each xe€ ri(dom f) there exists some x such that (2.13)

*
uo.Zs with equality, and dually for each x € ri(dom f).

20I: Inequality (2.13) is obvious from Definition 2-C. The

snzrpened final assertion was proved by Fenchel in [18].

If £ is a differentiable convex function finite on all of E,

= differential (or gradient) 3f(x) at x is given Dby

of %
3(x) = <L @,z 0,
CI3N .13
n * *
wi_ch can be interpreted as an element x of E . (Our terminology
wr: notation agree with that of Dennis [11] in a similar context.)

zffine function h(z) = f(x) + [z-x,af(x)] is then tangent to

i

: 2t z = Xx, with £(z) 2 h(z) for all z€eE. With this fact in mind,
ws= zxtend the concept of differential to arbitrary proper convex

fumction as follows.

EFINITON 2-G

Lzt I be a proper convex function on E and let x€E. We say that

*® =

*
- i1s a differential of f at x, and write x = 3f(x), if

%*
14 £(z) = £(x) + [z-x,x ] for all zeE
. *
z=lztion 9of, which consists of all pairs <x,x > such that

= *f(x), is called the differential of f£.




T
Observe that we have only defined thc expression x* = af(x),
and not af(x) by itself. This is due to the fact that f may have
more than one¢ {(or no} differential at a given point x. (That
can happen, for instance, if the gruph of f has a vertex at x,
or if x is not an interior poing of dom f.) Wwe could, however,
interpret &f as a multiple-valued mapping. When f is actually
differentiable, *f is single-valued and coincides with the
ordinary differential described above., This is proved formally
in Appendix C (see C~F), where the relationship between the
generalized differentizls of Definition 2-G and the classical
theory of directional derivatives of convex functions is explained
in detail. Our theoretical development is based directly on
Definition 2-G and does not assume facts from the calculus
(although these would be useful in determining the differentials

in certain special applications).

THEOREM 2-H
Let £ be a Eiﬁiﬁg proper convex function on . Then the
following statements are cquivalent:
sk

(a) X = ‘:f(X) §

* %
(b) x = af (x },

* % ?
(c) f£(x) + £ (x ) = [x%,x}.
A&
In this sense the differcntial ¢f is the inverse of af,

Proof: Re-writing (2.14) and applying Definition 2-C, we see that

x
x = #3f(x) if and only if
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* . * x %
L X,x o= f{x) = sup? lz,x '=~f(z) = f (x ).

*

Since f is proper by assumption, and £ is proper by 2-D, f(x)
must both be finitc if either this inequality or inequality (c)
holds. Hence (a) is eguivalent to (¢). A dual argument proves
that (b) is equivalent to (¢}, because, by 2-D and the assumption

| * '
that f is closed, f is the conjugate of f .
COROLLARY 2-1

A closed proper convex function f on E has differentials at all

points x¢ ri(dom f), but no differcntials at points x££ dom f.
Proof: This follows at once from 2-F and 2-H.

COROLLARY 2-J
Let £ be a proper convex function on E such that C¢ ri(dom £f).
Then

* %
~m<m1n*f(x)<:oa,
x
(Following the usual convention, we indicate that an extremum

is attained by replacing "inf' by "'min” or "max’.)

Proof: If O¢ ri(dom f), then O¢ ri(dom(clf)) by (2.1) and (2.6).

Since ¢l £ is a closed proper convex function, 2-] implies that

* * % * *
x = 2{cl £)(0) for some x <E . Since (cl f) =1 Dby (2.11),

* Ok
2-H now implies that O = 3f (x ). This means by Definition 2-G

that
E I E I . * Ok E T
f(z ) > f(x )+ [0,z %X, =1 (x)

*x ok * ok
for all z ¢gE . Furthermorce, f (x ) must be finite in this case




-

b3
because £ 1is proper by 2-D.

The next two theorems provide formulas for conjugates in

common situations.

THEOREM 2-K
Let £ be a convex function on E. Then
* % * % *
(a) h(x) = f(x-a), acE, implies h (X ) = f (x ) + la,x 1,
; o - * % * ok % k%
(b) h(x) = f(x)} + Lx,a |, a €E , implies h (x = f (x -a ),
. . * ok * *
(¢) h(x) = Af(x), 0 < AeR, implies h (x ) = Af ((1L/N)x ),
) * % * *
(d) h(x) = f(>x), 0 # AcR, implies h (x ) = £ ({1/N\)x },
* ok ko ok
(e) h(x) = f(x) + &, R, implies h (x ) = £ (x ) = o,

Proof: These formulas are easy consequences of Definition 2-C, and

have alrecady been pointed out by Fenchel [19, p.93-947,

THEOREM 2~L

* * . )
Suppose that E = Els .o ;Ek and E = E1w>...“xEk, with
* _ *
[x,x 1 = [xl,xl]+...+[xkyxk]
4 * ok * *
for x = <x1,...,xk>>£E and x =LKy e Xy >C€E . Let fi be a

* *
proper convex function onbEi, with conjugate fi on Ei, for i=zl, ..., kK,
and let
= vee,X ) = (X )+...+F (x ).
f(x) f(Xl: ’ I l( 1) k< Kk
Then £ is a proper convex function on E, closed if and only if all
the fi are closed, and

* % * % * * ok * %
f(x)=*¢F (xl,...,xk) = fl(xl)+"'+fk(xk)

*
on E . Moreover

* * *
(xl,...,xk>= x = af(x) = Bf(xl,...,xk)
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*
if and only if X, = afi(xi) for i=1,...,k.

Proof: Since the fi are proper, f does not assume the value -~

and is not identically «; the convexity of f is then easy to verify
using (2.2'). Thus fis a prober convex function on E. The assertion
about closure is an obvious consequence of Definition 2-B. We calculate

the conjugate of f directly from (2.10), obtaining

o i 1Y ) | E ,i=1 k
= X J= X X €E ,i=1,...,k r
£ {x )= sup ZJ 0% Zin i O :
e * 7 A
= ‘ — (X ) X €E = .
Z, 5P ?["1'}{1j ACRILE A PECR
. 1 * i
Finally, by Definition 2-G, x = df(x) if and only if
T R : x_ o [ *
chi(zi) = £(z) 2 £(x) + lLz-x,x | = Ai(fi(xi)+ zi-xi,xij)
1
for all ziGEi, i=l,...,k. This happens if and only if
*
> . -
£, (2) fi(xi) + [zi xi,xi]

*
for all x €E,, i.e. x, = of, (x,), for i=1,...,k.
i ! i i

A simple but important example of a convex function is the

Y
convex characteristic function 6C of a convex set C, which we

define by
(2.18)  B,(x) = 8(x|c) = J0 it xec

!
\w if xX£C.

Clearly éC is proper if and only if C is non-empty, and is closed
if and only if C is closed; in fact

(2.16) cl 8(xlc) = B(x | cl ©).

If a convex function f on E assumes no values other than O and

w, then f = 5 where C = dom f£. This one~-to-one correspondence

C)
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between convex sets and certain convex functions leads to a useful
principle: general facts about convex functions can always be

specialized to facts about convex sets. For instance the conjugate

v
of 6C is by definition _
(/_ * v ' \ - %
sup_ ?[x,x ]—&(xfc)F = sup 1[x,x TlxeC

\
\

(provided C # @), where EC is called the convex support function of C.

The well known theorems relating convex sets and their support functions
can be deduced from 2-D. This is demonstrated in Appendix A.

Convex characteristic functions are very useful in extremum
problems. Suppose that f is a convex function finite on all of E and
that C is a non-empty closed convex set. Let

h(x) = f(x) + %(xfc) for all xe€E.
Then h is a closed proper convex function on E by (2.7), (2.8"')
and (2.16), and dom h = C. Morcover

inf £ (x) ’xeC”": = inf_h(x).
In this manner constrained minimization can be treated uniformly
as minimization on E, the constraints being incorporated into the
cffective domains of the functions involved. Operations defined
for convex functions such as closure, conjugation, addition and
convolution (seec §6), then lead to an automatic calculus of
constraints in extremum problems and their duals.

Concave functions will also be important in this paper.

DEFINITION 2-M

A function g on £ is concave if -g is convex. The conjugate

%k
g of a concave function g on E is defined by




e

% % ) * - i %
(2.17) g (x ) = inij L%, x T-g(x): for all x €E .

\

Notice from this definition that
* ok * *
(2.18) if £(x) = -g(x) then £ (x ) = -g (-x ),
. ,
rather than merely f = -8 as one might guess. Aside from this
possibly misleading point, the theory of concave functions mirrors
the theory of convex functions completely. we shall not explicitly
state the obvious concave analogs of theorems and definitions that
apply to convex functions, but these analogs will nevertheless be
used in theoretical developments.

We find it conveninent to employ a notation dual to (2.15)

for the concave characteristic function of a convex set C:

A A .
(2.19) By (x) = d(xlc) = |0 if xeC,

-0 if x£C,

whose conjugate (if C # @) is the concave support function of C:

G(x|c) = inf {[x,x*jlxeci

2.20 g (
P g X
( 3 ) C )

A v A * N, *
Of course 6(XIC) —6(x,C) and o(x lC) = -0(~x ’C).




SECTION THREE

The Model Problems

We shall now define the problems whose theory is to be
developed in this and later sections. It will be zsssumed in

these problems that f is a clesed proper convex function on E,

# *
with conjugate £ on B , and that g is a clossd proper concave
# *
function on F with conjugate g on ¥ . By Theorem 2-=D,
* %

f and g are also closed and proper, and their conjugates

are in turn f and g. It will zlsc be assumed, as in 71; that
A is the matrix of a linear transformation from £ to F, so that
the transpose A* of A is the matrix of a linear transformation

* e
from ¥ to E . The notation is schematized in Figure 1.

X ey max
AT
f* E B F')‘* g i
Xy A
& .
; i
£ B F 24
A
min PR

Figure 1L
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For each such system of elements we consider the following four
problems:

(1) Convex program:

minimize f£(x) - g(Ax) on E.

(II) Concave program:

* % * ok % *
maximize g (y ) - £ (Ay ) on F .

(II1) Game, or saddle-point problem:

find a saddle-point of the Lagrangian function

= * % * * *
L(x,y ) = £(x) + g (y ) - [Ax,y ], xc dom £, y € dom g

(I1v) "Equilibrium' problem:

find vectors satisfying the equilibrium conditions

AX = Bg*(y*) and A*y* = af (x).

Once a problem arising in pracfice has been formulated as any one
of the above, it automatically leads to three other problems. We shall
say that (I) and (I1) are ﬂﬂil to one another.

Clearly a solution to (IV) is a pair of vectorscfxo»Y;B
satisfying the equilibrium conditions, while solutions to (III) were

defined in 1-A., We say that x  is a solution to (I) if

0
(3.1) - < f(xo) = g(AXO) = minx {f(x)—g(AxiE < o,
*

and that.yo is a solution to (II) if

* Ok * ok Xk *x ok *  *x *
(3.2) w > g (yo) - f (A yo) = max *{g (y )-f (Ay )t > -w,

y

Thus we do not speak of solutions to (I) or (II) if the extrema are
infinite.

Although (I) and (II) are formally unconstrained, they actually

involve the implicit constraints:
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(3.32) %< dom f and Axe dom g,

*

* * *x *
(3.3b) y € dom g and A y € dom f ,

respectively. Indeced, f(x) - g(ax) is finite when xsatisfies (3.3a),

but has the value += when x does not; so that the minimization in (1)

automatically subject to (3.3a) when this is possible at all. If

inf . f(x)-g(Ax) = 4= in (I), this means that the implicit constraints
X

* % * ok ok
cannot be satisfied. Similarly sup , g (¥ )-f (Ay ) = ~-x if and
y
only if the implicit constraints (3.3b) of (11) cannot be satisfied,.
It is important to keep this in mind when interpreting infinite extrema
appearing in the duality theorems proved later.
%
Observe that the Lagrangian function L(x,y ) is convex and
lower semi-continuous (by the closedness of £) on dom f for each
* * *
y ¢ dom g , and is concave and upper semi-continuous on dom g for
each x¢ dom f. Restriction of L to the effective domains of f and
*
g 1is necessary to avoid = - o,

An interesting insight into the equilibrium conditions can

be gained in the following manner. Suppose, for the sake of argument,

that £, f*, g, g* are all finite and differentiable everywhere.
(This situation is studied in Appendix C.) Let h(x) = f(x) - g(Ax).
The differential (gradient) of h, determined by the ordinary methods
of the calculus, is then

sh(x) = af(x) - A*Bg(Ax).
The solutions to (1) can now be found from the equation 3h(x) = O,
which amounts to

* k * ,
3f(x) = Ay , where y = #3g(Ax).
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=-t, by the concave analog of Theorem 2-H, y* = 9g(Ax) if and only if
ix = ag*(y*). These are therefore just the equilibrium conditions. Thus
the equilibrium conditions in (IV) generalize the elementary idea that the
=olutions to extremum problems. are found.from the "partial differential
=zuations' obtained by setting differentials equal to zero. Of course
e differentials 3f and ag* which we have defined are not always
=ingle-valued, so that (IV) cannot be derived rigorously from (I)
7 the above argument in the non-differentiable case,

in view of Theorem 2-E, we can also express the general equilibrium
conditions as a cyclic set of four conditions

i * ok % * * ok
3.4) Ax =y, dg(y) =y , Ay =x, df (x) = x.

“=us (IV) is solvable if and only if it is poésible to "complete a

-ircuit" via the four '"'mappings' indicated in Figure 2.

* *
E <———g— F
A

*
of og
v A |
E > F

Figure 2
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We shall now demonstrate how problems (I) through (IV) reduce
to the corresponding problems of linear programming theory through a
E 3
simple choice of elements. Let b ¢E and ccE, and let

S
(3.5a) £(x) = {x,b ] if x = 0, £(x) = = if x ¢ O,

(3.5b) g(y) 0ify «c, g(y) = -= it y ? Ce
Then obviously

f(x)

- :
g(Ax) =, {x,b ] if x = 0 and Ax 2 c,
. » otherwise,

so problems (I) and (1.2a) coincide. (Calculating the conjugates of

f and g from definitions 2-C and 2-M, we obtain

%k £ 3 = *'r ) *;‘ % 3 *
f(x)=sup [x,x | -[x,b =0if x b,
x2h) * %
tew if x £b .
W sy Lok
g (y ) = inf [y,y = \ [c,y ] ify =0,
y=c 5 *
-0 if y ¥ 0,
Therefore
* * % kX %k * * * *
g(y)-£f(AyYy )= |c,y jify “0Oand A = b,

-x otherwise,
and (II) turns out to be (1.2b). Moreover the Lagrangian function
in (III) is just
* . * ) * ¢ * *

L(x,y ) = [x,b ]+ [c,y ] -{ax,y Jfor x #0and y = O.

Hence (I1I) reduces to (1.5). Next we calculate the generalized
*

differentials 3f and og . Applying definition 2-G to (3.5a), we see

*
that x = of(x) if and only if

= * . ; * . “ - * .
Lz,b § + &{zlz=0) 2 ix,b | + b(x’xRO) + lz=-x,x ] for all z.
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(5 is defined in (2.15).) This is the same as
, = * ok * ok,
x 2 0 and [z,b -X i & {x,b -X j for all z = Q,
which in turn is equivalent to
% * X * ok
(3.6a) X 20, b-x 20, and [ x,b =-x | s 0,
T
By a similar argument, y = &g (y ) if and only if

* . x
(3.6b) y 20, y=c 2 0, and ly-c,y | % 0.

* * %
Substitution of x = Ay and y = Ax into (3.6a) and (3.6b) transforms
the equilibrium conditions in (IV) into (1.6). Other specializations

of the model problems may be found in 7 and 8.

An elementary fact about (I) and (II} will now be proved.

THEOREM 3~A

) * * * * %k
infx ~f(x)-g(Ax) 2z sup , g (y)-f(Ay) .
y

Proof: By 2-D and its concave analog, it is always true that
* ok ok * ok . * . *  x
f(x) + £ (Ay) =Ix,ay J=[ax,y | =gx) +g (y ).

The theorem is an immediate consequence of this,

Notice that 3~A provides a method of estimating the extrema

* %k
in (I) and (II). Namely, if x ¢E and ylﬁF then by 3-A

1
- ok * % X ok %
(3.7) f(xl) - g(:—xxl ' KO 2 ho zZg (yl} - f (A yl),
where
: * * K kX %
(3.8) Ay = infx' f(x)-g(ax) , Ag = SUP 4 <8 (y )-f (Ay)
y

In particular, if the implicit constraints (3.3a) and (3.3b) can be

*
satisfied, then ho and LO must both be finite.

Suppose an algorithm were known for solving (1) approximately,

i.e. an algorithm which constructs a sequence of vectors X such that
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A = f(xk) - g(Axk) decreases to ko. The same algorithm could be

k
‘ * * * x, ¥ *
used to construct a sequence of vectors y,  such that A, = g(yk) -f (A yk)

*
increases to A Then, as in (3.7),

0°
= 2 ... 2 2 e 2 2 a2t
xl >\.2 >\.k~?’z~>~.0. MNoS Mg }"2 Lir,
so at each stage one would have upper and lower bounds on both KO
‘ * : * . ' * | .
and A\.. If A. and A, are finite and A, = A,, by continuing the
: 0 0 0 0 0
¥
algorithm until xk - Kk <¢ one could obtain approximate sclutions
* -
Xy and yk to (I) and (II), respectively, with errors kk - AO < r
* * . ‘
and'?\0 - hk <. (Similar uses of dual programs have been
proposed by others, e.g. Duffin [14].)
The above discussion points out one good reason for wanting to
know when 3-A actually holds with equality. An even stronger reason
is given by the theorem that we shall prove next. The fact that

extra hypotheses are needed to guarantee equality in 3-A is one of

the results of &4,

THEOREM 3-B
The following conditions are equivalent to each other:

E 3
(a) X3 and ¥, are solutions to the dual programs (I) and (II),
- ¢ ) ok ok k% kT
respectively, and inf_ if(x)-g(Ax); =sup ,vg (y )-f (Ay)},
‘ it k:
3
(b) <(x0,yot>is a solution to the game problem (III),

E 3
(c) <:x0,y0>>is a solution to the equilibrium problem (IV).

Proof: (a) implies (b): If (a) is true then certainly xoe dom f

* %
and yoe dom g by definitions (3.1) and (3.2). Now by 2-D and its

_ * *
concave analog, we have, for each x¢ dom f and ¥y € dom g ,
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L * %k %k [.- *
XY ) = £(xp) + g (v ) - [ax,,y 1 s £(x)) - glax)),
* * % * % * % * ok %
= - 2 - .
L(x,yg) = £(x) + & (v)) = [xA'y 12g (y) - £ Ay
But the right sides of these inequalities aré equal according to
(a). Therefore
® ) = g(ax DR B ‘
- - x — -
(3.10) L(xo,yo) = f(xO g o) =g (yo (A yo). and
P
\\xo,y0§~ is a saddle~point for L by definition 1-A. Hence (b)
holds.
‘ *
(b) implies (c): 1If < 0,y0§>is a saddle-point for L, then by

*

sk
definition x € dom £, Yo dom g , and

0
* ¥ [ *] o L N *]
£(xy) + 8 (v ) - [Axyy £(xy) + & (v - [ax),y,
* % *
< £(x) + g (y) - [ax,y,]
* *
for all xc dom f and y € dom g . It follows that
* % * % k%o *  k
g (y) =g (yy + [Axo,y -yo] for all y eF ,
* ok . !
£(x) 2 £(x;) + [x-xO,A yo] for all xcE,
These are just the equilibrium‘conditions, according to definition
2-G and its concave analog. Thus (c) holds.
(c) implies (a): Theorem 2-H allows us to express the
equilibrium conditions as
* ok x * % * *  *x
(3.11) ) +f@Ay)slxayl=1[ax,y 15¢g (ax) +g (v ).
* .
Hence if x0 and yo satisfy the equilibrium conditions we have
Lt * * ok ¥
f(xy) - g(Ax)) =g (yy) - £ (A y,).

This yields (a) because of 3-A.

COROLLARY 3-C

If (I1II) has a solution at all, then the minimax value (1.4) of
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the Lagrangian function coincides with both the minimum in (1) and
the maximum in (II). Moreover, the saddle-points can then be found
by solving programs (I) and (II) or can be determined from the

equilibrium conditions.
Proof: We noted this in the proof of Theorem 3-B, in (3.10).

Theorem 3-B says that problems (III) and (IV) are equivalent
to one another, and that both are equivalent to a combined version
of (1) and (II}). The duality theorems proVed later on are aimed
at showing us what extent this combined version of (I) and (II)

is equivalent to (I) and to (II) individualiy.
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SECTION FOUR

General Equivalence and Duality Theorems

The theorems proved below are the central results of this
paper. First of all, we shall .study the general relationship

between the extrema in program%,(l) and {(Ii)}. In the case

* *

already treated by Fenchel, where E =F, E =F , A=11s the
identity matrix, and both extrema are finite, Fenchel had
asserted that the extrema would always be equal [19, p.106]
(see also Karlin's account [27, p.229]). This is not true; as
we shall prove by counter-example (4-C). (The error stemmed
from assuming that a certain formula [lgi p.95], E27, Theorem 7.6.1],
was valid at all relative boundary points of the set where it was
defined. C. Witzgall alsoc observed the error recently and reported
it to Karlin. Fenchel has pointed out to the author that a similar
error occurs in another formula EIB, p.97j; i27? Theorem 7.6.23.)
The precise nature of the possible discrepancy between the two
extrema will be determined in Theorem 4~B. By a separate argument
not relying on the formula in error, Fenchel proved {(in the case
mentioned above)} that the e#trema would be equal and attained if
ri(dom £) ~ri(dom g} # @ and ri(dom f*) ~ri(dom g*) £ 9
(see [19, p.108] or [27, p.228]). The extra hypothesis requires
the implicit constraints to be consistent in a strong sense. We
shall show that this result can be extended to the present case,
although Fenchel's argument itself does ncot carry over. It will

be demonstrated that the generalized "strong consistency"
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conditions also guarantee that problems (I) through (IV) are
equivalent, i.e. that the solutions to all of them may be found
by solving any one of them. Dual vérsi@ns of the "strong
consistency"” conditions will also;be derived,

"Strong consistency' éan ac&ually be replaced by a less
restrictive notion of ''stable consiétency” which, however, is not
as simple to apply. This will be proved in:§5 (Theorem 5-J)

using the results obtained here.

Given the convex program (I} defined in§§3, we now consider
an associated family of convex progfams depending on a parameter
zeF:

(1') minimize f(x) - g(Ax-z) on E.
When z = 0, program (I') coincides with (I). The lemma below

describes the properties of the function h(z) giving the infimum

in program (I'). These properties will be crucial in later proofs.

LEMMA 4-A
For each zeF, let
h(z) = inf_{f(0)-glAx-2)}
Then h is a convex function on F and
{(2) dom h = A{dom £} -~ dom g =>iAx~y§x€ dom £, ye dom g‘f,
kK * k& ¥ B % L ® %
(b) h{y)=£f£ Ay )y ~g (y ) for each y €F ,
(e) h(0) = inf ‘£(x) - g(Ax) z,

g sk ok sk * Kk 3k j
(d) h (0) = sup **ig (v )~ £ Ay )5
b

Proocf: To prove h is convex, it will be enough to prove that



-37-

(4.1) it h(zl) < Ky < o, h(zz) <u <o 0<A<1, then

h(xz1+(1-k)22) < AR+ (l-x)uz.

1
since this implies the slightly stronger property required

in Definition 2-A. By the definition of h, the hypothesis

of (4.1) implies the existence of regl numbers g ulz, H21»
“22’ and vectors x1 and x2 in E, such that
By = Hyp” By T <hp) <w, gAx;=2,) >, > -,
hy = My ™ Hagr T(x) <y S, 8(AX,72,) < pyy > e

Since f is convex and g is concave,
1- < N -
f(le+( h)xz) Mg+ 1 k)HZI;
+ 1"' it }‘. 1- =
g(A(kx1 ( )\.)xz) ( zl+( A.)zz)
- 1-A - > 1- .
E(A(Axl zl) + ( )gsz zz)) ku12+ ( h)uzz

Therefore, for x = A\x, + (l-x)xz;

1
h(hz+(1—h)z2) < f(x) - g(Ax-(kzl+(l-x)zz))
<My, t (l-k)uzl - (hu12+(1-k))u22= N+ (1-%.)u2
Thus h is convex on E as asserted.
Observe next that
dom h =Siz|h(z) < m§é=~§z[f(x)-g(Ax—z)< o for some xg
=~{z|Ax-z=ye dom g for some x€ dom fi}.
This verifies (a).
The conjugate of h, according to Definition 2-C, is given
by the formula:

* ok . * g,
h(y) = supz~ifz,y ]-h(z)é

e % = “” "l
sup, 3 [z,y J-inf < £CG-g(ax-2)} %

el %k -~
sup § [z,y ]-f(x)+g(Ax-2) [xeE, zeF | .
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Taking a supremum over all pairs - 'x,z is the same as taking it
over all pairs <'x,w~, where z = Ax-w. Therefore

L 3 % e % “)
h (y ) = sup _Ax~-w,y 1-f(x)+g(w) ler,w€F<

3 * ok < L L
sup < ([x,A4"y 1-£(x)~([x,y J-g(w))|xeE,weF -

* ok k kX .
f(Ay)gy) : 4

Cox *
by the definition of the conjugates £ and g . Thus (b) is true.

Finally, (c) is obvious from the definition of h while (d)

*¥
is immediate from (b) and the definition 2-C of h .

We now prove that the equality of the extrema in programs (I)

and (II) depends on the behavior of the infimum in (I') as the

parameter z approaches 0.

THEOREM 4-B (Weak Duality Theorem)
< ¥, Dok ko ok k kT
(a) liminf jf(x)-g(y); =sup g (y )-f (Ay )}
Ax-y->0 - - yﬂ*

except when, trivially, the left side is 4« and the right side

is =oo,

1 f \ Ok k * ok
(b) inf <£f(x)-g(Ax) ' = limsup <g (y )-f (x )"
x - - * ok kL -
Ay -x—=>0

except when, trivially, the left side is +w and the right side

1s =00,

(The notation in programs (I) and (I1) is assumed here.)

Proof: For the function h in Lemma 4-A, we have

(4.3) lim inf £(x)-g(y) = lim inf h(z) = cl h(0).
Ax~-y —0 z =0

* ok ,
Thus (a) holds if and only if cl h(0) = h (0), by part b of
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Lemma 4-A. But h is a convex function, so this is true by Theorem 2-D

. * %

and the remarks following it, except when ¢l h(0) = w and h (0) = -,

This proves (a); (b) is proved by a dual argument, valid because f and
* /%

g are in turn the conjugates of £ and g . (Recall that f and g

. i Aok Kok
are closed and proper in (I), so that f = f and g = g by 2-D.)

The problem of determining the "lin inf" in (a) may be thought
of as a weaker form of program (1), in which the implicit constraints
(3.3a) need only be satisfied "in the limit". Theorem 4-B says
that (II) is really thedual of this weaker problem, rather than the
dual of (I), while (I) is really the dual of the corresponding
weaker version of (II). The extrema in (I) and (II) will not be
equal, therefore, unless the weaker versions of (I) and (II)
are equivalent to (I) and (II) themselves. The next theorem
furnishes examples where the problems fail to be equivalent;
the third example, in particular, contradicts the result of

Fenchel mentioned above.

THEQOREM 4-C
The following situations are indeed possible in (I) and (II),

. * Ok Ok k ok k-
with Ay = inf < £(x)-g(Ax) - and A) = sup , 8 (y)-f (Ay)

* y
(8) =2 Ny > r =
: *
(b) °°=>\.O>KO>_°°’
£ 3
(c) o> KO > XO > =00,
E 3
(d) G):}\ >>\ = 00,

0 0

sk
(LO=KO in all other cases by Theorem 3-A.)
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2
Proof: 1In each case we taken E = F = B and take A to be the

identity matrix.

(a) Choose £, (x) flﬁbl,ig. »(gl,azigl )
1/2 N
x) = £) = { 20 =0
gl( ) gl(gl, 2) 51‘22) if £1 vgz ’
) | =w otherwise.
Then obviously
\ 1/2 i
- Fos {‘. i =O,{7 ._/O 5 = O.

But if we let

3 3 o
(4.5) = <0,k"> , Ve =<k T,k >, k=1,2,...,

*x

then X~ yg—>0 but fl(xk) - gl(yk) = =k for all k. Therefore,

by part (a) of Theorem 4-B,
&
0

°

w0 = lim inf J¢ (x)=-g (y)& = A
Sl 1%
x - y-=>0

(b) This is dual to (a),.

) / i .
(c¢) Let f, = £, and gS(X) = min‘zl,gl(x)j . Again taking

the sequences in (4.5), we have fS(Xk) - gB(yk) = -1 for all k.
But evidently"fB(X) - g?(y) = =1 for all xcE and y<E, so by

part (a) of Theorem 4-B,

-

[ [, *
= - s < - o A
1 = liminf {fs(x) g3<y))? o
y-x>0 -

while ko = 0 as in (4.4).

il

o , S(& & 20,¢ =20,¢ )
(d) Let £, = £, g4(€1 €2> 62 + b(,l,ﬁziﬁl 0 Ez 0.€1£221)

This time dom £, .dom g, = g, so xo = o trivially. On the other

3
hand, for the sequences in (4.8) we have f4(xk)—g4(yk) = -k~ for
all k, and therefore

¢ ..
~0 = lim inf 1f (x)-g (y)% = A
| 4 ) 0
x-y >0
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by part (a) of Theorem 4-B.

A stronger theorem than 4-B will now be derived using

additional assumptions. \

DEFINITION 4-D

Program (I) will be called strongly consistent if there exists

some x¢ ri(dom f) such that Axe ri(dom g). Dually, program (II)

* *
will be called strong&z consistent if there exists some y € ri(dom g )

* * *
such that A y € ri(dom £ }.

THEOREM 4~E (Duality Theorem)
(a) If program (I) is strongly consistent, then

) - 7 ok X * ok k-
.1nfx %f(x)-g(Ax)§ = max 4 g (¥ )-f (Ay )f
L - 'y ‘\_ -
(b) If program (II) is strongly consistent, then
3 Tk ok * ok %
£(x)-g(Ax)| = sup & (y )-f (A y )
y j

, 3
min -~

4

Proof: (a) Let h be the convex function in Lemma 4-A. Then,

by 4~A(a) and two general facts about relative interiors proved
in Appendix A (namely A-D and A-G),
ri(dom h) = ri(A(dom f)-dom g) = ri(A(dom f))-ri(dom g)
= A{ri{dom £))-ri(dom g):t{Ax—y%xe ri{dom f),yc ri(dom g) .
. L
The assumption that (I) is strongly consistent is therefore
equivalent to the assumption that
(4.6) Oc ri(dom h).
If h is improper, (4.6) implies that h(0) = - = h**(O) by (2.7) and

the remarks after Theorem 2~D. In this case, (a) follows immediately
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from parts (c) and (d) of 4-A. On the other hand, suppose h is
proper. Then h(0) = h**(O) again by (4.6), (2.7) and 2-D, and
hence "inf" = "sup" in (a) by Lemma 4-A. Moreover (4.6) implies,
via 2-J, that

* %
=o < min , h (v ) < =,
y

* % * ok % * %
Since h (y ) = £ (Ay ) - g (y ) by 4-A(b), we can therefore replace

"sup" by "max" in (a). Part (b) is proved by a dual argument.
&

COROLLARY 4-F

If programs (I) and (II) are both strongly consistent, then

* *x * ok k]
© > min_ {f(x)-g(Ax)z = max . {g (v )-£ Ay )ﬁ > -0
y
and, in particular, both programs have solutions.

THEOREM 4-G (Equivalence Theroem)
Suppose that (I) is strongly consistent. Then the following

conditions on X, are equivalent:

(a) X is a solution to the convex program (I),

* *
(b) there exists some Yo such that <ko.yo‘> is a saddle-

point for the Lagrangian function in (III),

* *
(c) there exists some yo,such that x_. and Yo satisfy the

0
equilibrium conditions in (IV).
*
Moreover the vectors yo occurring in these conditions are
precisely the solutions to the concave program (II).

The dual theorem, in which (II) is assumed to be strongly

consistent instead of (I), is also valid.
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Proof: Duality Theorem 4-E(a) says that (a) is equivalent to
the'lohger statement:
/ ES ¥ ,
(a) there exists some Yo such that xo.and ¥, are solutions
to (I) and (11) respectively,\and .

C .. : S & oW~
inf, S E()-g(Ax)s = sup , {8 (v )-f (A y ) .
y .

But (a'), (b), and (c) are equivalent by Theorem 3-B.

THEOREM 4-H (Minimax Theorem)
If (I) and (II) are strongly consistent, then the minimax
value of the Lagrangian function in (II) exists and equals both

the minimum in (I) and the maximum in (II).
Proof: This is immediate from 4-F, 3-B and 3-C.

In view of the importance of the strong consistency conditions
in applying the last several results, one would like to know what
property of (I) is equivalent to the strong consistency of (II),

and dually. This question is answered below.

THEOREM 4-1

(a) Choose arbitrary vectors x0€ dom f and YOG dom g,
and let h(x) = f(xo+x)—g(yo+Ax). Then program (II) is strongly
consistent if and only if, for each x such that h(\x) is a finite
non-increasing function of A for 0 < A < ®, h(Ax) is actually
constant for -0 € )\ < o,

: * * * *

(b) Choose arbitrary vectors Yo€ dom g and %5€ dom f ,
* * k% * %k & %

and let h(y ) = g (yo+y ) - £ (x0+A ¥ ). Then program (I) is
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* *

strongly consistent if and only if, for each y such that h(\y )
%
is finite non-decreasing funpction of \ for 0 < \ < «, h(Ay )

A

is actually constant for -w < i < o,

Ezggf: We shall deduce this from.a general fact proved in Appendix B
(Theorem B-F) about the effective domain of the conjugate of a convex
function. Let

(4.7) k(x,y) = £(x) - g(y), M ="%,y» | y=Ax

Then k is a closed proper convex function on Ein,:fko,yo> ¢ dom k,

* ok
and M is a subspace of E-#F. The subspace of E ©F orthogonal to

M is
* . k% * * -
M o=-{x,y> |{x,x J+[y,y 1=0 for all <x,y> 5SS
ok ok X *
& ,y> |[x,x J=-[ax,y ] for all xcE -

* Xk ¥
x ,-y> |x=Ay {.

On the other hand, by Theorem 2-L and (2.18) (or by direct calculation)

* k% * Ok * * * P
kK(x,y)=1%f(x)~-g(-y ), domKk =) x

N

x % * *
,=y > |x € dom £,

y € dom g ¢

and hence

* N ok * * *  x *
ri(dom k ) =9)<{x ,ey;> Ix € ri(dom £ },y € ri(dom g )

* *
(see Theorem A-H in Appendix A). Therefore M intersects ri{dom k )

if and only if
* % * * % *
Ay =x¢€ ri(dom £ ) for some y ¢ ri(dom g )},
i,e. if and only if (I1) is strongly consistent. Now we apply the
general theorem B-F indicated above. According to this theorem,
%

=
M intersects ri(dom k ) if and only if, for each ”x,ijeM such

that k(x0+hx,yO+Ky) is a finite non-increasing function for 0 «x )\ « .
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k(x0+hx,y0+Ky) is actually constant for -o < A < w. Substitution

\
of (4.7) into this statement proves (a).

A dual argument proves (b).




6=

SECTION FIVE

Stable Consistency

Theorems 4-E, 4-F, 4-G, and 4-H in the last section all depend
on assumptions of strong consisteﬁcy, ad defined in 4-D. The strong
consistency conditions, which require that the implicit constraints
can be satisfied '""with some to spare', were dualized in Theorem 4-I
in order to make them easier to apply. Nevertheless, these
conditions are inconvenient in certain situations because they
are too restrictive. The duality theorem for linear programs, for
instance, needs no strong consistency assumptions; hence it does
not completely follow when Theorem 4-F is applied to linear
orograms as formulated in 33. We shali prove here, however, that

strong consistency' can be replaced by a far weaker (but rather
~ore complicated) notion of 'stable consistencyd, which takes
zdvantage of the special properties of a class of "stable' convex
functions. In this way we obtain duality and equivalence
heorems (see 5-J) which generalize the simpler ones in §4, and
=t the same time are powerful enough to contain the linear
crogramming theorems and other presently known results as easy
corollaries (see %7).

We begin by considering a useful class of functions whose
“efinition is motivated by an interesting argument of Fenchel [19,
2.113-115] for deriving the linear programming duality theorem.
Tenchel's argument is weak in two respects. 1In the first place,

.t rests on the invalid result discussed in §4. Secondly, it
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assumes that a ''piecewise linear' convex function which is bounded
below always attains its minimum. This is not altogether clear, as
the following example indicates. Let E be two-dimensional, and
let .

£(£,,£) = £, + B8 E,lE 20, 8, 20, £6 2 D).
Although £ would seem to be ”piecewise linear', its minimum is
approached at best along a hyperbolic path. Evidently, "piecewise
linearity' ought to somehow téke effective domains into account.
Now for convex sets, the nearest thing to '"piecewise linearity"
is the familiar '"polyhedral' property. A convex set C is said
to be polyhedral if it can be represented as the intersection of
finitely many closed half-spaces:
(5.1) c ={x | [x,a:] so, i= l,...,n}.
It is known [22] that C is polyhedral if and only if it can be

expressed as the convex hull of finitely many points and rays:

—
(5.2) C =«>\X=}\

b “=1>_z
1bi+...+>\k k+uia1+...umam| AJZO,:th ,ui QA .

This suggests the following notion as a replacement for

"piecewise linearity."

DEFINITION 5-A
A polyhedral convex functibn on E is a function f whose

upper graph set gph f is a polyhedral convex set in E&R.

Applying (5.1) to gph £, one can readily see that f is
polyhedral if and only if it can be represented in the form
: * # 7
5.3 £ = b.l -B. j=1, s wuglk T
(5.3) (x) maxSL[X. J] B, | 3 %

y *
+ (x| [x,ai] < ap,i=l,.0.,m).
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(In the improper case whereik = 0, set f identically -« where

thevcharacteristic function is zero in this formula.) Dually,

by (5.2), f is polyhedral if and only if it can be represented

in the form

(5.4) 4_f(x) = min?mk18i+...+xk5kfulal+...pmam .
+ g(kl,...,Ak;ul,...,pmlx=§ijbj+§guiai, szo,ZZAj=1,uizd¥,

This fact was already used by the author elsewhere (31].

(Needless to say, polyhedral convex functions can arise from more

complicated mixed expressions as well.)

THEOREM 5-B

If»f is a polyhedral convex function, then dom f is a polyhedral

convex set. Moreover f and dom f are closed.

proof; Obvious from representation (5.3).

THEOREM 5-C
%k
1f £ is a polyhedral convex function on E, then f 1is a
* ok '
polyhedral convex function on E , and £ = f when £ is proper.

Furthermore, the fundamental representations (5.3) and (5.4) are dual

to one another.

sk
Proof: By calculating £ directly from Definition 2-C using a
represéntation (5.4) for £, one obtains a representation (5.3)
* * %k
for £ . The fact that £ = f when f is proper follows from

Theorems 2-D and 5-B.
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One of the most common polyhedral convex functiéns in extremum

\
croblems is

5(x |x20) zi 0 if x20,
J
iuwif x?ﬂ.

It should be noted that the fﬁnctimns f and g used to formulate
the linea¥ programs in «3 (see (3.5;) and (3.5b)) are polyhedral.
It is reasonable to expect that the strong consistency

:ssumptions in =4 can be weakened when polyhedral functions are

:nvolved. Actually, we shall be able to bring about this weakening

Ior a far broader class of functions.

DEFINITION 5-D

Let £ be a closed proper convex funcfion on E. For each
2< dom f and each subspace M in E, let
(5.5) @ = 12+ 5(z-x|M) for all zcE.

(Then fx M is a proper convex function on E which may be thought

&

%k
°f as the restriction of f to the linear manifold x+M.) Let Mn

%
jenote the subspace of E orthogonal 1to M,i.e.

* (o« * ;
(5.6) M ={z | [z,2 ] =0 for all zeM X

L
7e shall say that f is stable if

{ ¥ %
¢for all x €E ,
L - .

z €M

* % C & % % *
(5.7} (fx M) (x )= min Sf (x +2 )-Lx,z ]
] %

&
for every x€ dom f and subspace M. If f and f are both stable, we

shall say that £ is completely stable.
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The lemma below shows that this definition is ''reasonable."

LEMMA 5-E
Let £ be a closed proper convex function on E and let

* .
x€ dom £f. Let M, M , and.fx ‘be as in Definitin 5-D. Then

M
*x ¥ ’ <k ox kK *x. / * %
(5.8) (f ) (x)=cl inf £ (x +z )-{x,x ] ¢ for all x €E .
x,M * % ok | =
X z €M

Moreover (5.8) can be strengthened to (5.7) if the linear manifold

X + M intersects ri{(dom f).

* ok k% * * x|
Proof: Let h(x ) = inf if (x +z )-[x,z ] |z €M = Then h is a

%
convex function on E , as one can show by the argument used in

Lemma 4-A., Furthermore,

h*(z) = sup *%[z,x*]-h(x*)g = £ M(z)
x ?

by straightforward calculation. Since the latter function is proper,
Theorem 2-D and the remarks after it imply that
* %k
= = ¢l h,
(fx,M) h c
which is just formula (5.8). The final statement of the lemma
x %
must be proved by a different argument. Let x €E and let

v
g(z) = [z,x ]*6(z-le) for all zcE.

Then g is a closed proper concave function on E and

* *

g (z*) = fx,z*—x*]*é(z*wx*lm*) for all z cE
(as one readily calculates from Definition 2-M). Moreover

dom g = ri(dom g) = x + M. If the linear manifold x + M intersects
ri(dom f£f), we can apply Theorem 4~E(a) to f and g (with E=F, E*=F*,

A=1) to obtain:
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5 K, * ok * ok
(5.9)  inf, 32(2)-g(2){ = max (" oh-r" o
*
y

*x %
The left side of (5.9) is —(fx M) (x ) by definition, while the
’

right side is

%

‘ IS ok k_ oy ok k%
-min £ (y )-[x,y ~x J+5(y -x M)
y

T ok ok Xk I
=  -min if (x +2 )-[x,z*]g .
* ok

Z €M

Hence (5.9) is equivalent to (5.7).

Thus a closed proper convex function f fails to be stable
only when (5.8) cannot be strengthened to (5.7) for some x and M

such that xc¢ dom f but (x+M)f\ri(dom f) = 4.

THEOREM 5-F
Let f be a closed proper convex function on E such that

ri(dom f) = dom f£f. Then f is stable.

Proof: 1In this event, the exceptional cases just mentioned cannot

occur,

Remark: Certailly ri(dom f£) = dom f if dom £ is a linear manifold,
*k
and in particular if dom f = E. If both dom f and dom £ are

linear manifolds, then f is completely stable. The properties that

*

* %
f must have in order that dom £ be a linear manifold, or dom f = E .

are given in Appendix B (see Corollaries B-C and B-E). Completely

regular convex functions (see C-I and C-M in Appendix C) are completely
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stable. All quadratic convex functions are completely stable
(see B-E and also Appendix C). In "6 we shall show that cémplete

stability is preserved by various operations, such as addition,

THEOREM 5-G

Every proper polyhedral convex function on E is completely

stable.

Proof: 1f f is proper and polyhedral, then f is closed by Theorem 5-B
and f* is polyhedral by Theorem 5-~C. Hence f* can be represented as
in (5.4). By choosing a basis for M*, we can then also represent

the function h in the proof of Lemma 5-E as in (5.4). It follows

that "inf" can be replaced by '"min" in the formula for h, and that

h is polyhedral. But the latter implies that h is closed, so (5.8)
can be strengthened\to (5.7). Thus f is stable. Now f* must alsq

be stable, since it is also polyhedral and proper., Hence f is

completely stable.

We now define the condition which, as will be seen below, can

be substituted for strong consistency.

DEFINITION 5-H
Suppose that the functions f and g in program (I) can be
expressed by

(5.10) f(x)

fo(x) % fl(x) for all xcE,

i}

g(y) = gy(y) + gy (y) for all yeF,

where fo is a stable convex function on E, fl is a closed proper




convex function on E, go is stable convex function on F, and gl is
a closed proper concave function on F. Suppose that there exists
some x such that

(5.11) xe dom £, A ri(dom fl) and Axe dom g . ri(dom gl)-

0
Then we shall say pfogram (1) is stably consistent. Stable

consistency is defined similarly for program (II).

THEOREM S5-I

Strong consistency implies stable consistency. Also, if
f and g are themselves stable in (I) (in particular if f and g
are polyhedral), then (I) is stably consistent whenever it is
merely consistent, i.e. whenever there exists some x such that

(5.12) x¢ dom f and Axec dom g.

Proof: If (I) is strongly consistent, choose fo and g identically
zero in (5.10). Then fo and gy are stable (by either 5-F or 5=G)
and (5.11) holds. Hence (I) is stably consistent. On the other

hand, if f and g are stable, choose f1 and gl identically zero

in (5.10). Then (5.11) coincides with (5.12).
The main result of this section is the following.

THEOREM 5-J

"

"Strong consistency' can be replaced by ''stable consistency"

in Theorems 4-E, 4-F, 4-G and 4-H.

COROLLARY 5-K (Fundamental Theorem for ''Completely Stable' Programs)

Suppose that f and g are completely stable (or, in particular,
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polyhedral) in (I). Suppose that any one of the following holds:
) § R
(a) o > 1nfx 1f(x)-g(Ax)5 > -

ok kR & k-
(b) o > sup 4ig (y )-f (A y )i > e,
y * ’

£ T TN
{c) o > infx if(x)—g(Ax)i‘and sup , g (y )£ (Ay )} > wa,
. : gt .

Then both (I) and (II) have solutions and

- 5 L U I
(5.13) © > min_ - £(x)-g(Ax) | = max ,'g (y )-f (Ay ) > -w.
1 w y i 4

Moreover the conclusions of 4~H, 4-G and the dual of 4-G are

then valid.

Proof of the Corollary: (5.12) holds if and only if the infimum

in (I) is not 4, as pointed out in‘§3. When f and g are completely
stable, it follows from 5-1 and 5-J (applied to 4-E(a)) that (a)
is equivalent to
< . ok k% Kok
o > inf_ - £(x)-g(AxX): = max « 8 ()£ (Ay)>> -x,
X y L
* *
Since f and g are also stable (by definition of complete stability),
a dual argument shows that (b) is equivalent to
e = . % * %* % ’\
w0 > maxx ﬁf(x)—g(Ax)&’= sup 4, g (y )-£ (Ay )f;> ~c0,
: y
In particular (a) and (b) imply each other, so each one actually
implies (5.13). Moreover (c) implies both (a) and (b), and hence
implies (5.13), by Theorem 3-~A. The last assertion of the corollary

is a direct consequence of 5-I and 5~J.-

This corollary contains all the linear programming theorems
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izscribed earlier (see also the beginning of 7).

Two lemmas are needed in the proof of Theorem 5-J.

IdMA S5-L

Let fo be a stable convex function on E and let f be any

1

:izer closed proper convex function on E., If dom fO,ﬁri(dom fl) £ 3,

sen fo + fl is a closed proper convex function and

-

* Ok ok xRk ox kT * %
(fo+f1) (x ) = min o, V£ (x -z )+£f (2 ) ) for all x €E .
V4 L e

ro0f: It is elementary that fO + fl is a proper convex function,
LT X dom fo ~Tri(dom fl) and let M be the subspace of E such that

+ = Mis the smallest linear manifold containing dom £ Then

1
3 z) + £ (z) = £'
3.14) fo( ) 1( ) olz) + fl(z) for all zcE,
where
'(z) = £ “{—

fo( ) ofz) + 8(z x|M).
Moreover
(5.15) ri (dom fé)/xri(dom £) # 8.
Assume for a moment that this has been proved. Then, by an argument
very similar to the one used in the last half of Lemma 5-E, one can

prove that

' * % ) N P L A L
(5.16) (£5+£,) (x) = ml"y*”l(fo) (x -y )+, (y )J .

On the other hand,

* % % SA* * kX *_
(5.17) (£') (x =y ) min <f (x -y +u )-[x,u ]’
0 * % | 0 5

u €M

%k
by definition of the stability of £ with M as in (5.6).

O’
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Combining (5.14), (5.16) and (5.17), we get
* ok %k k% * % *
(5.18) (£+£.) (x ) = min min -£.(x -y +u )+f.(y )-[x,u ] .
0™ 1 « % 3.0 1
y u €M
*
But by definition of x, M and M ,

* Lk i *x %
[z,u ] = Ex,u‘j for all zc dom fl and u €M .

* ok * %
Therefore, for all y €E and u €M ,
* ok ¥ : * k. :
£y -u) =sup, " [z,y -u J-£,(2)"
* . * * % *
= -[x,u J+sup_- [z,y F£(2) . = £y )-[x,u ]
X * * *
Applying this fact in (5.18), and replacing y ~ u by z , we obtain
the desired formula in the Lemma. Also, straightforward calculation
* ¥ . . )
of ((f0+f1) ) from this formula yields fo + fl again; hence fo + f1
is closed by Theorem 2-D. The proof of the lemma will therefore be
complete as soon as (5.15) has been verified. By definition,
(5.19) xe€ dom fé:éx + M, x€ ri(dom fl)-
Let z¢ ri(dom fé). (Such a z exists because a non-empty convex set
has a non-empty relative interior [15, p.lGj.) Then there exists some
A, 0 <A <1, such that
2y = AX 4+ (1-X)ze ri(dom fl),
because, by (5.19) and the definition of M,’zex + M and x is an

interior point of dom £, relative to the linear manifold x + M.

1

But also z4€ ri (dom fé). This follows from the general fact that
if C is convex, x€C, z€ ri C, 0 <)\ <1, then Ax + (l-A)ze ri C

(see [15, p.9].) Hence (5.15) is true as asserted.

LEMMA 5-M

Let £ be a stable convex function on E, let xoe dom f and let




s 5

% E 3
XG€h .  Let

o Loob ro J®9 ﬁk'
£1(x) = £(x) + 8(x| [x,xy)= Exo,x03>‘

"Then f£' is a stable convex function on E and
i % % L
{5.20) (£') % ¥} = min < § {x

% . P k &
shx 3=-alx.,%.1:for all x €E .
e 0 070 ‘

e

s . o *
. . — and. £ {x) = Bi; [x. oS < 1 o
Proof: Let fg £ ar liﬁi O(X!Lﬁ;xei [hﬂang)

Then £' = £ + fl’ where f

o ;G iz stable convex function, and f1 is

a closed proper convex function. Also, ri{dom fl) = dom fl’ and

this set intersects dom fg according to its definition. Lemma 2-L

therefore implies that £' is a closed proper convex function.
Furthermore, one sees readily that

®, % - e B %
£(x ) =) hLXO?XOJ IE K = Ky, meN,
)
| « otherwise.

'~

Formula (5.20) now follows from Lemma 5-I,. We must show next that
£f' is stable. Let

x€ dom £' = (XO+M -~ dom f,

O)f

i e * *
where My = zﬂ[z,xﬂjzo is the subspace of E orthogonal to X5+ Let
M be any other subspace of E. Then
! = f whers Vo - M
T = By here M= MM,

since the linear manifolds x 4 MD and XO + MO coincide., Hence
by the stability of f

L 3 E I L T *
{5.21) (z* Yot ) = (£ D dx )= min £ (x +u )=-[x,u ] .

. T
%, M ¥, M "
u (M)
But it follows from the definition of M' that
£ < ok Kk %
(M* ;3 = < 2% AR ! = M s = goTop, <59 .‘ H

\ O

L T T L h
while Lx,xgjm Lxﬁgxgj by definition. Therefore the last term
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in (5.21) becomes
C * % *  k * ko ok %
min if (x +Ax0+z )-K[xo,xoj—[x,z ]lz EM , -o<Q<
T * k% *
= min %(f') (x 4z )-[x,z ]
* %
Z €M .
by (5.20). Thus f' satisfies the definition of stability.

Proof of Theorem 5-J: Suppose program (I) is stably consistent

but not strongly consistent. We shall show that then (I) and (II) can
Pe replaced by an "equivalent" dual pair of programs (I') and (II')
which are still stably consistent, and are "significantly nearer" to

being strongly consistent.

*

* * *
Let Xq€ dom £ and yoe dom g and let

* * ok oy *x ok .k k
h(y ) = g (y0+y ) - f (x,+A ¥ ).
%
Then h is a proper concave function on F such that Oe¢ dom h. Since

(I) is not strongly consistent, there exists by Theorem 4-I(b)

* % *
some yleF such that h(kyl) is a non-decreasing function of A > o,

but is not constant for ~wo < A < o, Let x0 be a vector

satisfying (5.11). Let

v * Sk X
(5.21) £100 = £ + 8(x | [x,47y,] = [x5.4°y, D),

il

A * *
8' ) = e + 8¢ | [y,y] = [axy,y, D).
We claim that then
(5.22) £'(x) - g'(Ax) = f(x) - g(Ax) for all xeE.
To prove this, we show first that
* % *
(5.23) [x,A ylj < [y’ylj for all xe dom f and ye dom g.
*

By definition of yl, we have

>*** *  x k% L . k Xk
(5.24) o >g (y0+Kyl) - f (x0+AA yl) 2 g (yo) = £ (xo)




-59-

for all A » 0. Thereom 2-F and its concave analog imply that, for all
x¢ dom f and y€ dom g,
* % * <[ * *]
g (yyyy) = Ly, yphy, 1 - 8(y),
* % * k > [ * 0 k *]
£ (x0+kA yl) : x,xo+xA yid - f(x).
Combining this with (5.24) and manipulating it algebraically,
we get
* * ok
My, y]-lxay D 2
[*]f f** [* *x %
([x, x5 1-2(x)-1 (x)) - ([y,y,]-8(y)-& ().
But the expression on the right is finite when x¢ dom f and y¢< dom g,
and the inequality holds for all A\ > 0. Therefore (5.23) is true.
Now we prove (5.22). Whenever the left side of (5.22) is less than
+», both sides are finite and equal by definition (5.21). Hence,
to prove (5.22), we need only show that if the right side of (5.22)
is less then +x, then the left side is also. Let x be a vector such
that £(x) - g(Ax) < ». Then x¢ dom f and Axc¢ dom g. The vector

X, also has the latter property, since it satisfies the even stronger

0
condition (5.11). Consequently
* ok * * ok *
(x4 7y, ] < [axy,y,] =[x Ay, T s [ax,y,],
by (5.23), so that
* %k * % * *
= A = N ] == .
[x,A yl] [xo, ylj [Axo Y5 [Ax,y1]
Therefore, by (5.21), the left side of (5.22) must also be less then 4+«

for this x, as we wanted to prove. Thus (5.22) is true.

Given the function in (5.10), we now let

(5.25) £1(x) = £ (x) + é(X'[x A* *] = [ Iy *] ‘= f
. 0 X 0 ’ yl = xo, yl ), tl =

]
(]

A * *
g = g, +8(y|ly,y,1 = [axy:y, Dy g
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Then fé and gé are stable by Lemma 5-M, and

' * = ! £f' and g' = g' + g’
(5.26) f' = fo + 1 g gO gl

Jjust as in (5.10). Furthermore, the vector x which satisfies

0 ¥
(5.11) by assumption, also satisfies
! ri.dom f! do ' ri(dom g').
(5.27)  xje dom £ ,ri( 1) agd Axy€ dom gy ri(dom g )
It follows now from 5~L that f' is a closed proper convex function
on E and g' is a closed proper concave function on F. Hence we can
consider the dual programs
(') minimize' f£'(x) - g'(Ax) on E,
* % k %k % -k
(11") maximize (g') (y ) - (£') (Ay )on F .
In view of (5.22), programs (I) and (I') amount to the same thing.
Prcgram (I') is also stably consistent, according to the above
remarks. We shall compare programs (II) and (II') next. By (5.26),
(5.27) and Lemma 5-L, we have
* % LKk ok * % )
(£') (x ) = min (fo) (x -~z )+(fi) (z ) %-
z
Applying Lemma 5-M to (5.25), we can re-express this as
* ok U * *x k Ok * % * ok 7
(£7) (x ) = min  min (£ (x A y,-2 )"k[xo,A vy, 1+, (2 )S :
o) <o L 1
z
But, from (5.10) and Lemma 5~L,

* % U o % % * ok

o wd 4 - z 3y .
£ (x) =min , 3£ (x -2 )+E (2 )Y
Therefore

* % UL * ok * kT
(5.28)  ££') (x) = minif (x #\A y)-nlxg Ay 15,
o= 0ol oo -

Actually, the expression in brackets is a non-increasing function

of A. This is proved as follows. By (5.23) and the choice of xo,




Bl =

* ok %k * ok
[x,A ylj < [Axo,ylj = [xO,A y1] for all xec dom f.
Hence, for -« < )\ < @ and arbitrary © > 0O,

- * x ) * %
f (x +Q4+u)A yl) - (N+u)[x0,A y1]

* x, . % % % 1
-Ovh) [x A y 1+ sup, {Dox +0a y, 12002

\

) * kK _ * * { * * * W
< - [x,4 v Trulxg,a vy  Jesup < [xx pa yll-f(X)§
* * %k

% * % [
£ (x #\Ay) - Alxg,A yl].

A dual argument proves that
: * Ok U * *,_
(5.20)  (g) (v ) = max 3g (v +ay,)-A[Axg.y;] g
= o), oo \ »
where the expression in brackets is a non-decreasing function of A.

Therefore

* %k L I
(5.30) €)Y (y)-(£')Yy (Ay)

cok ok ok ok Kk x % ”l
= maxig (y y;)-f (A (v ay;)) ¢
=oop, <o &

where, again, the expression in brackets is a non-decreasing function
of A\. It follows from this that
Tk K * ok ok Ok ok ok x ok
sup , < (g8") (y )-(£') (Ay )\ =sup , g (y )-f (Ay )
y | y

and that both of these suprema are attained whenever one is attained.

4

Thus program (II') is "equivalent" to program (I1).

we want to show next that (I') and (II') are in a certain
sense simpler than (I) and (II). Consider the function h defined

at the beginning of the proof. Let

\'\' %k % & * & * : 7
M=y i h{z +\y )=h{(z ) for all z €F and —w<h<w{ .

{
~ —

*
It is not difficult to see that M is a subspace of F . Next, for
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* *
the same xo and yo used in the definition of h, let
* * % % *x k¥ x

hi(y ) = (8") (yg4y ) = (£') (x,#A y ),

"and let
, Tk * * % * ok

M =iy [n'(z 4y )=h'(z ) for all z e¢F and -w\<w ¢,

By the results above, we have

* * o * ok
h'(y ) = max h(y +hy1) for all y <E .
=00\ Koo .

It is apparent from this that M'2M. Also, erM'. But yItM,
by the choice of yI, Thus the dimension of the subspace M' is
strictly largér than that of M.

Now if program (I') is strongly consistent, Theorem 4-E(a)
implies that the extrema in (I') and (I1') are equal, and that.
the second is attained. This must also be true then of the original
programs (I) and (II), as we have observed earlier. On.the other
hand, (I') is itself stably consistent; hence, if (I') is not
strongly consistent, we can use the same procedure to construct
another pair of programs (I") and (II") equivalent to (I') and
(I1'), and so forth. The procedure can be carried out at most

%
finitely many times, since F is finite-dimensional and a certain

subspace of F* is replaced by a strictly larger one at each
iteration. Therefore we must eventually reach a point where
Theorem 4-E(a) can be applied. This proves that "strong
.consistency” can be replaced by "stable consistency" in 4-E(a).
Thé same thing now follows for 4-E(b), 4-F, 4-G and 4-H, since

these results needed strong consistency only because their proofs

depended on 4-g(a).
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SECTION SIX

Combinatorial Operations

Convex functions appearing in extremum problems frequently
arise from other convex functions thfough certain combinatorial
operations. For ex&mplé, as pointed out in?§2, the effective domain
of a given convex function f can bé restricted to a convex set C:by
add;ng f and the characteristic function of C. Therefore, in
calculating the dual (II) of a program (I), it is often necessary
to apply the conjugate operation to a sum of convex functions.

We have already done this in special cases in §5 {see 5-E, 5-L,
5=M). The general case will be studieé here.

The strongest results in the duality theory that we have
developed (namely 5-J and 5-K) depend pn the use of stable and
completely stable convex functions. The definition of stability
is rather complicated, so that one caqhot easily check whether
a given function satisfies it. It will be proved below, however, that
the class of completely stable functiéns is closed under addition,
direct sum constructions (as in Theorem 2-L) and other operations.
Consequently, any'function constructed by such operations from
polyhedral, quadratic and completely regular convex functions,
among others (seé 5-~G and the remark after 5-F); will be completely
stable. This resembles the situation in the calculus, where one

~
relies on a combinatorial argument to prove that algebraic functions
are continuous and differentiable where defined,

A formula for the conjugate of a sum of convex functions has
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already been given by Fenchel [19, p.95] (see also [27, p.222)),

but this formula is slightly incorrect. (fhe error was pointed

out in iﬁ; it was the source of the false duality theorem.) The
conjugate of a sum of convex functions is obtained from the conjugates
of the individuals functioné by aﬁ operation useful in‘itself. This

operation, which we denote by #, has recently been investigated in

a one-dimensional case by Bellman and Karush [1].

DEFINITION 6-A

Let £ ., £  Dbe proper convex functions on E. Then f. +...+ fk

1 k 1
and fl#.,.#fk are the functions on E defined by

(6.1) (f1+...+fk)(x)

fl(X) Fooot fk(x),

1

The operation # will be called (minimal) convolution.

(6.2) (£,#.. . #5) (x) = 1nf{_fl(x1)+;.+fk(xk)lx1+...+xk= xt%.

The term ''convolution" is suggested by the fact that, when

only two functions are involved, one has

o
y
{
4

-
%x) = inf - z .
(6.3) (fl#fz){ ) 2 ﬁfl(x z)+f2( )
THEOREM 6-B
Let fl,...,fk be proper convex functions on E. Then fl Fooot fk
and fl #...# fk are also convex functions on E, although not

necessarily proper, and

]

(6.4) dom(fl+...+fk) dom flf\...f\dOm £

dom £ +...+ dom f = %x +...+%X |x, € dom f.i.
1 k { i i}

(6.5) dom(fl#...#fk) 1 K

Addition and convolution are commutative and associative where they

are defined (i.e for proper functions).




Proof: We shall omit the proof, since it consists merely in
checking the definitions. .

THEOREM 6-C

Let £ ,c.»,f( be proper convex functionson E. Then

1 k
B %
(£.#...#F }# = £ +...4+ I
i k 1 k
If fl,a.o,fy are also closed, and fi4eoot f, is not identically
+2, then
(L. 4., .4F }$ = clff%#ge.#f ).
i k 1 k

Proof: We use the definitions directly

& £ %* »{ ,
€fl#=9,#fk}{x ¥ o= sup%fx,x iIs inf {fl(xl)+"'+fk(xk)%}
: x L Koo o X =X )}
1 k

{ *_ . * )

sup sup ([x ,x J=2_Cx Do o([x ,x J-£ (x )) .

. B Ll | 171 k k k7]

XX bee X =X ‘ |

it

,\A ® {

+. 0. +SUP < - X ).

o ] xp i[xk,x ] fk( k)S
1 k

® ok xR

fl(x ,%.a“+ik(x ).

. -
A\
= sup I[x .x jaf}(x )

Con~

: * *
Applying this fact now to fl“""fk’ we have
# ﬂ*‘* Aok Hook
{fl#‘ae#tkf = tl +-nsfk °
1f fl,..offk are closed and f1+e.'+fk is proper, it now follows from

Theorem 2~D that

s ok *% Kk

: 3 i * ik g 8 *)
*oooetl = i ¢osd = T SR 5 4 = e .
(Eree ot ) = () s a8, 0) = (8.0 #E) = cL(E .. .#1,

COROLLARY €-D

1z fl:s&q:ih are closed proper convex functions on E then
L

fo4eo.4f is closed.
1 k :
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roof: As pointed out above, in this case f1+~.=+fk is the conjugate

* * .
of fl#...#f , and hence is closed by Theorem 2-D and the remarks

¥

following it. (This fact may also be proved using the definition

>f closure directly.}

It is not always true that fl#pe»#fk is closed when fl,--afk

:re closed. In fact cl(fl#..,#fk) may not agree with fl#--.#fk at
211 points of the effective domain of the latter. An example of
such misbehavior is readily constructed from the example in Theorem
i-C(ec). It is true, incidentally, that

cl(fl#...#fk)(x) = (fl#...#fk)(x) it

x€ ri{dom fl)+.g.+ri(d0m fk)°
This follows from (2.7), (6.5) and a fact proved in Appendix A
(namely A-D}.
Before showing that Theorem 6-C can be strengthened in certain

important cases, we shall illustrate some uses of + and #. When the

geeesC are

characteristic functions of non-~empty convex sets C i

1

combined by + and #, the sets themselves are combined as in (6.4)

znd (6.5). Thus

Vv ‘-4' W
(6.7 st O = O
} ﬁﬁl s Cg clﬁg @ ef—\’ck»
Y 4 \é)
(6.8) 5 #...408, =08 . )
Cl Gk Cl"&“c-i“@’ CK
P v
Since the support function 5C is the conjugate of 50 (see Appendix A),

it follows from Theorem 6-C that

v v v
(6.9) a = 0 desed O
cl+uge+ Ck Cl Sk
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and, if Cl""’c are closed and have a point in common,

k

(6.10) éc c = c1<ag #...#6& ). .
1/"‘-..-'/"; 'k 1 k

1f f is a closed proper convex function on E and C is a non-empty
closed convex set intersecting dom f, we have
v )* *® )
(6.11) (f+6c = ¢l(f #oc
by Theorem 6-C.
If K =%‘x!xs0 éand f is a proper convex function on E, then
by (6.3)
(6.12) (f#gx)(x) = inf-%f(z)!zzx} for each x¢E.
This is the largest convex function h < f such that h(xl) = h(xz)
whenever X < Xy in E. Furthermore
v ok ok Vo ok * ’
(®) (x) =8(x | x 20),
so that by Theorem 6-C
v ok % * % v % *
(£#5) (x ) = £ (x) + 50 | x 20).
More generally, if C is a non-empty convex set in E,

~—~

(f#gc)(x} & inf% f(x-z)!zec} for each x¢E.

(=

Closures, too, can be expressed in terms of convolution. Suppose

o(x) = ||x|| is some norm on E, and for each £2 0 let

6, () = Sex | llxll =€).
Then, for any proper convex function f on E,
(2#5,) () = int L 2(a)| [lx-zllsc |
Convolution with &_ can be viewed as a "smoothing' or "smearing"
operation., 1t is clear.that (f#&a)(x) increases, if anything, as ¢

approaches 0. 1In fact

f#8 = £, lim (E#5_ )(x) = cl £(x).
Y - £
E»0
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Notice that, for o(x) = Hx” and a non-empty convex set C,

-

N
(o#éc)(x) = inf %“x-z” 'zecj
gives the distance of x from C. 1If C1 and C2 are non-empty closed

convex sets, then minimizing

v 4
f = ac + (c#sc)
1 2

on E is the same as determining the distance between C. and Cz.

1
We now prove some special results involving stable convex

functions.

THEOREM 6-E
Let f be a stable (completely stable) convex function on E.

Then the following functions are also stable (completely stable):

(a) h(x) = f(x+a), acE,

* * %
(b) h(x) = £(x) + [x,a 1, a ¢E ,
(¢) h(x) = Af(x), O < heR,
(d) h(x) = £(\x), O # AeR,
(e) h(x) = £(x) + a, Qe€R.

Proof: Elementary consequences of Definition 5-D and Theorem 2-K.

THEOREM 6-F

If £ f are stable convex functions on E such that f +--.+fk

1700y 1

* *
is proper, then fl+---+fk is stable. Moreover, then fl#...#fk is closed,

*x ok
and for all x €E

* * * * X * ok * * ok
(6.13) (£f.#...#f = mi X e “ =
1 k) (X)) = min {fl( R +fk(xk)’xl+. +x, =X 3 .

Proof: We shall prove the second half first. Suppose k = 2 and
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%
and let x €E . Let

- b
£(x) = fl(x) - L%x,%x ] and g(x) = nfzix)-

Then f is stable convex (by 6-E), 'g is stable concave, and

(6.14)  -inf_- £(x)-g(x)

- *
sup_ [axJ-(2, #1000 = (241, (),

Also, dom £  dom g # § by the assumption that fl + f2 is proper.

* %
Hence by Theorems 5-1, 5-J and 4-E(a) (with E=F, E =F and A=I),

* & *
(6,15) --infx f(xy-g(x) = -max , . g (y )£ (y

But by elementary calculation

*
).
y
* & & %
=min , £ (y )-g (¥ )
v

% ok PR S * * * *
£y ) = £,(x +y ) and g (y ) = ~£,(~y ).

Combining this with {5714) and (6.15) we get

k% ) A L S
(6.16) (f1+12) {x ) = min % fl(x =Y )+12(y ) IR

y

The second half of the theorem now follows from Theorem 6-C for

k = 2, and for general k by induction., We now prove the first half,

Let x¢€ dom(fl+ac.+fl) and let M be any subspace of E. Let
<

fk+1

{2} = 5{z~x§M),

Then f. . is also a stable convex function on E (by Theorem 5-F)

k41

£
and, by elementary calculation with M as in {5.6),

* % -
£ 17 Y = lx,2 J
Moreover

(f,4...4f )
(ialé .+fk B

according to definition (5.5).

theorem imply that

+

/ £ E
8z M ).

k4l

M)(Z) = (fl+...+fk+f )(Z?

Now 6-C and the second half of the
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. * ok
(CEyheeg) ) (x0) =

. ’-f* * f* * f* * " * K *
min } 1(X1)+'°'+ k(xk)+ k+1(xk+1),xl+...+xk+xk+1:x

*
kel

]

i 2 (£, 4 £ ) (x -2 )+t 5
mln'* {(flf-~-+ K (x ~z )+ {z |

§ Y . % * * r E S :
= ming i(f1+'7°+tk) (% %z )=-(x,z ] .
2z €M ' : ' ’
Thus fl+...+fk is stable by Definition 5-D
THEOREM 6-G
. , 7 * * * '
Suppose that £ = Ll;:,,.;fEk and E = E1»~...~ Ek as in

Theorem 2-1.. Let fi be 3 stable (completely stable) convex function
E 3

*
on Ei with conjugate fi on Ei’ fori=1,...,k. Let

f(X) = f(xl,.”,xk) = fl(xl) 4+ oo + fk(xk)-

Then f is a stable (completely stable) convex function on E.

Proof: Let £'(x) = £'(x_,.0.,x ) =1f (x ) fori=1,...,k. We
e i i1 k i

shall show that each f{ is stable on E. Fix i and x¢ dom fi, and let

* %
¥ be a subspace of E. lLet x ¢E . Let

g(z) = [z,x ] ~ 8(z-x|M).

Then g is a stable concave function on E (by 5-F). Furthermore,

let A, be the matrix such that z»’Aiz=zi is the projection of E onto

ta

Then fi(Zi) = fi(AiZZ , while fi is stable on E. by assumption.
Also, x€ dom g and Aix€ dom fi by the choice of x and g. It follows
now from Theorems 5-1, 5~J and 4~E(a) that

\ | i R k ok ok 5
(6.17)  sup_ - g(z)-f (A 2) " = min , L (z)78 Az |
Due to the choice of zlements, the léit side of (6.17) is Jjust

‘Y «* #*
(@), ) &)
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(see definition (5.5)). On the other hand, one calculates that

* 3k

- A <0 * 0 o for all z*eE*
1Zi - 5 ,“..a,zi, s e S - A i,

i
(f!)*(z*) = Xff(z.) if 7:\;0,.g.,z*,0,...
i AN T § b
f x otherwise,
* % \*, v K, X
g (z) =[x,z | -5z My,
with M* as in (5.6). The right side of (6.17) is therefore the

same as

. * ok ok *
min < {£!) (x +2 )-ix,z j .
* x ¢ 1 ‘

Z eM

Hence (6.17) is the desired equation (5.7), and fi is stable by

Definition 5-D, as asserted. The rest of the proof is easy. Since

obviously £ = f£1 +...+ fé, Theorem 6-F says that f is stable. If

% L
the fi are actually completely stable, i.e. if flf"”fk

stable, then the same argument shows, by Theorem 2-L, that

are also

f* * * ¥ f* x ok * ok
(x ) = £ (x,,000; k) = fl(xl) oot fk(xk)
is stable. Hence f is completely stable when the fi are completely

stable.

THEOREM 6-H

‘Let fl.«--,fk be completely stable convex functions on E.
Then f1+~-~+fk and fl#--e#fk are also completely stable, and
(6.18) (fl#.a.#fk)(x) = min {fl(x1)+...+fk(xk)|x1+...+xk=x\:,

whenever proper.

b
Proof: Suppose f = fl#...#fk is proper. Then £ is proper (by 2~D)
* * * ‘
and £ = f1+.u.+fk by Theorem 6-C. By the definitions of complete
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stability, each fi is stable. Also, fi = fi for i =1,...,k by
Theorem 2-D because the fi, being stable, are closed and proper,
’ *

Theoren 6-~% therefore implies that f is stable, that £ is closed,

' * %
and that (6.18) is true. Now let x¢< dom £, x €E , and let M be a
subspace of E. We must verify that (5.7) holds. Let F = E® ...&E
* % * .

and F = E<¢ ... %E (k times)}, and let A be the matrix giving the
linear transformation

y =‘<xl,,,,,x S>> Ay = x1+...+x

k k

from F to E. Let

b(y) = £ (x )+...+f (x ), g(z) = [Z,x*]~g(z-x'M)

‘ i1 k' k ‘
Then h is a stable concave function on F by Theorem 6-G, while g
is a stable concave function on E by Theorem 5-F. Also, by (6.5)
and the choice of x, there does exist at least one ye¢ dom h such
that Aye dom g. Hence by Theorems 5-1, 5-J and 4-E(a),
) - - % ¥ * ok k-
(6.19) inf {h(y)mg(Ay)g = max *ﬁ\g (z )-h (A z )%,
: Z

The left side of (6.19) is the same as

: Y * .
inf inf VE (X dboo o4 (x Y4B (z-x|M)~[z,x ]°
Z X, heootX =2 11 k™ k -
1 k
Yo ] £ B (zx i)
——_— "Pr- o bR A B s Mf‘
= ~sup, \lz,x J (f1# # k)(7) (z=x[M) ¢
e
= -(fx,M (x ).

*®
But also, with M as in (5.6),

*x ¥
h (y )

* % * %
f}(xl)+“"+fk(xk) {by Theorem 2-L),

ok I VI T
g (z) = [x,2 =x ]-0(z ~x IM ),

* * * ko
AZ = <% ,...,8 > for all z €& .
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Yence the right side of (6.19) is

UETE R * ok
~min *~{h (A z )-g (z )?
2 )

L% U A R N I T
mminz* ii1+°'“+fk)(z y-[x,2 -x J+8(z -x M )

ot

T .
-min Y {x 4u y~[x,u J5.
® & - ‘ o

u €M

This finishes the proof that fl#o--#fk is completely stable.

vow suppose instead that f = f1+a-'+fk is proper. Then f is

% * * *
=table, and £ = fl#.,,#fk,by Theorems 6-C and 6-F. Also, £
sk *
1s proper by Theorem 2-D. But fl”"’fk are completely stable by

E 3
“efinition. Hence, in particular, f is stable by the first part

>f the proof. Therefore f is completely stable.

semark: As a special case, suppose that £ is a quadratic convex
s .nction on E and that C is a non-empty polyhedral convex set in E.

Y

Then £ and SC are completely stable (see Theorem 5-G and the remarks

:fter Theorem 5~F)., Hence £ + éC and I # 5

c are completely stable

-y the above theorem. More generally, suppose that the functions
¢ and g in the model convex program (I) are constructed from
-ompletely stable convex functions by means of the operation

.~ Theorems 6-E, 6~ and 6~H. Then f and g are completely
szable, and Corollary 5-K is valid for (I). Thus, through 5=-K
:22 the above results, we have extended the linear programming
-msorems, without weakening them at all, to a much larger class

I problems.

&
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In the next theorem we describe an important case where
Theorem 6-C can be sharpened and at the same time generalize the

rule that ''the differential of the sum is the sum of the differentials."

THEOREM 6-1
Let fl,...,fr be stable convex functions on E and let

i-+l""’fk be closed proper convex functions on E. (Either set

I functions may be empty.) Suppose that

5.20) dom £, ~ ... ~dom £ ri(dom fr+1)f\"' ~Ti(dom fk) £ 0.
* * * Xk

Then fl#...#fk is closed and proper, and, for all x €E ,

) " * % * f* *
5.21) (f1+...+ k) (x ) = (fl#...# k)(x )

— =
N

o % % * % ’ * *
= min ifl(xl)+"'+fk(xk) x1+...+xk=x‘§.
*
reover, then x = a(fl+...+fk)(x) if and only if there exist

x * * * *

- such that x, = 3f, (X), i =1,...,k, and X = x 4.,.4x .
i i i 1 k

* * *
croof: Let F=E®... =E, F =E- ... #E (k times). Fix
= X
ZE and let
*
h(x) = -[x,x ] for all xcE,
— X )=eo.=f (x ) forall y =<x ,...,x>
g(y) fl( 1) k( k) y 1’ ' %y €F.
Then h is closed proper and convex, while g is closed proper and
concave. Let A be the matrix inducing the linear transformation
X—2AX = <X, 000, X >
Irom E to F. Then
- - I
p < 5 ! . | _ *
(6.22) —1nfx Lh(x) g(Ax) ; = 1nfxfk [, ]+(fl+~--+fk)(x)k
%k
= +ooo+f .
(f1 k) (x)

In fact}‘ the convex program on the left of (6.22) is stably
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consistent. Namely, let

*
ho(x) -[x,x ], hl(x) = 0 for all x€E,

=~-f (x.)-...-f (x ), = ~f X =~ oL .
go(y) 1( l) r( r) gl(y) r+1( r+1) k‘xk)
These functions satisry the conditions of Definition 5-H in view

of (5.20). (See 6-G and Theorem A-H in Appendix A.) Now we can

apply Theorems 5-J and 4-E(a) to (6.22) obtaining

* % S T * ok X L
(6.23) (fl+...+fk) (x) = -max ,<g (y)-h (Ay)}.
y . D
Inasmuch as
* ok v o ok, % *
h (z ) = d(z iz ==X ),
* ok * * * *
g (y ) = -fl(-xl)-...—fk(-xk) (see 2-L and 2.18),
* k * * * * * *
= .o =X jeeo )X e
Ay x1+. +xk for y Xy ' Kk €F ,

the left side of (6.23) is

ok ok ok * k
min ySh (Ay)-g (v)§

*
*

oo B *)+ +f* * * :
min < fl(-x1 R k(—xk)i—xl-...-xkz—x &

i}

% L3 *k
(fl#...#fk)(x ).

* *
This proves (6.21), and fl#...#f

K must now be closed and proper

by Theorem 2-D, since it is the conjugate of f1+...+fk. The

final statement of the theorem is deomonstrated as follows. By
x
Theorem 2-H, x = a(fl+...+fk)(x) if and only if
* %
+oootf (X) + (£ +...41
(6.24) 0= (£ k( ) + ( i k) (x)

* *

) (x) ) (f* * *  x ’ *
= X)Heoot min ... 5 ieh = 5
fl fk X) + \_l(x1)+ +fk(xk) X te oo 4x =X ﬁ

%k % *
Since 0 < fi(x) +-fi(xi) for all % by Theorem 2-F, for i =1,...k,

* *
(6.24) holds if and only if there exist Xpseeor X such that
* # - (x) + £ 1 k
= s X i = S a
F X x1+ +xk and 0 2 fi i(xi) for i , i
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s
But by 2-H the latter means that X, = Bfi(x). s0 the proof of the

Theorem is complete.




=77

SECTION SEVEN

Some Applications of the General Theory .

Some uses of the preceding theory will now be demonstrated
oy applying it to the various_types.of convex programs that have
attracted attention in the literature. In each example we begin by
specifying a closed proper convex function on E or E* and a closed
proper concave function on F or F*. The conjugates of these functions
are calculated from Definitions 2-C and 2-M, often with the aid of
the formulas in %6, and their generalized differentials are
derived from'Definition 2~G and Theorem 2~H, or by the methods
of Appendix C. This completely determines two dual programs (1)
and (II), a "game'" (II1) and an "equilibriuh" problem (IV), as
explained in §3. We then describe the corresponding strong
consistency and stable consistency conditions, and explain how the
corresponding special versions of theorems 4-E, 4-F, 4-G, 4-H, 5-J
or 5-K are related to known results.

It is convenient to start by reviewing the linear programming

case (see £3).

EXAMPLE 7-A (Linear Programming)
g * %
Let b €E and ceF. Let
' * v A
£(x) = [x,b ] + d5(x|x20), g(y) = 6(y{y20).
* ok v k., ok % * % . * N T
£ (x)=8(x |x sb), g (v) =[c,y ]+3(y |y =20).

Dual Prqgrams:

E 3 ¥
(1) minimize [x,b ] + 8(x|x20,Ax=2c),

* o k% * % %
(11I) maximize [c,y ] + 5(y Jy 20,A y <b ).
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Lagrangian Function:

% - * v ¥ i * *
LG,y 3 = 1,0 1 4 [c,y ]~ [Ax,y ] for x =2 0, y =0,
Equilibrium Conditions:

% . % ok ) P * r * * ¥ i
x20,y 20, Ax~c 20, b -4 vy =20, lAx-c,y ] 0, {x,b-Ay ]c0.

The functions in this example are polyhedral, so that the

fundamental theorem 5-K for ”completely stable programs"

is applicable,
This yields all the facts about lin

ear programs that were discussed
in =1,

We shall make use next of the correspondence between convex sets

and positively homogeneous functions, which is explained in Appendix A.

EXAMPLE 7-B (Homogeneous Programming)

% * *
Let B and ¢ be non-empty closed convex sets in E and F ,
respectively., IlLet

v ¥ ) A ;
£{x) = o(x[B ), gly) = 5(Y’C)s
L * ook ok

£ (x)=0(x|B), g (y )=o(y c).

(See Appendix A for the notation.)

Dual Programs:

{I) minimize o(x(B ) + 8(x ?Axgc),
no Ky Ak ok ok %
(11} maximize aly [C) + 8¢y |a Yy €B ),
Lagrangian Function:

R . %* - k3 .
LG,y ) = o(x(B) + oy |y - [ax,y] for

-

" *
¥¢ dom g . and ¥ ¢ dom Ot
B )
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Equilibrium Conditions:

- L 3
AxeC and [ax,yl] = 3(y 'C),

X K X * ok :
Ay eB and [x,Ay ] =2 X(X'B).

]
To justify these equilibrium'conditions, we note from Theorem 2-H
* *
that, for the present choice of £, Ay = 3f(x) if and only if
* vk ok ok * X
Jx|B) + 8y [B) s [x,ay 1.
This leads to the second condition; the first condition is derived
similarly. 1In view of the definition of support functions, the
equilibrium conditions have an interesting geometric meaning: the
* *
hypérplane [y,y ] = 4 in F is to be tangent to C at the point
* * *
Ax, and the hyperplane [%,x ] = p in E is to bec tanget to B
* % * A X ’ *
at the point Ay , where p = o(y |C) and 4 = c(x’B ).
* * . ok %
Observe that 7-B specializes to 7-A when B = {x ix <b } and
C &= {yﬁyéé} . More generally, 5-K can be applied to these problems

L 3
if the sets B and C are polyhedral. In the case where

v A * #
(7.1) dom ¢ , = {X’XEO} and dom 0o = 1Y Ey EOE ;
B
the dual programs (I) and (II) have been studied by Eisenberg [16].

It follows immediately from the well known properties of support

* %
functions of convex sets (see Theorem A-A) that, given any XOEB
E
and yOEC, (7.1) implies:
* % *
(7.2a) x. + Ax €B for all A\ > 0 if and only if x < O,

0
(7.2b) Yo + AyeC for all X\ » 0 if and only if y =20,

We can easily determine from this the duals of the strong consistency

conditions (see Theorem 4-I). Namely, let x0 = 0 and yoec. Then,
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by (7.2b)
v * v

£(x %) = B(Y #MAX) = Sox|B) ﬁu&(yo+kAx’C)
is a finite, non-increasing function of A > 0 if and only if
; *
§(x|B') < Oand Ax 2 0, but it is not constant for ~= < A < w
unless x = 0. Therefore, according to Theorem 4~I, program (II)
is strongly counsistent if and only if

v #
(7.3a) o(x|B ) £ 0 and Ax 2 0 imply x = O.
By a similar argument, program (I) is strongly consistent if and
only if

ALK * Xk *

(7.3b) o(y |c) 20 and Ay <O implyy = O.
Conditions (7.3a) and (7.3b) are the ones employed by Eisenberg.
More general conditions equivalent to strong or stable consistency
can also. be derived when (7.1) is not assumed, and of course one
can always apply the definition of strong consistency itself,
determining the relative interiors of the characterizations in

Theorem A~C.

EXAMPLE 7-C

s

* *
Let b €€ and ceF, with b * 0 and ¢ % 0. Let

. N ® . L Ak, K *
£(x) = 8(x|x20,[x,b J=1), g (v ) = 8(y |y 20,[c,y J=1).
The conjugates of these functions are calculated as follows.
N % V
Let fl(x) = o5(x|[x,p J=1) and fz(x) = 5(x|x20). Then £ and f2

are polyhedral (and hence completely stable by 5-G) and f = fl + f2

%
is proper (since b 4:0)° Therefore by Theorem 6-1
* & ¢ % k% *

f (x) = mlnz* itl(x -z

)

-

*
)+f2(z
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Zlementary calculation from Definition 2-C shows that
* % ook ok * % B * * ¥ <
£,(x ) = d(x Ix =0, £(x)= N ifx =Ab, = <A<,

[ » otherwise.

Therefore
* % U ok wok x
£f(x)=min- A +0AN Ab2x) [~o<)\ < ;-

: *
11so, it is easy to shown from 2-G and 2-H that x = éfl(x) if

* % * % * *
and only if [x,b ] = 1 and x = AN b for some A , -® <A < o,

* , , * *
vhile x = afz(x) if and only if x 20, x <0 and (x,x ] = 0.

%k
Hence by Theorem 6-I, x = 3f(x) if and only if

* * *

* * * K *
20, [x,p 1=1, x = x b =0 and [x,x =»x b ] £ 0 for some A .

Similarly one shows that
ok (. A ;
g(y) (=g (¥)) = max 7A+6(Kikc§y)i-w<ban%,
* ) * *
and that y = ag (y ) if and only if y =0, [e,y ] =1,
*
y - ¢ > 0 and [y-Ac,y ] < O for some A.

* *
Since f and g are polyhedral, so are f and g by Theorem 5-C.

Note that

NN * =
‘x | x €\ b for some A .,

o

%
dom £

w

dom g

oy ’ ¥y @ Ac for some A .

Dual Progxams:

v %
(I) minimize -\ + &(\ ! Axzhc) + 5(x,x20,fx,b J=1),
* o~ * Kk k N *

(11) maximize -\ + O(A Ay s\ b ) + &(y [y 20,[c,y J=1).

Lagrangian Function:

* * * % *
L(x,y ) = -[Ax,y J for x 20, [x,b ] =1, andy =20, [c,y ]=1.

Equilibrium Conditions:

% * % * %k %k %k %k 3k
x20, [xb ]J=1, Ab -Ay 20, [x,Ab~-Ay ] <o,

* *
y20, [,y ]=1, Ax - x¢c 20, [Ax-»c, y ] < 0.
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Since the functions are polyhedral, 5-K is applicable. It
yields, among other things, a duality theorem proved elsewhere by
the author [31, Theorem 2]. When b* =<1,...,1  and ¢ = i,...,1 ,
the dual programs are the stxateg& problems for a matrix game. In
this case the implicit constraints in (I) and {I1) can always
be satisfied,- and hence by 5-K both problems always have solutions.
Also, 5-K and 4-H say then that the minimax value of the Lagrangian
function always exists; this is the von Neumann minimax theorem ESO].
For other special cases of 7-C, see [31]7.

We can generalize 7-C in the same way we generalized 7-A
by 7-B.

EXAMPLE 7-D
* *
Let B and C be non-empty closed convex sets in E and F

respectively. Let

f(x)

N/ . .
5(x|B), g@y) = olylc),

* ok v * * kK ok
f (x) o(x 'B), g (y )=08(y [C ).

li

Dual Problems

y * oy
(I) minimize —G(AX'C )+6(X’B),
Lok X *, %
(II) maximize -U(A y fB)+6(y fc ),

Lagrangian Function:

sk

* * *
L(x,y ) = -[Ax,y ] for xeB and y €C .

Equilibrium Conditions

k %k \ * 3k ¢ * _ / %*
x€B, ye¢, [x,Ay 12 u(ay |B), [ax,y ] < G(ax|c ).
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The equilibrium conditions are justified by the argument used
in 7-B, and they have a similar geometric meaning. Some applications
of problem (III) here are worth mentioning. If B and C* are
polyhedral, Theorems 4~H and 5-K yield Wolfe's minimax theorem for
polyhedral games [35] when_applieé to (I1I). If B and C* are
bounded, then dom %B = E* and dom © « = F; the strong consistency
conditions are trivially satisfied gn this case, and another well
known minimax result (see [27, p.28]) then follows from 4~H. More
genefally, a2 minimax theorem can be stated for sets B and C* which
are not necessarily compact but satisfy conditions based on Theorem 4-I.
These conditions resemble those deri?ed in 7-B.

It frequently happens in applications that the model problems
of $3 are "separable' in the sense described below. The case where

all the component spaces are one~dimensional is of particular

importance in network theory, as will be explained in detail in'§8.

EXAMPLE 7-E (General Decomposition Principle)
Suppose, much as in Theorem 2-L, that
F=F ces BF
E =E9O... 9, =F® 8F

* * * F* * %
E =E1®000 @Er’ =F1®oot @Fs'

xﬁg-

Correspondingly, suppose that A is partitioned into submatrices
A, . such that
1]

x, —> A, X

J ij J
is a linear transformation from EJ to Fi' so that -
= s 0 e X e, Ax =/\-’”~A P S A .x.>'
x =<x) 7 \5_3 1373777y e
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*
Denote the transpose of A, . by Aji' For j =1,...,r, let

ij
*
fj'be a closed proper convex function on EJ with conjugate fj

E3
on Ej' For i = 1...,s let gi be a closed proper concave function

* * :
on Fi with conjugate g; on Fi. Let
f(x) = £ (x

d+...o+f (x), g(y) =g (y )+...+g (v ),
1 r r 1°1 s s
*
1

P

L * X * ok * %
Yhooo4f (x), g (V )=, (¥)+...+8_(¥.).

- %

%
f (x)= £_(x

(See Theorem 2-L).

Dual Programs:

e

i )= g (VA X)), for x.€E., j=l,...,r
(I) minimize Z; fj( j) Ligigaﬁ 15 j) for xJeEJ. j=1, %

11) Y 2ty E; *O Aty k., in1
(II) maximize Zigi(yi) - J;EJ(Zi Jiyi)’ for x,€E;, 1=1,...,s

Lagrangian Function:

* * )+ T e Z;[ *]
ceerX = X - A X,
L(xl' » rayl,--.,ys) ijJ 3 Zigi(yi) iinJ. j Yi

* *
for x_ e dom fj,j=1,...,r, and yie dom gi,i=1,...,s.

J
Equilibrium Conditions

v *  * T ok k.
= = i=1,... d j=1,...;s.
23Aijxj agi(yi) and ZiAjiyi af(xi), ) » T, and j : S

The .gtrong consistency conditions for (I) and (II)

respectively, are:

(7,43) there exist x € Ii(dOm f.): j—lp---;la such that
b A € I om ) i=1
z X i (d 1= v 00, S,
j ij j ( gi ' ’ ’ ’

* *
(7.4b) there exist v € ri (dom gi), i=1,...,s, such that
%k

E:A'* * £
ji y;€ ri(dom j

i

), j:l,ooo,r-

This is a consequence of a general fact about relative interiors

proved in Appendix A (see A-H). On the other hand, if the fj and g;

’
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are all completely stable then, in view of 6~G,‘We can apply the
powerful theorem 5<K to the above problems. The much broader
conditions for stable consistency are satisfied in the following

situation. Suppose, just as in Definition 5-~H, that fJ = ij + fjl‘
for j =1,...,r, apd g, = 8jq * gil'for i=1,...,8, where the fjo
and 8, are stable. Then (I) is stably consistent if

(7.5) there exist xje dom fjo ~ri(dom £ ), J = 1,...,r, such that

jl

\ X i ), i=1,...,s.
ZinJ je dom giofﬁrz(dom 81 ’ ’

To prove this, we note first that
X) = h r = £ oo bl
hy(x) = By () eeeyx ) = £ (6 )b bE ) (x))
is a closed proper convex function on E by 2-L, while
=h (x.,...,X = f X )4...4+% 4
ho(x) o( ) ,xr) 10( l) , ro(xr)

is a stable convex function on E by Theorem 6-G. Obviously

£ = ho + h Similarly

1
( = k LIS = oot
ky y) 1<y1’ ,ys) gll(yl) gsl(ys)
is a closed proper concave function on F,
=k ( ey = Foeoh
ko(y) oYy ,ys) glo(yl) gso(ys)
is a stable concave function on E, and g = ko + k1° Hence by
Definition 5-H, (I) is stably consistent is there exists some x
such that
such that Axe dom k i .
xe dom h, ri(dom hl) o ATi(dom kl)
This is equivalent to (7.5). (A-H is used here to calculate ri(dom hl)

and ri{dom kl).) Therefore (7.5) guarantees, as ésserted, that (I)

is stably consistent.
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EXAMPLE 7-F (Convex Programming with Linear Constraints)
Let h be a closed proper convex function on E such that
;x x20é§§dom h, and let ceF. Let
f(x) = h(x) + é(X!XEQ); gly) = g(y’yZC),

* -

* ok <7k ok Ed k% ® . T
f (x) = min~fh (x )iz 2x <, g (y) = [e,y ] + 5(y iy 20j),

*
(The formula for f follows from 6-I; see also (6.12).) Then
* * *
X = 3f(x) if and only if x = 0 and there exists some z 2 x

* * X * ok
such that z = 3h(x) and.[x,z -x ] £ 0. Also, y = 3g (y ) if
* *

and only if y 20, y 2¢ and Ly ,y-c] < 0. (This may be proved

as an Example 7-C.)

Dual Programs:

(I) minimize h(x) + é(xleO,szé)
* A X, X Y Y
(II) maximize [c,y ] + 8(y !y 20) - min ih (z )’z 2Ay - .

Lagrangian Function:

* * %
L(x,y ) = h(x) - [Ax-c,y ] for x = 0 and y =20.

Equilibrium Conditions:

*
x 20, Ax -~ c 20, [Ax-c,y ] <0,
* * *

* %k X *x %k
y 20,z =03h(x), z~-Ay =20, [x,z-Ay 1= o0.
We prove first from Theorem 4-I(a) that, given an arbitrary

vector X 2 0, (I1) is strongly consistent if and only if
(7.6) the only vector x such that x = 0, Ax > 0 and

h(x0+xx) is non-increasing function of A\ > 0,

is x = 0,
Namely, for each x€E consider

</
kK(\) = f(x0+hx) - g(c+\AXx) = h(xo+kx) + 6(k|xo+kx20, AMx20) .
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This is a finite non-increasing function of A > 0 if and only if
x 20, Ax 2 0 and h(x0+Kx) is non-increasing. On the other hand, _
k{r}) is constant for =o < A < o if and only if x = 0 (in fact is
is not even finite for all XA unle;a x = 0}, Thus (7.8) specializes‘
the conditicon in 4*1(&)‘eQuivaléﬁt to the strong consistency cof
(II) as asserted. Next we show that (I} is stably consistent
if
(7.7) there exists some xe rif{dom h) such that x 2 0 and Ax =2 c.
Let fQ(X§ = B(x|x>0), fl(x) = h(x), goiyi = d(y|y=zc), gliy) =0
for all y. Then f0 and g, are stable bhecause they are polyhedral
{Theorem 5-G). Thﬁse'functionsvobviously satisfy the requirements
of Definition 5-H, and (7.7) is the specialization of (5.11).
Acccrding to Theorem 5-J, stable consistency can be used in place
of strong consistency in the duality and equivalence theorems
Gf'%és Thﬁs, for example, if (7.7) holds we can conclude from
4-G that (II) has a solution whenever (I) has a sqluticn, that
the yaixs:éf solutions to (I) to satisfy tha eguilibrium relations, and
50 f@rtﬁ: Note especially that, when (7.8) holds, 4—E(b} implies
that (I} has 2 solution whenever it is merely consistent,
i.e whenever
(7.7 there exists some x 2 G such that Ax = ¢,

Problem (I) has been studied by Dorn [13] under restriction
that (in the present terminology)
(7.8) 3 x[x20{ < ri(dom h)

and that h be differentiable throughout ri{dom h). In this case
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*h1 is single-valued on ri(dom h) (see Appendix C). The dual program
ziven by Dorn, however, is not (I1) but
*
I1') maximize [c,y ] + h(x) - [x,3h(x)]
* * k
subject y =0, Ay < oh(x), x€ ri(dom h).
This is usually not a convex or concave program.) Dorn proved
under the above restrictions) that if (I) has a solution then (II')
22s a solution and the extrema in (I) and (II') are equal. We
zhall show that (II') and (II) are closely related, and that Dorn's
heorem is included in the above results. Let x€ ri(dom h) and
*
et z = 9oh(x). Then by Theorems 2-F and 2-H
* %
h (z ) = [x,3h(x)] - h(x).

“znce (II') can be re-expressed as

N * Xk * * k *
I1") maximize [c,y ] - h (z ) subject toy =20, Ay < z

*

and z = dh(x) for some x€ ri(dom h).

* *
If the last condition were "z € dom h ", then (II") would be

zquivalent to (II). In general, the set of z* satisfying the

_z2st condition in (II1") is a subset of dom h* (which contains

-2 (dom h*) in various cases, for instance when h is finite on all

-f E; see Appendix C). Thus Dorn's dual program (II') is "smaller"
saen (II1); so that, conceivably, the extrema in (I) and (II) could be
=qual when the extrema in (I) and (II') are not, or (II) might

zrovide solutions not contained in (II'). When (I) actually has

: solution, such discrepancies cannot arise. Indeed, because of (7.8),

the stable consistency condition (7.7) for (I) is the same as mere

-onsistency (7.7'). Hence if (I) has a solution, 4~E(a) implies
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that (II) also has a solution and that the extrema in (1) and (I1)
are equal. Moreover then, by 4-G, pairs of solutions satisfy the
above equilibrium relations; it follows from this that the solutions
to (I1) are also solutions to (I1-') (and hence to (II')). Thus Dorn's
theorem is implied by the.speciél versions of 4-g(a) and 4-G that
use condition (7.7). The latter are more gencral in that they do not
require (7.8) or differentiability. The special versions of 4-E(b),
4~F and the dual of 4-G that use (7.6) are new.

Dennis [11, - F] has treated (1) under the more restrictive
assumption that

€E, - E_ = E,

- X + 1 (x ) for x = . x_,x
h(x) = £, (x)) + 1,(x, 1'%y By Ry

where fl is linear and f2 is strictly convex as well as differentiable.
The dual problem constructed by Dennis is almost the same as (II)
above, but it is based on the Legendre transformation (see Appendix C)
rather than on the conjugate operation.

The dual programs in 7-F can be embedded in a symmetric pair
of dual programs rescembling those below. For the sake of variety,
however; we shall state these symmetric programs in a particularly
strong form, rather than in a particularly general form.

EXAMPLE 7-G

* * F F
cE Cc F ¢ &F .
e N Bl A

£
Suppose r = s = 2 in 7-E. Let blggl, bz

Let h be a convex function on E2 such that

(7.9a) h is finite on all of E2, and

(7.9b) lim h(Ax)/A = = for all x, # 0.
Ao “
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Then h is closed and proper by (7.9a) and (2.7), and dom h = E.

* *
Moreover (7.9b) is equivalent to the assumption that dom h = E

(see Corollary B-C in Appendix B). Therefore h satisfies the
same conditions. 1In particular, h is completely stable by Theorem 5-F.
Similarly let k be a concave function on Fz such that

(7.10a) k is finite on all of Fz, and

(7.10b) lim k(xyz)/k =-x for all Y, £ 0.
Ao

*
Then k is completely stable, and k satisfies the same conditions,

Let

r * % .
£,(x) =[x, ] 4 8(x [x,20),

” * 3

X X ,b 7 A #20) + h .
£,0) = [x,,0.7 + b(xzaxz ) + hlx)
Then £, and f

1 o are completely stable by 5-G and 6-H, and

* * v * %k %

£(x)) = a<x1§x1sbl), ,
* ok ) L
£,(x,) = min {2&?;) | %, 0,42, § .

(This may be proved from 6-I, as in earlier examples.)
Similarly we take

Leo By o
= O & 5
gy (yy) = 00y y =e))

= max< k(z )|y 2¢ +z ',

g,(v,) % k(z )y ze 42, "

* ok , * Lok K

g, (y)) = [e¥,] + 8ty |y,20,

* % * * . % * %
oo ) % By s i

8,(y,) = [c,¥, 4 + 8y, [y, 20) + k (y,).

These functions, too, are completely stable.
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Dual Programs:

* *
inimi : b s h - k(z
(I) minimize [xl; | + [x2 2] + (xz) ( 2)

lJ
subject to X 20, x 2 0,

X, + A x
Alr™i A% F e

X A X 2c¢c 4z,
A21 1 22 2 2 2

L * * * * % %
(11) maximize [cl.ylj + [czfy 1+ k (y,) - h (z, )

subject to yI 2 0, y: z 0,
* ¥ *x X *
A11Y1 * Apa¥p = By
* %k * 4 * *
Agy¥y *+ AgpY, =0y + 2,

Lagrangian Function:

*

* ) k* *
i - +
2'¥11¥y) = hix, (yy)

5 X
L(xl

< * = *_ . *
+ Z.EX.!b.} + ZJLci'yiJ - i; EAi‘x',yi]
5 J J ot ij JJ

# *
for Xy = 0, X, 2 0, Y1 2 0, Yy = 0.

Equilibrium Conditions:

the constraints of (I) and (II) along with -
* *
= Z ‘—'-'ak
22 Bh(xz); 2 (gz)r
*

+, X =C ’
11511970 7% 1Y 1 5 0,
[ b* % ¥ % %
Xl: l'A 1y1-A

(A

- . 3 %k
4 z ~=A
) 12Y23 % 0y [xy0254b,

Since the functions are completely stable, 5-K applies to the
above problems (see the discussion following 7-E). Thus, for example,
if fhe infimum in (I) is finite, or if the supremum in (II) is finite,
or if the constraints in both (I) and (II) are consistent, then both
problems have solutions and the extrema are equal. Notice that the

above problems reduce to linear programs when E_ and Fz are zero-

2




*«92 e

dimensional. When merely Fz is zero-dimensional, these problems
are Qery similar to problems treated by Ghouila-Houri [2, p.99-102].
Ghouila~Houri's result could be applied here to prove that (I) has
a solution if and only if (;I) has 'a solution, in which case the
extrema are equal and the solutions may be determined from the
equilibrium relations. The present result is more general in that
F2 need not be zero-dimensional, and it is stronger because it
guarantees that the extrema are attained whenever they are finite.
The quﬁdratic case of 7-G is especially worth mentioning.
This occurs when
*x kL %k %
h(x) = #(x,Bx] and k (v ) = &[cy ,y ]
for a positive definite matrix ? and a negative definite matric¢ C.
Then
h(x) = 308 % ,x ] and k(y) = #ly,c lyl,
where B-1 and (:‘-l are the inverses of B and C. (See the end of
Appendix C.) Cottle [38] has recently studied a symmetrically dual
pair of quadratic programs of a different form, in which the duality
resembles that Dorn's papers flz} and [13] (see the detailed
discussion following 7-F). Cottle's results, too, could be deduced
easily from the theory developed here.
We would like now to give a general interpretation of (I)
and (II) in 7-G. For this purpose we assume that
(7.11) O = h(0) = min h and 0 = k(0) = max k.
Actually (7.11) imposes no significant restriction. Namely,

we can always change h by an additive constant to make h(0) = 0;
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this would not essentially change the problems. On the other hand,
* *
tz2Ke any a, such that a, = dh(0) (this is possible by 2-I): let
* * * *
] o - ' i
h'(x,) = h(x,) - [x,,a,], b') = b, + a,.
Taen h'(0) = min h' (from Definition 2-G) and h' still satisfies

7.9a) and (7.9b). Moreover the problems are not essentially

* *
changed when h and b2 are replaced by h' and b'z. A simple argument
z1so works for k. Thus (7.11) is just a '"mormalization". It

iollows from (7.11) that, dually,

* * * *
7.12) O=h (0) =minh and 0 = k (0) = max k .

“ow consider the function kO on F2 defined by

= 2z { .
k,(v,) = max {k(zz)]yz 2
Zue to (7.11), ko has the following properties:
7 < 0 for all =0 if 2
.13a) ko(yz) Yo kO(yz) v, 0,
- S k if z < .
.13Db) ko(zz) 0(yz) o =¥,

We can re-express (I), using kO' as

*k *
Tt b b -k (A _x+A X -c
I') minimize [xl» 1] + [xz' 2] + h(xz) o( 211 22 2 2)

>0, x, 20, A__x_ +A _x_2c_.

subject to x 2 1151 12%5 1

1
T2e last term in the minimand is zero by (7.13a) whenever

7.14) A +A X, 2c

211 * A22%2 = ¢

.= satisfied. Otherwise it contributes a non-negative amount
>ositive if k attains its maximum only at O) which may be thought
:f as a "penalty" for violating (7.14). According to (7.13b),

~22 greater the violation, the greater the penalty. Thus (I') is

v.ch like a modifed version of 7-F in which it is desirable, but

12t absolutely necessary, to satisfy all the constraints exactly.
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Vhen F2 is zero~-dimensional, the penalty for violating a constraint

s always infinite. A completely dual interpretation can be given
%

or program (II), in which the penalties arise from h . In the

suadratic case, the penalties have a '‘distance’ meaning.

We shall now apply the general theory to the simple problem
>f minimizing a convex function on a convex set,

XAMPLE 7-H
* *

Let E=F, E =F , A=1I. Let f be a closed proper convex
Zunction on E and let C be a non-empty closed convex set in E.
Taking

Ay

g(x) = d(x]c),

2 have
* % ®_ 5 : " * EURE
g (x) = infx Cx,x ]-6(xfc)- = inf { [x,x ]leC s= 0(x IC),
4 : i B
#¥aich is the concave support function of C (see Appendix A). Then
% % *_ N X

c = dg (x ) if and only if xeC and [x,x ] £ o(x |C). (See 7-B).

Dual Proﬁgyams:

(1) minimize f(x) + g(xlc) on E,
P * % *
(11) maximize;d(x !C) - f (x Y ongE.

_agrangian Function:

* a K, *
L(x,x ) = £(x) + o(x |c) - [x,x ] for

* 5
Xx€ dom £, x € dom GC.

Zguilibrium Conditions:

* * ¥,
xeC, x = 3f(x), [x,x ] s alx /C).
Tragvmm (1) 45 sirongly consistent Ir and only If

L (Fom £, X C F .
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Theorem 4-I(a} implies that given any %€ dom £ and xlec, (11) will
be sfrongly consistent if and only if the following condi;ion is
satisified:
(7.16) for each x such that x1.+ AxeC for all A > 0 and
f(xo+hx) is finite and non-increasing in 0 < ) < o,
it is actually true that x; + AxeC and f(x0+Kx) = f(xo)
for =w < A < w0,
The results of $4 may be specialized using these conditions.

In view of the fundamental nature of (I), we shall state two of

these results as theorems.

THEOREM 7-I

Let £ and C be as above, and suppose that condition (7.16)
is satisfied for some xoe dom f and x1€C- Then £ attains a minimum
on C (possibly +4).

Proof: This specializes part of 4-E(b).

Remark: The theorem would not generally be true if (7.16) were
weakened by removing the statement that Xy + AXEC for -o < \ < 0,

2
For example, let E = R and let

v 2?
=% x= 5 2 ry, f(x) = £ = . Take
C=%x=<g8, 0 16,2 [0 100 = 268 = £
x = x, =<«0,0>, Then the weaker version of (7.16) is satisfied,

0 1

but f is not even bounded below on C.

THEOREM 7-J

Let £ and C be as above and suppose that (7.15) holds.
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Then f attains a minimum on C at the point x if and only if there
* *
exists some x = df(x) such that the linear function h(z) = [z,x ]

attains a minimum on C at x.

Proof: The last condition is jusf the condition that there exist

* *
some x such that x and x satisfy the equilibrium conditions. The
theorem is therefore a consequence of 4-G. (Notice further from

*
4-G that the vectors x in question are precisely the solutions

of (II1).)
Programs (I) and (II) are of the same type when C is a convex

cone, since the support function of a convex cone is the
characteristic function of another convex cone (see Appendix A).

This case is treated in the next theorem.

THEOREM 7-K

Let h be a closed proper convex function on E. Let K be

a non-empty closed convex cone in E and let

-
)

* * *
K = {x | [x,x ] 2 O§ for all xeK.

* *
(Then K is a non-empty closed convex cone in E ,) Let acE and

* %
a €E . Suppose that

(a) a 4 xe¢ ri(dom h) for some xe¢ ri K,
and suppose either that
* * * x %
(b) a + x € ri(dom h ) for some X € ri K,
or that

(b') there exists some xoe dom h such that, for each xeK

*
such that h(x0+kx) - a[x,a ] is a finite non-increasing
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function of A for 0 < A < w, it is actually true that

*
-x¢K and h(x0+kx) = A[x,a ] for ~= < )\ < o,

Then
= *_- © ok ok ok * . *
(7.17) © > min -h(a+x)-[x,a ]. +. min 'h (a +x )-{a,x ]r = [a,a J-
J * %
x€K , © X €K .

Moreover the minima in (7.17) occur at x and x if and only if

* ok * * *
(7.18) xeK, x €K, [x,x ] =0, a + x = 3h(a+x).

*
h(a+x) = [a,x ] and C = K. Then by Theorem 2-K

Proof: Let f(x)

E *
f*(x*) h*(a*-e-x ) - [31X*] - fa)a*]l

while
sk - * y * *
o(x !C) = inf - [x,x ]|xeK . = 8(x k)
(see (A.17)). Consider the corresponding programs (I) and (II)
in 7-H. Conditions (a) and (b) are the conditions that (I) and
(I1) be strongly consistent, while (b') is an equivalent version
of (b) derived from (7.16). But
! 7 A * *x X 7
(7.19) w >min_ - £(x)-0 (X) =max _ o (x )+f (x ) - > -
x c B - e
by 4-F when (I) and (II) are both strongly consistent. For the
present choice of f and C, (7.19) is the same as (7.17). The

equilibrium conditions in 7-H reduce likewise to (7.18), so the

final assertion of the theorem is a consequence of 4-G.

COROLLARY 7-L

*
Let K and K be as in Theorem 7-K. Let h be a convex function

finite on all of E such that, for some xo,

(7.20) lim h(x0+Kx)/K = o for all x £ 0.
AN->o00
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Then the conclusions of Theorem 7-K are true for every acE

Sk Ok
and a €E

Proof: 1In this case dom h = E, and h is closed by (2.7).

Furthermore, as proved in Appendikx B (see B-C), condition (7.20)}

* *
guarantees that dom h = E . Therefore (a) and (b) of Theorem 7-K

*x %
are satisfied for every ackE and a €E

This rather striking fact is essentially a generalization of
Theorem 2-F. (The lattér deals with the cases where K =-f0:
and K = E.) Particularly interesting applications occur when K
is the non-negative orthant in E (and K* is the non-negative orthant
* * *
in E ) or when K is a subspace of E (and. K is the subspace of E
orthogonal to K). A wéaker version of 7-K in the subspace case,
using the Legendre transformation rather than the conjugate
operation (see Appendix C), has recently been proved by Duffin [147.
Observe that the quadratic convex function
h(x) = #[x,Bx],
where B is a positve definite matrix, satisfies the hypothesis of
7~L; the conjugate of this function. is
h*(x*) = %[B-lx,x*j
(see the end of Appendix C).
Theorem 7-K was obtained by taking C to be a convex cone in
7-H. We shall now consider convex sets defined by inequalities; for
such sets C, problem (I) in 7-H is the type of convex program

studied by Kuhn and Tucker [287]. It is necessary, first of all
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to determine the support functions of such sets,

THEOREM 7-M

Let gl.---,gr,g ,...,gk be convex functions finite on all

r+l

of E, where gl,---,gr are. affine, and suppose there exists at least

one x€E such that
o e e o x) > 0.
(7.21)  g(x) 20,...,g. () 20, g  (x)>0,.. 18y (%)

Then

x| g, (x) =0 for i=1,...,k !
i ,

-

¢
C =3
is a non-empty closed convex set and
~ *, Tk * ok Ix, 20 k% *
(7.22) o(x [C) = maxz_Zjhigi(xi) hi ) ZJhi =% (e
i=1 i=1

(The convention 0 ' = » is to be used-in this formula.)
Moreover

* , %
(7.23a) xeC and [x,x ] € o(x lC)

*
holds if and only if, for some choice of vectors X and scalars

Kit
* * * ‘ (55 = 6
(7.23b) x = k1x1‘+"’+kkxk’ klgl(x) tooot N B ’
®
x, = og,(x), », 20, g, (x) 20 for i=1,...,k.
i i 1 1

Proof: A concave function is continuous on any open set where
it is finite [15, p.46]; hence the gi are all actually continuous
oﬁ E (and in particular are closed). Let

hi(x) =/g(xi‘gi(x)20) for i=1,...,k.
Each hi is a closed concave function on E because the 8; are closed
and concave, and is proper because (7.21) can be satisfied. Also,

re
(7.24) 8(x|c) = h (x) f...+ h (x) +h . (x) +...+ ]k (x).
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The functions hl""’hr are polyhedral, and hence stable, since

Byrr 8y are affine. Therefore if

. A ' ri{dom h e ; £
(7.25) dom hy - ...,dom B - ( pq1) 7 Ti(dom h ) # 9,
we can conclude that
Ak ; %ﬂ * ok % * %
(7.26) o(x !C) = mag; thi(zi) | L4Z1=X
i=1 i=1

by thé concave analog of Theorem 6-1. We mdst verify (7.25).
Trivially,

(7.27)  dom h, = Lxl g, (x)20 | for i=l,...,k.

The fact that '

(7.28)  ri(dom h) =!x| g (x)>0 - for i=rsl,... k.
is proved as follows. Fix i > r, and let gi(xo) >0, gi(xl) 2 0;
this is possible by the hypotheses. Then

g. \x +(1-M)x_ ) 2 Ag (x ) + (1-AN)g (x ) >0 for 0 < A\ < 1,

i o 1 i O i1
This shows that

cl xig, (x)>0- = 3"x3g_ (x)20 . = dom h_.

\ i S i - i

Since gi is continuous, the reverse inclusion is obvious, and
the set of x for which gi(x) > 0 is open. Therefore

ri (dom hi) = ri(cl: xfgi(x)>0 ) = «xlgi(x)>0
by (2.1). Now (7.25) follows from (7.27), (7.28) and the
assumption that (7.21) can be satisified. We show next that

(7.26) implies the desired formula (7.22). According to (the

concave analog of) a general result in Appendix B (Theorem B-I),
o

Co ok ¥ ‘ * * : %
(7.29) inf-f{zi,x}igi(x)kog = x max gi(pzi)/u if z,=0,
’ Y O<u<eo

| &
L 0 if zi=0,

provided dom gi = E and sup gi > 0. These conditions are satisfied
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here for i=1l,...,k, except if g; happens to be a non-negative
constant function; in the latter case, however, (7.29) is true
trivially. Furthermore, the left side of (7.29) is the same as
. \r ¥ -h (X)) = h* z*
inf szi,x] hi | 1( i).
Adopting the convention 0 = = «, we can thercfore re-express (7.29) as
* ok Lk X 50 % * %k
- < % X =Z .
(7.30) hi(xi) max 3hgi(xi)| hi r MR
Formula (7.22) is now obtained by substituting (7.30) into
(7.26). Finally, due to (7.22), condition (7.23a) is satisified
: *
if and only if there exist vectors X and scalars Ki such that
* *

1 * X X Y K-[x*x*] < 5 *
(7.31) X o= MK b K ) N LR Z,higi(xi)'

where Ki > 0 and gi(x) 2 0 for i=1,...,k.
We must show that, given X and x*, (7.31) can be satisified if
and only if (7.23b) can be satisified. If (7.23b) holds, then
(7.32) g, (x) + gz(x:) 2 [x,xzﬁ
for i=1,...,k by the concave analog of Theorem 2-H so that
(7.33) [x,x:] < g:(x:) 1€ gi(x) = 0.
But the conditions in (7.23b) imply that Ki = 0 unless gi(x) = 0,
while g:(x:) is finite by (7.32) (since a proper concave function
cannot take on the value 4x). Therefore (7.31) holds also. To
prove the converse we note first that, if (7.31) can be satisfied,
it can be satisfied along with the additional requirement

(7.34) * _ 3g, (x) for each i such that A = 0.
1

%
On the other hand,

* % *
< [ = (x) for i=1,...,k
g, (x) < Dxx; ] - g
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by the concave analog of 2-F, so (7.31) implies that
* X *a
g (x) = 0 and g (x) + g (x,) = [x,xi] if A > 0.
* §
But the second equation says that x, = Bgi(X) by 2-H. This
shows that (7.23b) can be satisfied if (7.31) can be satisfied,

and completes the proof of the lemma.

Remark: Suppose that r = k above, i.e. that the gi are all affine
functions:

: * * _* _

g, (x) = [x.ai] - o,, a;€E , o, ¢R.
Then we have

* X y * L S )

gi(xi) = o& + S(Xii xi=ai), i=1; o000, K0

Formula (7.22) reduces in this event to

# % -
inf . [x,x ]| ‘[x,aijéai,i=1,...,k ;

g . 3" 5 * *
max :;L MO [0, ) a8 =x

for each x* such that either side is finite. This is a well known
alternate form of the linear programming duality theorem. (''inf"
can be replaced by "min'" because C is polyhedral.) Conversely,

we may view the linear programming result essentially as a

general formula for the support function of a polyhedral convex set.
We shall now specialize 7-H to convex sets of the above type.

EXAMPLE 7-N

Assume that the hypothesis of Theorem 7-M is satisfied, and
let C be the convex set defined there. For simpliéity, let £ be
convex function finite on all of E. Then, by 7-M, problems 7-H

become the feollowing.
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Dual Programs:

(1) minimize f(x) + g(x'gi(x)20.1=1;-‘-yk),
_ ~ T o | Ty f* *
(I1) maximize max‘,Aikigi(xi) xi L,Ki =x (x ).

(The convention 0'w = » is to be used in (I1).)

Lagrangian Function:

*“. *
)\.g(x)IAZOLKX_x o =[x,% 7

*
L(x,x ) = £(x) + max . ‘L_,

% %
for X€E, x €E . (See the remarks below.)

Equilibrium Conditions:

*
X

™
?f(x), and X, = agi(x), ki 2 0, gi(x) 2 0,for i=1,...,k,

UL T.K o
% Z,iki i Li 183 (¥) = 0.

Programs (I) and (Il1) can also be expressed as

a") minimize £(x) subject to B (x) 2 0)-'10gk(x) 20,

(1r') mﬂmzeZhg(x)-f(ZXX)

*
subject to ki 20, xiEE , i_l,...,k.

which is an extremum problem for

* &

] .
(7.35) X =\ Ny Xp s e aX

100"
(Program (II') also contains the implicit constraints

% * q * *
(7.36)  x.€ dom g, ,i=1,...,k, Zx.x.e dom £ .)
1 1 4 1 1

Since f is finite on all of E, it is not really necessary to
restrict x* in the Lagrangian function (inasmuch as « - ® cannot
arise). In any case, problem (III) for this L is the same as
(I11') find a saddle-point \xO,XO\; of

L’(xX)=f(x) Z)\([xx]g(x )

for x€E and X (as in (7.35)) satisfying Ki 2 0 and

* *
' X € dom 8y IzL; vueiKe
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We shall compare this with the Kuhn-Tucker saddle~point problem
in a moment.

Program (1) is strongly consistent because of the assumption
that £ is finite on all of E and that {7.21) can be satisified.

Given any x. satisfying the constraints of (I), program (II) is

0

strongly consistent if and only if

(7.37) for each x such that f(x0+lx) is a non-increasing
function X > 0 and gi(x0+KX) 2 0 for all X\ > 0 and
i=1l,...,k, it is actually true that f(x0+Kx) = f(xo)
gi(x0+hx) 20, i=l,...,k, for =w < » < oo,

This specializes (7.16). Incidentally, the strong consistency

of (I1) is also equivalent‘to the condition that

(7.38) there exist xié‘fi(dom g:) and hi >0, i=1,...k,

*
+.00th X € ri(dom f ).

X
such that hl 1 Kok

The proof of this fact, which we shall not use, is an extension of the
argument in Theorem A-D. The theorems of ~4 now yield the following

results.

THEOREM 7-0
(a) The maximum in (II') (possibly -«=) is always attained,
and it always equals the infimum in (I').
{(b) 1f (7.37) holds, the infimum in (I') is finite and

attained.

Proof: This is implied by 4-E, since (I) is strongly consistent

by the assumptions in 7-N.
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THEOREM 7-P

The following condtions in x. are equivalent to one another

0
sk
(with X0 as in (7.35)):

(a) x0 is a solution to (I'},

.%o _ *
(b) there exists some XO such thatﬁgko,xoﬁ‘is a saddle-point
in (III')n
* *
(c) there exists some XO such that\\xoyxo'-satisfies the

*
) "

* *
equilibrium conditions in 7-N (with x = A\ X +...+)\kxk

11
%
More the vectors XO satisfying (b) and (c) then precisely the

soltutions of (II').

Proof: This follows from 4-G, since (I) is strongly consistent in

7-N and (II1') is equivalent to problem (III) for 7-N.

The dual program (II') which we have given for (I') is
finite~dimensional and does not require différentiability;
moreover it is "independent' of (I), in ﬁhat it does not involve the vector x
in (I) as one of the unknowns. In contrast, the dual programs
constructed by Hanson [25] and Wolfe [36], while finite-dimensional,
require differentiability and are not "independent" of (I') (See
below.) The dual program which Charnes, Cooper and Kortanek (8]
consider, while "independent" of (I) and free of differentiability
aésumptions, is an infinite~dimensional linear program.

Assume temporarily that the functions in (I) are actually

differentiable. Hanson's dual program is then
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(1)) maximize Lixi([x,égi(x)j—gi(x)) - (Lx,31(x) 1-£(x))
' 20,,..,n 20, xeE, ) A og (x) = 3f(x),
subject to M ’Kk X LM gi( ) = 3f(x)

and Wolfe's dual program is

(112) maximi;e £(x) - ) kigi(x)

>

subject to X, = 0,.‘.,hk 20, x¢E, ; Aiagi(x) = 3f(x).
st

(We have made some inessential changes in the form of these problems,
in order to make then conform to the present context.) Let

* * .

x = 3f(x), x, = dg, (%), i=1,...,k.

‘ i i
Then
. * ok * %

(7.39) [x,38(x)] - £(x) = £ (x ), Ex,agi(x)j - g (%) = g (x), i=l,...,k,
by Theorems 2-F and 2-H (and their concave analogs). Hence (IIl)

can be expressed as

) maximize ) .g* * f* \}k %
(L, L, M8 () - E QAN ED
i i
* %

subject to Ai 2 0 and xiEE for i=1l,...,k, and the condition that

, * * ) ]

éikixi = 3f(x), Xi = agi(x),1=l,...,k, for some x<E.
Similarly, the maximand in (112) is

1. e * o\ s 4 k%
[x,3f(x)] - £ (x) Ldmi([x’agi(X)J g, (x))

\s A ( * * L 3 X a ’F
=) N8 X) = £ (x)+ [x,af(xjjzihi gi(x)_

by (7.39), so (112) is also equivalent to (113). It is clear

that (113) is more restrictive than (II') in general. However,
under the assumption that (I') has a solution, (113) and (II') are
equivalent (even in the non-differentiable case)., ‘This follows
from Theorem 7-P and the nature of the equilibrium conditions

in 7-N.
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Kuhn and Tucker [28] associate the following problem with (1'):

(111") find a saddle-point for

L"(x;hl,---,kk) = f(x) - Zikigi(x)

subject to xcE,and Al.z 0,...,hk z 0.
This problem is simpler and more convenient than (I11'). Actually,
the two problems are equivalent. Saddle-points in (II1') are the
solutions to the equiliﬁrium conditions in 7-N, according to
Theorem 7-P. But (III"), too, is equivalent to solving these
equilibrium conditions. In the differentiable case, this was proved
by Kuhn and Tucker in [28]; the arguments in the general case is
similar.‘ Thus the Kuhn~-Tucker saddle-point theorem (according to
which, under the assumptions in 7-N,'x0 is a solution to (I')
if and only if xo;Kl»---»Kk is a saddle-point in (III')

for some choice of Kl =2 0, A\, 2 0) can be deduced from 7-P.

1
The original version of this theorem in [28] requires differentiability,
however an extension identical to the present one is given by

Ghouila-Houri in [2, p.817]. Other versions not requiring

differentiability may be found in [17] and [27, p.2017.
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SECTION EIGHT

Completely Separable Problems and Monotone Relations

Problems (I), (II), (II1) and (IV) will be called completely
ﬁﬁﬁiﬁiﬁ%ﬂ if they can be expr;séed in the manner of Example 7-E
with all the component spaces one-dimensional. The linear
programming probleme, for instance, are completely separable;

ertain problems of importance in network theory. In

1]
o
4]
L
[}
0

analyzing such problems here, we shall find that the
eguilibrium conditions play an especially significant role. It
turns out that the generalized differentials of one~dimensional

cliosed proper convex functions can be described axiomatically as

i increasing relations,” so that (IV), which up to this

peint hzs been a derived problem, arises of its own accord in

‘nletely separable case as the problem of solving a system
of such "relations'.

Completely separable problems, by their definition, have the
following form. Let EJ be a closed proper convex function on R,

sk
with conjugate ﬁj on R, for j=1,...,n. Let gi be a closed proper

con

sk
vz function on R, with conjugate gi on R, for i=1,...,m.
sk
Let A = ({aﬁ‘;) be an m x n matrix with transpose A = ((af_))_
S Ji

Thoen, as in 7-F, we have:

{1 2 Convex program:

minimize ) £ (&) - ,(X'm_, ) for £ €R, j
L, £,08; ﬁigl LJ Ué'J €J . J

]

s P P

(17 7 Concave program:

)

L N *
maxinize 5 {7 3 ﬁLij(LdﬂsiﬂE) for niER’ i=l,...,m.
J J

1
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(1110) Game problem:

Find a saddle~-point for

£

!.' 6 . kS * % (g ) +\‘\ * * » £
L(Jl’uovy n!nl,-.t,nm> = ”,—.ij J Ligl(ni) - LiJniaiJ,J-

*
subject to gﬂ‘é dom fJ, J:‘l, ese, and nle dom gi) i=1,...,m.'
J . .

(IVO) Equilibrium problem:

£ * > . .
find gl""”n and My, ..., satisfying
N x K ,

o & = 5g_(n_) for i=l, ..«,m and

L idod it

J

*

o n = 3f (§) for j=1,...,n.

‘_—iJll J J

These become the linear programming problems in 7-A if, given

* )
real numbers ﬁj, j=1,...,n, and 7}, i=1l,...,m, we choose

L3 v A
(8.1) £,00 =235 + BOMN20), g, O = BN,
% kK Lok, ok % * %k * ok %k
£,00) =80 I ssj), 8.0 = v A + B0 In =20).

The completely separable programs (IO) and (IIO) are
consistent when their implicit constraints can be satisfied,
i.e. when
(8.2a) there exist §J€ dom fJ: for j=1,...,n

such that Z—q..g.E dom g for i=1,...,m,
5 ij°d i

* *
(8.2b) there exist nie dom gi for izl uusm
A‘-, * * * >
such that iicginae dom fJ IOor J=l,,.¢,0;

respectively. As we pointed out more generally in the remarks

following 7-E, (10) and (IIO) are strongly consistent, respectively,

if and only if

(8.3a) there exist QJQ ri (dom fj) for j=1,,..,n

such that > o £ ¢ ri(dom g, ) for i=1,...,m,
Lj 17370 i
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* *
(8.3b} there exist nie ri(dom gi) for iz=l,..:;m;
N ¥ .
such that Ziaﬁinié ri (dom ij) for j=1,...,n.

We now consider an intermediate pair of conditions, Suppose that
h is a closed proper convex function on R. Define

b1 * s : ¥ )
dom 8h = YA | A ='3h(ik) for some A R

* Kk
range dh = 2 | » = 3h(\) for some A
‘ *
and similarly for h . Then by 2-H and 2-1 we have
%
(8.4a) ri(dom h)- dom 3h = range 3h dom h,
* * *

(8.4b) ri(dom h ) = range 8h = dom ¢h _ dom h -
The analogous relations hold, of course, for closed proper concave

functions. Problem (IVO) involves implicit constraints which we

can express, using this notation, as

(8.5a) there exist gje dom 8fj for j=l,...;n
~ ) 2 j =
such that Luoajgjc dom Bgi for i=1,...,m,
J
& %k
(8.5b) there exist nie dom Bgi for i=1,...,m,
| %k Kk *
such that ; &, .7, ¢ dom gf,6 for j=1,...,n.
i, g1 dJ

In view of (8.4), these are weaker than condtions (8.3) but stronger
than conditions (8.2). We shall prove below that (8.5a) and (8.5b)
are precisely the conditions that (IO) and (IIO) respectively,

be stably consistent. It is necessary first to examine the

properties of differentials of convex functions in the one-dimensional

case.

THEOREM 8-A
Let £ be a closed proper convex function on R. Then ihe right

and left derivatives of f can be defined by
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lim (f(k)—f(E))/(l-€)>
MNE

(8.6) £.(8)

if £¢ dom f,
£'(&) = lim (£Q)-£(£))/ (M=)
AhE
£1(8) = £'(6) =( = if £ > N\ for all Ac dom f,

-0 if £ < \ for all Ae dom f,
and they satisfy

(8.7) fl(El) < f+(€l) < fi(gz) = f;(gz) whenever gl < 62'

Furthermore, for all £c¢R,

(8.7a) sup £'(N) = £'(§), inf £'(\) = £'(8),
>\<€ + >\>€ + +
(8.7)  sup £1 () = £1(6), inf 100 = £ (&).
A<E A>E
Finally,
(8.8) g* = df(£) if and only if gfan and £'(§) ¢ E* < f;(&).

EEEEE: Since f is closed and dom f is an interval in the present
case, f is actually continuous on cl(dom f). This follows from (2.8).
Secondly, it is well known that the difference quotient
(£E(\)~£(£))/(\~£) is a non-decreasing function of each of its

-arguments as long as A\ and § are in the interval dom f and A # £

(see [4, p.19] or [15, p.47]); this is trivially true also if either
M dom f or £ dom £ (but not both). All the assertions of the
theorem, except (8.8), follow d;réctly from these two facts. To
prove (8.8) we observe that, according to Definition 2-G, E* = 3f(£)
if and only if f(\) = £(£) + (k~£)£* for all NeR. .But this happens

if and only if £¢ dom £ and

sup (EOV-£(E))/0-8) ¢ £ g in (FO-£(£))/(A-E).
N<E A€
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By the remarks just made, the left and right sides of this
inequality are fl(g) and f;(g), respectively, when £¢ dom f.
On the other hand, when ££ dom f neither side of (8.8) can be

satisfied. This proves the theoren.

Remark: The conjugate of a one-dimensional closed proper convex

function can be calculated using (8.8) and Theorem C~H in Appendix C.

THEOREM 8-B

Let £ be a closed proper convex function on R. Then

(a) f is stable if and only if dom 3f = dom f. Moreover,
this is true except when either dom f has a lower end-point ¥ > =
at which £(&) < « but f;(x) = =00, 6r dom f has an upper-end point
B < » at which £(B) < = but £ (B) = .

(b) f is completely stable if and only if, in addition to
being stable, range 3f = dom f*. Moreover, the latter is true
except when the graph of f has a proper non-vertical asymptotic line,

i.e. except when, for some <R, f(X) - ¢\ approaches a finite

minimum without attaining it as A -© Oor as A -,
Proof: (a) Since E = R is one-dimensional here, its only subspaces
are M = 0> and M = R. It follows from Definition 5-D and the remark

after 5-E that f is stable on R if and only if
(%
(8.9) sup, 1£E - (£(£) + ﬁ(g-go! 0 ).
’ T *‘.'
= min 4, £ (§ +\ )—gok
IS
for each 606 dom f and E*GR. The left side of (8.8) is trivially

* *
just gog = f(go), so (8.9) holds for all § if and only if there
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*
exists some LO such that
* * ok % *
gog - 1(g)) = £ (£ ) - oMo
%k
i.e. if and only if there exists some EO such that
£ f* * F*
(8,10) £(E) + £ (£ = 60;0..
K
But (8.10) holds if and only if~go = Ef(ga)» by Theorems 2-F and 2-H.
Therefore f is stable if and only if dom f dom 3f. The reverse
inclusion has already been pointed out in (8.4a), so this proves
the first part of (a). Now, since dom f is an interval, (8.4a)
implies that dom 3f = dom f unless the latter contains
an end-point not contained in the former. But if (v is a lower
end-point of dom f, then fi(a) = =», Hence r¢ dom 3f by (8.8)
except when also f;(m) = =, A similar observation for upper
end-points completes the proof of (a).
(b) If f is stable, then, by definition, f is completely
sk
stable if and only if £ is stable. The first part of (b) therefore
follows from (a) and (8.4b). Also, by the dual of the argument in (a),
*
f 1is stable if and only if
% k 3K *
o _ e N _
(8.9") €€0 f (EO) = min, fCEN) KEO ;
* *
for all £¢<R and Eoé dom f , i.e. if and only if
.10 £ in, - o
(8.10) (50) = min, \f(k)~K€0 _

* *
for all Eoe dom £ . But, by definition,

) E-t(O) = inf - .
(_0 = -sup, hoo—f(h)’ = 1nfk‘;f(X)—K€o>
* *
Hence £ will be stable if and only if f(\) - Kﬁo attains its
¥
infimum in A for each 50 such that the infimum is finite. Since

f is lower semi-continuous (because it is closed by assumption), the

infimum in question is always attained unless it is approached
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asymptotically as A "o or as A > =,

COROLLARY 8-C
If £ is a closed proper convex function on R such that
dom &f is closed and range &f is closed then f is completely

stable.

Proof: This follows immediately from the theorem and from (8.4a)

and (8.4b).

COROLLARY 8-D

Suppose that flswo-:fr are closed proper convex functions on R
which are non-asymptotic, and are not infinitely steep at end-points
included in their effective domains, as described in Theorem 8-B.
Suppose that gl,...,gm are closed proper concave functions having
the analogous properties. Then the fundamental theorem 5-K for

completely stable programs can be applied to the completely separable

5 and (II ).
programs (10} ( .

Proof: In this case the functions in (IO) are all completely
stable. But then, according to the remarks following 7-E, (IO)

is a completely stable program and 5-K is applicable,

THEOREM 8-E

Program (IO) is stably consistent if and only if (8.5a) holds.

Program (IIO) is stably consistent if and only if (8.5b) holds.




Proof: We shall prove first that (8.5a) guarantees the stable

consistency of (10). Due to the remarks after 7-E, it will be

enough to prove that: 1if h is any closed proper convex function
on R, then there exists alstable convex function hg on R and a
closed proper convex function hl on R such that

(8.11) h=h_ + h and dom 3h <dom h_ , ri(dom h,).
[¢] 1 (4] E |

We prove this by exhausting several possible cases. If
dom 3h = dom h, then h is stable by Theorem 8~B(a). Then we

can let h0 = h and let hl be identically zero. If dom 8h = ri{dom h),

we can let h1 = h and let ho be identically zero. Because of (8.4a),

we are now left only with the following possibility:

]

(8.12) domh= Al a<AS3
where (€R, 3eR, & < 3, but

(8.13) dom 3h = A | @<x<3 . or dom 3h = !}M a<ASB ) .

We shall only consider the first case in (8.13); the argument for

*
the other case is similar. Since e dom gh there exists some X €R

E 3
with ¢ = oh(a). Let

SO | e,

L1}

hO(X)

i

s h{\) if A=,

<

g .
| h@+O-a)a if Asx.

*
Since by definition of

hl(K)

&
h(\) 2 h(@) + (A-a)a for all A\ 2 q,

while h(\) = » for A < ,it is readily seen that h. is a proper

1

convex function; moreover

dom hlzéL)\ | ~= < A< 5;,




SO hl must be closed by (2.7) because h is closed., Inasmuch as
dom f and dom &f are given by (8.12) and the first half of (8.13),
respectively, ho and hl satisfy (8.11). This finishes the proof
of the sufficiency of condition (8.5a). In proving its necessity we
shall actually prove & more genérgl fact. Suppose that the
general program (I) satisfies the definition 5-H of stable consistency,
and assume the notation given there. We shall show that then
(8.14) there exists some x¢ dom =f

such that Axe¢ dom &g
Of course, (8.14) reduces to (8.5a) when (I} is completely
separable. From definition 5-H, we have f = f_ + f_, where f
is stable, fl is closed and proper, and

% sy
dom fU . ri{dom fl) = @4,

* . * * *
Therefore, by Theorem 6-1, x = @f(x) if and only if x = Xy + %
A
. . * . * % ) % B
for certain vectors KO and xl such that XO = cfo(x) and xl = 5f1(X)-

This implies in particular that

Q7

af = ) d
dom ¢f = dom hfglwdom f

%

But ri(dom fléélﬁﬂm %fl by 2-I, while dom afo = dom fO because

f? is stable. The latter follows, namely, from specializing the
)

definition 5-D of the stability of fO to the subspace M = {0 ,
much as in the proof of Theorem 8-B{a). Hence
1 }e<=dom &f.
dom fglqﬂx(dom f1 =
A dual argument demonstrates that

dom g A i(dom gl)égdom 3g.

Therefore condition (5.11) implies (8.14), and the first half of
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of the theorem is proved. The second half follows now by duality.

COROLLARY 8-F

Theorems 4-F, 4-F, 4~G and 4-~H may be applied to the completely
separable problems (10), (IIG), (IIEO) and (IVO) using (8.5a) in
place of the condition that (IVO).be strongly consistent and

(8.5b) in place of the condition that (110) be strongly consistent.
Proof: This combines the present theorem with 5-J.

Remark: Theorem 8-E cannot, ir general, be extended to programs
which are not completely separable; in other words, (8.14) does
not usually guarantee the stable consistency of program (I). This
may be seen from the example in Theorem 4-C(c), where x = -0,0
satisfies (8.14) but the extrema in (I) and (Il) are not equal.
The latter would be impossible, by 5-J and 4-E(a), if (I) were

stably consistent.

The differentials of one-dimensional c¢losed proper convex
functions were described in Theorem 8-A in terms of one-sided
derivatives. We shall now characterize such differentials

abstractly, using the following concepte.

DEFINITION 8-G

*
Let r be a non-empty set of ordered pairs '£,f{ . where

*
£cR and £ €R. It will be convenient to introduce the notation

that

* ) *
& = (%) means - £,& cr.
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We shall say that r is an increasing relation if

: * * % Lk
o - - < [
(8.15) El < €2 whenever gl - r(gl), §2 = r(gz) and El £,-
An increasing relation is maximal if it cannot be embedded in
any properly larger increasing relation, i.e. if the set of

ordered pairs is maximal with réspect to property (8,15},

The domain and range of an increasing relation r are defined by

* *
r(§) for some £ .,

H
i

dom r = ¢!

Peas
]

*)

*
- £ ¢

r(£) for somec £

it

range r

i

(Decreasing relations are defined by reversing the inequality

in (8.15).)

It is easy to prove, by means of Zorn's Lemma, that every
increasing relation is contained in a maximal one. This concept
has been important in recent developments in network theory; indeed,

v

our "maximal increasing relations’ are "resistors" in the terminology
of Minty [51}. We shall see below {(Theorem 8-I) that such relations
correspond precisely to continuous "increasing'' curves which are
unbounded {(i.e. not limited to a bounded region of the plane).
Moreover, they are precisely the differentials 3f of closed

proper convex functions £ on the real line (8-J). In this sense,
maximal increasing relations are almost functional relations

(which is why we have chosen to use functional notation to

describe them). For example, the graph of a continuous non-decreasing
function on the real line is a maximal increasing felation (see 8-H).
Given the graph of an increasing "step function” on the real line,

one also obtains a maximal increasing relation by supplying the
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vertical segments which connect the 'steps . If there are finitely
many ''steps,” this is the differential of & polyhedral convex
function. It is a “step resistor’ in Minty's terminology.
"Resistor' is perhaps too narrow a designation for such relations,
even in network theory, since other elements such as sources of
current or potential, or diodes, can also be characterized as
certain types of maximal increasing relations (sce Millar fSO],
Dennis .11, p.3-6) and Berge [2, p.1657). The fact that maximal
increasing relations give rise to one-dimensional convex functions
(as we are about to prove) is well known in network theory,

at least in special cases. [t has been an important tool in
proving the existence of solutions to non-linear network problems,

as we shall explain later.

THEOREM 8-H
(a) Let 9 be z non-decreasing extended~real-valued function

defined for all £:R, such that (&) is not always -x or always +x,

Let
gt(£y = inf () = lim (),
w26 wo&
¢ (E) = sup ML) = lim (W)
A<E £

for all £e¢R, and define r by

%* * - +
(8.16) £ = r(£) if and only if £ ¢Rand T (§) = & = 4 (§).
Then r is a maximal increasing relation.

(b) Conversely, let r be any maximal increasing relation,

* .
Define ¢ as follows. For each £ € dom r, let J(£) denote some
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* x
particular £ ¢R such that £ = r(f). Let d(f) = - if £ < i for
all Ae dom r, and let G(€) = © if £ > )\ for all hc dom r. Then ¢

3

has the properties required in (a) and r is given by (8.16).

*
Proof: (a) Let r be defined by-(8.16). Suppose that gl = r(gl)

% ‘ .
and £2 = r(gz), with gl < 52- Then
M ICEE AR
5, 58 =2 LY =&,
Thus (8.15) is satisfied, and r is an increasing relation. Next
k *
choose any £cR and £ cR such that £ # r(§). Then either
* + * =
£ >d7(E)y or & < & (). In the first case, by definition
ey * - %
of ¢, there exists some Eo > £ such that £ > d:(¢30> = £Oen.
* * *
Now EO = r(ﬁo) and £ < SO but £ > EO’ so that r cannot be
*
extended to include the pair <E,§ > without violating (8.15).
A similar argument works in the second case. Thus r is maximal,
(b) We show first that & is defined for all £¢R. This is
true unless there exists some QOE dom r such that go > 51 for
some Ele dom r and 60 < &, for some €2€ dom r. In this event,
by (8.15),
. * ,
(8.16) -o < supt & | £ = r(£) for some E(ﬁo;
' *, x '
< inf - £ |§ = r(§) for some €>§O <0,
* ‘
if go is any real number lying between the extrema in (8.17),

*v,
we can add < £ §O'>to r without violating (8.15). This contradicts

.)0’
the maximality for r. Therefore % is defined for all £¢R, as
asserted., It is immediate from (8.15) that ¢ is n6n~decreasing;

trivially, & is not identically -» or identically 4. Thus

¢ satisfies the hypothesis of (a). Moreover (8.15) implies that
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- * + *
¢ () <& < ¢ (&) whenever § = r(£). Since r is already a
maximal increasing relation, it follows from (a) that r coincides

with the relation defined as in (8.16) by .

The next theorem explains the exact sense in which the

maximal increasing relations are the unbounded continuous increasing

curves in the plane.

THEOREM 8-1

" Let k and k* be continuous finite non-decreasing functions,
defined for all )eR, such that k + k* is strictly increasing and
unbounded above or below. Define r by
(8.18) E* = r(f) if and only if 5* = k*(h) and £ = k(\)

for some A€R.
Then r is a maximal increasing relation. Moreover, every maximal

increasing relation can be represented in this manner,

Proof: Since k and k, are non-decreasing, (8.15) is satisfied
when r is defined by (8.18). We show next that r is maximal.
Suppose £€R, ﬁ*eR and E*£ r(£). Choose Ae¢R such that

(8.19) £ + 6* = k(\) + k*(k).

This is possi?le by the hypothesis. Let.go = k(\) and g; = k*(K);
then g; = r(eo) by definition (8.18). Since £* % (&), it follows
from (8.19) that E* - ﬁ; = —(5-50) £ 0. Therefore'(ﬁ.E*)'

could not be added to r without violating (8.15), so that r is

maximal as asserted.
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Conversely, suppose now that r is a maximal jncreasing relation.
%k
Then, for each NER, there exists a unique geR and a unique £ €R such
* *
that £ = r(§) and £ +& =). We shall prove the uniqueness first.
" * : % * 3 and £* )
Suppose that El + gl = A =&, + gz, where gl = r(g1 g = r(E2 .
* * * *
T - = = - and hence = = b, 8.15).
then &, - &; &, £ £, = & and £, 61 y ( )
In proving the existence, we may suppose that r has been represented
as in (8.16) for some function &®. The properties of & imply that
£+ &¢£) is strictly increasing and unbounded above or below. Hence,
given any A\€R, there exists some §0€R such that & + ™(&) = N\ for £ > go
and £ + ®(§) <\ for £ < 50» Then
Y <\ - +
(£y) =™ £, = ¢ (&)
' *
- = b 8.16) ., Therefor and =N =
so that A 50 r(go) y ( ). The e €0 50 N 50
have the required properties. Now, for each A€R, let k()») and k*(X)
* * *
be the unique real numbers £ and £ such that £ = r(§) and E+ €& =N
Then (8.18) holds. Moreover k and k  are non-decreasing by (8.15).
Inasnmuch as
k(\) + k*(h) = A for all AER
py definitionm, K + k* is strictly increasing and unbounded above or
_ *
below. Furthermore, k + Kk, has no jumps, so k and k are actually

continuous. This completes the proof of the theorem.

THEOREM 8-J
i1f £ is a closed proper convex function on R, then of is a
maximal increasing relation. Conversely, if r is a maximal

increasing relation, then there exists 2 closed proper convex
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function f on R, unique up to an additive constant, such that

=

Proof: The first assertion follows immediately from Theorems 8-4

and 8-H. To prove the converse part of the theorem, we can assume

that » is given by (8.16) for some function ¢ having the properties

: : & mhe ) < -, -
specified in 8~H. Choose any gGe dom.£. Then &(£) < «» for all £ < & _

9]

and §(5) » -~ for all £ > gO,

Define
(8.20) £(€) = / g ﬂ(g)dp for all 5535
i J{:
*0

The integral makes sense (at least as a Lebesque integral) despite

the infinite values, due to the choice of £, and the fact that &

0
is non~decreasing. For the same reasons, f(g) > - for all 5 and
dom f :r{égf(ﬁ)<~mﬁ} is an interval, non-empty since f(go) = 0.
Also, 1 is continuous on cl(dom f) by the ordinary properties of
integrals, so that f is lower semi-continuous on R. Thus we shall

know that f is a closed proper convex function on R as soon as we

have proved that f is convex,

Ll

t is enough to prove that f is
convex on the interval dom £, where the integral is finite. Let

gig dom f, gzt dom f, gl <€, 0<iA<1l. Let £,

€
o

= (1-N)E. 4+ A& .

Gl

Then @ggﬁ) is finite andg

vl

A-MLE D HL(E DT ) = (1)L )15 )yt (E )-£(E.))
; 24 3 i o 2 +

. [ f;‘: \ { ‘g’.: . 3 :
= (1-x)/ "1 TQydu + 5 1 2 d(L)du

£, 5.

]

A

8

S £1.n - T i £ :
? (L) G EDTEY) + ME-E)EE)

i

[(1~m)x(£1~£2>*h(l~x)(52-51)]ﬁ(€?> = 0

ad
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because € is non-decreasing. Thus
£C (I=N)E HAE ) < (1-NE(E) + ME(E).
1 2 1 2
This proves that f is convex. Finally, given any £< dom f and A > £

we have

. |
£ - £(8) = | Hwdp = (-E)F(E)

s

Frpe—

because ¢ is non-decreasing. Fron this, and from the dual fact
for A < £, we conclude that
£'(8) < & (£) and @f(&) < f;(E)

for all £c dom f. But this is trivially ture also for £¢ dom f£.
Since r is maximal, it follows now from (8.8) and (8.16) that
¥ = af.

The fact that f is unique up to an additive constant is not
obvious, because f is not necessarily differentiable in the ordinary

sense. ‘Suppose that afl =TI = sz, where fl and f2 are closed proper

i

convex functions on R. Then ri(dom fl) ri(dom fz) = D, say,

£,' () for all £ep

by (8.4a), and fié&) = fﬁgg) and fi_(g)
by (8.8). We may assume that D is an open iiterval, for if it is

a single point then trivially fl and f2 differ by at most an additive
constant. Let h(f) = fl(g) - fz(ﬁ) for £<D. Then h has left and
right derivatives at all points of the open interval D, and these

are all zero. Thus h is actually a differentiable function on D
whose derivative vanishes identically, so that h is constant. This
shows that, for some %R, fz(g) = fl(ﬁ) + o for all £eDp. But fl

and f, are closed, so the same formula must hold for all £eR by

(2.8) and the definition of D. This proves the theorem.
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Remark: It is true in general that, if fl and f2 are closed proper
convex functions on an n-dimensional space E such that afl = afzx
then f2 = fl + (¢ for some (¢R. One can prove this by an argument

similar to that given above, using Theorem C-C.

Maximal decreasing relations correspond in an entirely analogous
manner to the differentials dg of closed proper concave functions on R,
We shall now apply the results proved above to the following

problem:

(VO) Given maximal increasing relations rl,,,,,r , maximal
n

* *
decreasing relations Sl”’“’sm’ and an m x n real

] * *
matrix ((aij))’ find real nu@bers gl,,,,,gn and ”1’°°°’”m
gsuch that

X o ok
s, . =8 (N) and Y no = r (£)
& i3 TR AN | i

v

for i=1,...,m and j=1,...,n.

THEOREM 8-K
The general problems (IVO) and (Vo) are identical. Indeed,
given (VO), there exist closed proper convex and concave functions

fj and gi on R such that

* *
afj = Fj for j=1,...,n and 3g. = s for i=1,...,n.
i

| * * , _
Then <£1,.,.,§n;?ﬁ,,,5,7%1> is a solution to (v,) if and only if

it is a saddle~point in (1110); moreover this happens if and only
* %
if <{€1,,..,gn§> is a solution to <IO)’ <”1'°~°“ﬁn> is a solution

to (IIO)’ and the extrema in (IO) and (IIO) coincide.
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Rrooﬁ; The first part follows from Theorem 8~J, while the rest is

alization of Theorem 3=B.

COROLLARY 8-L
In order that (Vd) have a solution, it is necessary and

sufficient that
(8.21a) there exist gj€ dom r for j=1,...,n

O *

such that ZJaw,E.e range s, for i=l,...,m,
AN N | 1
and also
K

k
(8.21b) there exist nie dom si for i=1,...,m

- %
) € ra r j= o ]
such that Ziniaij nge F for j=1, ,n

Proof: The necessity of the condition is trivial. Its sufficiency

is an immediate consequence of 8-F, 4~F and 8-K.

Problem (VO) appears in network theory with ((¢x )) as the
1]

incidence matrix of the network, gj as the flow in the jth branch,

*
and 1, as the potential at the ith node. Birkhoff and Diaz [3] proved

i ,
an existence theorem for (VO) in this context. This theorem may be
viewed as a special case of 8-L in which the rJ are actually strictly
increasing continuous functions unbounded above or below, with

*
dom r, = R and rj(o) = 0, and each s, is either a continuous
*x *

non-~increasing function with don si = R and 51(0) = 0, or is of
the form!

* K % *
A= si(h Y if and only if » = %i (and » is arbitrary},

1

s

%
where bi is a given constant. Under these assumptions, conditions

(8.21a) and (8.21b) are always trivially satisfied. A somewhat more




-127~-

general reéult along these lines has been proved by Dwyer [48]° An
existence theorem for networks due to Minty [51, Theorem 8.1
follows from 8~L when the s: all vanish identically, i.e. when
I . * ,

A= si(h ) if and only if A = 0 (A arbitrary).
These authors all characterize the solutioné of (VO) (in the various
special cases) as the solutions of some problem of form (IO) or (IIG)
(or both). (See also Millar [50, Theorem 2], Berge [49] and
[50, p°162ff°],) Minty also considers a problem related to (IIIO)o
Aside from these results in network theory, and the linear programming

case, 8-K and 8~-L are new.



APPENDIX A

Support Functions and Relative Inteviors of Conv Sets

As Fenchel has pointed out [laﬂ B Lux] the conjugate
correspondence 2~E between c¢onvex functions includes the classical
correspondence between convex sets and thelr support functionsg [4» 9;23]0
After stating this fact here in a form convenient for reference, we
shall use it to characterize relative interiors. Some new results
will then be obtained about the behavior of relative intericrs
under certain operations, such as the azddition of convex sets.

Familarity with the material‘h1§23udll be assumed.

A convex function £ on E is said to be positively homogeneous if

(A.1) T(Ax) = Af(x) for all x¢E and A » 0,
This happens if and only if gph f is a convex cone. Since the ciosure
of a convex cone is again a convex cone, it follows from (2.5} that

£

cl f is positively homogenecus if f is.

Let C be a non-empty convex setl in E. The convex support function

;c of ¢ is then defined by

* * x (
(A.28) & (x3 = Jx |C)= ,up§ :;\;cz

¢ i *‘ Y *
= sup%{l&x?x : Of )E ch x &:E .

Dually, the concave support funct:

a Y >

A * A Fy
(A.2b) OC X ) = O0(x iC) = inf L,a,,;_ I X&C%

. * 2 . k%
= inf {[x,x ]-3 (x;% for each X g .
X S ¢

Notice that, by definition,
Y Y, % A A
A.3) = and = €.
{ J I Sc nd g, c

i.e. the support functions of convex seits are precisely the conjugates
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Oof the characteristic functions defined in (2.15) and (2.19). Obviously

!

¢, 2C, if and only it g? S % S50 that wy .-k
1 2 C, Cé
\ V =
(A.4) §. 25 11 and only if ¢l C,2 ¢l ¢ _-
c C 1= 2
1 2
THEOREM A-A

v
(a) If C is a non-empty convex subset of E, then Jc is &

3
closed, proper, positively homogeneous convex function on E , and

* Vo ok * X
(A.5) cl ¢ =%x |[x,x ] <6«x |c) for all x <&
(b) If h is any proper, positively homogeneocus, convex function
* v
on E , then cl h = gC where
* * * X
C = xl[x,x ] < h(x ) for all x ¢E

is a non-empty closed convex subset of E.

Proof: (a) The fact that 5; is ; closed pr@éer convex function is a
specialization of Theorem 2-D, in view of (A.3), while the positive
homogeneity is obvious from the definitions. Moreover by (A.3), 2-D
and (2.16),
S(xlel ¢y = \é;*(x) = sup *%x,x*] - égx*g@\g R
%

- # o voo®
which says that x¢ cl C if and only if 0 2 [ x,x | - 0(x

N

ic)
sk

for all x

%
{b) Observe first that, by 2-D with the roles of E and E

*
reversed, cl h = £ , where
* ®
(A.6) f{x) = sup * [x,x ] - hix)
X * "
is a closed proper convex function on E. Substituting x = Az

(for an arbitrary fixed A > 0) and applying the fact that h is positi

homogeneous, we see that

f‘\’:X) = SUup *E[Xy)\Z*] = h(i\z*)z: A 8up *&Xi‘z*]
! z

Zz

B
-
R
B~y
3
S
e
i
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This is true for every j = 0, so f(x) ig either O or « for sach

-4 v
x€¢E. Thus f = © . and hence cl h = JW by {A,’S)’) for some con
w [

set C (closed and non-empty because f is closed and proper}y. il

asserted formula for C is now a consequence of (A.6)-

COROLLARY A-B
The closed proper convex characteristic functions on E correspond
one~to-one with the closed proper positively homogeneous convex

*
functions on E under the conjugate operation,

%
Of course convex sets in E correspond dually to positively

homogeneous convex functions on . There are also analogous
correspondences for convex sets and positively homogenesus concave
functions.

It is interesting to note that a proper convex function

a characteristic function and positively homogeneocus if and only if

v
it is of the form 6K’ where K is a non-empty convex cone. 7The conjugste

-

of such a function must again be the characteristic function

non-empty convex cone, for the proverties of being a characteristic

(o]

function and positively homogeneocus are dual to one another by the

above results. In fact if K is a non-empty convex cone in

vk v - 17 Fy o oata .
{A.72) 9, =0, =& _, where K =\x {ix,x j % 0 for all
K~ K g

The closed convex cone K & E in (A.7a) is called the polar of K.

cl K. In particular, the well known polar correspondence betwee

non-empty closed convex cones (see [6i 9852]) iz a special case of the
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conjugate correspondence. For concave functions, one has the dual

result

~
(A.7Db) ®

* A # .
K SK = bK + , where K+ ={x i[_x,x ] 2 0 for all xeK} =

bl

In particular, when K = M is a subspace of E, then

I

V %k v v %k % *

(A.7c) 6M = OM = ® ,, where M =€x l [x,x ] = 0 for all xel»i.f'°
M

Useful properties of the relative interior of a convex set are

described by the next theorem.

THEOREM A-~C

Let C be a non-empty convex set in E and let x€E. Then if x has
one of the following properties it Qas'thém all:

(a) xe ri C,

(b) For each zecC there exists some £ > 0 such that x - & (z-x) €C,

N K * * X I *
(c) G(x |C) 2 [x,x ] for each x €E such that g(x 'C) < [x,x ] .

Proof: (a) implies (b): Let L be the smallest linear manifold containing
C, so that ri C is the ihferior of C relative to L. If x¢ ri C and zeL,
we will have x + A(z-X)e ri C C for —ES A <&, provided\ €>0 is
gmall enough. In particular, this will be true when zZ€eC.

| (b) implies (c): If O(x |c) < [x,x ], then by definition (A.2b)
there must exist some zeC such that [z,x*] < [x,x*]. Applying (b), we
get

Yx'lo) = [x- £z, 1 > [x,x ]

by definition (A.2a).

(c) implies (a): Suppose x£ ri C. We shall show that then (c)
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cannot hold. If actually x£ cl C, there exists some xseE* sﬁch that
[x,xZ]-? g(xglc) by Theorem A-A. But trivially 5(x3|c) > 3(x;|c),

s0 (c) is violated by x;. Therefore we can suppose x€ rb C. It is
well known that a non-empty ope<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>