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1. Introduction

Many problems in statistics and stochastic programming may be formulated as the selection
of an element xν from the solution set J(zν) to a generalized equation

(1.1) choose x ∈ IRn such that 0 ∈ f(zν , x) + N(x),

where f is a function taking values in IRm, N is a multifunction, a mapping whose images
are subsets of IRm, and zν is a data-dependent random process. To analyze the large
sample behavior of these estimated solutions, one goes over from the asymptotics of the
data process to those of the estimated solutions via some sort of local analysis of the
generalized equation. We are interested here in establishing conditions on f and N that
when holding at a pair (z∗, x∗) ensure that if for some sequence of positive numbers {τν}
converging to 0 one has

(1.2) τ−1
ν [zν − z∗]−→

D
w,

then it follows that also
τ−1
ν [xν − x∗]−→

D
DJ(z∗)(w),

where DJ is a certain contingent derivative of J to be further discussed below and the
symbol D below the arrow denotes convergence in distribution. The chief applications
we have in mind for the generalized equation (1.1) in the present study are that of con-
strained statistical estimation and the closely related subject of estimation in stochastic
programming.

In statistics, the generalized equation (1.1) can represent the so-called “normal equa-
tions” of maximum likelihood estimation, and the multifunction N may be designed to
allow the imposition of certain types of “hard” constraints—such as nonnegativity of vari-
ance estimates. Concrete examples of constrained estimation problems in statistics and a
discussion of the connections between stochastic programming and statistical estimation
can be found in Dupačová and Wets [5].

In stochastic programming, equation (1.1) can represent the first-order necessary con-
ditions for solutions to the optimization problems

(1.3) minimize h
ν
(x) over all x ∈ C ⊂ IRn,

where we denote

h
ν
(x) =

1
ν

ν∑
i=1

h(x, si).
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When h is continuously differentiable in the first variable, then, under appropriate regular-
ity conditions, the solutions to (1.3) are determined by the first-order necessary conditions

(1.4) 0 ∈ ∇h
ν
(x) + NC(x),

where the multifunction NC is the normal cone operator of nonsmooth analysis. The
translation of (1.4) to (1.1) is accomplished by setting f to be the evaluation functional
f(z, x) = z(x) and viewing the random variable zν = ∇h

ν
as an element of the space of IRn-

valued continuous functions on IRn, denoted Cn(IRn). Denote also by E∇h the expected
value of the gradient of h. The main steps in computing the asymptotic distribution for
xν − x∗ are first to compute the asymptotic distribution for ∇h

ν − E∇h from a central
limit theorem in Cn(U), for some appropriate compact neighborhood U of x∗, and then
apply the sensitivity analysis of the solution set J of (1.1) about the “point” z∗ = E∇h.

Developing the asymptotics of solutions to (1.4) or (1.1) from the limit behavior of
random elements of a function space is a powerful idea that can be extended in many
directions. One may study the dependence of the optimal value on the estimated objective
function—this dependence is differentiable in the objective over the space of continuous
functions, leading to an asymptotic result for the optimal values (Shapiro [17]). A deeper
study of this dependence leads to confidence bounds for solutions (Ermoliev and Norkin
[6]) under very general assumptions. Or, as in the present study, one may analyze the de-
pendence of the optimal solutions on the estimated gradient mappings and apply a version
of an implicit function theorem. In the rather special case of (unconstrained) maximum
likelihood estimation in statistics, this latter program has been thoroughly worked out in,
for example, Ibragimov and Has’minskii [9]. But complications naturally arising in opti-
mization problems and their associated generalized equations require extended definitions
of the concepts of consistency and central limits: the non-smoothness of the estimated
functional f(z, ·) may mean that there are more than one cluster point for a sequence of
generalized M -estimates, or the domain of the multifunction N may constrain the support
of the asymptotic distribution in certain ways.

The key step that we make in this paper to accommodate such complications is the
identification of the appropriate generalized differentiability and invertibility properties of
the mapping

F (x) = f(z∗, x) + N(x)

that enable the determination of the behavior of the solutions to the perturbed generalized
equation (1.1). Background material for this analysis appears in the two papers King [11],
and King and Rockafellar [12]. The first generalizes the classical delta method to apply
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to mappings, such as F , that are not Frechét differentiable or even single-valued, and the
second studies generalized continuity and differentiability properties of solution functionals
for perturbed nonsmooth generalized equations. In Section 2, we bring the perspective of
these two papers to bear on our asymptotic analysis. Consistency will follow from a sort
of local invertibility of F called subinvertibility, and the central limit will be given by the
contingent derivative of F−1, provided certain regularity conditions are satisfied. These
results are applied in Section 3 to the asymptotic analysis for stochastic programs (of
a more general form than (1.3)). Section 4 presents a brief study of a piecewise linear-
quadratic tracking problem, in which there arises the possibility of a nonsmooth expected
gradient E∇h to which standard implicit function theorems cannot be applied. Earlier
versions of these results appeared in King [10].

The first study of asymptotic theory for constrained maximum likelihood estimates
was by Aitchison and Silvey [1], who proved asymptotic normality under conditions of
second-order sufficiency and linear independence for equality constraints only. Huber [8]
established asymptotic behavior under “non-standard” assumptions that could be applied
to the sort of nonsmooth mappings that arise in inequality-constrained optimization, but
the domain of the estimates was assumed to be an open set. Recently, Dupačová and Wets
[5], and especially, Shapiro [16] have applied Huber’s theory to the problem of determining
the central limit behavior of the solution estimates to stochastic programs: [5] gives condi-
tions under which asymptotic normality may occur, and [16] gives conditions under which
non-normal behavior may arise from deterministic inequality constraints. These papers
rely on a certain smoothness of the expected gradient E∇h near x∗, an assumption that
is helpful but not necessary in the theory we offer.

2. General Theory

The underlying topology on which our analysis is based is that of the convergence of closed
sets in IRn. For {Aν} a sequence of closed subsets of IRn, define the (closed) sets

lim inf
ν

Aν = {x = lim xν

∣∣ xν ∈ Aν for all but finitely many ν}

lim sup
ν

Aν = {x = lim xν

∣∣ xν ∈ Aν for infinitely many ν}.

The sequence {Aν} set-converges to A = limν Aν , if A = lim inf Aν = lim supAν . Let
(Z,A) be an arbitrary measurable space. A multifunction F : Z →→ IRn is closed-valued
(or convex, etc.) if F has closed (or convex, etc.) images. A closed-valued multifunction
is measurable if it is Borel-measurable when considered as a map into the space of closed
subsets topologized by set-convergence, or equivalently, if for all closed subsets C of IRn
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the set F−1(C) := {z ∈ Z
∣∣ F (z) ∩ C 6= ∅} belongs to the sigma-algebra A. If the measur-

able space is a probability space, we shall sometimes refer to a closed-valued measurable
multifunction F as a random closed set and denote it F. The domain of a multifunction
F , dom F , is the set of points where its image is nonempty; its graph is the set of pairs
gphF := {(z, x) ∈ Z × IRn

∣∣ x ∈ F (z)}. If Z is a topological space then we say that F is
closed (or upper semicontinuous) if gphF is a closed subset of Z × IRn. It is well-known
that a closed multifunction is closed-valued and measurable; the basic background on these
topics is covered, for example, in Rockafellar [15].

Our first result shows that the solution mapping J for (1.1) has this property, and it
is an easy corollary to show that this implies a certain form of consistency.

Proposition 2.1. Suppose that the function f : IRn×Z → IRm is jointly continuous, and

that the multifunction N : IRn →→ IRm is closed. Then the solution mapping J : Z →→ IRn

defined by

(2.1) J(z) = {x ∈ IRn
∣∣ 0 ∈ f(z, x) + N(x)}

is closed-valued and measurable.

Proof. Consider a sequence of pairs {(zν , xν)}, each an element of gph J , that converges
to a pair (z∗, x∗). By continuity, f(xν , zν)) → f(x∗, z∗). Since N is closed, it follows that
−f(x∗, z∗) ∈ N(x∗). This implies x∗ ∈ J(z∗), so J is closed and therefore closed-valued
and measurable.

Corollary 2.2. (Consistency.) Under the conditions of Theorem 2.1, if

zν → z∗ a.s.

and {xν} is a sequence of solutions to (1.1) with a cluster point x, then x ∈ J(z∗) with

probability one.

Remark. The corollary can be strengthened if there are natural conditions that imply
(or if one does not mind imposing conditions that require) that solutions of (1.1) belong
to some compact set. In this case, almost all solution sequences will have cluster points.

It is not at all guaranteed at this stage of the game that there exist any solutions xν

to the generalized equation (1.1) as ν →∞. To simplify the verification of the existence of
such solutions, we introduced in [12] the following notion: a multifunction F : IRn →→ IRm is
subinvertible at (x∗, 0) if one has 0 ∈ F (x∗) and there exist a positive number ε, a compact
convex neighborhood U of x∗, and a nonempty convex-valued mapping G : εB →→ U such
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that: gphG is closed, the point x∗ belongs to G(0), and G(y) ⊂ F−1(y) for all y ∈ εB,
where B is the unit ball in IRm. Under this assumption, it can be shown that for all y ∈ εB

there exists at least one solution x(y) to the perturbed generalized equations

0 ∈ F (x)− y.

Natural conditions implying such subinvertibility may be found in Sections 5 and 6 of [12].
The reader may easily verify, for instance, that multifunctions whose inverse F−1 admits
a selection x(·) that is continuous on a neighborhood of 0 are subinvertible at (x(0), 0).

Theorem 2.3. Suppose, in addition to the assumptions of Corollary 2.2, that the mul-

tifunction F (·) := f(·, z∗) + N(·) is subinvertible at (x∗, 0), for some x∗ ∈ J(z∗), and

that

zν → z∗ a.s.

Then there exists a compact convex neighborhood U of x∗ such that, with probability one,

∅ 6= lim sup
ν→∞

J(zν) ∩ U ⊂ J(z∗) ∩ U.

Proof. Let U be the compact neighborhood of x∗ in the definition of subinvertibility. In
the event of the convergence zν → z∗, the subinvertibility of F implies, by Proposition 3.1
of [12], that U ∩ J(zν) is eventually nonempty; this and the compactness of U prove that
lim sup J(zν)∩U 6= ∅. Since J is closed, by Proposition 2.1, it follows that J ∩U is closed,
from which we obtain the right-hand inclusion.

We next consider the possible limiting behavior of solutions to (1.1). The key step is to
apply an appropriately generalized implicit function theorem that follows from an analysis
of certain generalized derivatives of the multifunction F (·) = f(z∗, ·)+N(·), which we now
briefly review. (For more details, consult [12] and the references therein.) The contingent
derivative of a multivalued mapping G : Z →→ IRn at a point z ∈ dom G and x ∈ G(z) is the
mapping DG(z|x) whose graph is the contingent cone to the graph of G at (z, x) ∈ Z×IRn,
that is,

(2.2) lim sup
t↓0

t−1[gph G− (z, x)] = gph DG(z|x).

The contingent derivative always exists, because the lim sup of a net of sets always exists;
and it is closed because the lim sup is always a closed set. The contingent derivative of the
inverse of G is just the inverse of the contingent derivative, and is denoted DG−1(x|z). This
definition may be specialized in two directions. If one has lim sup = lim inf in (2.2), then G
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is called proto-differentiable at (z, x). A stronger property that is related to differentiability
for functions is semi-differentiability, which requires the existence of the set limit

(2.3) lim
t↓0

w′→w

t−1[G(z + tw′)− x] = DG(z|x)(w)

for all directions w in Z. These definitions can be applied to functions, of course. If
g : Z → IRn has a contingent derivative Dg(z) that is everywhere single-valued, then g is
B-differentiable at z and we can show that

(2.4). lim
t↓0

w′→w

t−1[g(z + tw′)− g(z)] = Dg(z)(w)

In the case of a function of two variables, as we have in (1.1), we shall employ the partial B-
derivatives, Dzf(z, x) and Dxf(z, x). It will be necessary to suppose a certain uniformity
of the partial B-derivative in z, namely that for every ε > 0 there exist neighborhoods Ω
of z∗ in Z and U of x∗ in IRn such that for every x ∈ U the function

z 7→ f(z, x)− f(z∗, x)−Dzf(z∗, x∗)(z − z∗)

is Lipschitz continuous with Lipschitz constant ε on Ω. When this holds, we say that f

has a strong partial B-derivative in z at (z∗, x∗).

An immediate application of the contingent derivative may be seen in the following
theorem that establishes the existence of bounds in probability on the solution sequences.

Theorem 2.4. Assume that the space Z is a separable Banach space, and that the func-

tion f : Z × IRn → IRm satisfies a Lipschitz condition

|f(z∗, x)− f(z, x)| ≤ α‖z∗ − z‖

uniformly for all x in a neighborhood of x∗. Define the multifunction F (·) = f(z∗, ·)+N(·),
and suppose that

DF−1(0|x∗)(0) = {0},

i.e. the inverse of the contingent derivative of F contains at most the single element 0.

Then there exist a neighboorhood U of x∗ and a constant λ ≥ 0 such that if xν is a solution

to (1.1) that belongs also to U one has

P{|xν − x∗| > δ} ≤ P{αλ‖zν − z∗‖ > δ}

for all sufficiently small δ > 0.
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Proof. The assumption on the inverse of the contingent derivative at 0 implies, by propo-
sition 2.1 of [12], the existence of a neighborhood U of x∗ and a constant λ ≥ 0 such
that

U ∩ F−1(y) ⊂ x∗ + λ|y|B

for all y sufficiently close to 0 in IRm. The conclusion follows from this and the uniform
Lipschitz condition stated in the theorem.

The set U in this theorem may be thought of as a sort of basin in which the asymp-
totics, if any, will apply and whose existence is guaranteed by the single-valuedness at 0 of
the inverse of the contingent derivative. In the classical case this assumption is equivalent
to the invertibility of the Jacobian of F and would therefore be sufficient to apply the
implicit function theorem—from which would flow not only the bounds in probability but
also an explicit description of the limiting behavior of the solutions xν . But such single-
valuedness is not sufficient for the situations discussed in the introduction, and conditions
must be made that compensate for the absence of the good local behavior that follows
from differentiability. In [12] the following list of assumptions were shown to be sufficient
for a certain implicit function theorem for the generalized equation (1.1).

Analytical Assumptions.

M.1 The space Z is a separable Banach space, and the function f : Z × IRn → IRm is
jointly continuous and has partial B-derivatives in both variables at (z∗, x∗), with
Dzf(z∗, x∗) strong.

M.2 The multifunction N : IRn → IRm is closed and proto-differentiable at (x∗,−f(z∗, x∗)).

M.3 The multifunction F (·) = f(z∗, ·) + N(·) is subinvertible at (x∗, 0).

M.4 The inverse contingent derivative

DF−1(0|x∗)(y) = {u
∣∣ y ∈ Dxf(z∗, x∗)(u) + DN(x∗| − f(z∗, x∗))(u)}

is at most a singleton for every y ∈ IRm.

Remark 2.5. In [12], Section 5, it was shown that when the multifunction F is maximal
monotone, then assumption M.4 implies M.3.

The essential step of any asymptotic argument is to introduce “local coordinates”
around z∗ and x∗: let the sequence of positive numbers {τν} tend to 0, let

zν = z∗ + τνwν ,

and define
Jν(wν) = {u

∣∣ 0 ∈ f(z∗ + τνwν , x∗ + τνu) + N(x∗ + τνu)}.
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It is clear from the definition of the contingent derivative that

lim sup
ν→∞

gphJν = gphDJ(z∗|x∗).

The standard argument now would run as follows: if uν(w) is a selection of Jν(w) and it
could be shown that uν → u in sup-norm on compacts, where {u(w)} = DJ(z∗|x∗)(w),
then it would follow that wν−→

D
w implies uν(wν)−→

D
u(w) (cf. Billingsley [3] Theorem

5.5). One way to establish the convergence of the uν(wν) may be found in King [11]:
first demonstrate the convergence in distribution of the Jν(wν) as random sets, and then
show that the single-valuedness assumption implies the corresponding convergence of any
sequence of random selections.

Theorem 2.6. (Asymptotic Distributions.) Assume M.1–4 and suppose that {zν} is a

sequence of random variables in the separable Banach space Z such that

τ−1
ν [zν − z∗]−→

D
w,

Then, if a sequence {xν} of measurable selections from the solution sets to (1.1) converges

almost surely, it converges to the point x∗, and moreover,

τ−1
ν [xν − x∗]−→

D
DF−1(0|x∗)(−Dzf(z∗, x∗)(w)).

Proof. The analytical assumptions M.1–4 imply that there exists a compact neighborhood
U of x∗ such that the solution multifunction J is semi-differentiable as a mapping from Z

into IRn at the pair (z∗, x∗), with derivative

DJ(z∗|x∗)(w) = DF−1(0|x∗)(−Dzf(z∗, x∗)(w)).

Cf. Theorem 4.1 and Remark 4.3 of [12]. Now observe that eventually

τ−1
ν (xν − x∗) ∈ τ−1

ν [U ∩ J(zν)− x∗].

The semi-differentiability of J implies, by Theorem 3.2 of [11], that the sequence of sets
on the right-hand side converges in distribution to DJ(z∗|x∗)(w). To obtain from this the
convergence in distribution of the selections on the left side, we can apply Theorem 2.3 of
[11] provided this sequence is tight . But by Theorem 4.1 of [12],

τ−1
ν |xν − x∗| ≤ λτ−1

ν ‖zν − z∗‖,
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where λ is the Lipschitz constant for J at z∗ and ‖ · ‖ is the norm in Z. The sequence on
the right is a fortiori tight, and the proof is complete.

We now apply Theorem 2.6 to treat M -estimates of the form

(2.5) 0 ∈ f
ν
(x) + N(x),

where for convenience we define f
ν
(x) = 1

ν

∑ν
i=1 f(x, si) and Ef(x) = Ef(x, si). In the

Appendix we show that the following assumptions imply the asymptotic normality of f
ν

in the space of continuous functions Cm(U), for a given compact set U .

Probabilistic Assumptions.

P.1 The function f : U × S → IRm is continuous in the first variable and measurable in
the second.

P.2 The sequence of random variables {si} is independent and identically distributed.

P.3 There is a point x ∈ U with E|f(x, s1)|2 < ∞.

P.4 There is a function a : S → IR with E|a(s1)|2 < ∞ satisfying

|f(x1, s)− f(x2, s)| ≤ a(s)|x1 − x2| ∀x1, x2 ∈ U.

Theorem 2.7. Suppose that the assumptions P.1–4 hold for f with respect to a compact

neighborhood U of x∗, that the function Ef is B-differentiable at x∗, and that the assump-

tions M.2–4 are satisfied for the generalized equation (2.5) with F = Ef + N . Then, if

a sequence {xν} of measurable selections from the solution sets to (2.5) converges almost

surely, it converges to the point x∗, and moreover,

√
ν[xν − x∗]−→

D
DF−1(0|x∗)(−w∗),

where w∗ is normally distributed in IRm with mean 0 and covariance covf(x∗, s1).

Proof. This fits the pattern of Theorem 2.6 if we observe that the evaluation map e :
Cm(U)× U → IRm has a strong partial B-derivative at any point x ∈ U with B-derivative
Dze(z, x)(w) = w(x). (See Remark 4.2 of [12].) Thus the generalized equation (2.5) is
equivalent to

0 ∈ e(f
ν
, x) + N(x),

and it is easy to verify that M.1–4 hold here. The result now follows from this observation,
Theorem 2.6, and Theorem A3 of the Appendix.
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3. Asymptotics for Stochastic Programs

As an application of the theory of the previous section, we consider the asymptotic behavior
of sequences of solutions to a slightly more general version of a stochastic program than
mentioned in the introduction, namely

(3.1)

minimize h
ν
(x)

subject to gν(x) ∈ Qo

and x ∈ C,

where the set C is a convex polyhedral subset of IRn, the set Qo is the polar of a convex
polyhedral cone in IRm, and for all s ∈ S the functions h(·, s) : IRn → IR and g(·, s) :
IRn → IRm are continuously differentiable. This form is a mathematically convenient
generalization of the usual statement of a nonlinear program with equality and inequality
constraints (which can be obtained by setting Q = IRm1 × IR

m2
+ ); it was introduced and

studied by Robinson [14]. The problems (3.1) are to be regarded as perturbations of the
“true” problem

(3.2)

minimize Eh(x)

subject to Eg(x) ∈ Qo

and x ∈ C,

In [12] we provided a second-order sensitivity analysis of this type of nonlinear program.
The results of this section are direct consequences of that analysis, together with our results
from the preceeding section.

In nonlinear programming, the sensitivity analysis of solutions cannot be separated
from the sensitivity analysis of the Lagrange multipliers for the constraints. This study is
no exception. Since in (3.1) we wish to cover the case of estimated constraints gν(x) ∈ Qo,
we are forced to consider sequences of Kuhn-Tucker pairs (xν ,yν) for (3.1) and not only
sequences of solutions. Define the Lagrangian k(x, y, s) = h(x, s) + yT g(x, s), and let
(x∗, y∗) be a Kuhn-Tucker pair for the problem (3.2), i.e. a solution to the Kuhn-Tucker
equations

(3.3)
0 ∈∇Eh(x) + yT∇Eg(x) + NC(x)

0 ∈ − Eg(x) + NQ(y)

By NC(x) and TC(x) we denote the normal and tangent cones, respectively, to a set C

at a point x. The following analytical assumptions are assumed to hold at the given
Kuhn-Tucker pair (x∗, y∗).
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Analytical Assumptions for Stochastic Programs.

S.1 The Lagrangian Ek(x, y) is twice continuously differentiable, and the second-order
sufficient condition holds at (x∗, y∗):

uT∇2Ek(x∗, y∗)u > 0

for every nonzero vector u ∈ TC(x∗) satisfying

∇Eg(x∗)u ∈ TQo(Eg(x∗)) and ∇Eh(x∗) = 0.

S.2 The constraint set {x ∈ C
∣∣ Eg(x) ∈ Qo} is regular at x∗ in the sense of [14], i.e.,

0 ∈ int[Eg(x∗) +∇Eg(x∗)(C − x∗)−Qo].

S.3 The linear independence condition holds at x∗, that is, the Jacobian matrix ∇Eg(x∗)
has full rank.

The reader will recall that S.2 is the counterpart of the Mangasarian-Fromovitz constraint
qualification for nonlinear programs. The linear independence assumption S.3 does not
explicitly exclude inactive constraints, as in the usual statement of this condition, so we
simply suppose these are dropped from the problem statement.

Let us rewrite the optimization problem (3.1) as one of generalized M -estimation by
defining a function f : IRn+m × S → IRn+m as

f(x, y, s) = (∇k(x, y, s),−g(x, s)),

and note that the Kuhn-Tucker conditions for the problem (3.1) correspond to the gener-
alized equation

(3.4) 0 ∈ f
ν
(x, y) + NC×Q(x, y).

Theorem 3.1. (Consistency.) Suppose that for the function f as above there exists a

compact neighborhood U of x∗ such that

(3.5) E{sup
x∈U

|f(x, s1)|} < +∞,

and that the analytical assumptions S.1–2 hold. If {(xν ,yν)} is a sequence of Kuhn-Tucker

pairs for (3.1) and (x,y) is a cluster point of this sequence, then (x,y) is a Kuhn-Tucker

pair for (3.2) with probability one.

Proof. Under the assumptions S.1–2, it was shown in [12], Proposition 7.1, that the
multifunction Ef + NC×Q is subinvertible at 0. Without loss of generality suppose that
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the compact set U is that given by the definition of subinvertibility (take the intersection,
for example). Assumption (3.5) implies, by the strong law of large numbers, that f

ν → Ef

with probability one; cf. Etemadi [7]. Now apply Corollary 2.3 to the generalized equation
(3.4), recalling that the function (z, x) 7→ z(x) is jointly continuous on Cn(U)× U .

To obtain an expression for the central limit behavior, we saw in the previous section
that it was necessary to consider an associated random generalized equation involving the
normal random vector w(x∗) and the derivatives of Ef + N . For stochastic programs the
corresponding object is a certain random quadratic program, which we now describe. If the
probabilistic assumptions P.1–4 are satisfied for f = (∇k,−g), then there exist Gaussian
random functions w1 and w2 such that

√
ν[∇k

ν − E∇k]−→
D

w1

and
√

ν[gν − Eg]−→
D

w2

Let c∗1 = w1(x∗, y∗) and c∗2 = w2(x∗). The random quadratic program giving the asymp-
totic distribution is

(3.6)

minimize c∗1u + 1
2uT∇2Ek(x∗, y∗)u

subject to ∇Eg(x∗)u + c∗2 ∈ [Q′]o

and u ∈ C ′

where
Q′ = {v ∈ TQ(y∗)

∣∣ vT Eg(x∗) = 0}

and
C ′ = {u ∈ TC(x∗)

∣∣ uT∇Ek(x∗, y∗) = 0}.

Theorem 3.2. Suppose that the probabilistic assumptions P.1–4 are satisfied for f =
(∇k,−g) and the analytical assumptions S.1–3 hold. If a sequence of Kuhn-Tucker pairs

{(xν ,yν)} for the problems (3.1) converges almost surely, then it converges to (x∗, y∗),
and moreover,

√
ν[(xν ,yν))− (x∗, y∗)]−→

D
(u,v),

where (u,v) is the Kuhn-Tucker pair for the random quadratic program (3.6).

Proof. The multifunction N = NC×Q is closed and proto-differentiable at every pair in
its graph, because it is polyhedral; thus M.2 holds. In [12], Theorem 7.2, we showed that
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assumptions S.1–3 imply M.4, and in the proof of Theorem 3.1 we observed that S.1–2
imply M.3. Assumption S.1 implies in particular that Ef is B-differentiable at x∗. An
application of Theorem 2.7 finishes the proof.

4. Estimation for Linear-Quadratic Tracking Problems.

The following is a brief discussion of asymptotics for a class of linear-quadratic functions
used for tracking stochastic objectives. A full treatment of this subject cannot properly
be done in the confines of the present paper; our intention here is to expose the reader to
an application of the preceding theory where twice differentiability does not smooth the
way to an asymptotic theory.

The tracking problem we will consider here is

(4.1)
minimize Eρ(x) := E{ρ(rT x)}

subject to x ∈ C

where the set X is a polyhedral subset of IRn, and the function ρ : IR → IR is the one-sided
piecewise linear-quadratic function

ρ(t) =

 0 if t > 0
1
2
t2 if t ≤ 0

penalizing deviations of rT x below zero. We are after a theorem that establishes the
asymptotic behavior of solutions xν solving the estimated tracking problem

(4.2)
minimize

1
ν

ν∑
i=1

{ρ(rT
i x)}

subject to x ∈ C

Let us first go over some elementary facts.

Proposition 4.1. Assume that E|r|2 < ∞. Then Eρ(x) is finite and continuously differ-

entiable, with

∇Eρ(x) = E{rρ′(rT x)}

where

ρ′(t) =

{
0 if t > 0

t if t ≤ 0

Proof. This merely asserts that the exchange of expectation and differentiation is per-
mitted under our assumptions on r.
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We now place this problem in the setting of Theorem 2.7, observing that a solution
x∗ is optimal for (4.1) if and only if it solves the generalized equation

(4.3) 0 ∈ E{rρ′(rT x)}+ NC(x)

and xν is optimal for (4.2) if and only if it solves

(4.4) 0 ∈ 1
ν

ν∑
i=1

riρ
′(rT

i x) + NC(x)

For notational convenience, denote the gradient mapping rρ′(rT x) as f(x, r), and as in the
introduction, denote E{f(x, r)} by Ef . The next fact to be proved is the B-differentiability
of this gradient mapping.

Proposition 4.2. Assume E|r|2 < ∞. Then the gradient mapping Ef is B-differentiable,

with

(4.5) D[Ef ](x)(u) =
∫

[rT x<0]

rrT uP (dr) +
∫

[rT x=0]∩[rT u<0]

rrT uP (dr)

Proof. To verify B-differentiability in this case we examine the limit of difference quo-
tients:

lim
t↓0,u′→u

t−1[Ef(x + tu′)− Ef(x)].

We split the integration over the three subsets defined by the sign of rT x, namely

R− = {r : rT x < 0}, R0 = {r : rT x = 0}, R+ = {r : rT x > 0}.

Since r ∈ R+ implies eventually rT (x + tu′) > 0, we have

lim
t↓0,u′→u

t−1

∫
r∈R+

[rρ′(rT (x + tu′))− rρ′(rT x)]P (dr) = 0.

In the case of R−, we make a similar observation and then apply the Lebesgue dominated
convergence theorem to yield

lim
t↓0,u′→u

t−1

∫
r∈R−

[rρ′(rT (x + tu′))− rρ′(rT x)]P (dr) =
∫

r∈R−
rrT uP (dr).

(The absolute values of the integrands on the left are dominated by |r|2|u′|.) This gives
the first term in (4.5). For the remaining case, R0, we must find the limit

lim
t↓0,u′→u

t−1

∫
r∈R0

rρ′(rT tu′)P (dr).
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We apply a similar argument to this limit, splitting the integration according to the sign
of rT u. This gives the second term in (4.5).

The dependence on u in the domain of integration in the second term of (4.5) can
mean that D[Ef ](x)(u) is not linear in u and thus, in general, the tracking objective Eρ

is not twice differentiable. But twice differentiability is not required in Theorem 2.7; one
needs only to establish M.2–4 and P.1–4. As we shall see, we have already done all the
hard work and the only point left is to set reasonable conditions on the B-derivative (4.5)
so that the analytical assumption M.4 holds.

Theorem 4.3. Assume E|r|2 < ∞, and suppose that at a solution x∗ to (4.1) the matrix∫
[rT x∗<0]

rrT P (dr) is positive definite. Then, with f and Ef defined as above, there exist

unique solutions u(w) to the second-order generalized equation

w ∈ D[Ef ](x)(u) + DNC(x∗| − Ef(x∗))(u).

Furthermore, if a sequence {xν} of solutions to (4.2) converges almost surely, it converges

to the true solution x∗, and moreover,

√
ν[xν − x∗]−→

D
u(w),

where w∗ is normally distributed with mean 0 and covariance cov f(x∗).

Proof. Proposition 4.2 shows that the B-derivative D[Ef ](x∗) is the sum of the two op-
erators in (4.5): one is by assumption a positive definite linear operator with domain IRn,
and the other is a maximal monotone operator with domain IRn. The first claim now is
a consequence of Minty’s Theorem [13]. The final claims follow from an application of
Theorem 2.7. Condition M.4 has just been established. Conditions P.1–4 are given by the
setting of our problem and the finiteness of E|r|2. The normal cone operator is polyhedral,
hence proto-differentiable—as already mentioned in Section 3—which establishes assump-
tion M.2. The operator F := Ef + NC is maximal monotone, so by Remark 2.5 condition
M.3 follows from M.4. This completes the proof.
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Appendix

In this appendix we briefly discuss central limit theory for random variables in Cm(U), the
space of continuous IRm-valued functions on a compact subset U ⊂ IRn. Further details
may be found in Araujo and Giné [2], on which this presentation has been based. The
main result (A3) is a “well-known” theorem that does not seem to have been published
for m ≥ 2. The argument presented here was suggested by Professor R. Pyke.

For now, let Z be a separable Banach space equipped with its Borel sets A, and let
Z∗ be the dual space of continuous linear functionals on Z. If z is a random variable
taking values in Z, we say that z is (Pettis) integrable if there is an element Ez ∈ Z for
which `(Ez) = E{`(z)} for all ` ∈ Z∗, where E{·} denotes ordinary expected value. The
covariance of z, denoted cov z is defined to be the mapping from Z∗×Z∗ into IR given by

(cov z)(`1, `2) = E{[(`1(z)− `1(Ez)][`2(z)− `2(Ez)]}.

A random variable z taking values in Z will be called Gaussian with mean Ez and covari-
ance cov z provided that for all ` ∈ Z∗ the real-valued random variable `(z) is normally
distributed with mean `(Ez) and covariance (cov z)(`, `).

Let us now turn to the specific case at hand, that of the Banach space Cm(U). Let
(S,S) be a measurable space.

Proposition A1. Assume P.1–4. Then the mapping s 7→ f(·, s) is Borel measurable as a

mapping from S into Cm(U).

Proof. It suffices to show that for every α > 0, the set

{s
∣∣ sup

x∈U
|f(s, x)| ≤ α}

is a measurable subset of S. This follows easily from standard results in the theory of
measurable multifunctions; see, for example, Rockafellar [15], Theorem 2K.

Corollary A2. f
ν

is a Cm(U)-valued random variable for every ν.

Theorem A3. Suppose that f : U × S → IRm satisfies the probabilistic assumptions

P.1–4. Then there exists a Gaussian random variable w taking values in Cm(U) such that

√
ν(f

ν − Ef)−→
D

w.

Proof. Each f
ν

is a vector of continuous functions (f
ν

1 , . . . , f
ν

m). The conditions of the
theorem imply that for each j = 1, . . . ,m there is a Gaussian random variable in Cm(U)
with zero mean and covariance equal to cov fj , which we suggestively call wj , such that

√
ν(f

ν

j − Efj)−→
D

wj ;
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cf. [2], Theorem 7.17. It follows that the finite-dimensional distributions of wν :=
√

ν(f
ν−

Ef) converge to those of w, i.e. for all finite subsets {x1, . . . , xk} ⊂ U one has

(wν(x1), . . . ,wν(xk))−→
D

(w(x1), . . . ,w(xk)).

This determines the limit w, if it exists, uniquely as that in the statement of the theorem.
Thus by Prohorov’s Theorem (Billingsley [3] Theorem 6.1) it remains only to show that
the sequence {wν} is tight in Cm(U), i.e. for each ε > 0 there is a compact set A ⊂ Cm(U)
such that Pr{wν ∈ A} > 1 − ε for all sufficiently large ν. By adapting the argument
of [3], Theorem 8.2, for Cm(U) we find that the tightness of {wν} is equivalent to the
simultaneous satisfaction of the following two conditions:

(i) There exists x ∈ U such that for each η > 0 there is α ≥ 0 with

Pr{|wν(x)| > α} ≥ η, ∀ν ≥ 1.

(ii) For each positive ε and η there exist δ > 0 and an integer ν0 such that

Pr{ sup
(x−y)<δ

|wν(x)−wν(y)| ≥ ε} ≤ η, ∀ν ≥ ν0.

These conditions follow easily from the tightness of the coordinate sequences {wν
j } for

j = 1, . . . ,m since

Pr{|wν(x)| > α} ≤
m∑

j=1

Pr
{
|wν

j (x)| > α√
m

}
,

and similarly for the probability in condition (ii), and hence these can be made as small
as one pleases by application of conditions (i) and (ii) to the co-ordinate sequences. Thus
{wν} is tight, and the proof is complete.
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