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MONOTROPIC PROGRAMMING: A GENERALIZATION OF
LINEAR PROGRAMMING AND NETWORK PROGRAMMING

R. Tyrrell Rockafellar*

Duality schemes have heen developed for almost all types of optimization problems, but the
classical scheme in linear programming has remained the most popular and indeed the only one
that 1s widely familiar. No doubt this is due its simplicity and ease of application as much as its
close connection with computation, which is a property shared with other dualities.

Linear programming dnality has an appealing formulation in terms of a matrix or tableau
in which each row or column correspoads to both a primal variable and a dual variable. A role
assigned to one of these paired variables antomatically entails a certain role for the other. In the
usual way of thinking, decision variables in oue problem correspond to slack variables in the other.
The only flexibility is whether a decision variable is nonnegative or unrestricted, in accordance
with which the corresponding slack variable is tied to-an inequality or an equation.

A vast extension of this approach to duality is possible without sacrificing the sharpness of
resulus or even the “concreteness” of representation. The extension is achieved by admitting far
more general roles for the variables in a primal-dual pair. To appreciate how this is possible, it is
necessary first to free oneself from the idea that there is something inherent in « variable being

either a decision variable or a sort of slack variable. Such a distinction is actually an impedintent
~even in standard linear programming, because it relates more o the initial tableau being used
than to something inherent in the variables themselves. Whether a variable is “independent”
or “dependent” in the expression of a problem and its constraints can change when pivotiug
transformations are applied to the tableau.

In the generalized duality scheme which we call monotropic programming the “role” of a
variable is something apart from its incidental position in a tableau. It is given by specifying both
an fnicrval (the range of valnes permitted for tue variable) and a cost ezpression defined over the
interval. The cost expression is a convex funcrion of the variable (possibly linear or piecewise
linear). and it might be everywhere zero on the interval, in which case one could appropriately to
think of the variable as a slack variable in a broadened sense.

The pair consisting of an interval and a convex cost expression on that interval can be
identified with a so-called proper convex function on the real line. Subject to a minor regularity
condition (“closedness”, a property referring to endpoints), such a function can be dualized: the
conjugate function furnishes the interval and associated cost expression defining the “role” of the
dual variable.

Conjugates of convex functions of a single variable can readily be constructed by a process of
generalized differentiation, inversion and reintegration. This feature gives monotropic program-

ming duality a potential for much wider use in applications than other, more abstract forms of
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duality. Another interesting feature is the way that monotropic programming assoclates with
each primal-dual pair of variables a certain “maximal monotone relation”. The prototypes for
such relations in ordinary linear programming are the complementary slackness relations used in
characterizing optimality. In network programming, however, the relations have an importance
all of their won. They describe the combinations of flow and tension (potential difference) that
can occur in the various arcs of the network, more or less like generalizations of Ohm's Law,
which in classical electrical theory corresponds to an arc representing an ideal resistor.

The theory of monotropic programming duality is presented in complete detail in the author’s
1984 book [1]. Nevertheless a briefer introduction to the subject may be helpful, because the
results and even the basic ideas are not yet widely known but very applicable. This is the
justification for the present article.

In order not to encumber the exposition, proofs are omitted. Nothing is said about the
history of the subject, the theories that are related to it, or the people who have made major

contributions. All that can be found in [1].

1. Linear Systems of Variables.

A fundamental concept in monotropic programming is that of a “finite collection of real
variables which are interrelated in a homogeneous linear manner”. Let us denote the variables
by z,, j € J, where J is some finite index set (such as {1,...,n}or {0,1,...,n}or {1,...,n} X
{1,...,m}; flexibility in this respect is helpful). We can think of vectors

22(...,.’5]‘,...)ERJ

as corresponding to an assignment of a real number value to each variable. Such vectors can be

added or multiplied by scalars as usual:

frcsy By uod) o Loy Bhyuina) Siloa By Bryons)
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In this sense R’ is a vector space (identifiable with R® when J = {L,...,n}). To say that our

variables z; are related in a homogeneous linear manner is to say that the value vectors z we are

interested in form a subset C of R’ with the property

zel2eC=z+1 €C,
t€eC,A€ER= Az €.

In other words, C is a (linear) subspace of R”.
Formally speaking, then, a linear system of varsables is simply the designation of a subspace L
C of R for some finite index set J. Often this subspace is described for us initially by a set of

homogeneous linear equations



(1) Zeuzj-={)forf€f,
JEJ

where I is some other index set, but this description is not unique and can be re-expressed in
many different ways. (The restriction to homogeneous linear relations at this stage is merely a
theoretical device, but an important one. General linear constraints will be handled below by
specifying for each j a real interval C; in which z; must lie. Included in this is the possibility
that some of these intervals consist of a single point, so that the corresponding z;'s must take on
fixed values. Then (1) turns iuto a system of inhomogeneous linear equations in the remaining
z;'s.)

A common way for a linear system of variables to be described is through a set of equations

of the special form

(2) Zak;x; =z, for k € K,
=

where L and K are separate index sets, J = K U L. These could, of course, be written as

-2z + Zakwg =0 for ke K
leL
‘in order to fit the pattern of (1). Very useful in this connection is the tableau notation for (2) in
Figure 1. When a linear system of variables is given in this way initially, the variables z; fer{ € L
may be thought of as “inputs” and the variables zx for k € K as “outputs”. From a mathematical

point of view, however, such a distinction is of little importance.

zi{l € L)

Gl = zx(k € K)

Figure 1.

In fact any linear system of variables can be represented as in (2) in a multiplicity of ways.
We speak of these as Tucker representations of the system or of the subspace C C R’. Specifically,
one can pass from (1) to (2) by solving for a maximal set of z;'s {corresponding to some index set

K c J) in terms of the remaining z;’s (corresponding to the complementary index set L = J\K).



Thus there is a one-to-one correspondence between Tucker representations of the given { and
certain partitions of J into a pair of subsets, A" and L. Obviously there are many (but only
finstely many) such representations, and they all yield tableaus of the same size: the number of
elements of L must equal the dimeusion of C in R”.

It is possible to pass from any one Tucker representation to any other by a series of pivoting
transformations of the tableau, each such transformation involving an exchange of an index ko
in K with an index I, in L. This is a central idea in computational procedures in monotropic

programming.

2. Monotropic Programming Problems.

We suppose now that we are given a linear system of variables, designated by a certain
subspace C € R?, and also for each index j € J a closed proper convez function f; on R. We
denote by C; the (nonempty) interval of R where f; has finite values (the set dom f; in convex
analysis); more about this in a moment. The corresponding monotropic programming problem

that we shall be concerned with is

minimize Z fi(z;) =: F(z) over all
(P) j€J
z={(...,2;,...) € C satisfying z, € C; for all j € J.

Note that in terms of any Tucker representation of C this takes the form

minimize Z Selze) + E ft(zt}‘,

kEK €L
(P') subject to z; € C; for alll € L,

T =Zauz; €C.forallk € K.
leL

Here we recall that a proper convez function on R is a function defined on all of R with
values that are real numbers (i.e. finite) or +oco (but not everywhere +o0) and such that the
usual convexity inequality is satisfied. For such a function f;, the set of points where the value of
[y is not +o0 necessarily forms a nonempty interval, which we are denoting here by C;. Closedness
of f; is a mild semicontinuity condition on the behavior of f; at the endpoints of C; (to the extent
that these are finite): the value of f; at such an endpoint must coincide with the limiting value
obtained as the endpoint is approached from within C;. (This allows for the possibility that
fi(z;) = 400 as z; approaches a finite endpoint of C; from within C;; thus the closedness of f;
does not require the closedness of C;.)

For readers unaccustomed to dealing with +oco, it is essential to realize that the introduction

of +co is merely a notational device for the representation of constraints which happens to be very



useful in theory, particularly in understanding duality. Every pair C,, f;, consisting of a nonemprty
real interval C; and an arbitrary finite-valued convex function f; on C; in the traditional sense,
can be identified uniquely and unambiguously with a certain proper convex function on R: simply
regard f;{z;) as +oo for every z; € Cj.

An z that satisfies z € C and the interval constraints z; € C; in (P) (or the corresponding
conditions in (P')) is said to be a feassble solution to our problem, of course. The feasible solutions
form a convex subset of R? on which the objective F is a finite convex function. (Observe that
F(z) < oo if and only if f;(z;) < oo for all j, or in other words, z; € C; for all ;. Thus the
interval constraints in (P) would be implicit in the minimization even if we had not listed them,
which we did for emphasis.)

As represented in the form (P’), our problem could be viewed as one in terms of the variables
z; alone: a certain convex function on RY which is preseparable (expressible as a sum of linear
functions of the variables z; composed with convex functions) is to be minimized subject to
a system of linear constraiuts. To adopt this view strongly, however, would be to miss one
of the main features of monotropic programming. Here we are referring to the fact that the
representation (P’) is in no way unique, and by passing between various such representations
in terms of pivoting we hope to gain computational advantage and insight into the underlying
problem (P). |

3. Categories of Monotropic Programming.
Many cases of problem (P} are of interest and serve to illuminate the scope of monotropic
programming. To look at a “degenerate” example first, suppose that every function f; is just the

indicator of a closed interval Cj:

0 h - € O,
(3) filz;) = 6(z;|C;) = {oo :h:z 2 4 C’j-.

Then we have a pure feassbility problem; the objective F'(z) has value 0 for all feasible solutions
z, and the problem reduces simply to finding such a feasible z, any one at all.

More generally, certain of the function f;, but not all, may be indicators as in (3). These
functions then serve only to represent certain constraints z; € C;. They make no contribution to
the “cost” F(z) of a feasible solution 2.

These ideas can be made clearer by considering how linear programming problems of the
standard sort fit the model of monotropic programming. In the case of such problems we imagine
the linear system of variables to be given initially in terms of relations of type (2), so that (P') is

the form to aim at. Suppose the linear programming problem is

minimize Z ciz; subject to 2y 2 O for alll € L and
€L



> b for ke Ky,
(4) ZGHI; = by for k € Ky,
leL <b forke K_

where L, K, Ko and K_ are separate index sets. We can identify this problem with (P') in the
caseof K = K, UKy, UK_ and

(5) flzi) =z + 6(2i|C),  fe(zr) = 6(2x|Ck),

where C; = [0,00) for all I € L and

[bx, 00)  for k € Ky,
(6) Ck =< [b,bx]  for k € Ko,
(—o0,bg] forke K_.

Here it would be easy to introduce upper bounds on the variables z;: take C) to be an interval
of the form [0,d;]. Another extension would be to allow constraints like YL Gtm < bi to be
violated, but at a penalty. If the penalty is linear, this would correspond to taking fi as in Figure
2, and analogously for indices k in K, or K. Then the objective F' would no longer be linear,

but piecewise linear.

b
|
|
| slope p;
[
0 b
|
| Ll pliswe i > Tk
|
|
Figure 2.

In general we can identify piecewise linear programming as the branch of monotropic pro-
gramming where each of the functions [; is piecewise linear relative to C; with finitely many
pieces (i.e. f; is a polyhedral convex function on R in the terminology of convex analysis). Sim-
ilarly, if each f; is piecewise quadratic we have piecewise quadratic programming, which can be
shown in particular to encompass all of convex quadratic programming, and which also allows for
constraint penalties as in Figure 2 but with quadratic portions.

A noteworthy feature of monotropic programming that will be viewed below is the duality
which is possible in these categories of problems. For instance, the dual of a piecewise linear



problem will be another piecewise linear problem which can readily be constructed. The duality
theory of linear programming itself is, in contrast, relatively cumbersome and limited. The dual
of a linear programming problem in the general sense, i.e., the case of (P) or (P’) where each f; is
linear (we should really say “affine”) relative to C;, can be obtained in the traditional framework
only by reducing first to a standard type of linear programming problem through modification
of the constraints by the introduction of auxiliary variables. This is a drawback in particular
for linear programming problems with upper bounds, and the case of linear constraint penalties
is even worse. In the context of monotropic programming, the dual of a linear programming
problem in the general sense will be piecewise linear rather than linear, but it can be generated

directly.

4. Network Programming as a Special Case.
A network, or directed graph, as shown in Figure 3, is defined mathematically in terms of
finite sets I and J, comprised of the nodes i and arcs j of the network, and the tncidence matriz

(7)

—1if ¢ is the terminal node of the arc j,

1if ¢ is the initial node of the arc j,
0 if ¢ is not a node of J.

(Arcs that start and end at the same node are excluded.)

Figure 3.

For each arc j € J, let z; denote the amount of flowin j (a positive quantity being interpreted
as material moving in the direction of the arrow that represents j). The linear system we are
interested in consists of the variables z;, j € J, as related by the conditions

Zei}'z_f =0foralli€l.
j€J



These conditions are Kirchoff's node laws. They say that at each node i, what enters equals what
leaves, or in other words, flow is conserved. The vectors z = (..., z;,...) € R’ satisfying these
conditions are called circulations, and the subspace C that they form is the eirculation space for
the network.

The possible Tucker representations (2) in this case correspond one-to-one with the arc sets
K that are spanning trees for the network. Pivoting from one such representation to another can
be carried out “combinatorially” through the manipulation of such trees and their associated cuts
and circuits, instead of numerical operations on the coefficients in the tableau,

What then is the interpretation of the monotropic programming problem (P)? For each arc
J the flow z; is restricted to a certain interval C; and assessed at a certain cost f;(z;) (possibly
zero). Subject to these interval constraints, one seeks a circulation z that minimizes total cost.

The choice of the intervals C; in such a problem can reflect restrictions on the direction of
flow as well as its magnitude in the arc j. Thus for C; = [0, 00) we simply have the condition that
the flow in j must be from the initial node to the terminal node, whereas for C; = [0,¢,] the flow
must in addition be bounded in magnitude by ¢;. Similarly for C; = (—o0, 00) and C; = [—¢;, ¢;]:
in the first instance there is no restriction on z; whatsoever, whereas in the second the direction
is unrestricted but |z;| < ¢;. The case of a single point interval C; = [e;,¢4] corresponds to a

preassigned value for the flow in the arc j namely, z; = ¢;.

Figure 4.

The relationship between this version of network programming and other, more traditional
modes is clarified in Figure 4. Problems for the network in Figure 3 that might ordinarily be

conceived in terms of flows that are not necessarily conserved at every node are represented in



terms of circulations in the augmented network which has a distribution node i (a “ground” node
in electrical theory). The flow 5 in the arc J in Figure 4 that connects this node i to one of the
other nodes i corresponds in Figure 3 to an amount of material entering the network at i (positive
or negative). Thus a requirement 27 = [c;, (,7] in this case could be interpreted as specifying the
amount entering the network in Figure 3 at ¢. (If cx > 0, § would be a supply point, whereas
if ¢; < 0, ¢ would be a demand point; if e = 0, ¢ would be neither.)] More general conditions
z5 € C; in Figure 4 could be interpreted as allowing for a certain range of supply or demand at
i in Figure 3.

From these considerations it is evident that monotropic programming problems for flows in
networks are generalized transportation problems with possibly nonlinear costs. In the pure feasi-
bility case they are generalized distribution problems connected with the satisfaction of various

requirements of capacity, supply and demand.

Figure 5.

Even the max flow problem and its generalizations fit this mold. Figure 5 indicates the
modified network that would correspond to maximizing in the network of Figure 3 the flow from
a certain node s to another node s’ subject to capacity conditions z; € C;. Over all feasible
circulations in the modified network, we seek to maximize the flow in the “feedback” arc j (or
minimize its negative). This is the monotropic programming problem that corresponds to taking

3(25) = —2; (O = (=00, 0}),

f-
8
el fi(z;) = 6(z;|C;) for all other arcs j.

Other important classes of monotropic programming problems for flows in networks involve
linear systems of variables more general than the circulation system so far described. For example,
there are problems for network with gains, where the amount flowing in the arc j can be amplified
or attenuated by a certain factor. (The incidences in (7) are replaced by more general numbers.)

Such problems too lend themselves to combinatorial rules of pivoting in the manipulation of
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The numerical formulas for the transformed coefficients are
(12) P = 1/P, ¢' =¢/P, R'=-R/P, G'=G-CR/P.

One must always remember, however, that in important cases such as occur in network program-
ming such formulas for the coefficients can be by-passed, because it is possible to store the Tucker
representations combinatorially in terms of spanning trees and generate particular coefficients ay;
from this as needed. In other cases, for instance in traffic problems, a decomposition is possible in
which pivoting is carried out partly by numerical formula and partly by combinatorial techniques.

Each ‘variable z; in the primal linear system is paired with a variable v; in the dual linear

system, and in applications this pairing usually has a natural significance. The case of network
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programming furnishes a memorable illustration. In that case the space C consists of the flow
vectors z € R’ that satisfy the homogeneous equations (1) for the incidence matrix (7). In
geometric terms we therefore can view C as the space of vectors orthogonal to the rows of the
incidence matrix (one row for each node i € I), and it follows then by elementary linear algebra
that the complementary space D = C* is the subspace spanned by these rows. Thus (taking —u;
as the notation for the coefficient of the i*” row in a general linear combination of the rows, for
reasons apparent in a moment) we see that D consists of the vectors v = (...,vj,...) expressible
in the form

(13) vj = — Z: uses; for j€ J
i€l
by some choice of numbers u;. Referring to the definition of e;;, we see further that (13) reduces
to v; = u;, — u;,, where i, is the initial node of the arc j and i5 the terminal node.
The interpretation is this. The vector 4 = (...,u;,...) € R is a potential on the nodes of
the network, and v = (..., vy,...) is the corresponding vector of potential differences or tensions,
the differential of u. Thus D is the tension or differential space of the network.

6. Conjugate Costs and Monotone Relations.

The notion of a linear system of variables has been dualized, but that is not the only in-
gredient in a monotropic programming problem. We must also dualize the data embodied in
the specification of a closed proper convex function f; on R for each of the variables z;, which



includes the specification of the interval ', associated with z; (C, being the effective domain of
;). The machinery for this is already well developed in convex analysis. The natural dual of s
is the closed proper convex function g; on R conjugate to f;. We take g; as the cost function

associated with the variable v; dual to z;, and its effective domain

as the interval associated with v;.

The general formulas for passing between f; and g; are

gj(v}‘) = S_Ilp {vjzj' = f}'[zj)} = Efup {Uj'x_?' = fJ’[zJ')}s

z;€ Fiel
14
(14} filz5) = USFP {vizj —g;(v)} = ﬂ?“P '{UJ‘zJ' - g;(vs)}-

These formulas can often be used directly, but because we are dealing with convex functions of a
single variable, there is an alternative method available for constructing g; from f;, or vice versa.
This method, which involves inverting a generalized derivative relation and integrating, is often
very effective and easy to carry out, and it yields other insights as well.

For every value of z, the set
(15) 0f;(z;) = {v; € R| fi(z; + ) 2 f,(2;) + vjt for all t € R}

consists of the “subgradients” of f; at z; in the general terminology of convex analysis, but in
the one-dimensional case we are involved with here it is more appropriate to think of a “range of
slopes” of f; at z;. This set is always a closed interval: in terms of the right derivative fiv(25)
and the left derivative f]_(z;) one has

(16) 9fi(2j) = {v; € R| f;_(2;) < v; < fi(2j)}-

(For this to make sense even when z; € C;, the convention is adopted that fi-(z;) and f] (z;)
are both cc when z; lies to the right of C; but both —co when z; lies to the left of C;; then fis
and f;_ are nondecreasing functions on R.)

Technically one must view df; as a “multifunction” rather than a function, because 8 f;(z;)
can be empty or have more than one element. There is a remarkable function-like character,
however, which becomes clear upon inspection of the graph set

(17) I'; = gph 8 f; = {(z;,v;) € Rx R| v; € 0 f5(z;)},

as illustrated in Figures 9 and 10.
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Therefore one can determsne g; by “dsfferentiating” f; to get T';, passing to the “inverse
relation 1";1, and then “integrating”. The appropriate constant of integration is fixed by the

equation
9;(7;) = 7;%; - /;(%,) for any (2;,9;) €T},
which is a consequence of (14) and (15). Related to the finiteness interval D; associated with g;,

as C; was to Cj, is the interval

D; = projection of T'; on the vertical axis

(24)
= {v; € R| 9g;(v;) # 0} c D;.

This always includes the interior of D;.



has this property and yields

(20) f;'—(zj) = pj-(z5), f}+(:‘j) = pj+(z;).
Moreover
(21) fles) = @) + [ eslelde,

where Z; is any point in

~

C; = projection of I'; on the horizontal axis
={z;| 0f5(2;) #0} C C;.

In this sense, not only is I'; function-like, but f; is uniquely determined up to an additive constant
as the “integral” of I';.

We note for later purposes that the set C'J- in (22) is a certain nonempty snferval which
includes the interior of C; and therefore differs from C;, if at all, only in a possible lack of

(22)

one or the other endpoints. Figures 9 and 10 illustrate a case where C, does differ from C;,
and actually C; is not closed, even though f; is a closed proper convex function. In the great
majority of applications C; and 5‘,- coincide, and usually they are both closed too, but the possible
discrepancy between these intervals cannot be ignored when it comes to stating theorems, cf. §8.

The sets I' representable as augmented graphs of nondecreasing functions ¢ on R as in
(16) (with ¢ not merely the constant function oo nor the constant function —oo) are the so
called mazimal monotone relations in R X R. They are characterized by the property that their
elements are totally ordered with respect to coordinatewise partial ordering of R X R, and no
further elements can be added without this being violated. In terms of (16), (17), (18), and (19),
then, every closed proper convex function f on R gives rise to a maximal monotone relation I'
in R x R, and every maximal monotone relation I' arises in this way from some closed proper
convex function f, which is unique up to an additive constant.

Piecewise linear functions f; correspond to staircase relations I'; (comprised of finitely many
line segments which are either vertical or horizontal), whereas piecewise quadratic functions f;
correspond to polygonal relations I'; (comprised of finitely many line segments, which do not have
to be vertical or horizontal); see Figure 11.

The crucial fact for the purpose of constructing the conjugate g; of f; is that

v; € fi(z5) = z; € 3g;(vj),
or in other words
(23) gph 8g; =T'7* = {(vj,2,)| (25, v;) €T}

see Figure 12.



It is obvious from this method of constructing conjugates that g, is piecewise linear when f,
is piecewise linear, and g, is piecewise quadratic when f; is plecewise quadratic. Indeed, Fj'l is
“staircase” when I'; is “staircase”, and 1";l is “polygonal” when I'; is “polygonal”. Furthermore
the construction is quite easy to carry out in such cases. The conclusion to be drawn in the
context of the next section will be that the dual of any piecewise linear or piecewise quadratic

problem in monotropic programming can readily be written down.

7. Dual Problem and Equilibrium Problem.
In terms of a linear system of variables corresponding to a subspace C of R’ and a closed
proper convex function f; assigned to each j € J we have already introduced the primal monotropic

programming problem

minimize Z fi(z;) =: F(z) over all
(P) JEJ
z=/(...,25...) € C satisfying z; € C; for all j € J.

We now introduce the dual monotropic programmsng problem

maximize - Zgj(vj) =: G(v) over all
[D) JEJ
v={(...,v5,...) € D satisfying v; € D; forall j€ J

and the monotropic equilibrium problem

find 2= (...925,... ) €C and ¥'= (ienyvyy ..} €D

(E) such that (z;,v;) €T, forall j € J.

Here D C R’ gives the dual linear system as in §5, g, is the cost function conjugate to f; (with
D; its interval of finiteness), and I'; is the corresponding maximal monotone relation in R X R
as in §6.

It is important to realize that because any member of the triple of elements f;, g5, I';, can be
determined from any other, it is also true that any one of the problems (P), (D), and (E) generates
the others. (The choice of constants of integration in passing from (E) to (P) and (D) makes no
real difference, since it only affects the objective functions by a constant.) Applications do occur
where (E) is paramount, as will be explained at the end of this section. The general connection
between the problems is that (E) focuses on joint optimality conditions for the solutions to (P)
and (D), or when viewed in the other direction, that (P) and (D) furnish variational principles
for the solutions to (E).

Parallel to the expression of (P) in terms of a Tucker representation for the primal linear



system as in (P’) one has the expression of (D) as

maximize - Zg;(vz} = Z Ik (Vi)

leL kEK
(D') subject to vz € D, for all k € K,
- Z V@i =y € Dy foralll e L.
kEK

Both problems can be viewed along with (E) in terms of a joint Tucker tableau for the primal
and dual systems as in Figure 6. Obviously the general mathematical nature of the dual problem
is the same as that of the primal problem, except for a change of sign in the objective (so that a
concave function is maximized instead of a convex function minimized). The dual of the dual is
the primal again; complete symmetry reigns.

It is hardly possible within the confines of this article to do more than hint at the wide
range of situations encompassed by this paradigm. Some general oBservations that can be made
on the basis of the preceding discussion are these. The dual of a piecewise linear problem is
piecewise linear, and the dual of a piecewise quadrafic problem is piecewise quadratic. In net-
work programming, the dual of a problem involving flows is a problem involving potentials, and
conversely.

A more specific illustration is the dual of the basic linear programming problem (4) in the
case of upper bounds on the variables z;, where

flz) =z +6(2][0,d)]) for 1€ L,

_ [ 6z, [bx, 0)) forke K,
(25) Jilz) = {6(2;,, (b, bi)) for k € K,.
(For brevity we omit the index set K_ at this time.) Simple calculations on the basis of (14)
reveal that
(v)_{o if v < e,
(26) arin) = di(vi~c) if u > ¢,

— J bevr + 6(vi|(=o0, 0]) forke K.,
9k (vs) = {b;,vk for k € K,.

Thus in the corresponding dual (in form (D')) we maximize — 2 bruk subject to - > 0,
kEK

“‘Zkex UkGkt = v < ¢, except that the constraint v < ¢ can be violated to the tune of a
linear penalty with cost coefficient d;. Ordinary linear programming duality is included here as a
special case: it corresponds to an “infinite penalty” for constraint violation. A change of variables
Wk = —vk would reduce notation to the customary pattern of signs. Incidentally, the introduction
of a linear penalty for violation of the constraints z; > by in (P) would correspond dually to the
introduction of an upper bound on the variable Wp = —ug,

The nature of the relations ['; and T in this linear programming example is instructive too.
These relations are displayed in Figure 13.
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Figure 13.

For k € Ky, 'y is simply the vertical line through the point b on the zp-axis. Then the
condition (z,vx) reduces to the equation z, = b, with no restriction placed on v, but the
relations in Figure 13 express complementary slackness of various sorts. Thus for k € K, for
instance, the pairs (z, vk) € I'y are the ones that satisfy

T 2 bk, —ve 20, (zx —be)(~vk) =0.

In network programming, on the other hand, the relations I'; can take on quite a different sort
~of meaning. In fact context z; is the flow in the arc j, and v; is the tension (potential difference).
The condition (z;,v;) € I'; in the equilibrium problem (E) says that for the arc j only certain
combinations of flow and tension are admissible. One is reminded of classical electrical networks
and Ohm’s Law, where z; = r;v; for a certain coefficient r; > 0, the resistance of the arc j. Then
I'; is a line in R X R with slope r;.

Other classical electrical examples are those where the arc j represents an ideal battery (T,
a horizontal line through the point ¢; on the v;-axis, ¢; being the potential difference across
the terminals of the battery regardless of the current passing through it), an ideal generator
(I'; a vertical line through the point b; on the z,-axis, b; being the fixed current supplied by
the generator regardless of the potential difference across its terminals), or an ideal diode (T';
the union of the nonnegative z;-axis with the nonpositive v;-axis). More general characteristic
curves I'; can be obtained by imagining arcs j that represent nonlinear resistors or two-terminal
“black boxes” with internal networks made up of various components such as have already been
mentioned.

A fundamental problem in electrical networks, expressed in a mathematically polished, mod-
ern form, is the following. Given for each arc j of the network a “characteristic curve” I'; which
is a mazimal monotone relation in R x R, find a circulation vector z and a differential vector v
such that for every j the pair (z;,v;) lies on I';. This is problem (E) for the linear systems of
variables associated with the network.



Equilibrium problems in hydraulic networks arise similarly, and they also appear in the
analysis of traffic. In economic networks (and general transportation problems) the potential at
a node can often be interpreted as a commodity price at the node, and the tension v, in the
arc j is price difference across j. The relation I'; specifies the way in which the commodity flow
in j responds to price difference. In Figure 13, for example, the relation I'; says that when the
price difference across [ is greater than the cost per unit flow in I (namely ¢;) the commodity flow
should be at its upper bound d;, whereas if the price difference is negative, the flow should be
0. If the price difference equals the unit transport cost, any amount of flow between 0 and d; is
acceptable.

Often I'; can be interpreted in an economic model as a supply or demand relation. This
leads to further instances of the equilibrium problem (E).

Before concluding this section, we mention another way that the standard duality scheme in
linear programming can be viewed as a special case of monotropic programming duality. For this
we imagine a Tucker tableau as in Figure 14 with two distinguished indices k and 1.

\ ol d
— Uk Gkl ai|= Zk
Y% 0% 0T |= Tk

=Y = ‘U“

Figure 14.
We take
0 ifz;20
filas) = 8(z]l0,00)) = {0 2% 2

for every j € J = K UL except k and [, but
Fag)=2p (Cf =(-00,)),
flen) = atarlt, 1) = { 0570
The primal problem is then

minimize zp = z ag; %t +ag subject to

3
(Po) A o
2 20forl#1, 2k =) auz+a;>0fork#F.

1



One has ; ;
. 0 if—-uv, <0
g5(vs) = 8(v;](—00,0]) = 4 o if -UJ; <0

for every j except k and I, but
glo) = v (Dp=(-00,))

0 =1,
selp= sl = {0 5T

so the dual problem is
minimize — vy = Z vrag, + ag; subject to
k#k
—ve > 0for k #Ek, —v;:kaaHJr—akIZOfor!#f.
k#k

(D)

For every j other than k and i, the relation T'; is given by the union of the nonnegative z;
axis and the nonpositive v; axis; it expresses “complementary slackness”. The relation I'- is the
horizontal line through at level 1 on the vertical scale, whereas I'; is the vertical line through level

1 on the horizontal scale.

8. The Main Theorems of Monotropic Programming.
The connection between problems (P), (D) and (E) is very tight. The theory is every bit
as complete and constructive as in the familiar case of linear programming, but it applies to an

enormously richer class of optimization models.
Duality Theorem. If any one of the following conditions is satisiied,

(a) the primal problem (P) has feasible solutions and finite optimal value inf(P), or
(b) the dual problem (D) has feasible solutions and finite optimal value sup(D), or
(c) the primal problem (P) and the dual problem (D) both have feasible solutions,

then all three hold, and
inf(P) = sup(D).

Equilibrium Theorem. A pair (z, v) solves the equilibrium problem (E) if and only if z solves
the primal problem (P) and v solves the dual problem (D).

Results on the existence of solutions to (P), (D) and (E) require a distinction between the
intervals C; and C;, and between D; and D,, where C; and D, are given by (22) and (24).
Whereas a feasible solution to (P) is an z € C such that z; € C; for all j € J, a regularly feasible
solution is defined to be an z € C such that z; € C'J- for all § € J. Likewise a regularly feasible
solution to (D) is defined to be a v € D such that v, € D;. This distinction falls away in the



case of so-called regular monotropic programming problems, where J; = (':‘}- and D; = f}j for all
j € J (as is true in particular when C; and D; are closed, i.e. when T'; projects horizontally and
vertically onto closed intervals). Important to keep in mind as regular problems in this sense are

the problems of piecewise linear programming or piecewise quadratic programming.
Existence Theorem.

(a) The primal problem (P) has an optimal solution if and only if (P) has a feasible solution and
(D) has a regularly feasible solution.

(b) The dual problem (D) has an optimal solution if and only if (D) has a feasible solution and
(P) has a regular feasible solution. |

(c) The equilibrium problem (E) has a solution if and only if (P) and (D) both have regularly

feasible solutions.

Corollary. In the case of regular problems (P) or (D), an optimal solution exists if a feasible

solution exists and the optimal value is finite.

By combining the existence theorem with the equilibrium theorem, we obtain the following
characterization of optimal solutions to {P) and (D) that is the basis of most computational

procedures in monotropic programming.
Optimality Theorem.

(a) Suppose that the primal problem (P) has at least one regularly feasible solution. Then for
z to be an optimal solution to (P) it is necessary and sufficient that z be regularly feasible

and such that the dual linear system has a vector v satisfying:
v; € 9fi(z;) = [f"-(-"*'j)u f_;-+[zj-)] forall jeJ

(Such a v is an optimal solution to (D).)

(b) Suppose that the dual problem (P) has at least one regularly feasible solution. Then for v to
be an optimal solution to (D) it is necessary and sufficient that v be regularly feasible and
such that the primal linear system has a vector z satisfying '

z; € 8g;(vs) = [g5_(v;), iy (vs)] forall j€ J

(Such an z is an optimal solution to (P).)

9. Solution by Pivoting Methods.

An important feature of monotropic programming problems is the possibility of solving them
by techniques based on repeated pivoting transformations of Tucker tableaus for the underlying
linear systems. Such techniques can in some cases be viewed as generalizations of the various
forms of the simplex method in linear programming, but they may also be based on distinctly

different approaches involving phenomena of another order.



Our aim is to exploit the fact that the primal and dual linear systems of variables can he
represented in more than one way by tableaus of the kind in Figure 6. Even though only one
such tableau may have been given to us initially, others can be generated by pivoting. We wish
to make use of their special properties as a means of constructing a sequence of feasible solutions
to (P) or (D) that converges to, or in finitely many steps actually reaches, an optimal solution.

The optimality test provided by the last theorem in the preceding section has a central role
in this context. In terms of a Tucker tableau associated with a partition of J into index sets A
and L, it says the following: a regularly feasible solution z to (P) is optimal if and only if for some
choice of values v in the intervals 0 fr(zx), k € K, the corresponding values v, = — T ke VEGKI
satisfy v; € 8fi(z;) for alll € L. Likewise in the dual problem, a regularly feassble solution v
to (D) is optimal if and only sf for some choice of values z; € dgi(vi), | € L, the corresponding
values zx = Y oy Gk Tl S0bisfy ok € dgx(vk) for all k € K. Our attention actually is directed at
the negatives of these conditions, which, as it turns out, can be stated in much sharper form than
might be expected. This sharper form is based on the next theorem, which we present in terms

of general intervals D’ and C}, not just 8 f;(z;) and 8g;(v;), because of its other applications.
Feasibility theorem.

(a) Let C} denote a nonempty real interval (not necessarily closed) for each j € J. If there does
pot exist an z € C satisfying z; € C';- for every j € J, then in fact there exists a Tucker
representation (with J partitioned into some K and L) and an index ko € K such that for
no choice of values z; € C’{ for | € L does the number zx, = EIGL Gk, 21 satisfy zx, € C';CO.

| (b) Let D! denote a nonempty real interval (not necessarily closed) for each j € J. If there
does not exist a v € D satisfying v; € D; for every j € J, then in fact there exists a Tucker
representation (with J partitioned into some K and L) and an index lo € L such that for no

choice of values vx € GL' for k € K does the number v, = — EkeK Ur Gk, Satisfy vy, € C{U.

This result is valid in particular as a‘test of feasibility in (P) and (D) (the case of Ci=Cj,
D! = Dj;) and regular feasibility (C} = C"J-, D} = D;). Our concern at present, though, is with
the case of C), = g;(v;) and D} = 8 f;(z;), where (a) and (b) characterize nonoptimality of v in
(D) and of z in (P), respectwely Pivoting rules do exist for producing special Tucker tableaus
and indices ko or lo with the properties in the theorem. Rather than explain such rules here,
which would take too much space, we shall try to indicate the way that the conditions provided

by the theorem can be used in optimization.

The basic idea we need to work with is that of trying to improve a given feasible solution z
the primal independent variables

to (P) by changing only one “independent” variable at a time,
et L in the partition

relative to a particular Tucker tableau being the ones indexed by the s
= (K|L). Consider the situation in Figure 15, where a certain index lo
out (first diagram).

We want to look at feasible modifications of z that leave fixe

€ L has been singled

d all the values zi for [ # [o.
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Such a modification depends only on specifying the value of a single parameter ¢t € R:

&, = T, + ¢, z; = z; for all 1 € L\l,

T = Zauzj = 2k + ax,f for k € K.
leL

The corresponding objective value is

p(t)=F(a') = E filz) + oz, + 1) + Z felzx + agiot),

iZlo kEK

where p(0) = F(z) is the objective value already at hand. We are interested in the existence of
a t such that p(t) < ©(0), because z' is then a “better” feasible solution to (P) than z. (It is
still feasible because F(2') < F(z) < oo implies z}; € C;.) When such a ¢ exists, we shall say
that monotropic smprovement of z is possible in (P) which respect to the Tucker representation in
question and the index Iy € L. The exact choice the stepsize ¢, whether by complete minimization
of © or some other device, need not concern us here.

The important thing is that the condition in part (b) of the Feasibility Theorem in the case
of the intervals D} = 8 f;(z;) holds for a particular Tucker representation and index I € L if and
only if monotropic improvement of z is possible for this Tucker representation and index. This
can be verified by a calculation of the right and left derivatives of the convex function v at 0. A
similar result holds for the dual problem, where one is interested in improving a given regularly
feasible solution v without changing the values vi for k # ko in a certain tableau (see Figure 15
again, second diagram).

The situation is summarized in the next result.

Improvement Theorem.

(a) If z is a regularly feasible solution to (P) which is not optimal, then monotropic improvement
of z is possible with respect to some Tucker representation and index I, € L.

(b) If v is a regularly feasible solution to (D) which is not optimal, then monotropic improvement
is possible with respect to some Tucker representation and index ko € K.



This theorem leads to optimization procedures which alternate between pivoting routines
that construct special Tucker tableaus and line searches that minimize special convex functions
©. In network programming, of course, where the Tucker tableaus correspond to spanning trees,
the pivoting can be carried out in a combinatorial manner. The monotropic improvement steps
then amount to modifying a circulation z only around one closed path at a time, and modifying

a differential v only across one cut at a time.

10. Generalized Simplex Methods.

A nice illustration of these ideas, although by no means the only one, is the way that the
- simplex method of linear programming can be extended to monotropic programming problems
in general. Let us call a value of z; a breakpoint of f; if f]_(z;) # f/,(z;), ie. ifT; has a
vertical segment at z;. (A finite endpoint of C; that belongs to C; is a breakpoint in this sense,
in particular.) Let us say further that a regularly feasible solution z to (P) is nondegenerate if
there is a Tucker tableau with partition J = (K|L) such.that zx is not a breakpoint of fi for any
ke K.

Such a tableau, if one exists, is very easy to construct by pivoting: simply exchange break-
point indices with nonbreakpoint indices until all the breakpoint indices correspond to columuns
of the tableau instead of rows. One then has a quick test of the optimality of z. The intervals
8 fi(zx) for k € K all consist of just a single point, namely the derivative value f|(zx); taking this
as vy and defining v; = — 7, - viak, check whether v; € 8fi(z;) for every I € L. If “yes”, then
'z is an optimal solution to (P) (and v is an optimal solution to (D); cf. the optimality theorem
in §8). If “no”, then for some index lo one has v;, & 0 f;,(2,). Such an index I, satisfies the
condition in the feasibility theorem in §9 for the intervals C; = 3f;(z;), and it therefore signals
the possibility of monotropic improvement of z. This improvement can be carried out, and =
replaced by z'. If 2’ is again nondegenerate, the tableau can be restored to proper form with
respect to z' if necessary, and the optimality test repeated.

For problems in piecewise linear programming, some refinements of this genera.l.simplex
procedure are possible. Let us say that z is quass-eztreme for (P) if there is a Tucker tableau with
partition J = (K|L) such that z; is a breakpoint of f; for every I € L. Inasmuch as there are
only finitely many breakpoints for each of the cost functions in a piecewise linear programming
problem, and also only finitely many possible Tucker tableaus, there can be only finitely many
feasible solutions that are quasi-extreme. If the procedure already described is initiated with
such a feasible solution z, and if the line search in each monotropic improvement step is carried
out with exactitude (which is easy because of piecewise linearity), then all the successive feasible
solutions generated by the procedure will be quasi-extreme. Under the nondegeneracy assumption
that every quasi-extreme feasible solution to (P) is nondegenerate, the procedure can be continued
until, after finitely many steps, optimality is achieved.

This general version of the simplex method reduces to the classical method when applied to a



linear programming problem in standard form. It also includes the modified simplex method for
linear programming problems with upper bounds. It can be used directly on problems obtained
from linear programming problems by penalty representation of constraints.

A dual version of all this can be written down in terms of problem (D), of course.
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