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MONOTROPIC PROG RA\i\4INC I A C ENERALIZATION OF
LINEAR PROCRAMMING AND NETWORK PROCRAMMING

R. Tr" fte ll R,t ckafellar+

Duality schemes have heen developed for alnro-<t alj rypes of optimization problems, hut the
classical scheme in Iinear programrning has remained tbe most popular and iDdeed the onl.v one

that is $ idely familiar. No doubr this is drle its simp]icity and ease of application as much as irs
close conuection with computatioll, which is a properry shared with other dualities.

Linear programming duality ha; an appealing fotmulatiou itr terms of a matri\ or tableau
in which each row o. colum! corlespondi to borh a Jrrimal variable aod a dual variable. ,4. role

assigDed to onc ol these paired variables automatically entaiis a certain role lor the other. IB the
lrsrral *ay of thinkiug, decisioo valiables in orie problem corr€spoqd to slack yariables iD the oiher.
The olll flexibility is whether a decision variable is ootrDegative o! uDlest cted, il accordaDce
nith rlhicb the correspoDdirrg sl:rck variable is tied to.an itequality or ao equa.tion.

A last exteision of this approach to dualir-v is possible *iihout sacrificiag tLe sllarprress of
lesulrs oa eveD rhe "coocreleEess" of representatioD. The extensioo is achieved by admitting far
rlore gcueral roles for the va ables in a primal-dual pair. To appreciate how this is possible. it is

necessary ffrst to free ooeself frcm the ide2' thai ther," is something inhereqt in ., variable beiog

-- either a decision variable o! a sort of slack vari;,ble. Sucb a disrinction is actually an impedinreni,
e1e! i! standard litrear plogrammilg, beca{se it lelates mole to tbe ilitiai tableau beilg used

than [o somethiDg ioherett i! the r.ariables rhenselves. WLeihe! a variable is ',ildependent"
or "dependent" io tbe expression ol a problem alrd its coustrahts can chalge when pivotiug
tratrs{ornatioDs are applied to the tableau.

In the geoeralized duality scheme wbich '.ve call iLonottop;c ptogramm;tug re ,,role" ol a
variable i,s somethilg apad fron its iucidental positiou iu a tableau. It is givel by specilyiug t,oth
an ,Dlrrud.i (the rauge of values peroiited for tle rariable) aud a cott erprestion defioeC over ihe
iatewal. The cost e).pressioB is a conv.x fuucriot of the riable (possibly linear o! piecevise

lilearl aud it might be eyery*here zero on ihe itrte.t?I, in which case otre could appropiately to
thiuk ol the r.ariable as a slack variable io a broadeaed sease.

The pair consisrilg of an intenal aDd a coEvex cost explessioD otr tbat iDierval ca{ be

ideotiffed witb a so-called proper convex fuoctioD on the real line. Subject to a mioo! legrrlarity
coDditiou ("closed[ess", a prcperty referring to eldpoints), such a lulctiol can be dualized: the
coziugate functiotr furuisbes the interval aDd associated cost explessioD dentritg the ,,tole" of the
dual variable.

Conjugates of coavex fuuctiols of a sitrgle eriable ca! readily be cotstructed by a process of
generalized ditrereutiatioo, inversiol and leinteg.atioo_ This fearure giyes moDottopic p!og!am-
miog duality a poteDtial for much wider rrse in applicatious thatr other, mole abstract forms of

* Supported iD palt by a Frant ftom the National Science Foundatior at the University of
ffashiugton, Seattle.



duality. Atrother irteaestiog featule is the way fhat moaotropic progranrming associates .rith

each plimal-dual pair ol rariables a certaii "m&\imal monotone relation". The plototypes for

sucb relatiols in ordilary liaear programming are tbe complementary slackness relaiions used in

characterizing optimality. I! network programming, Lowever, the relations have an impomance

all ol tbeir voa. They describe the combiuatiotrs ol flow and teasio! {poteriial differclcel that

catr occur irl the various arcs of the letwork, mole or less like geoeralizations of Ohm's Law,

which io classical electrical theory coilespotrds to an arc lepresertiDg a,o ideal resistor.

The tbeory ofmoBotlopic ploglammitrg duality is preseoted i! complete detail iD the author's

1984 book [l]. Nevertheless a briele! introductioo to the subject may be helpful, because the

results atrd even the basic ideas ale oot yet widely ktrown but very applicable. This is the

justiffcatios lor the present articl€.

I! order uot to etrcumbe! tbe exposition, proofs are omitted. Nothi[g is said about ihe

history of ihe subject, the theories that are lelated to it, or the people who have made major

coltributious. All that caD be found in l1l.

1. Linear Syetems of Variablea,

A tuodameutal coacept irr mouottopic ploglammiqg is that ol a "6!ite collection oi real

variables which ate ilterrelated ia a homogeneous linear manaer'. Let us detrote the variables

by rt, j e J, where J is some taite iadex set (such as {1,..., n} or {0,1,..., n} or {1,...,n} x
{f, . , . , m}; flexibility ir thir respect is helpful). We ca! think of l/ectols

.-t - rEDJ. - t... ' 
4rt,../ r .u

as corlespotrdiDg to as assigrrmeot of a real u[mbe. value to each variable. Such vectots cau be

arlded or muliiplied by sca,lars as usual:

(...,z;,...) + (...,at,...) = (...,ti + {,...\
l(. .., r,,...) = (.. . , )rr,.. .).

I! this selse &J is a vector space (iderti0able with .R' wheD J = {1,.. . , n}). To say that ou!

variables a; are related il a lonogeleous li.uear malaet is to say that the value Yectors t we are

itrtelested i! forE a subset C ol &J with the propetty

zeC,rteC+t+lteC,
teC,^eR - ,1, e C.

h other *ords, C i.s a (liaeor) subspace ol RJ.

Formally speakirg, tb,et, a lircat ry em of oariabler is simply rLe desiglatio! of a subspace

C of .RJ for some Slite ildex set J. Olteo ihis subspace is described for us initially by a set of

hooogeleoug litrear equatiolg



(r) !r,rrr=g1o",E1,
i€J

rvhere I is some other index set, blrt this descripiion is not uniqte and cao be re-expressed in

maly difrerelt ways. (The lestriction to homogeoeous linear relations ai this rtage is merely a

theoretical device, but aD impoltaDt otre. GeDelal linear constraints will be baodled below by

specilyilg for each j a rea,l interval d, il which a, must lie. Iucluded itr this is the possibility

that some oi these iatenals cotrsist oJ a siDgle poilt, so that ihe coarespoodilg ri's must take oD

ffxed values. Theu {I) turns iuto a system of iohomogeneous liaear equatiols iD the remaiDing

ar's.)

A common way for a linear system ol rariables to be described is through a set of equatioos

of the special Jorm

lorrrr=rklotkeK,
taL

where .L aud tr ale separate iodex sets, J = K u L. These could, ol course, be wlitieu as

- '* iLa*Pt = o Jor 
'k 

€ K
IEL

itr order to fft the pattelE ol {1}, Very useful in this contrectioa is the tableatt notation lot 12) irt

Fignre I. When a linear system ofvariables is given ia this vay initially, ihe rariables 4lot i € L

may be thoughi of as "itrputsn and the Yariables ar for ,t € K as uoutputsn. Ftom a mathematical

Foitrt o{ yiew, bowevet, such a distilctio! is ol little importatce.

= rl(t e i()

Figure 1.

Iq lact ony lilear system ol variables catt be lepreselted aa in (2) ir z mvltiplic;ay ol utllt
We speat ol ihese as Trcher tepretealationr of the system or of the subspace C c &J. Speciffcally,

one catr pass lrom (f) to (2) by solving lor a maximal set of rr's (correspouding to sorne index set

K c J) i! terEs of the remainitrg ,i's (cortespotrdiug to the compleEeltaty index set I = J\K).

(2)
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Thus thele is a one-io-one corespoudence betweetr Tucker representations of the giren j aud

certain paditions of J ilto a pair of subsets, K aad -L. Obviously there are mauy ibut only

fziialy maty) such repfesentatiotrs, and they all yield tableaus ot the same size; the number of

elements of t must equal the dimeusion of C in RJ.
It is possible to pass from any oDe ?ucker represeoiatio! to any other by a series ol pi|oting

ttotLgfotmotiorLt ol the tableau, each such iraDsformation involviug a! exchaDge of an index ,t6

is K with an ildex 16 iD ,. This is a ceDtral idea io computatiooal procedures in monotropic
p!ogrammi!g.

2. Monotroplc Programming Problems.
We stppose low tbat we ate giveB a linear system of liables, designated by a certain

subspace C c -RJ, ald also lor each index j e J a closeil ptupet conve.ftnctiot I on B. We

denote by C; the (nooempty) iutenal of .R where I has fnite values (tbe set dom ,fi io convex

aaalysis); 6o!e about thb i! a mometrt. The cortespondiog motuotropic prognmming ptoblem

thai we shall be coDcertred vith is

minimize ! /i(c1) =: r'(r) ove! all
(P) jer

d = 1... ,, j,.. .) €Csatisfyilg,r<Cjf.ota.\l jeJ.

Note that i! terms of any Ttcker repleseDtation ol C rhis takes the lotm

minimize ! !k@k\ +D fl,jl
heK teL

subjecr to ,r € cl for aU I € ,,
rp =lo1,1r1e d1 for all ,9 e K.

ICL

Here we recall lhztr z proper co[rer luBctio! on .R is a fulctio! deffled on oll of R with
values that are real suubers (i.e. fluiie) or +oo (bBt \ot eoerynhete +co) ald such that the

usual coryexity ilequality is s8tis0ed. For sucL a function /j, the set of poitts'rhere tLe rzlue of

,f/ b lot +oo necessarity torms a notrempty i[terval, which ve are deaoting bere by C1, Clorcdneae

of I is a mild semicottituity colditioD otr the behavior of tj at ihe eadpoiDts of dj (to the extett
that these ale ffDite): the value of /i at such an endpoitrt loust coiocide with the limitiag value

obtai[ed as the eldpoiot is approached flom vithi! Ct. (This allows for t]e possibility ihat

fi@i) - a* as ,i approacber a 0rite eldpoilr ol d1 from withil C1; thur ihe closedaess of I
does Eot lequire the closeduess of dy.)

For readers uuaccustomed to dealiug with +co, it is essential to realize that the introduction
of +co is merely a notatiolal device lor the represeotaiioo of colstlailts which happeus to be very

(P'J



dseful in theory, particularly in uode rstandin g dualit). Every pair Cr , /r , rousisrin 3 ,rf a n,,nemp rr.

real interval C, aud an aabitrary nnite-valued convex lunction 11 oo C,1n the traditioDal sense.

ca! be identified utriquely and uDambiguously with a ce aitr proper convex luDction o! ,Q: simply

rcgard ljlrj) as +co for erery rj € Cj.

AD r that satisfies , € C ald the itrter-!'al coDstraints t, €C| it {P) (ot the corresponding

coDditioosir{P'))issaidtobea/easiblesolttiontoo\t problem, ol course. Tbe feasible solutioos

lorm a colvex subset ol -RJ on whicb the objective F is a 6rite cotrvex fulction. (Observe that

F(e) < co iI and ooly n fj@i) < oo for all j, or itr othe! words, ry € C., for ail j. Thus the

intenal colstlaints in (P) nould be implicit io the ninimizatioo evea if we had oot listed them,

which we did lor eophasis.)

As represented in the lorm (P'), our problem could be vieled as ore i! terms of the variables

rt alore: a ce aitr con1,ex lulction on Rt which is pt?separ46le (expressible as a sum of linear

functions of the variables ,l composed with convex functions) is to be minimized subjecr to

a system of linear coostraiuts. To adopt this view strongly, however, would be to miss one

of the mail features of motrotropic programming, Here we are lefellirg to the fact tbat the

represertation (P') is iu ao way unique, aad by passiag between rious such tepresentatioqs

i! terrrs ol pivotiBg we hope to gaitr computatioDal advaltage ald iuigbr iuto the uuderlyiEg

problem (P ).

3. Categorlee of Monotroplc Prograrnmlng.

Maoy cases of problem (P) are ol interest and serve to illumiDate the scope of mouotropic

programming. To look at a "degenelate" example ffrst, suppose that every function li is just the

indicotot ol a closed ilterul Cj:

whet zi e Ci,
whet zi I Ci.

Tbeo rve have a ptte feoll,bf;ily ptotlemi the obj€ctive F{a) has value 0lor all leasible solutions

,, aud the problem reduces simply to ffldilg such a leasible ,, atry ole at all.

More geaerally, certair of the iunctioa f, but rot all, may be iadicators as ir (3). These

fuuctiom tbel serve orly to lepteselt cedaitr constrahts ,j € Cr. ?bey maLe no contlibutioD to

the "cost" F(z) ol a leasible solutior a.

These ideas car be made clearer by consideriag hov lindar prcgrciLm;rg pmblcma ol the

sta[dald sort 8t the eodel oI mouotlopic progammilg. Ia the case ol such ploblems we intagire

the Linear syst€m ol rrariables to be gircn idtially ir terms ol relatioas oI type (2), so thai (Pr) is

the form to aim at. Suppose the li.uear programmirg problem is

mioimize ! qa1 subject to ,r > 0 fo! all I € -L ard
I€L

(3) tir"il=al,ilci\={o*

I



(4) 5- o,,',
for ,t € K+,
fo! lr € -Ko,

foif€i'

where .L, K.r, Ko aad K_ arc separate iodex sets. We caa identify this problem with (pi) in the
case of tr = If+ U Ko U K_ aDd

1(aJ = "t"t 
+ d(a1lOs), f*(rk) = 61rSgrt,

where Q = l0,oo) for all f €, atrd

Here ir would be easy to itrtloduce upper bounds o! the variables ,t: take dt to be an itrten_?l
ol the form [0, d1]. Auother extersio[ would be to allow colstrailts like f,,a, c11r1 ! 61 to be
violated, but at a peDalty. If the petralty is lhear. this would corlespond io takilg t& as in Figure
2, ard aaalogously lor ildices ,t in K6 or K+. TheE the objective F rvould no louger be liaear,
but piecewise linear.

)uh

Flgure 2.

Ir geaeral we cal identify piccevin lineu ptogramming as the blalch of motrotropic pro-
grammilg where eacb of the fuDctiols .f is piecewire liaear lelaiive to Ci with fltritely masy
pieces (i.e. ,fi is a polyhedral colyex finctiou or .R iq tLe termilolotry of convex aaalysis). Sim_
ilarln if each ,f; is piecervise quadratic a,e hzve piecevite qr,llhatic ptogtammdng, rhich cau be
sbow! i[ pa icular to etcoqlpass all of colvex quadratic programmiag, aail vhich also allows lor
coqstlailt peralties as ia Figure 2 but with quadratic portiom.

A noteworthy feaiute of moDotropic programmitg that vill be yiewed below is the duality
wbich is possible in these categolies ol probleols. For iastaace, the dual of a piecewrse rirea!

leL

( >bo
I =b,
l<a,

(5)

to,
( 16*. -) for,r € K+,

Ck= \lbk,bkl for,t€Ko.
I {-oo.6rl for I € Jf_.

slopc ph



problem will be aaother piecewise linear problem which ca! readily be constructed. The dualit-v

tbeory ol liuear programmir1g itself is, iq coDtrast, lelatiyely cumbersome and limited. The dual

of a lhteat ptogramming pmblcm iL lhe gctuetuI tet re, i.e., the case of (P) or {P') vhere each /, is

Iiaear {*e should re8lly say 'a6!e" ) lelaiive to Ci, can be obtaiued ia the traditional framework

ouly by reduciag flrst to a staDdald type of lirear pro$arnmiDg problem through modi8catiou

of the colstlairts by the iuhoductiotr ol auxiliary vatiables. This is a dran'back in pa icular

lor linear programming problems t9ith uppe! bouuds, ard the case ol lilea! colstrailt pelalties

is even vone. I! tbe context of monotropic programmilg, tbe dual of a liaear programmiag

problem i! the geueral sense will be piecewise linea! rather thar linear, but it ca! be genelated

directly.

{. Network Programmlng ar a Speclal Carc.

A !eteo!k, o! dbected graph, as shown ia Figure 3, fu defftred mathematically ir teus of

0!ite sets f atrd J, cornprised ol the nodea i ard oru j ol the uetwork, and lha ;nc;detucc motix

(71

(Atcs that star ald erd at rhe same Dode are excluded.)

Flgure 3.

For esch arc j e J, let ,i deDote the amourt oltorri! j (Eposiiive qu8ltity b€hg ilterpreted
as uaterial mwing il tbe dbectioD of th€ anow thst rcpleselts j). The liresr !y!,tern rr,e are

i.ltetesteal is collists of the valiables zt, j € J, as rclateal by the colilitiou

!e1;ri =0forallie f.

( 1 if t is the initial rode of rhe arc j,
e;, = { -l il i is the termilal trode of the arc i,

\ultrrsllotanodeolJ.

ieJ



These conditioos are Kirchofr's node laws. They say that at each node t, wbat enters equals what
leaves,oriDothe.wolds,flowiscooserved.Thevectorsr=(...,rj,...1 €.QJ satisfying these

conditioos arc called citctlotio\r, aod the subspace C that they form is the ciculotion space lot
the tretwork.

The possible T\rcke! lep.eseotatioft {2} i! this case correspoDd oDe-to-one with the arc sets

l( that are spannitug ,rcet lot t\e oetwork. Pivotiog from ote such represeDtatioo to aDother can
be carried out "combinatorially" ihrough the mauipulation of such trees aod their asBociated cuts
aad circuits, instead of trumerical operatiolrs on the coeficients ia the tableau,

What the! is th€ interpretatio! of the monottopic programmiEg problem (P)? For each arc
j the flow a; is restlicted to a certain iDterval Cj ald assessed at a celtaiu cost lr(z;) (possibly

zero). Subject to these iDtenel cotrstraitrts, one seeks a cilculatiou o that misimizes total cost.

Tbe choice of the intervals C, io such a probleo catr leflect restlictiotrs on the dilectiotr of
flow as well as its mag4itude in the arc j. Thus for C, = [0, co) we simply haye the corditioo that
the flow in j must be lrom the initial uode to the teruiaal node, whereas fo! C/ = lO, cyl the flow
must ia additioo be bouoded i.a mag:ritude by c7, Similarly for C, = (-co, co) ar,d C1 = l-q,cil:
i! ihe 0rst imtance there is !o lestlictio! oD rj whatsoeve!, whereas in the second the dhectiotr
is unrestricted but ]r;l 1! ci. Thecaseof a single poilt iqtenal Ci =lq,c,l coilespoDds toa
pleassigDed ralue for rhe flow it the alc j lamely, ,, = ci.

..:.s--

Flgure 4.

The relatiolship behreet this veBiotr of letwolk prograemilg atd othe!, Ilore traditional
modes is clarifed iu Figure 4. Problems for the oetwork ia Figute 3 tLat might ordinarily be
couceived il telms of 0ows that ale no, uecessadly cooservd at everJ,, trode are reptesented iu



terms of circulatio[s io the augmenled ner*ork which has a distribution oorle i ta iirouad" Eode

in .lecrrical theoryl. The flow r; in ube arc ] in Fieure 4 rhar r'nn""r- rbis nod. i r" ,np f rb^

other trodes i codespoads in Figure 3 to an aDount ol matetial etrtering the net* ork ai l (posiiive

or negative). Thus a requirement ,V = '5,5]1in this case couid b e intcrpreted as sp eciff ing the

amount etrterirg the tretwolk in Figure 3 at i. (Il c= > 0, i would be a supply poiDt, whercas

if 5 < 0, i would be a dernaod point; if e- = 0, i would be neither') More general conditioas

5 € Cl in Figure 4 could be ilterpreted as allowiug for a celtail raDge of supply or demand at

i in Figure 3.

From these coosidelatioos it is eyidetrt that moDotlopic programming ploblems lor flo*s in

letwolks are generalized hatuspo atiott problemr with possibly lonliBear costs ln the Pule feas!

bility case ihey arc geEeralized distributio! problems connected with the satisfaction of v^ ous

requiremetrts of capacity, supply ard demard,

Flgure 5.

Evetr tbe max {ov problem ard its gerelalizatiors 0t this mold. Pigure 5 hdicates the

modified aetwort that voulil colrespoqd to oa,rimizi.ug iu ibe netvork of Figure 3 the florv Aom

a certaitr lode r to alothet aode r' subject to capacity conditioos zj e Cj. Ovet all leasible

citcxlationt it the modiied oet*orL, ve seeL to oa)dEize the 0ov i! the "feedback' arc j (or

miuimize its negative), Tbia is the morotlopic ptoglaDmilrt ptobleB that cotlepords to takhg

!;(z;l = -t' (c; = (-oo' oo))'
t8l

libi\ = blztlji) for all other arcs j'

Othe! ieportalt classeg of molotropic programoiag prob.lems lor dows il aetworks iavolve

liaear systeos olvariables more general tha! the circulatio! iystem so far described, For example,

there ale ploblems lor netuoth vitb gairt, vbere the amouut flowiog irr the atc j cau be ampliffed

or attetruated by a certai! tacto!. (The incideaces iu (7) are replaced by more general rumben.)

Such problems too leud ihemselves to combitatorial rules of pivotilg il the maoipulatioo ol
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Flgure 7.

The luoerical tormulas tot the trausformed coeficielts ate

(t2l P' =11P, c' =clP, R' =-RIP, e' =G-cRlP.
Ole must sl*'ays lemember, however, thal ia impo.tant cases sucb as occut il aetwork progras-

milg such formulas lor the coencietis caD be by-passed, because it is possible to store the T\rcker

repteseltatiotrs combilatorially i.D terms of gpallitg tlees a[d geaerate particular coemcieats att

fiom this &s leeded. Ia other cases, for iasta[ce i.u t!a6c problems, a decompositiol i3 p$sible il
vhich pivotilg b caried out partly by lumerical formula alil partly by combilatorial tecbuiques.

Eacb'variable zy i.n the primal liaear systen is paired vith a variable u; il the dual lirear

system, ald in applicatiols tbis pairilg usually has e tratural siglificatrce. The ca,se of qetwork
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programming futaishes a memorable illustlatiotr. IE that caie the space C consists of the Bow

vectols r € .R' ihat satisfy the hooogeneous equations (l) fo! the iucideDce matrlx (7). Ia
geometlic terms rve therelore caa viev C as the space of yectoB olthogolal to the ro\vs of the
iacidence matrix (oae row for each aode i e f), aad it follows then by elemeotary liaear algebra
that tLe complemestary space D = C! is the subspace spaaned by these !ovs. Thus (takiug -ri
as the trotatioD lor the coencieDt of the dln row itr a geleral lhear combilatiou of the rows, for
reasols appalent it a ooment) wesee that D comists ofthe vectors u = (...,u7,...) expressible

ir the fotm

(r3) u;=-!u1ei;forj€J
i<r

by some choice ol lumbets si. Referrirg to the defltritioD ol erj, ve see ftrrther that (13) reduces

to vi = vr" - uir, rbere i1 is the iaitial aode ol tbe arc j atrd i? ihe terniaal node.

The irterpretatiot is this. The vecto! u = (. . ., ui,...) e RI is a, potetld;;o,! oa the nodes ol
the letworL, atrd u = (.. . , ui,,.J is tle correspolding vector of poteltial diferences or tetoionr,
the d;lercn io,l olu. Thw t is the telsion or difierc ial qacr of the retwolk,

6. Codugete Coata a-ud Monotone Relatlonr.
The loiio! of a lheat system of rariables bas beea dualized, but that is trot the orly iD-

gredieat in a moaotropic programmiag problem. We must also dualize the data embodied iu
the speciffcatior ol a closed prope! coDyex fulctio! /j o! E lor each ol thc variables zi, vhich

--: rlo



i'cludes the speci.Scation of tLe ilrerul C, associated with ri (d, bei'g rhe effecrive ,lor'aiu of

lJ. The machinery for ihis is aiready well developed in convex analysis. The oatural dual of /,
is the closed plope! coDvex function g, o\ R cotujugote to /i. We take g, as the cost fuuction
associated witb the valiable u, dual to aj, and its effective domain

D1 = \vi | 9i(u7) fioiie )

as the ilter\al associated with ui.

The gereral formulas for passiog betweetr /t and g; are

{11)

gr(2.,) = sup {urr, - f (-r;)} = sup
tre& .rec,

.fi(ar) = .uo {t1r1 - 9iQ1)} = sup
lje& |ieDj

luirl - !1@1\j,

{o1zi - si@)).

(r5)

These formulas ca! oltetr be used directln bui because tve are dealiag vith colvex functiom of a
sitrgle valiable, there is atr altertrative method ayailable for constructilg 91 from ,, or vice versa.

This method, which involves iayertilg a geaeralized derivati'e relatio! atrd integratiog, is oltetr
ver)'efective ald easy to carry our, and it yields other imightr as well.

For every value ol ,j the set

afllti) = {v1 e Rl f1lr1 + t) > fi@i) + ujt for all s € .R}

corsists of the "subgradieotsn ol lj at aj il the geoeral termiaology of coavex aaalysis, but il
the ooe.dimensioral case ve are hyolyed with hete it is mole appropriate to thitrk ol a ,,ratrge ol
slopes' ol I at ,j. This set is always a closed irterul in tetms of tLe light derivatiye tl+(rj)
aad tbe left derirztive /j_(a;) one has

(16) a f 1@1) = lq e Rl fj_(t1\ 3 ,i 3 fi+@il}.

(For this to make seDse ever vhes tj I C jt t\e cowefiior is adopted that /j_(a;) ad fj*@1)
ale botb oc whel a1 lies io the right ol C, but both -@ lr'he! ,i lies to th€ left ol Cr.; thet fj*
aad /rl- are uoldecreasilg tuuctions ol -R.)

Techdcally ole mtst view a/j as a "Eultifulctioa" rather thaa a fulctio!, because df(a1)
can be empty or have more tha! ose eleEett. There is a remarkable fu[ctioq-like cbatact€!,
however, r,hich becomes clear upon iaspectiol ol the graph set

t1= gph 0fi = {@1,v) e E x.Rl u; eafi@1)},(17)

as illustrated il Figures 9 ald 10.



Figure 11.

Flgure 12.

Thetefote otc can dclctmitc gj bv "d;tercntid,it !' li to get f, pa*hg to the airloene"

rclation ljL, ard thcr 'inlegrting', The appropriate colstant ol htegratiotr is ixed by the

equatio!

ci(ni\ =niv j - fi(zi\ tot arv (7j'-rr) € rr'
which is a coasequelce ol (f4) 8!d (15). Related to the 8niteness iaterval D; associated with g;,

zs e i vas lo Qi, is the iaterial

Di = projectior ol fj oB the vertical a)ds

= {uj € ftl asjp) + 0} c Dt.
(21)

This alvays ircludes the iaterior of Di.



has rhis

(20)

property ald yields

Moreover

(2r)

where ii is any poilt i!

(221

or ia otber *ords

(23\

lee Figule 12.

li-lti) = ey1"11, !'11ft1) = p4P').

!ilz) P;(lict'

Ci = projectiol ol lj oD the horizoltal axis

= lxll a |1fu,\ * $j c c,.

= 1,1-;* [ 'Jl'

In this serse, aot ouly is f, fuactior-like, but I is uuiquely deiermitred uP to atr bdditive coostsDt

as the 'isteSral" of fj.
We lote tor late! putposes that tbe set C, i" 1ZZ1 is a certai! Donempty dtrerta, vhich

itrcludes the irterior o{ dj a[d tbelefole diffe$ from C;, if at all, ouly in a possible lack of

otre or tbe othe! €ldpoilts. Figtres 9 ard l0 illustrate a case where d; does difer fiom C;.

ald actually d; is uot closed, eve! thougb /i i,s a closed proper colvex functiol. ID the great

mqjority of applicatiols di aod i; coincide, asd $uslly they are both closed too, bui the posEible

dircrepascy betvee! these irtervals callot be i8!o!ed vhe! it comes to statirg theorems, cf. $8.

Tbe sets f represertable as augmested gtaphs of loadecreasing fuactious p oo R as in

(f6) (with ip Dot merely the cotrstatrt futrctiotr oo !o! the colstalt furctioo -co) aie the so

czlled madnlal mo\otote r.lalio',. iD. R x .a. They are chalsct€tizcd by the property that their

eleEelts are totally ordered with lesp€ct to coordi.latewise partial olderilg of I x 8, aqd lo
furthe! elemelts caa be added vithout thb beirg yiolated. h tetms ol (16), (tZ), (18), ard (19),

ther, eyery closed ptoper coovex luactiol / ol R gives rise to a maxi.Dal oolotole lelatio! f
ir .R x n, ard every maximal Do[otole relatiol I arises i! thir vay Aom some closed ptoper

corvex fnlctioa /, whicb is uaique up to a! additive colrstart.

Piecewise lbear hractio!! ,t correspord to troitratc telstioN ti (comprised ol Elitely B8!y
lile segnelte vhich 8re eithe! vertical or horizoltal), whereas piecewise quad!8tic furctiols /t
correspoad to polggoul relatiom f; (comprised ol Elitely Ea[y lhe segmeats, vhich do lot have

lo be vcltical or hodtortsl); 3c€ Figur U.
Tbc crucial fact for the purpose of corstructiag the co{ugate g; ol /i is that

v1 e 0fi@;\

wh asi =l;t = {(v;, a1.)l (zr, u1) e ti};



It is obvious hom this method ,'f co[slructiBg coDjuga(es that g., is piecewise lioear wheu /,
is piecevise linear, and ,li is piecewise quadratic vhen ,fi is piecevise quadratic. Ildeed, l;r is

"staircasen whea f, is ostaircasen, ald f, I is "polygonal" when fi is "polygonal", I\lthelmore
the corstmctio! is quite easy to carry out irl such cases. The conclusioa to be drawB ia the

coltext ol the lext sectio! vill be that the dual of any piecewise litrear or piecewise quadratic

problem iD motrotlopic prograomiDg cal readily be writte! dow!.

7, DuaI Problem and Equilibrlum Ploblem.
ID te!E! of a lioear system ol rariables correspondirg to a subspace C of RJ aod a closed

proper convex firlctior /i assigled to each j € J we have abeady ilttoduced the ttdrnal monolnpic

ptogtommiq pmblem

uriaimize I f (z;) =: F(r) over all
(P) ier

t. = 1...,2j,...) € C sstisfyiag ,j e Cj tor all i e J.

We Eow introduce tbe dtol monottogic ptogtammitg problem

(D)
ma-timize - ! Oi(ur) =r G(u) wer aU

)cJ
t, = (...,rr,...) €, satisfyirg vi e Di lot all j e J

ald the tnonorwpic eqrilibtitm ptoblem

(E)
8ad r = (..,,ei,...) € C ard v = (,..,u1,...) e D

such that (a;, ur.) € li lor all j € ./.

Here 2 c Rr gives the dual liDesr systen ar ir $5, gj i! the cost fulctior coqjugste to | (with

Di its iaierval of iliteaess), aad f; is the correrpondilg oaxiEal Bolotore relatior il R x R
as tur $6.

It ir importalt to realize that because atry member ol the triple of elemeds li, gi,ti, canbe

determbed iom ary othet, it i! 8bo true that ary ole of the problens (P), (D), aad (E) geaerates

the othels. (Tbe choicc ol consta,lt! of iltegrstio! ir passirg hom (E) to (P) aad (D) ma&es uo

real di$erelce, silcc it orly atrects the objectiye tulctiolr by a coastalt.) Applicatiors do occur

whcte (E) is paramotrlt, as vill be expl,aiaed at the eld of this sectioq, The gelersl couectio!
b€t*ee! the problems is tbat {E} focuses or joirt optima,lit}, cosditio$ for the soluiiors to (P)

ard (D), or wher viewed i! thc other directior, that (P) and (D) nrmish variatioml prbciples

lor the solutiom to (E).

Parallel to the expressiou ol (P) il terms of a l\rcker represertatioa for the pri.mal lirear



system as itr (P,l ole has tbe expression of (D) as

Both ploblems caa be vieved alorg wiih (E) ia terms of ajoirt Tucker rableau fo! tle primaland dual systems as iu Figule 6, Obviously the geoeral mathematical nature of the dual ploblemi! the same as that of the plimal problem, except fo! a change of sigl i.q the objective (so that acorcav€ furctioo fu maximized ilstead or a coDvex function miuimized). The dual of tbe drar isthe prieal againi completF syqmetry reigns.
It is hardly possible withi! the co!fftres oi this article to do more tha! hitrt at tbe rrideraDge of situatious eacompassed by this parsdigm. Some geaeral observatioqs that catr be trladeoa the basie of the precedilg discussiol are these. 

.The lual ol u pi"ce*is" lilear problem ispiecewise linear, aud the dual of a piecewise qusdratic ploblem * Oi*.*O. quadratic. In oet_vorl progtammilg, the dual of a problem itvolving fovs i. a proltun involviog poteotial", uoacolversely.

A mole specifc ilhstlatiotr is the dual of the basic lirear prcSranmitrg problem (4) ia thecase of upper bouads oq the variables .rt, wbere

(D')

(25)

(Fo! breyity we ourit
teveal tbat

(26)

maximize - Ic,(r,) _ | o*(+)teL l€r
subject to u6 € Ds fot zll h € K,

- L uror, = vr € Dr lot all I e L.
t€I(

fi(a) = "'", + 6(.llo,dl) fo! I € r,

/-("-)= {f[;::lfi;,T/i
lor i e lf+,
for /r e X6.

the ildex set K_ 8i this iime.) Siople calculatioas or the basis

c,ei = tl,tu _ 
",) X,;,:";',

e*ea1 = {!*r +f(utl(-oo,0l) ror he K+,
I ot ur for t € ff0.

ol (ra)

Tluc i! the correspondiag dual (h lorm (D,)) ve naxinizc _.E_6** subiect to _r* > 0,
-D2q6vpop1 = rt S c,, except that the colsttaint q S ", ""jfl 

yiolsted to thc hue ol aliMat pc\a,lty itith cost coe8cielt d1. Ordinary lioear progrsn_iag auality i" itr"luded here as aspecial case: it collespolds to a! {itrilite pe!8lty, for..or,."_, *"iO*, A chaage ofr_ariablesrr* = -ur would ledtce lotatiot to t[e custoEary patten ot sigas. Iacideatally, the iotroductio!ol a linear pelalty lot violatio! ol thr
ia*oductiou or- opp", uoooa oo;i."lli,ll[tij:=-bt.in 

(P) would co'espoa<l dusllv to the

_- The latule of the rel8tiols rl and f. ir tLis linear prograomilg example is ilstructive too.These relatiots ore displayed i! Fifure 13.



Figure 13.

For,t € Ko, l4 is simply the vertical lire through the poiot b} oa the zp-axis. Then the

condition (46,u1) reduces to tLe equatioE r& = br with no lestrictio! placed ou u1, but ihe
relatiols i-[ Figure 13 express completuevtarg ,I4cf,ner of various sorts. Thus lo! i € K+, to!
itrstarce, the paits (a6, u}) e t; ale the oues thai satisty

at 2b*, -utc 2 0, (ar - 6r)(-ur) = 0.

Io aet*ork programmiDg, otr the othet hand, the relatioDs Ij caD take on quite a difereDt !o!t
of meari4g. Ir fact coltext r/ is the flov ia the arc j, aqd ,j is the teasion (potedial ditrereace),

The condition (xi,o1) €11ir tbe equilibrium problem (E) says ihat for the arc j only certair
combilatious of flow ard teusioa are admissible. Oae is remiaded of classieal electrica.l networks

and OLm's Lav, ehere tj = tjtj fo! a certain coeftcieat r; > O,lhe ,it ot cc olthe arc j. Thel
f7 is a lioe ia fi x R with slope 11.

Other classical electrical examples ate those where the atc j leples€rts al ideal boflert (li
a horizoltal lin€ through the poilt cj or th€ ui-axis, cj beiag the poteltial difeteBce across

tbe termitrals ot the battery legaldless of the curreDt passing through it), al ideal geaerotor

(f; a veriical lbe through the point b1 o! the ,r-axis, bt beilg the oxed cuEetrt supplied by

the ger€rator rega,rdless ol the poi€ntial diference across its termi.uals), or aa idea! drbde (11

the utrio! ol the lon!€g:ative r;-axis vith the Dotrpositive u;-o<is). More gelelal chalactelistic
curves fj can be obtained by imagidlg arcs j tLat leplesett no! ilear resistors oi two-telminal

'black boxes' with intelqal leiworks Eade up ol valious composelts ruch as bave alrcady beeD

me!tioled.
A fuadameatal problem itr electrical qetvorks, expresed i! a mathematically polished, ood-

erl foro, ir the followilg. Givel lor each arc j of the tretrrotk a "characteristic curye' I, vhich
b a manimal mono,oxc rclotior. h .R x E, 0ld a circulation vector a aad a di.EereDtial vecto! u

such tbat for every j the pait (t1 , vil lies ou f1. This is problem (E) for the lilear systems ol
vadables a:sociated with the networl.



Equilibrium problems iD hydraulic oetworks arise similarly. aad s!e1 :rl-so appca. ia ih.
analysis of !lamc. In economic letworks {aud general rransportarion problems) rhe poreutial ar

a aode catr ofte! be itrterpreted as a commodity plice at the !ode, atd the telsioo r,, i! the

aN j't5 pice difeterca actoss j. The relatior l, speci8es the way itr which the commodity flow

il j respoads to price difrereuce. Io Figure 13, lor example, tbe lelatiou ll says that whe! the

price differelce across , b $eater tha[ the cost pe! udt 8ow ia I (aamely c1) tbe commodity flow

should be at its upper bound dl, whelea3 if ihe plice difference is tregative, the flow should be

0. Il the price difereace equals the ulit tlansport costr any amoult of dos betw€en 0 aud d1 is

acceptsble.

Often I, can be irterplet€d in aq econooic model &r a supply or demand relaiioo. This

leads to furthe! ilsta[ces of the equilibrium problem (E),

Belore corcludiag this sectioD, we meEtioq aDothe! way that the statdard duality scheme in

lirear progtammilg caa be vie*,ed as a special case of morottopic programmilg duality. Fot this
we imagiae a T\rcker tableau as i! Figule 14 with trvo distinguished indices ft atd i.

- tl =. tE

-tE
-ll

Flgurc lrt.

We take

for every j € ,I = K u L except F anil I, but

f;(ql = ry (c6 = (-o,m)),

,Ji

t1@;l = 6(o1o,ot) = {: f ?.t '

The primal problem is tbel

flr;) = o(r;l[r,r]) = iLt l, *ti.

,; = D"A"t * o6 subject to
t'i

a2 =lap1r:+ oo; ) o lot /r I F.

r.i

midmize

q20lort*i,

dhl ari

ald afr

(Po)



IDI

One has

sttl)tt=btD.t *or' {o :l ':l, lr tl -r'r <Lt

Jor every j except F aod l, but

si\d=\ (D;=(-oo,co))

. (0 if r-= l.
g;{l-J= ,{uFlll. tJ) = { )o ir _,; * r.

so the dual problem is

milisrize - \=Droor,+o;i subject to

*+*

-ur 20 for* I fr. -v1 =lraoal -a*;2 0for I17.

For every j other tban F ara i, the relatiou l, is given by the uaion of the tronoegative ,j
a-.ds and the Doapositiye uj axis; it expresses "complemeatary slacktress". The relatiou lF is the

holizoDtal line through at leyel I oD the vertical scale, whereas ft is the ve ical li!€ througb level

1 on the horizoqtal scale.

E. The Main Theor€ma of Moootropic Programmlng.
The connectior betweer problems (P), (D) and (E) is very tight. Tie theory is every bit

as complete atrd colltructive as in the familiar case of lilear programming, but ii applies to a!
etrornously ricber class of optimizatioa models.

Duallty Theorem. It aty ote ol the lolJovitg conditiots is sstisted'

(a) the primal prode& (P) tras te&eib.le soJutioas aad frite optima.l value iui(P), or

(b) the dlro,lproblem (D) las feasible solu tioas al.d fltite opltural value sup(D), or

(c) the ptimal ptoblem (P) ard tle dual ptoblem (D) both have feesible solut.ioas,

ther all thrce hold, urd
inf(P) = sup(D).

Equlllbrlum Theorem. A pair @,o\ solves l.he equilibriu4 proble!4 (E) iI and ody il t solves

the pfimal problem {P) aad u rolves t}e dual problea (D).

Results o! the existerce of solutions to (P), (D) ard (E) require a disthctiou betweea the

Whereas a feorible soluiioo to (P) is ar z € C such ihat ai € C, fo! all i € J,a reg atly teaaible

solutiou is deffned to be aD , € C such thal 4 €C,loralli € J. Likewise a rcgtlaiy feoaible

solution to {D) is deffaed to be a rl € D such that ur € it. This dblilctiot fails away in the



cr^se ol so-called rrgrldr moootropic pro gramming problems. w here ajr = C t and D t = fr f. r a ll

j € ./ (as is true in particular wheo i.r and D, are closed, i.q when lr p.ojects horizontally and

vertically ooto closed intervals). Important to keep iD miod as legular problems in this sense are

the probleos of piecewise lioear programming or pidcewise quadratic programmiDg

Exiatence Theorem.

(a) The primal ptobiem (P ) las aa optimal sohttion if and on.ly iI (P ) has z letLsible solution and

\D) hzs a rcgtlarly leasible solurion.

(b)Theduzlptoblem{D)nasanoptimalso'utiorifaadonlyif(D)hasaleasiblesolutioraad
(P) tras a regular feasible soJutioa.

(c) The eguifibirm ptoblem {E) }as a so.lut'ion if and onlv il (P) and (D) both hate tegttlatlv

feasible solui.ions.

Corollary. Ia tle case of tegtlzt ptoblems (P) or (D), aD optim soiution exists if a feasible

sojut'ioa exists ard the optimal valne is frnite.

By combiaing ihe existelce theolem with the equilibrium theorem, we obtain ihe lollowing

characterizatioD of optimal sohtioDs to (P) ard (D) that is tbe basis of most computatiotral

procpdulcs in monotropic programming.

Optimaltty Theorem.

(a) Suppose that the p.imal prcblera (P) Ias at lezst ote rcg a y lezsible solutior'' Thet fot

r to be an optimal solution to (P) it is tecessary atil Eufrcielt that E be rcgulztly feesible

and sucl tlat ttre dua.l faear system has a rectot u satisfyin|:

vi e 0 !ila1) = lfj-l"i), I'j+(.dl for all j e J

(Suc.h a u is aa opiimal solutioa to (D).J

(b) Suppose that the dua! pmblen (P) las at least oae reg atly feesible solutiol'' Then iota to

be an optbtal sofutioa io (D) .it is aecessary aad safrcie!t that u be tegtlarly lezsible aad

stlch that the r'fimel lir'ear systeq hes a vector z sztistying

ri e 7sl\il =ldi-Q)'si+P)l fot atl j € J

(Such an z ir aa optimal sotutioa to (P)')

9. Solution by Pivotlng Methoda.

AD iEportaDt featule of molotropic programDitrg problems is the possibility of solving them

by techriques based otr repeated pivotilg tlatrsfomatious of Thcker tableaus lor the uDdellyis8

liaear systems, such techoiques ca! i! some cases be vier?€d as geaeralizatiols of the various

forms ol the simplex nrethod i.n lilear programmitrg, but they may also be based o! distillctly

diferent apploacbes bvolving phenomena of auother order,



our aim is to exploit lbe fac! ihat the primal aod dual linear sysiems of variable_q (';ru il,

represenreal in more tban one way by tableaus of the kind in Figule 6 Even though only one

sucb iableau may have been given to us initiauy, others can be generated by pivoting. We *ish

io make use ol their special properties as a means of coDstructing a sequence of feasible solutions

to (P) or (D) that cotrverges to, o. iD frtritely maDy steps actually reaches, atr optimal solurion.

Tbe optimality tesi provided by the last theolem in the preceding seciiotr has a central role

in rhis context. In terms of a T|rcke. tableau associated with a partition ol J into index sets -Ii-

and .L, ii says ibe foll ottir'g'. o rcgxlotlg leaaible solotiotu x to (P) h optimal it ond onlg iJ lor eome

choiee o! talvee Nk in the ;tutetnols 0Jelzp), k e K, the corrcsponding talxes q = - t161 r'1c11

catielg ut e d!1@1) lot all I € Z. Likewise io tbe dual problem, d tegtrla u Jeasible tolat;on t'

to (D\ is optimal il and onlg;l lot sone choice oI nolves 4 € Agt\t)' I e L, the cotresponding

volues zk = L41, at"trt tat;tlu rk € 0g11)e) lot dlt i € K. Our atteDtioD actually is directed ai

the ne8atives ol these cotrditions, which, as it tulqs out, can be stated in much sharper form than

might be expected. This sharpet foru is based on the Dext theolem' which we preselt io terms

oI general intewals D] afi, C',. not jusi dli(ri) and dgr(ui), because ol its other applications

Feasibility theorem.

(a) Let C', denote a notenpty rcaI iater..z,l (aot necessztily closed) fo! eacl i € J If llere dc,es

loi exirt a! reC satislying t1 € C) fot eYery i e J,theti\lact tlere exisrs a I'!cle.

representatiol (vith J partitioaed irjo some K a L) and at index k6 € K sucl tiaf for

to choice of values z1 e Ct, fot I e L does the atmber t.o = L1E1axo,r] satisly 4, e C'ro'

(b) Let Dtj denote a noeempty teal intettal (not aecessat y closed) for each j e J I! therc

does Dot exist av€D satislying uj eD', lot evety j € J, t}e! i! fac' 
'lere 

erigls a ltc-ker

rcpresettatiot (vith J partitiored itto sorae K and L) aad at bdex lo € 
' 

suci that [oE no

choice of values ok e C'n lot k e K does the aumbet lo*= -DheKvkablo satisty uh e C!"

This lesult is Yalid itr Palticular as a1est of feasibility ir (P) ard (D) (the ca'3e of di = d?'

D', = D) alld regllar feasibility (Ci=er,Di = O;1. Ou1 concem atrresetrt, though, b r''itb

th'e ca.se of Cj = ACtPi) zld Di = 6 hbi), rvhele (a) atrd (b) cbaracterize uoroptinalitv of u itr

(D) and of r ir (P), respectively. Pivotirg rules do exist lor produciag special T{cker tableaus

aad indices *e or lq with the plopelties i! the tLeorem' Rather th8! explaia such rules here'

rvhicb would take too Buch space, we shall try to iDdicate the vay that the corditiors provided

by the theorem caD be used ilr optimizatiotr.

The basic idea we treed to wort with is thai of tryilg to improve a given leasible solutioo e

to (P) by changing oaly one nirdependeqt' liable at a tiBe, the p l!8l fudepeodert vadables

relative to s particlrlar Titclier tableau beiug tbe ooes iodexed by the set 
' 

i! the partitioo

J = (KlL). colsider the situstion i! figor"-ls, whele a certaitr iadet 16 e tr has beeo siaSled

out (Erst diagtam).

we want to look at feasible modiffcations oJ r that leave fixed all the valueg z1 lor I I lx
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Figure 15.

Sucb a modiffcation depeEds oaly ol specitying the r?lue of a siEgle palameie! , € .R:

.'to = au + t. ri = ar for all I e tr\lo,

fl =laa1l = tt I auo! for 't e K
teL

The correspoudilg objective yalue is

,p(tl = F(/) = | rtGrl + rt"bt" +,) + t fa@a + a1,1"t),

llto keK

where p(0) = F(r) b the objective ralue already at haud. We are htelested in the existeace of
a t such that elt) < p(Ol, because ar is theD a nbettern feasible solution to (P) tba! ,. {It is

still feasible becauee F(r') < F(a) < m irnplies z! e Cr.) Whea sucb a , exists, we sLall say

thai motuottop;c imyooemetl ol r is possible in (P) *hich respect to the Ttcke! replesetrtatioD i!
questioD atrd the ildex lp € ,. The exact choice the stepsize ,, rvhether by complete miDimizatio!
of p or some other device, leed sot coaceru ug here.

The importart ihirg is that the corditio! ir part (b) oi the Feasibility Theolem itr the caee

of the iaterrds Dj = d.fi(ai) Lolds tor a pa$iculat T[cke. represeltatio! ald irdex lo € tr if and

ooly if morotropic improveaelt ol z is possible for ihis Ttrcter represettatio! aad index. This
ca! be yerifed by s calculatio! of the right atd lett deliwth?s of the cotrvex fulctio! p at 0. A
similar result Loldr tor tL€ dual problem, whele ote is iltere€ted il improvirg a giveu regularly
feasible solutiol ? vithout datrgitrg the yalues t2 lor h I f,s itr a certai! tableau (see Figure l5
agaia, secood diagram).

The situatiou is sumBarized ir the sext result.

Irnprov€mGlt Theorem.

(a) l! r is a reglatly feas.ible solutioa io (P) wlici is rot optiru sl, the\ monotropic imprcvement
of z is possible vith rcspect to sooc hrcket represert&lio, aad itdex lo e L.

(b) Il o is a reglarly feasibJe solutioa to (Dl vhich it aot optimal, then nototmpic imprcvement
is possible vith rcsp.ct to soate 7\cker represeatatioa atd index ks e K,



This tbeorem leads to optimization ptocedures *hich alterDaie between pivorilrg rouiin{r-s

tbat construct special T\rcker tableaus and lire sealches that minimize special coavex functions
,p. ltr netvork prograBmiDg, ol course, whele the Tucke! tableaus correspord to spanDing trees,

the pivotilg can be carried out in a combiDatorial manoer. The motrotropic improvement steps

then amoult to modifying a circulatioo r only around otre closed path at a time, and modilying

a diferertial u only across otre cut at a time.

10. C€neralired Simplex Methode.

A rice ill$tratioD of these ideas, altbougb by lro meens tbe ooly oae, is tbe way that the

simplex method ol liaear progammilg can be extetrded to morotropic programming problems

in general. Let us call a yalue ol ,j a bteakpo;nt ol fi tf $-lzi) I fjlp), i-e. ii li has a

vertical segmeui at ,j. (A iDiie eldpoilt of d, that belongs to Cj is a breakpoint in this se[se,

in particular.) Let us say furthe! that a regularly feasible solution z to (P) is rLondegetueture il
thele is a T\rcke! tableau $ith pa ition J = (KlLl such. that r* is lot a bleakpoirt of /* for auy

k € K-

Such a tableau, if oDe exilts, is very easy to corstluct by pivoting: sirnply exchaage break-

poirt ildices with lonbreakpoi.Dt ildices until all the breakpoint ildices correspond to columls

of the tableau hstead of rows. One tbea has a quick test of the optimality of a. Tbe interrals

0 !p(x2\ lot h € I( all consist oljust a single poi4t, tramely the delivative ralue /i (ek); takiDg this

as u& ard deffning q = -loa* u1ap1, check qhether ur e d.fr(21) for every I € r. If "yes', thetr

z is an optimal solution to {P) (aad u is an optioal solutioo to (D); cf, the optimality tteolem

io g8). If'ao", thetr lor some ildex l0 one h.zs u1" 10f1"(r1,). Such aa hdex lo satisffes the

cosditior ir the leasibility theorem itr Sg for the iDten"als Ci = Aij(.j\, ald it tLerefole siglals

the possibility of ooootropic inptovemelt of ,. This improvemeDt caa be carried out, aod 3

replaced by tt. It tt is sgaitr trdtrdegeBerste, the tablea[ ca! be testoled to prope! iorm with

lespect to ,t if necessary, aod the optimality test repeated.

For problems ia piecereise liaear programmilg, some refftreEeDts of this geueral simplex

procedure are possible. Let us say that r's qxoti-eztrcme lot (P) if thete ii a Tbcker tableau vith
partitiotr J = (KlI) such that .r is a brea&poili of t to! every I € tr. Inasmuch as there are

only ffnitely Ealy brea&poilis for eacb ol the cost futrctiotrs il a piecewire lbear progamming

problem, aad also o y ilitely mary possible T[cker tableau!, th€re catr be ouly ffaitely mary

teasible solutions that arc quaei-extteEe. It the procedue abeady described is itritiated with

such a leasible solutior r, ald it the lire seatch i! each morotropic iDproyeEelt step is carried

out with exactitude (which is easy because ol piecewise liaearity), tbel all the successive feasible

solutiols g€rerated by the procedure will be quasi-extrene. Urder the tuovttctetcrocy ottvmpt;otu

that ever], qu&li.extreme feasible solutior io (P) is noodegenerate, the procedure cal be cootiaued

ultil, altet 0sitely !Da!y steps, optieality is achieved.

Tbis gereral versioa of the sioplex meihod leduces io the classical Eeihod wh€! applied to a



linea! plogramming problem iq statrdald to!m. It also includes the modifred simplex method for

lilear programmirg ploblems with upper bounds. It caq be used diectly o! problems obtained

tom liaear programoirg problems by penalty lepleseDtation of coDstraiDts.

A dual versioo ol all thb catr be wlitten down in terms ol problem (D), of course.
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