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Although multistage decision problems will be treated in the later part of this paper,
the ideas will first be developed in the simplest case. Consider the 1-stage stochastic
optimization problem

(P) minimize F (x) :=
∑
s∈S

psf(x, s) over all x ∈ lRn,

where S is the set of possible realizations, i.e. scenarios, and is finite, ps is the probability
attached to scenario s, and f : lRn×S → lR is a cost function with the (usual) interpretation
that f(x, s) = ∞ means x is not a feasible solution under scenario s. We shall initially
be concerned with a method for finding an optimal solution to this reduced problem. The
method is based on the aggregation of solutions of individual scenario problems of the form

minimize fa(x, s) over all x ∈ lRn for fixed s ∈ S,

where fa is a perturbed version of f . The basic difference with the progressive hedging
algorithm [7, 9], which relies on a similar aggregation, is that the accent is placed on getting
better estimates of the dual variables associated with the nonanticipativity constraints.

1. Approximation Scheme

Let h : lRn → lR and suppose that h 6≡ ∞ and h ≥ −α1| · − x0|2 + α0 for some α1 ≥
0, x0 ∈ lRn and α0 ∈ lR i.e., h is quadratically bounded from below. For λ > 0 let

hλ(x) = inf
u

{
h(u) +

1
2λ

|x− u|2
}
, x ∈ lRn.

The function hλ is the Moreau-approximate (of index λ). For λ sufficiently small, hλ is a
finite-valued function [1]. In general it is subsmooth, and when h is convex, hλ is convex
and differentiable [1]. Moreover, as λ → 0 with λ > 0 not only does hλ converge pointwise
to h, i.e.,

hλ(x) → h(x) as λ → 0 for all x ∈ lRn,

it also hλ epi-converges to h, i.e., we also have that for all x ∈ lR

lim inf
λ→0

hλ(xλ) ≥ h(x) for all xλ → x.

In particular, epi-convergence means that if

xk ∈ argminhλk
for k = 1, 2, . . .
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for some sequence λk → 0 then every cluster point of the sequence {xk}∞k=1 minimizes h

[1], i.e.,
{ cluster points of {xk}} ⊂ argminh.

Returning to the stochastic optimization problem (P), we approximate it by the fol-
lowing class of problems with parameter λ > 0:

(Pλ) minimize Fλ(x) :=
∑
s∈S

psfλ(x, s) over all x ∈ lRn,

where the function
fλ(x, s) = inf

u

{
f(u, s) +

1
2λ
|x− u|2

}
is the Moreau-approximate to f with respect to the x-variable. All along, we are going
to assume that the functions f( · , s) for s ∈ S are minorized by the same quadratic form:
α0| · − x0| + α1 with α0 ≥ 0, x0 ∈ lRn, α1 ∈ lR. In practice this is not a significant
restriction. Note that the objective function Fλ in (Pλ) is not the Moreau-approximate
(with respect to the x-variable) of the (essential) objective function F in the stochastic
optimization problem (P). But we still have

Fλ(x) → F (x) for all x as λ → 0,

i.e., the approximations converge pointwise, and further that whenever xλ → x (as λ tends
to 0), then

lim inf
λ→0

Fλ(x) ≥ F (x),

as can readily be verified. This means that the (essential) objective functions for the ap-
proximating problems (Pλ) epi-converge to that of the given stochastic optimization prob-
lem (P). In turn, this implies that the optimal solutions to the approximating problems can
be accepted as approximate solutions to the given problem. Thus, if xk ∈ argmin

x
Fλk

(x)

for some parameter sequence λk → 0 (with λk > 0), and if xk → x̄, then x̄ ∈ argmin
x

F (x).

The overall plan is to solve the approximating problems (Pλ) and let λ → 0. In this
short note we shall be exclusively interested in finding a solution to (Pλ) for some λ > 0
sufficiently close to 0.

In the case of (Pλ), we are dealing with an optimization problem whose objective
function is finite-valued. Moreover, if the functions f( · , s) are convex, the functions fλ( · , s)
and Fλ are convex differentiable functions. In what follows, we are going to deal only with
the convex case, because it allows for a full exploitation of duality.
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2. A Duality Result

To come up with an appropriate dualization for the approximate problem, we consider
perturbations of the basic “constraint” requiring that x ∈ lRn be chosen in advance of the
scenario realization to occur, i.e. as a constant function of the variable s ∈ S. The problem
we get is

(Dλ), maximize Gλ(w) := −
∑
s∈S

psf
∗
λ(ws, s) subject to

∑
s∈S

psws = 0,

where w denotes a family {ws}s∈S of vectors in lRn. We show that this is dual to problem
(Pλ) in the sense that inf(Pλ) ≥ sup(Dλ), and if both problems admit optimal solutions
equality holds, i.e., inf(Pλ) = sup(Dλ). Here f∗λ is the conjugate function of fλ with
respect to the first variable (under Legendre-Fenchel transform of convex analysis),

f∗λ(w, s) := (fλ)∗(w, s) = sup
x∈lRn

{
wx− fλ(x, s)

}
.

Assuming that both (Pλ) and (Dλ) are feasible and that x̄ is a feasible solution to (Pλ)
and w̄ = {w̄s}s∈S is a feasible solution to (Dλ), we have

f∗λ(w̄s, s) ≥ w̄sx̄− fλ(x̄, s) for all s ∈ S

and consequently

−
∑
s∈S

psf
∗
λ(w̄s, s) + (

∑
s∈S

psw̄s)x̄ ≤
∑
s∈S

psfλ(x̄, s).

This translates to Gλ(w̄) ≤ Fλ(x̄), because
∑

s∈S psw̄s = 0 by the feasibility of w̄ in (Dλ).
Nothing more is needed to conclude that (inf Pλ) ≥ (supDλ) since if either problem is
infeasible the inequality is satisfied trivially.

We shall argue next that if both problems admit optimal solutions, then inf(Pλ) =
sup(Dλ). In doing so, however, we are going to proceed in a way that starts only by
assuming that (Pλ) is solvable.

Let x̄ be an optimal solution to (Pλ). Because the functions fλ( · , s) are differentiable,
so is the function Fλ =

∑
s∈S psfλ( · , s), and thus

0 = ∇Fλ(x̄) =
∑
s∈S

ps∇fλ(x̄, s).

Now, let
w̄s := ∇fλ(x̄, s) for each s ∈ S.
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Clearly, w := {w̄s}s∈S is a feasible solution of the dual problem (Dλ), since
∑

s∈S psw̄s = 0.
Moreover, from the definition of the conjugate function, along with the gradient inequality
for convex functions, which we express here as

fλ(x, s)− fλ(x̄, s) ≥ w̄s(x− x̄) for all x ∈ lRn,

we have −f∗λ(w̄s, s) = fλ(x̄, s)− w̄sx̄, and hence

−
∑
s∈S

psf
∗
λ(w̄s, s) =

∑
s∈S

psfλ(x̄, s), i.e., Gλ(w̄) = Fλ(x̄).

This completes the proof and shows at the same time that when (Pλ) is solvable, so is
(Dλ).

Before we pass on to the description of a solution procedure for (Dλ), let us note
that for any function h : lRn → lR and any λ > 0, the Moreau-approximate hλ defined in
Section 1 has as its conjugate the function

h∗λ = h∗ + (
1
2λ
| · |2)∗ = h∗ +

λ

2
| · |2.

Thus in general, the functions f∗λ(·, s) appearing in the dual problem (Dλ) are not neces-
sarily finite-valued. We also observe that h∗λ 6= (h∗)λ.

3. Solving the Dual Problem

The vectors ws in the dual problem (Dλ) can be interpreted as the marginal price vectors
associated with the nonanticipativity constraint that the decision x cannot depend on
foreknowledge of the scenario s. This has been elaborated in a series of papers [3, 5, 6,

8] and is now a well-understood theory. What is novel in our approach is that we plan to
solve the stochastic optimization problem by concentrating on finding “good” solutions to
the dual problem.

To obtain such solutions we rely on a technique introduced by Wolfe and Dantzig,
called generalized linear programming [2]. In our setting the method takes on the following
form. Let

ŵk = {ŵk
s}s∈S for k = 0, . . . , ν − 1

be a collection of dual elements (typically generated during the first ν steps of the proce-
dure) such that the system of linear relations

ν−1∑
k=0

βk(
∑
s∈S

psŵ
k
s ) = 0,

ν−1∑
k=0

βk = 1, βk ≥ 0,
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can be solved for the coefficients βk. (Initially, one could take ŵ0
s = 0 for all s, for instance.)

For k = 0, . . . , ν − 1 define

w̄k =
∑
s∈S

psŵ
k
s and αk =

∑
s∈S

psf
∗
λ(ŵk

s , s);

we shall return later to the calculation of these quantities.
We consider the following linear programming problem in the variables βk:

minimize
ν−1∑
k=0

βkαk

subject to
ν−1∑
k=0

βkw̄k = 0

ν−1∑
k=0

βk = 1

βk ≥ 0, k = 0, . . . , ν − 1.

With the condition that has been imposed on the choice of the vectors (ŵk
s , s ∈ S) we

know that this problem is feasible and bounded. Thus there exist multipliers (zν , θν) such
that

1. αk − zνw̄k − θν ≥ 0 for k = 0, . . . , ν − 1
2. θν = optimal value of the problem.

If we merely had to find the best solution to the dual problem when restricted to all
elements w = {ws}s∈S that can be obtained as a convex combination of the vectors ŵk

s for
s ∈ S, k = 0, . . . , ν−1, we would simply use as weights the values βk obtained as an optimal
solution to this linear program. The difficulty with accepting this convex combination as
the overall solution to (Dλ), however, is that the current collection of vectors ŵk

s may not
be rich enough.

If a new element ŵν = {ŵν
s}s∈S is going to be introduced the collection it should be

done in such a way that the resulting linear program (which would involve one additional
column) will yield an improved solution. Thus we should choose ŵν such that

αν − zνw̄ν − θν < 0,

where w̄ν =
∑

s∈S psŵ
ν
s and αν =

∑
s∈S psf

∗
λ(ŵν

s , s). Equivalently, we should find vectors
ŵν

s for s ∈ S such that ∑
s∈S

ps(f∗λ(ŵν
s , s)− zνŵν

s ) < θν .
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Such vectors exist, provided that∑
s∈S

ps inf
v
{f∗λ(v, s)− zνv} < θν .

Thus the search for ŵν = {ŵν
s}s∈S boils down to solving for each s ∈ S the optimization

subproblem

minimize f∗λ(v, s)− zνv, v ∈ lRn.

We are going to show next that the calculation of an optimal solution to this problem along
with the corresponding optimal value does not require a direct formula for the function
f∗λ . The optimal solution, once obtained, is the vector we choose for ŵν

s . If the dual
element ŵν = {ŵν

s}s∈S which is so obtained satisfies the desired condition, a new column
is introduced in the linear programming problem, after computing αν and w̄ν . We stop if
ŵν satisfies

αν − zνw̄ν ≥ θν .

In the latter case, with βo = (βo
0 , . . . , βo

ν−1) as the optimal solution of the linear program,
the vectors

wo
s =

ν−1∑
k=0

βo
k ŵk

s

furnish an optimal solution to (Dλ) while zν is an optimal solution to (Pλ); this follows
immediately from the relationship between (Pλ) and (Dλ).

It remains only to demonstrate that the construction of a solution to the subproblem

minimize f∗λ(v, s)− zνv over all v ∈ lRn

does not require an auxiliary formula for f∗λ(·, s). Indeed, one has

inf
y
{f∗λ(y, s)− zνy} = inf

y
sup

x
{(x− zν)y − fλ(x, s)}

= inf
y

sup
x

sup
u
{(x− zν)y − f(u, s)− 1

2λ
|x− u|2}

= inf
y

sup
u

{
sup

x
{(x− zν)y − 1

2λ
|x− u|2} − f(u, s)

}
= inf

y
sup

u

{
(λy + u− zν)y − 1

2λ
|λy + u− u|2 − f(u, s)

}
= inf

y
sup

u

{
(λ/2)|y|2 + (u− zν)y − f(u, s)

}
= sup

u
inf
y

{
(λ/2)|y|2 + (u− zν)y − f(u, s)

}
,
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where for the last equality we have used a minimax theorem [4, theorem 37.3]; we note
that the function in the final braces is concave (and lsc) in u, and that it is convex and
inf-compact in y. From this we get

inf
y
{f∗λ(y, s)− zνy} = sup

u

{λ

2
|λ−1(zν − u)|2 + (u− zν)λ−1(zν − u)− f(u, s)

}
= − inf

u

{
f(u, s) +

1
2λ
|zν − u|2

}
.

Therefore, with

uν
s ∈ argmin

u

{
f(u, s) +

1
2λ
|zν − u|2

}
,

we set

ŵν
s = λ−1(zν − uν

s ),

and

αν
s = zνŵν

s − f(zν − λŵν
s , s)− λ

2
|ŵν

s |2.

4. Summary of the Algorithm

We now review the operations involved in the procedure, skipping the justification that
passes through f∗λ(·, s).

Step 0. Initialize by setting ν = 1 picking {ŵ0
s}s∈S in such a way that the vector w̄0 :=∑

psŵ
0
s is 0, and α0 =

∑
s∈S ps[λ/2|ŵ0

s |2 + supu(ŵ0
su− f(u, s))].

Step 1. Find an optimal solution to the linear programming problem

min
β

ν−1∑
k=0

βkαk

subject to
ν−1∑
k=0

βkw̄k = 0,

ν−1∑
k=0

βk = 1,

βk ≥ 0, k = 0, . . . , ν − 1.

Let (zν , θν) ∈ lRn+1 be the multipliers obtained as the solution to the corre-
sponding dual linear programming problem (namely, minimize −θ subject to
θ ≥ w̄kz − αk for k = 0, . . . , ν − 1).



8

Step 2. For each s ∈ S let

uν
s ∈ argmin

u

{
f(u, s) +

1
2λ
|zν − u|2

}
ŵν

s = λ−1(zν − uν
s ), w̄ν = λ−1

∑
s∈S

ps(zν − uν
s ),

αν
s = zνŵν

s − f(zν − λŵν
s , s)− λ

2
|ŵν

s |2, αν =
∑
s∈S

psα
ν
s .

Step 3. If αν < w̄νzν + θν return to Step 1 with the counter ν increased by 1.
If αν ≥ w̄νzν + θν the problem is solved; zν is the optimal solution.

In Step 3, if λ is not small enough, and w̄νzν + θν ≤ αν one may consider adjusting λ,
recalculating the coefficients αk, k = 0, . . . , ν − 1 and restarting at Step 1. In view of the
formula for the f∗λ (at the end of section 2), only minor calculations will be necessary to
adjust the coefficients of the linear program in Step 1 when passing from λ to a new λ′ > λ.
Indeed

αk
s (λ′)− αk

s = f∗λ′(ŵν
s , s)− f∗λ(ŵν

s , s)

= f∗(ŵν
s , s) +

λ′

2
|ŵν

s |2 − f∗(ŵν
s , s)− λ

2
|ŵν

s |2

=
λ′ − λ

2
|ŵν

s |2.

If the strategy is to work first with a large value for λ, to be decreased later on, Step
3 would have to consider readjusting λ on the basis of the difference between αν and
w̄νzν + θν .

This approach can also be viewed as a “cutting” plane method. To see this simply
note that the rows of the dual of the linear program to be solved in Step 1 determine affine
functions majorized by Fλ.
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5. The Multistage Case

Let x = (x1, . . . , xT ) with xt ∈ lRnt correspond to the sequence of decisions to be made in
stage t with t = 1, . . . , T . Denote by

→
x t = (x1, . . . , xt) for t ≤ T

the subvector that corresponds to the decisions to be made up to time t. Similarly, let
s = (s1, . . . , sT ) denote a scenario with component st ∈ lRNt symbolizing the events
associated with the t-th stage, i.e., st is observed after xt is selected. Let

→
s t = (s1, . . . , st) for t ≤ T.

Because a decision at state t can only depend on the information available, xt can only
depend on →

s t−1 and not on future events, not even those revealed during period t. We
shall express this in the following fashion: we consider xt as function of s, i.e.,

xt(·) : S → lRnt

and demand that

xt(s) = (Et−1xt)(s) := E{xt|
→
s t−1} for all s ∈ S

where E{·
∣∣ ·} denotes conditional expectation.

Let J be the operator that takes a decision mapping x : S × . . .×S → lRn aggregates
it into a decision mapping that satisfies the preceding condition of nonanticipativity:

Jx = (E0x1, E
1x2, . . . , E

t−1xt, . . . , E
T−1xT )

with E0 = E denoting the usual expectation. We can formulate the multistage stochastic
programming problem as follows:

minimize
∑
s∈S

psf(x(s), s),

subject to xt(·) = E{xt

∣∣ →
s t−1}(·), t = 1, . . . , T,

or equivalently
minimize

∑
s∈S

psf(x(s), s),

subject to x(·) = Jx(·).



10

We note that J is a projection operator; in particular J2x = Jx.
From this point on, the approach is similar to the one we followed for the 1-stage

model. The given problem is replaced by an approximate one involving the parameter
value λ > 0,

minimize
∑
s∈S

psfλ(x(s), s)

subject to x = Jx.

The dual of this problem is then shown to be

maximize −
∑
s∈S

psf
∗
λ(w(s), s)

subject to Jw = 0;

the constraint Jw = 0 is equivalent to Et−1wt = 0 for t = 1, . . . , T . This problem is now
solved by the method of generalized linear programming as for the 1-stage model, the only
change being in the structure of the linear program that occurs in Step 1.

6. Algorithm for the Multistage Problem

The justification given for the 1-stage case still applies, but we shall later provide some
details in connection with Step 2. A value of λ > 0 must be selected in advance; here we
are not discussing the iterative adjustment of this parameter, the comments at the end of
section 4 remain valid.

Step 0. Initialize by setting ν = 1 and picking {ŵ0
s}s∈S such that Jŵ0 = 0. Calculate

w̄0(s) = (Jŵ0)(s) for each s ∈ S, and set α0 =
∑

s∈S ps[λ/2|ŵ0
s |2 + supu(ŵ0

su −
f(u, s))].

Step 1. Find an optimal solution to the linear programming problem

minimize
ν−1∑
k=0

βkαk

subject to
ν−1∑
k=0

βkw̄k(s) = 0, s ∈ S

ν−1∑
k=0

βk = 1

βk ≥ 0, k = 0, . . . , ν − 1.

Let zν(s) for s ∈ S and θν be the associated multipliers.



11

Step 2. For each s ∈ S take

uν(s) ∈ argmin
u

{
f(u, s) +

1
2λ
|zν(s)− u|2

}
wν(s) := λ−1(zν(s)− uν(s)),

αν(s) := −f(uν(s), s)− (1/2λ)|zν(s)− uν(s)|2 + zν(s)wν(s),

w̄ν
t (s) := (Et−1wt)(s), t = 1, . . . , T ; s ∈ S,

αν :=
∑
s∈S

psαν(s).

Step 3. If αν <
∑

s∈S zν(s)w̄ν(s) + θν return to Step 1 with counter ν increased by 1.
Otherwise, stop; zν is the optimal solution.

7. Justification of the Multistage Version

As for the 1-stage model, the linear program formulated in Step 1 of the algorithm is an
inner approximation of the dual problem (up to a sign change for the objective value). Step
2 corresponds to the construction of a new column for this linear program which would
enable us to get a better solution to its dual problem. Thus, we are looking for

{w(s)}s∈S with ᾱ =
∑
s∈S

psf
∗
λ(w(s), s), w̄ = Jw,

such that

ᾱ−
∑
s∈S

zν(s)w̄(s) < θν ,

or equivalently, for a dual element {w(s)}s∈S such that

∑
s∈S

psf
∗
λ(w(s), s)−

T∑
t=1

∑
s∈S

zν
t (s)E

{
wt

∣∣ →
s t−1

}
(s) < θν ,

which can also be written as∑
s∈S

ps

{
f∗λ(w(s), s)− zν(s)w(s)

}
< θν .

From this point on, the analysis is the same as that for the 1-stage case.
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8. Comments

The linear program to be solved in Step 1 of the algorithm for the multistage problem is
much larger than in the 1-stage case. It involves a large number of columns: (ν× |S|) with
|S| = cardinality of S. By exploiting the properties of J , we see that this linear program
can be substantially simplified.

As formulated, the constraints of the linear program in Step 1 are

ν−1∑
k=0

βk = 1, βk ≥ 0, k = 0, . . . , ν − 1,

and
ν−1∑
k=0

βkw̄k
t (s) = 0, t = 1, . . . , T, s ∈ S,

with

w̄k
t (s) ∈ lRnt .

However for all t, we have

w̄k
t (s) = w̄k

t (s′) if →
s t−1 =

→
s′ t−1

as follows from the definition of J . For all t = 1, . . . , T−1, the S equations
∑ν−1

k=0 βkw̄k
t (s) =

0, s ∈ S can be replaced by a much smaller number of equations. In fact, it suffices to have
1 equation for each element in the partition of S that will represent all s that have the

same “past”, i.e., for given →
s t−1, all s′ such that

→
s′ t−1 = →

s t−1. This means that when
t = 1 only 1 equation (instead of |S| equations) is needed, since we have w̄k

1 (s) = w̄k
1 (s′)

for all s, s′ ∈ S. For t = 2, one only needs to include as many equations as there are
different realizations of s1, and so on. Note that the resulting zν will automatically satisfy
the nonanticipativity condition.
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