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A duality theory i1s developed for multistage convex stochastic programming
problems whose decision (or recourse) functions can be approximated by
continuous functions satisfving the same construints. Necessary and sullicient
conditions for optimality are obtained i terms of the existence of multipliers in
the class of regular Borel measures on the underlving probability space, these
being decomposable, of course, into absolutely continuous and singular com-
ponents with respect to the given probability meuasure. This provides an
alternutive to the approach where the multipliers are clernents of the dual of #=
with an analogous decomposition. ITowever, besides the existence of strictly
feasible solutions, special regularity conditions are reguired, such as the
“laminarity” of the probabilitv measure, a property introduced in an earlicr
paper. These are crucial in cnsuring that the minimum in the optimization
problem cun indecd be approached by continuous functions.

I. INTRODUCTION

In a stochastic programming problem, decisions must be taken in diserete
time in responsc to the progressive observations of certain random variables,
and in such a way as to minimize an overall expected cost subject to various
constraints, In stage k, where 2= 1,.., N, there is an R"-valued random
variable & to be observed and a decision vector x, in R to be determined. Let

E= (&, Ex)ERY Y - X RY =R,

A = (il By JERT X o) R =R

The distribution of & is assumed to be given by a known (regular Borel) pro-
bability measure ¢ on a Borel subset £ of R*. The type of decision structure
that is of interest is represented by a function a: B -» R*, called a recourse
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Junction (or in other contexts a decision rule, policy, or program), which is
nonanticipative i the sense that v (£) depends onlv on & ,..., €, and not on
El yueny B

R s o e %

(&) = (&) wulér s E)vs wnl(Epoees ExD)

In the present paper we treat constriants of the form

(&)X and  f(E x(£)

0 fori —1,..,m and f&57, (L.1)

and the expected cost to be minimized is

D) — Eefulé 5(8) = | filé, 2(£)) o(dé), (12)

.
1||

where

(a) X is a nonempty convex subset of R", and each f, for i = 0, 1., mis a

real-valied function on 5 » X such thal [i(£, X) o5 convex in x for every €.

For reasons explained below, we also make the following topological restric-
tions:

(b) < is compact and is the support of o (i.c., the smallest closed set of full
g-measure);
(c) X s compact with nonempty interior,

(d) f; is continuons on 5 x X for ¢ =0, 1,..., m.

"The continuity in (d} ensures in particular that £(£, x(£)) is a bounded, Borel-
measurable function of § whenever x(¢) is a bounded, Borel measurable funec-
tion of £, Furthermore, since X is bounded, only recourse functions x which are
bounded will be necded.

Let A7 denote the linear spuce consisting of all bounded, Borel measurable
functions x: 5 — R which are nonanticipative. The basic problem we study
here 13

minimize the functional (1.2} over all
s ; ()
x € 47 satisfying the constraints (1.1).
Note from the preceding remarks that the expected cost (1.2) is well defined.
Furthermore, the functional @ is convex, and it is to be minimized over a convex
set. Owr aim is to characterize the optimal solutions to (P) in terms of Lagrange
multipliers of some sort for the inequality constraints.
A problem closely related to (D) is:

minimize the functional (1.2) ever all & =47

(.)

satisfying the constraints (1.1) almost surely,
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l.e., except perhaps for £ in a subsct of Z of measure zero with respect to o,
This can be regarded as a problem on the Banach space %, = #=(Z, # o)
(# — Borel field on &), with 47 replaced by the subspace A7, of ™ comprised
of the functions equivalent to functions n A7

In a scrics of papers [1-6], we have investigated Lagrange multipliers for
(P.), paying particular attention to the two-stage case. We have shown, roughly
speaking, that if at cach stage one can make decisions without worrving about
the possibility that certain future outcomes of the random variables might leave
one with no feasible recourse, then multiplier funetions v, for the constraints
F(E x(€)) = 0 could be obtained under a “strict feasibility” assumption as
elements of £ = F1(E, #, o). In general, however, the hest one could hope
for would be multipliers as elements of the dual space (#*)*, each of which
could be identified with a pair consisting of a function y, € %! and a certain
“singular” compenent y,°.

Here we present an alternative approach in which singular multipliers in
(Z=}* arc avoided, vet no nonanticipativity condition on the dvnamic behavior
of the constraints 1s introduced. The multipliers appear instead as regular Borel
measures p, on =, and these can be decomposed in the classical way into an
absolutelv continuous part with respect to o and a singular part,

This approach, which was sketched in [7], depends on topological assump-
tinns beyond those needed in our earlier treatment of (P, ), not only the condi-
tions on 5, X, and f; introduced above, but also a certain property of o. The
reason is that we need to work simultancously with (P), (P,.) and still another
problem:

minimize the tunctional (1.2) over all
o o (Po)
x € A7 satisfving the constraints (1.1),
where A% consists of all the confinuous nonanticipative functions x; £ — R®,
Obviously, one always has

inf(P,) = inf(P) < inf(P), (1.3)

but without further assumptions on o both mequalitics 1n (1.3) may be strict,
as demonstrated by counterexamples in [8]. It is cssential to our approach here
that equality hold throughout (1.3), because we gain our result for (P) by
a marriage of an #'-multiplier duality theory for (P.) and a measurc-multiplier
duality theory for (Pe).

The further condition to be imposed on ¢ was developed in [8] with the present
application in mind., We assume that

(e) the probability measure o is laminary
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in the following sense. For any S C R and index &, 1 =5 £ - NN, let

\r"‘\

£ \b

ASE, - Gy v ) | (B £ a1 oo EX) ES),

B projection of S on R -+ o0 R¥

= {(51 ERREE] ‘i-:'.-‘.:) | i'j.-‘.-‘s(gl FELY ‘f!.} .-—'_.'

The conditions for ¢ to be “laminary’ are that

(1) the multifunction 4,5 is lower semicontinuous relative to &% (hence
actually continuous, since £ is compact), and

(2) whenever S is a Borel subset of & with oS) =&(5) = 1 such that
S* is also a Borel set in £, then A,5(4, ,..., &) 1s dense in A 5(&, ..., &) for
w6y

almost every (€ ..., &) in S* (with respect to the projection of ¢ on :-F‘)‘

This assumption on ¢ is satisfied, for example, if & can be expressed as
o(dE) = p(Ey 1 £x) 1(dls) " an(dEyy),

where o, is a regular probability measure on R with compact support =y ,
and the function p is positive on 5, x - x Ey . Trivially, it is also satisfied if o
is discrete (& then being a finite set),

Under the forcgoing assumptions and a constraint qualification (“strict
feasibility™ of (P..)), we obtain not only a characterization of optimal selutions
to (D) in terms of “measure’ multipliers, but alao the existence of such optimal
‘approximated’’ by continuous

solutions and the assurance that they can be
recourse functions.

Restricting recourse functions to anv speeific class of functions always pre-
cludes a certain amount of generality. This is certainly the case if we demand
that the recourse functions belong to %, , the space of R"-valued continuous
functions, but also if they must be]ona m .7, the space of R*-valued functions
that are p-summable, for 1 = p <7 o0, The spaces €, and £, have the distinct
advantage of providing a more natura] avenue to the derivation of necessary
conditions for optimality. 'This might possibly be carricd out for problems
formulated in .%,"-spaces, 2 = p =2 oo, but it would certainly entail numerous
refinements of the theory now available for multistage programs formulated in
Frgpaces [9-11]. The fact that we are able to show the essential equivalence
of (P..) and (P.) with (P) under the above assumptions should therefore be
regarded as one of the chief strengths of the present approach.

Although (P,) is introduced here largely as an adjunct to the study of (P), it
is noteworthy that, for large classes of stochastic programming problems,
requiring the recourse functions to be in %, does not actually engender any
additional restriction. Typically, these are stochastic programs whase optimal
solution, if it exists, is automatically in %, . A number of such problems have
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been identificd in connection with the study of optimal decision rules; cf, [12-
14]. Morcover, in a number of pratical problems, there might be an a prion
specification of the class of acceptable recourse functions such as lincar or
continuous and piecewise linear, cte. Such a restricted class nearly always
turns out to he a certain subspace of % ,; see, for example, [15-17].

Further motivation for studying (Pe) and its relation to (I} and (P.) les
in the area of computation. The possibility of approaching optimal recourse
functions by continuous oncs is likely to be important numerically, especially
in algorithms basced on discretization.

The equivalence of (P) and (P.,), also reassuring for computational purposcs,
has previously been demonstrated for multistage “linear” stochastic program-
ming problems satisfying rather weak regularity conditions [18, Proposition
4.8] and in abstract settings in [8, 19]. This turns out to be a minimal property
for the actual derivation of the induced constraints when relatively complete
recourse 15 not avaitable [20, Sects. 4 and 5].

2. Lacraxcian Fuxnctiox axn Duvarn Proerewm

Let o denote the linear space consisting of all R™-valued Borel measures

P ={py. py)on =, and let

FP={pe|p =0

Let

F=fxcA | a(f)esXNtorall £ <

Obviously # and # are convex, We define the Lagrangian L on A7 &4 by

Lix, p) = _Q_ [fl€, 5(8)) o(dg) — fulé, ¥(€)) pld€) - -+ | fulé, X(€)) puldE)]
if and pef?,
- — if but pe#,
— Lo if (2.1)

Since for 7 = 0,..., m, f(€ x(¢€)) is a bounded, Borcl measurable function of
£ 5 when x 2 &, it is clear that L is well defined and finite on & ¢ & with
L{x, p) convex in o and concave in p.

It is elementary that

sup L{x, p) = O(x) in (1.2) if & satisfics (1.1},
P (
= Lo otherwise,

-2
-2
—
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and hence

inf(P) — inf sup L{x, 1) (2.3)

REAT pEA
Accordingly, we take the dual of (P) to be the problem
maximize g{p) aver all p .4, (D)}
where
g(p) — Inf L(x, p). (2.4)
Let %, denote the subspace of .4 consisting of the measures which are
absolutcly continuous with respect to the underlying probability o For

Po={Py ey P} =2 0In o) and x € #, we can express L in terms of the Radon—
Nikodym derivatives ¥, — dp,/da by

L ) = B A6 50D - 3. 3O 56 (0) @3

Note that the multiplier functions 3, then belong to #% This provides a con-
neetion to the theory in [1-6]. For general p £ %, we huve a decomposition

where ¢ 1s singular with respect to o, and the expression (2.5) is thus augmented
by a singular term

S | filE «(8) g.(d8).
21 vE
We need to study the relationship between (D) and the problem

maximize g(p) in (2.4} over all p .7 . (DY
Clearly,
sup(D,) :

sup(D) = inf(P). (2.6)
We say that (P) is strictlv feasible if there exist ¢ .47 and € = 0 such that
FEHeXN and f(& (&)= —e fori=1,...,m andall f£Z2, (2.7

where B is the closed unit ball of R¥. Similarly, (P¢) is strictly feasible if this

condition holds Tor some & =% . If it mercly holds almoest surely for some

Fe A7, we say that (P) is strictly feasible and (P) is essentially strictly feasible.
Qur main result mav now be stated.
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Taeorenm 1. Assume, in addition to conditions (a), (b), (¢), (d), and (c) of
Section 1, that (P) is essentially stricely feasible, Then

min(P) = max(D)} = min(P.) — inf(P) == sup(DD,). {2.8)

In particular, (P) has at least one oplimal solution ¥ and (D) has at least one optimal
solution P, and the pairs (&, p) consisting of such solutions are precisely the saddle
points of the Lagrangian L with respect to A 3 4 {or equizalently, with respect
to A ).

3. Proor oF THE Mamw RrsvLr

The proof of Theorem [ uses general duality (and minimax) theorv in con-
junction with a special result about continuous and measurable sclections in the
context of “feasible’’ nonanticipative recourse vt & — K% This result, which we
proved in [8], makes its appearance here in the following form.

Prorosition 1. Under the assumptions of Theorem 1, ihe problem (Do) is
strictly feasible and

min(P) — min(P,.) — inf(Pe). (3.1)

In fact, any feasible solution to (P} can be modified on a set of measure zevo with
respect to o to obtain a feasible solution x to (P), and this can in turn be approximated
by feasible solutions to (Po), in the sense that for any & == () there exisis a feasible
solution X' to (Po) such that

o{é €& &I |a(8) —¥(8)}) < (3-2)

Proof. Define the multifunction D: 5 R” and the function f: & > X —
R {40} by

DEYy=fx=R |xeXand (&, &) =2 O for i — 1,..., m}, (3.3)
FlEa) =FE%) it xe D(E), .
. ) . (3.4)
= 1w if xe D{E).

Assumptions (a), (b}, (¢}, and (d) imply fis a lower semicontinuous function on
&« R such that f(€, x) is convex in w and unilormiy bounded on the compact
ot

17
5

domf=4{(£x)|xeD(ECE « X (3.5)
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We demonstrate, in a moment, that
(1) [ is lower semicontinuous, and for all ¢ ¢ .5 onc has
Z =int D(E) = {xeint X | fi(§, &) <2 O fori = ..., m};

(1) cssential strict feasibility of (P) implics the existence of

e 4 and ' = Osuch that 2'(£) + «'B C D(€) almost surely,

Then, in view of the remarks already made, all the assumptions of [8, Theorem
2, Corollary to Theorem 1] will be fulfilled; these results assert in terms of f
and D the desired relation (3.1) and the fact that there exists some &% A%
and €” 2= 0 such that ¥°(&) 4 "8 C (&) for all £ Z. The latter implies by
(1) and the continuity of the functions f; that (Pg) 1s strietly feasible. The remain-
ing assertions of Proposition 1 are just detals furnished by the actual proof of
[8, Theorem 2] and by [8, Proposition 7].

We shall verify (11} first. Let £ .47 satisfy (2.7} almost surely, as in our
assumption of essential strict feasibility. Choosge a point @ = int X (as is possible
by assumption (¢)); let § = 0 be such that ¢ + o2 C X, Assumptions (b) and (d)
guarantee the existence of « = R such that

F& a) = o forall {5 and 7—=—1,.., m.

For a yet undetermined A=(0, 1), let & €47 be the function defined by
F(E) = (1 — N &) + Ae. From convexity we have almost surely &'(€) -
ASBC X and

FLEF(E)) = (1 - A e | A for/=1,.., m. (3.7)

Take A sufficiently small that —(1 — Aj e — Ax = 0. The functions f; arc uni-
formly continuous on the compact set = 20 A so there exsts € = (0, A8) such
that for each & for which (3.7) holds and each x in &'(£) + '8 we have
Fil&, x) =0, as well as x & X, Then 7 has the property described in (ii),

To establish (1), we again make use of & and e satisfying the essential strict
feasibility assumption, the property (2.7) holding for all € in a certain subset 5
of £ with o{S) — 1. Let

d={(¢&xyeZ x X f{& x) s —efori=1,.,m.

The image of 4 under the projection (&, ¥) — £ includes S and hence 18 dense
in &, since Z is, by assumption (b), the support of e, But 4 13 compact by the
compactness of £ and X and the continuity of f; . Therefore, the projection of

A is all of 5 in other words, the set

xe X flé x)s —efori=1,..,m}
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is nonempty for every ¢ 5. Convexity then yields (3.7) (apply [21, Theorem
7.6] to the function f( = max{’, fi(¢, x) if ve X, Fix) = +o if x ¢ X).
It follows next from (3.7) and the continuity of f; that the set

{(&, 1) & x R*|xcint D(£)}
is open relative to & 0 R, Since D(£) is convex, this implies 1 1s lower semi-
continuous [22, Lemma 2, p. 458]. The proof of Proposition 1 is now complete.

L

ProrosiTioN 2. Assumptions (a)—(e) tmply min(P.) = sup(D;).

DProof. It is evident that for x = 4" one has

sup Lix, p) = P(x) in (1.2) if & satisfies (1.1) almost surely,
PEA
= -G otherwise.

Therefore

inf(P.) = inf sup L(x, p),

xeAT pES,
whereas by definition

sup(D,) — sup inf L(x, p).

pEM g wEd”

We need to show that “min sup = sup inf’* holds in this context, As seen from
the discussion surrounding (2.5), this is cquivalent to proving that

min sup L'(x, v} = bup inf L'(x, v), (3.8)

wedle vy £y wsllen

where 27, is the subset of #,= —= #=(5, %, o; R") comprised of the functions
e_quu-alent to those in 4, %, is the nonnegative orthant of £, — #(Z,
o; R™), and

Tt

£s9) = B LAl (0) + 3 O F(E )
{ sl

(Here we use the fact that if x is equivalent to a function in .4 and satisfies
&(£) € X almost surely, then x is equivalent to a function in £ This is true by
[8, Proposition 7], since X is compact and o is laminary.) Since &', and ¥, are
convex and L'(x, ¥) is convex in x and concave in y, we can obtain (3.8) from a
minimax theorem of Fan [23, Theorem 2] by demonstrating, rclative to the
weak topology w(%,*, 1), that 2, is compact and L'(x, y) is lower semi-
continuous In x.
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Fix any summable function y: £ — R.™, v = (9, ,..., ,,), and define ¢ on
& » R? by

m

HEN) =file ) = Y W@ flEx) i xeX,

im]

— ® it el

Note from our assumptions (a), (¢), and (d) that ¢ is lower semicontinuous in
(£, x) and convex in x, and of course ¢(£, x) is finite if and only if a £ X (where
int X = 7). It follows that ¢ is a normal convex integrand [24, Lemma 2].
Morcover, there exists by (b}, (¢), (d), and the summability of y a summable
function p: = — R. such that

Pd(E, w) = u(é) when (€, x) < +oo.
The integral functional
L) = E4(6,x(O))  forxe 0

(which gives L'(x, v) if xe.47) is thereforc well defined with values in
R U {0}, and it is bounded above by E{u(€)} on

dom /[, = {x e &= | L(x) < +=}

(3.9)

— {xe ZF,” | x(£) € A almost surelyy.

Since int X == =, we know from this and [24, Theorem 2], [22, Theorem 2],
that 7, is the conjugate of a certain integral functional on .%,! (namely, 7,..), and
hence, in particular, I, is lower semicontinuous relative to w(Z,”, "), (Thus
L'(x, v) is =(&*, ZLY)-lower semicontinuous as a function of xc# .. .) The
set (3.9), which can also be expressed as the level set

fve B | y(w) = Edp(6)},

is not only w(.%,*, Z,')-closed but bounded (since X 1s bounded), and therefore
it is w(Z,=, &, )-compact. We have

X, =N, ndoml,,

and inasmuch as A7, 1s @(%,*, Z,1)-closed as a subspace of %, we can conclude
from this that 2, iz (%%, £,)-compact, as required,

ProposITION 3. Assumptions (a), (b), (c), (d), and the strict feasibility of
(Pe) imply that

inf(P,) = inf sup L(x, p) = max inf L(x, p). (3.10)

xG.4 . psd P xsAN s
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Proof. This is a straightforward result of duality theory in the traditional
vein, It corresponds to representing the constraints fi(€, »(€)) = 0 by —F(x) e K|
where ' is the mapping from

To—{rey (e Nforall £ 5] (3.11)
to the Banach space %, — #(&, B") (continuous functions) defined by

F(a) = (A 80D s 30D

and K is the nonnegative orthant of %, . The dual space of 7, can be identified
with ., and L is then the ordinary Lagrangian associated with minimizing the
functional (1.2) over # ' subject to —I(x) = K. Strict feasibility of (D) means the
existence of & =4 such that —#/(2) e int K, and hence, it cnsures the existence
of a multiplier vector for the problem, 1.e., the validity of (3.10).

ProposttioN 4, Under assumptions (a), (b), (), (d), and (¢), one has
mlf L{x, p) = 1{1% L{x,p)y  forallp=.i. (3.12)

Proof. Assume first that p <, and let 8 be a regular Borel probability
measure on Z with respeet to which p and o are absolutely continuous. (The
support of # is then =) Sctting =, — dp,/df = 0, where p; is the ith component
of p, we get the represcntation

Lix, p) = [ (& s() 6(d)  forxe s,

where
m
f(gs l} __fu(é::s “*) T Z ﬂf(‘f}fé(‘fi '\:) if xE ‘/Y’
i-1

The same result invoked in the proof of Proposition 1, namely, [8, Theorem 2],
when applied to this f asserts (3.12). Its hypothesis is satisfied almost trivially,
oo} — X is independent of £ (with
nonempty interior), and (&, &} is summable with respect to €& £ for cach
ae X,
For p &7, both sides in (3.12) are trivially infinite and equal, provided it is
then %, == @ (where % is defined by (3.11)). The
latter fact can again be obtained from [8, Theorem 2]: Take & as above, but

5

merely let f(&,x) =0for v e Aand f(§, x) = Loo forx ¢ X,

since the effective domain {x | f(&, x) < -

true that whenever 47 =+ &

Proof of Theorem 1. This 1s simply a matter of putting together the conclu-
sions of the four propositions. Let p denote an element of «# for which the
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maximum in Proposition 3 is attained. Then 5 is actually an optimal solution to
(D) by Proposition 4, and hence,

A

-t

by

(2]

5]

10.

11.

inf(Pp) = max(D).
the same time we have
inf(Pp) — min(P) = min(P..) = sup(D,)

Propositions | and 2, so (2.8) is valid and the theorem is proved.
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