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1. Introduction.

Any optimization problem in IRn can be formulated in terms of minimizing an ex-
tended real-valued function f over all of IRn. For instance if the given task is to minimize
a function f0 : IRn → IR over a set C ⊂ IRn, one can take f(x) = f0(x) for x ∈ C but
f(x) = ∞ for x /∈ C. Then f is called the essential objective function for the problem.
In general, when minimizing a function f : IRn → IR := IR ∪ {±∞} the effective domain
dom f :=

{
x

∣∣ f(x) < ∞
}

represents the feasible solutions under consideration.
A central case is that of composite optimization, where f can be expressed as f =

g◦F for a smooth mapping F : IRn → IRm and a lower semicontinuous, proper, convex
function g : IRm → IR. Then dom f = F−1(dom g). A vast class of problems can be
perceived as having this form, and results about generalized derivatives of f in a context
of nonsmooth analysis can accordingly be applied to characterize optimal solutions. The
study of perturbations of optimal solutions benefits from such an approach as well, since
the notion of an optimization problem in x ∈ IRn dependent on a parameter vector u ∈ IRd

can be identified with that of an extended-real-valued function of (u, x) ∈ IRd × IRn.
The goal of this paper is the derivation of some calculus rules for working in this con-

text. These rules concern first- and second-order epi-derivatives, as introduced in Rock-
afellar [1] and developed further in Rockafellar [2],[3],[4], Cominetti [5], Do [6], Poliquin
[7],[8], and Poliquin and Rockafellar [9]. A lower semicontinuous function f : IRn → IR is
said to be epi-differentiable at a point x where f(x) is finite if the first-order difference
quotient functions ∆x,tf : IRn → IR defined by

∆x,tf(ξ) =
[
f(x + tξ)− f(x)

]
/t for t > 0

epi-converge as t↘0, the limit being a proper function (somewhere finite, nowhere −∞).
This limit is then the epi-derivative function f ′x. Epi-convergence refers to the convergence
of the epigraphs of the functions in question as subsets of IRn × IR.

Similarly, f is twice epi-differentiable at x relative to a vector v ∈ IRn if it is epi-
differentiable at x and the second-order difference quotient functions ∆2

x,v,tf : IRn → IR

defined by
∆2

x,v,tf(ξ) =
[
f(x + tξ)− f(x)− t〈v, x〉

]
/ 1

2 t2 for t > 0

epi-converge to a proper function as t↘0. The limit function is then the second-order
epi-derivative, denoted by f ′′x,v(ξ).

Optimality conditions that mimic the classical ones for a smooth function can readily
be stated for a twice epi-differentiable function f , as observed in Rockafellar [2, Thm. 2.2].

Necessary conditions: If x̄ furnishes a local minimum of f , then f ′x(ξ) ≥ 0 for all ξ and
f ′′x,0(ξ) ≥ 0 for all ξ.
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Sufficient conditions: If x̄ is a point where f ′x(ξ) ≥ 0 for all ξ and f ′′x,0(ξ) > 0 for all
ξ 6= 0, then x̄ furnishes a local minimum of f in the strong sense.

These conditions are quite simple in nature but broad in applications. Although simi-
lar conditions can be brought to fruition under weaker restrictions on f than twice epi-
differentiability, as developed recently by Ioffe [10] with only semiconvergence in the epi-
graphical sense, most of the functions typically arising as essential objectives in finite-
dimensional optimization actually do happen to be twice epi-differentiable. This has been
demonstrated in Rockafellar [2] along with the fact that the standard kinds of optimality
conditions, and many more properties as well, then follow from the specific form taken
by the epi-derivatives in such cases. Likewise, epi-differentiation leads to a strong and
versatile framework for the sensitivity analysis of solutions to problems of optimization
[4],[9].

It is important therefore to ascertain as far as possible whether a function is once
or twice epi-differentiable, and if so, what the derivatives are. The chief tool so far has
been a chain rule established in Rockafellar [1] and supplemented by duality relations in
Rockafellar [3] (for generalizations see Cominetti [5] and Do [6]). The effectiveness of a
chain rule approach, as evidenced already in the papers cited, leads us to define two classes
of functions according to the availability of local composite representations. We then work
out a calculus within these classes, showing at the same time how the classes are preserved
under various operations.

2. Amenable Functions

The idea of specifying a class of functions through the existence of certain composite rep-
resentations is new to nonsmooth analysis but long familiar in other areas of mathematics,
such as the theory of differentiable manifolds. In employing it here, our aim is to capture
local aspects of convexity and smoothness which activate a sharper form of subdifferential
calculus.

Definition 2.1. A function f : IRn → IR will be called amenable at x̄, a point where f(x̄)
is finite, if on some open neighborhood V of x̄ there is a C1 mapping F : V → IRm and a

proper, lower semicontinuous, convex function g : IRm → IR such that f(x) = g
(
F (x)

)
for

x ∈ V and

there is no y 6= 0 in N
(
F (x̄)|dom g

)
with ∇F (x̄)∗y = 0. (2.1)

Here ∇F (x̄) denotes the m×n Jacobian matrix of F at x̄, and ∇F (x̄)∗ is its transpose.
Further, N

(
F (x̄)|dom g

)
is the normal cone to the nonempty convex set dom g at the point

F (x̄). It is appropriate to view (2.1) as a local constraint qualification for the condition
F (x) ∈ dom g, which locally around x̄ describes the elements of dom f , cf. [1],[2]. In terms
of the tangent cone T

(
F (x̄)|dom g

)
to dom g at F (x̄), which is polar to the normal cone
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N
(
F (x̄)|dom g

)
, the constraint qualification (2.1) can be written equivalently as

∇F (x̄) IRn + T
(
F (x̄)|dom g

)
= IRm,

where ∇F (x̄) IRn denotes the set of all vectors of the form ∇F (x̄)w with w ∈ IRn. (This is
because the vectors y belonging to the convex cone polar to ∇F (x̄) IRn + T

(
F (x̄)|dom g

)
are precisely the ones in N

(
F (x̄)|dom g

)
satisfying ∇F (x̄)∗y = 0. A convex cone in IRm

is equal to all of IRm if and only if its polar consists of just the zero vector.)
A special case of amenability is encountered when m = n and F is a smooth mapping

with nonsingular Jacobian, giving a local change of coordinates. The constraint qualifica-
tion (2.1) holds trivially in that case. The realm of amenable functions thus includes all
functions that would be lower semicontinuous, proper, convex functions “except for a poor
choice of coordinates,” or in other words, all curvilinear distortions of convex functions
(and their effective domains). That notion falls short of conveying the essence of the class,
however, because many functions that exhibit amenability do not appear to fit this picture
(cf. the examples given below).

For the study of second-order properties, a refinement of amenability is useful.

Definition 2.2. A function f : IRn → IR will be called fully amenable at x̄ if the conditions

in the preceding definition can be satisfied with the extra stipulation that F is a C2 mapping

and g is piecewise linear-quadratic (convex). The latter means that dom g can be expressed

as the union of a finite collection of polyhedral (convex) sets, on each of which g is given

by a polynomial function with no terms higher than degree two.

Examples of piecewise linear-quadratic (convex) functions g are polyhedral functions
(having polyhedral epigraph), such as the indicator function δC and support function σC

of a polyhedral set C. The convex function 1
2d2

C , where dC gives the distance to such a
set, is piecewise linear-quadratic although not polyhedral. A convex function is piecewise
linear-quadratic if and only if its subdifferential mapping is polyhedral in the sense of
Robinson [11], i.e., has a union of finitely many polyhedral sets as its graph, cf. Sun [12].
Therefore, the conjugate of a convex, piecewise linear-quadratic function is again piecewise
linear-quadratic.

To appreciate the breadth of the classes specified in Definitions 2.1 and 2.2, it is
important to understand that a given function f need not come already supplied with
a composite representation of one of the types indicated, in order to be eligible for con-
sideration. We only have to know that such a representation can be devised, at least
locally.

Example 2.3. Any lower semicontinuous, proper, convex function f is amenable at all

points in dom f . Any convex, piecewise linear-quadratic function f is fully amenable at

all points in dom f .

3



Here the mapping F in Definitions 2.1 and 2.2 can be taken to be the identity.

Example 2.4. Any C1 function f is everywhere amenable, whereas any C2 function f is

everywhere fully amenable.

This is the case where m = 1 in Definitions 2.1 and 2.2, and g(w) = w.

Example 2.5. If f = max{f1, . . . , fm} for a family of C1 functions fi : IRn → IR, then f

is everywhere amenable. If each fi is C2, f is everywhere fully amenable.

Obtain this example by taking F (x) =
(
f1(x), . . . , fm(x)

)
along with g(w1, . . . , wm) =

max{w1, . . . , wm}. The function g is polyhedral.
A geometric side to amenability is reflected in a specialization to indicator functions,

which provides further examples to which our calculus will be directed.

Definition 2.6. A set C ⊂ IR will be called amenable at a point x̄ ∈ C, if its indicator

function δC is amenable at x̄, or in other words, if for some open neighborhood V of

x̄ there is a C1 mapping F : V → IRm and a closed, convex set D ⊂ IRm such that

V ∩ C =
{
x ∈ V

∣∣ F (x) ∈ D
}

and

there is no y 6= 0 in N
(
F (x̄)|D

)
with ∇F (x̄)∗y = 0. (2.2)

Similarly, C is fully amenable at x̄ if δC is fully amenable at x̄, which means that the

condition on F and D can be satisfied with F a C2 mapping and D a polyhedral set.

Again, the constraint qualification can be written in terms of tangents instead of
normals: (2.2) is equivalent to

∇F (x̄) IRn + T
(
F (x̄)|C

)
= IRm.

Example 2.7. Any closed, convex set C is amenable at all of its points. Any polyhedral

set C is fully amenable at all of its points. (More generally, C is fully amenable at x̄ if

there is a polyhedral neighborhood V of x̄ such that C ∩ V is polyhedral.)

Example 2.8. Let the set C ⊂ IRn be given by a system of finitely many constraints

fi(x) ≤ 0 for i = 1, . . . , s, fi(x) = 0 for i = s + 1, . . . ,m, (2.3)

involving C1 functions fi : IRn → IR. For C to be amenable at a point x̄ ∈ C, it is necessary

and sufficient that the Mangasarian-Fromovitz constraint qualification be satisfied at x̄.

In the case of C2 functions fi, the same criterion gives full amenability.

Here let F (x) =
(
f1(x), . . . , fm(x)

)
and let D be the polyhedral set in IRm consisting

of all w = (w1, . . . , wm) such that wi ≤ 0 for i = 1, . . . , s but wi = 0 for i = s + 1, . . . ,m.
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One has x̄ ∈ C if and only if F (x̄) ∈ D, and then the cone N
(
F (x̄)|D

)
consists of the

vectors y = (y1, . . . , ym) such that yi ≥ 0 for i ∈ [1, s] with fi(x̄) = 0, but yi = 0 for
i ∈ [1, s] with fi(x̄) < 0; yi can be anything for i ∈ [s+1,m]. Condition (2.2) requires that
there be no vector of this type such that

∑m
i=1 yi∇fi(x̄) = 0, except for y = (0, . . . , 0).

This is well known as the equivalent dual form of the Mangasarian-Fromovitz constraint
qualification.

The calculus rules in Section 3 will show how these primitive examples of amenability
can be combined into others through addition, composition and further operations. In the
present section the aim is to record the consequences of amenability which inspire such
calculus.

We shall need to refer to subgradients not only of convex functions but nonconvex
functions. There are several routes that can be taken in defining subgradients in the
nonconvex case, but they all arrive at the same place as far as amenable functions are
concerned, as will be seen. For the purpose at hand we rely on the formulation of Clarke
[13], [14], which we now review to the basic extent needed.

The Clarke normal cone to a set C ⊂ IRn at a point x̄ ∈ C is the closed convex hull
of the cone consisting of the zero vector and all the vectors v for which there exists a
sequence of points xν /∈ cl C (with ν = 1, 2, . . .) having nearest point projections x̄ν ∈ cl C
with x̄ν → x̄, such that λν(xν − x̄ν) → v for some choice of scalars λν > 0 (cf. [13, section
2.4]). This cone is denoted here by N(x̄|C) rather than NC(x̄) to facilitate the treatment
of sets with complicated labels like dom f . When C is convex, N(x̄|C) agrees with the
normal cone in the sense of convex analysis to which we have already referred.

The set C is Clarke regular (tangentially regular) at x̄ if C is closed relative to some
neighborhood of x̄ and the cone polar to N(x̄|C), which is the Clarke tangent cone T (x̄|C),
coincides with contingent cone (the Bouligand contingent cone) to C at x̄ (cf. [13, p. 55]).
This means that the vectors in N(x̄|C) are precisely the vectors v such that

〈v, x− x̄〉 ≤ o(x− x̄) for x ∈ C.

Many common types of sets are known to be Clarke regular, for instance convex sets and
smooth manifolds, as well as sets defined by nice constraints as in Example 2.8 (cf. [13,
pp. 55–59]).

For a function f : IRn → IR these geometric notions are applied to the epigraph
epi f =

{
(x, α) ∈ IRn × IR

∣∣ α ≥ f(x)
}
. A vector v ∈ IRn is a subgradient (generalized

gradient) of f at x̄, if f(x̄) is finite and (v,−1) belongs to the normal cone N
(
x̄, f(x̄)

∣∣ epi f
)
.

It is a horizon subgradient (singular subgradient) if instead (v, 0) belongs to this normal
cone. These conditions are denoted by v ∈ ∂f(x̄) and v ∈ ∂∞f(x̄), respectively. Again, the
general concept reduces to the familiar one of convex analysis when f is convex. When
f = δC one has ∂f(x̄) = ∂∞f(x̄) = N(x̄|C).
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The function f is Clarke regular at x̄ if the set epi f is Clarke regular at
(
x̄, f(x̄)

)
. In

that event the vectors v ∈ ∂f(x̄) are the vectors satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(x− x̄).

Convex functions and smooth functions, in particular, are Clarke regular. This property
is of strong interest in nonsmooth analysis because of its simplifying effect on various
formulas for subgradients, and many other examples of Clarke regular functions are known
in consequence of the theory of such formulas, cf. Clarke [13, pp. 59–61 and section 2.9].

The following theorem extracts from the results in Rockafellar [1][15] and Poliquin [7]
the main implications for amenability as well as Clarke regularity. In this we recall from
Rockafellar [16] that the set-valued mapping ∂f : IRn →→ IRn is proto-differentiable at x

relative to the element v ∈ ∂f(x) if the (set-valued) difference quotient mappings(
∆x,v,t∂f

)
(ξ) =

[
∂f(x + tξ)− v

]/
t

graph-converge as t↘0. If so, the limit mapping is denoted by (∂f)′x,v and called the
proto-derivative. (It assigns to each ξ ∈ IRn a subset (∂f)′x,v(ξ) of IRn, which could be
empty.)

Theorem 2.9. If f is amenable at x̄, then f is both epi-differentiable and Clarke regular

at x̄ with

∂f(x̄) =
{

v
∣∣ 〈v, ξ〉 ≤ f ′x̄(ξ) for all ξ

}
, ∂

∞
f(x̄) = N(x̄|dom f),

f ′x̄(ξ) = sup
{
〈v, ξ〉

∣∣ v ∈ ∂f(x̄)
}
, dom f ′x̄ = T (x̄|dom f).

(2.4)

If f is fully amenable at x̄, it is in fact twice epi-differentiable there relative to every

v ∈ ∂f(x̄) (but not relative to any v /∈ ∂f(x̄)). Moreover, the subgradient mapping ∂f is

then proto-differentiable at x̄ relative to every v ∈ ∂f(x̄), with

(∂f)′x̄,v(ξ) = ∂
( 1

2f ′′x̄,v

)
(ξ) for all ξ. (2.5)

Proof. The first-order properties are based on the composite representation in Definitions
2.1 and 2.2 along with the chain rule in [15, Prop. 2.2]. The properties of second-order
epi-differentiability are based similarly on the chain rule in Rockafellar [1, Theorem 4.5].
The proto-differentiability of ∂f was established by Poliquin [7].

Formula (2.5) relating the proto-derivative of the subgradient mapping to the sub-
gradients of the second-order epi-derivative was first established in the convex case by
Rockafellar [3]. The formula was later extended to the setting of Theorem 2.9 by Poliquin
[7], and recently, by Poliquin [8], to the setting of the composition of an arbitrary lower
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semicontinuous convex function and a C2 mapping with the constraint qualification (2.1).
Formula (2.5) has tremendous applications to the study of perturbations of optimal solu-
tions and associated multipliers in parametric optimization. In the setting of parametric
optimization the formula is used to show that the proto-derivatives of the solution map-
ping can be obtained as primal and dual pairs for an auxiliary derivative problem; see
Rockafellar [4] and Poliquin and Rockafellar [9].

In the case of an indicator function f = δC , the first- and second-order epi-derivatives
in Theorem 2.9 provide information about the local structure of C at x̄. But while the
first-derivative function is itself an indicator function (namely, for the tangent cone to C

at x̄), the second-derivative function is not an indicator, except in special circumstances
such as C being polyhedral. Instead it provides a functional description of the “curvature”
properties of C at x̄.

Relative to a specific representation f = g◦F , the epi-derivatives, normal vectors and
subgradients in Theorem 2.9 come out according to [1, Theorem 4.5] as given by

∂f(x̄) = ∇F (x̄)∗∂g
(
F (x̄)

)
,

N(x̄|dom f) = ∇F (x̄)∗N
(
F (x̄)|dom g

)
,

f ′x̄(ξ) = g′F (x̄)(∇F (x̄)ξ),

f ′′x̄,v(ξ) = max
y∈Y (x̄,v)

{
g′′F (x̄),y

(
∇F (x̄)ξ

)
+

〈
ξ,∇2〈y, F 〉(x̄)ξ

〉}
.

(2.6)

Here we refer to

Y (x̄, v) =
{

y
∣∣ y ∈ ∂g

(
F (x̄)

)
with ∇F (x̄)∗y = v

}
,

and to the function

〈y, F 〉 : IRn → IR with 〈y, F 〉(x) :=
〈
y, F (x)

〉
(where y ∈ IRm).

Actually the maximum in the second-order formula in (2.6) may be taken over ext Y (x̄, v)
i.e., the set of extreme points of Y (x̄, v).

An immediate consequence of the first-order formula in (2.6) is that in the case of a
fully amenable function f, the set of subgradients of f at x̄ is a polyhedral set, and the
epi-derivative f ′x is a piecewise linear positively homogeneous (of degree 1) convex function.
An important feature of the second-order formula in (2.6) is that the maximum is over a
finite set (because Y (x̄, v) is a polyhedral set); other features of the second-order formula
are identified below.

In the second-derivative formula in (2.6) the function g is of course piecewise linear-
quadratic. Then, according to [1, Theorem 3.1], whenever y ∈ ∂g(u) one actually has

g′′u,y(ω) = limt↘ 0

[
g(u + tω)− g(u)− t〈ω, y〉

]
/ 1

2 t2

=
{

limt↘ 0

[
g(u + tω)− g(u)− tg′u(ω)

]
/ 1

2 t2 if 〈ω, y〉 = g′u(ω),
∞ if 〈ω, y〉 < g′u(ω).

(2.7)
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It follows from (2.7) that

dom f ′′x̄,v =
{

ξ ∈ dom f ′x
∣∣ f ′x(ξ) = 〈v, ξ〉

}
.

The second-order formula in (2.6) is written differently than the one in [1, Theorem 4.5];
the reason for presenting it in this form is apparent from the chain rule formula in Theorem
3.5. The formulas are of course equal because for any y ∈ Y (x̄, v)

〈∇F (x̄)ξ, y〉 = 〈ξ,∇F (x̄)∗y〉 = 〈ξ, v〉,

It follows (by combining the second-order formula in (2.6) with (2.7)) that for any ȳ ∈
Y (x̄, v)

f ′′x̄,v(ξ) = g′′F (x̄),ȳ

(
∇F (x̄)ξ

)
+ max

y∈ext Y (x̄,v)

{〈
ξ,∇2〈y, F 〉(x̄)ξ

〉}
. (2.8)

By adding and subtracting λ‖ξ‖2 to f ′′x̄,v(ξ), where λ is chosen so that for any y ∈
ext Y (x̄, v) the function

〈
ξ,∇2〈y, F 〉(x̄)ξ

〉
+ λ‖ξ‖2 is convex, and because the maximum

of finitely many purely quadratic functions is piecewise linear-quadratic, we have the fol-
lowing characterization: The second-order epi-derivative of a fully amenable function is
the sum of a piecewise linear-quadratic convex function homogeneous of degree 2 and a
quadratic function. By using formula (2.5) we have the following subgradient version: The
proto-derivative of the subgradient mapping of a fully amenable function is the sum of a
polyhedral (in the sense of Robinson) homogeneous piecewise linear maximal monotone
set-valued mapping and a symmetric linear transformation.

Proposition 2.10. If f is fully amenable as in Definition 2.2 and f = g◦F is a local

representation around x̄ in the sense required in that definition, then

(∂f)′x̄,v(ξ) = co
{
∇F (x̄)∗(∂g)′F (x̄),y

(
∇F (x̄)ξ

)
+∇2〈y, F 〉(x̄)ξ

∣∣ y ∈ ext M(x̄, v, ξ)
}

=
⋃

y∈M(x̄,v,ξ)

{
∇F (x̄)∗(∂g)′F (x̄),y

(
∇F (x̄)ξ

)
+∇2〈y, F 〉(x̄)ξ

}
,

where M(x̄, v, ξ) denotes the set of vectors y furnishing the maximum in the second-

derivative formula in (2.6).

Proof. To obtain the proto-derivative of the subgradient mapping all we need to do,
according to (2.5), is evaluate the subgradient of the second-order epi-derivative. According
to formula (2.8) and the calculus for the maximum over a compact set of quadratic functions
(see Clarke [13]), we need only show that for any y ∈ Y (x̄, v) we have

∂
(
g′′F (x̄),y ◦ ∇F (x̄)

)
(ξ) = ∇F (x̄)∗∂g′′F (x̄),y(∇F (x̄)ξ). (2.9)
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To show (2.9) first notice that (trivially)(
g′′F (x̄),y ◦ ∇F (x̄)

)′
ξ
(ξ′) =

(
g′′F (x̄),y

)′
∇F (x̄)ξ

(∇F (x̄)ξ′). (2.10)

Because the expression on the right of (2.10) is a lower semicontinuous function of ξ′, the
same can be said of the expression on the left of (2.10). This last remark enables us to
show (2.9) because the closure of the directional derivative of a convex function is the
support function of its subdifferential; see Rockafellar [17].

Although amenability may seem to be a condition focused on a single point at a time, it
is truly a local condition around a point, as established by the next theorem. Amenability
is therefore a much stronger condition than Clarke regularity, since a function—even one
that is Lipschitz continuous—can be Clarke regular almost everywhere and yet fail to be
Clarke regular on a dense set of points. This fact adds further motivation to the search
for criteria for verifying amenability.

It also deserves to be noted that for functions f that are Clarke regular at x̄, but not
amenable there, the horizon subgradient set ∂∞f(x̄) need not reduce to the normal cone
N(x̄|dom f) as it does in Theorem 2.9. A simple example is the function f : IR → IR

defined by f(x) = 1 when x > 0, f(x) = 0 with x ≤ 0. At x̄ = 0 one has ∂∞f(x̄) = IR+

but N(x̄|dom f) = {0}.

Theorem 2.11. If a function f is amenable at x̄, there is a neighborhood U of x̄ such

that f is lower semicontinuous relative to U and amenable at all points x ∈ U ∩ dom f . In

addition,

gph ∂f and gph N
(
·
∣∣ dom f

)
are closed relative to (U ∩ dom f)× IRn.

Likewise, if a set C is amenable at x̄, there is a neighborhood U of x̄ such that C is closed

relative to U and amenable at all points of U ∩ C. In addition,

gphN
(
·
∣∣C)

is closed relative to (U ∩ C)× IRn.

All these assertions are valid also for full amenability.

Proof. If f = g◦F on a neighborhood of x̄ in the pattern of Definition 2.1, it is clear that
f is lower semicontinuous on some neighborhood and therefore bounded away from −∞
on some neighborhood, since f(x̄) is finite. The issue is whether condition (2.1) must carry
over to all points of dom f sufficiently near to x̄. If not, there would be a sequence xν → x̄

along with nonzero vectors yν ∈ N
(
F (xν)

∣∣ dom g
)

such that ∇F (xν)∗yν = 0. By passing
to the vectors yν/|yν | (which still satisfy the same condition) and extracting a subsequence,
we can suppose that yν converges to some y, where |y| = 1. Then 0 6= y ∈ ∂g(x̄), because
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the graph of the subdifferential mapping associated with a lower semicontinuous, proper,
convex function is closed [17,Theorem 24.4]. At the same time we have ∇F (x̄)∗y = 0 by
the continuity of the first derivatives of F . This situation would contradict the amenability
of f at x̄.

The fact that gph ∂f is closed relative to (U∩dom f)×IRn follows from the first-order
formula in (2.6) and the constraint qualification (2.1), with appeal again to the closedness of
gph g. Likewise one obtains the closedness of gphN

(
·
∣∣ dom f

)
relative to (U∩dom f)×IRn:

although dom f might not itself be closed, because the convex set dom g might not be
closed, one can rely on the fact that (by convexity) N

(
u|dom g) = N

(
u| cl dom g) when

u ∈ dom g, where the set gphN
(
· | cl dom g) is closed.

The claims in the case of a set C can be established similarly, or simply by specializing
f to δC . For full amenability, no additional arguments are needed.

3. Calculus Rules

Criteria for the preservation of Clarke regularity under various constructions applied to
sets and functions have long been known and can be found in Clarke [13] and Borwein and
Ward [18] as well as earlier work of Clarke [19] and Rockafellar [20]. Although amenability
is a distinctly stronger property than Clarke regularity, the criteria for its preservation
follow a similar pattern. From this standpoint the reader should see the first-order results
in the following theorems essentially as observations that known theory has systematically
sharper consequences than understood before, when applied in a more select yet very
common situation.

The second-order results, on the other hand, have a different scope than anything
previously offered through the strong properties in Theorem 2.9. For results on the calculus
of other kinds of generalized second derivatives in nonsmooth analysis, we refer to Hiriart-
Urruty [21], Hiriart-Urruty and Seeger [22], Cominetti and Correa [23], and Ioffe [10][24].

It is well to note at the outset that rules one might think would be easy to establish
directly from the definitions of epi-derivatives actually present serious technical hurdles.
This is due to the reliance of the amenability definitions on epi-convergence instead of
pointwise convergence of functions. For instance, when two function sequences {fν

1 } and
{fν

2 } epi-converge to f1 and f2, respectively, it does not immediately follow that {fν
1 +fν

2 }
epi-converges to f1 + f2. Conditions implying this are known for convex functions, cf.
McLinden and Bergstrom [25], but not in any simple way for nonconvex functions, apart
from some cases where epi-convergence can be seen to reduce to pointwise convergence.

Theorem 3.1 (addition rule). Assume the functions fi : IRn → IR for i = 1, . . . ,m are

amenable at x̄ and such that

if v1 + . . . + vm = 0 with vi ∈ N(x̄|dom fi), then v1 = · · · = vm = 0. (3.1)
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Then the function f = f1 + · · ·+ fm is amenable at all points x in some neighborhood of

x̄ relative to dom f = dom f1 ∩ · · · ∩ dom fm, with

f ′x(ξ) = (f ′1)x(ξ) + · · ·+ (f ′m)x(ξ),

∂f(x) = ∂f1(x) + · · ·+ ∂fm(x),

N(x|dom f) = N(x|dom f1) + · · ·+ N(x|dom fm).

(3.2)

If each fi is fully amenable at x̄, there is the additional conclusion that f is fully amenable

at such neighboring points x, with

f ′′x,v(ξ) = max
v1+···+vm=v

vi∈∂fi(x)

{
(f1)′′x,v1

(ξ) + · · ·+ (fm)′′x,vm
(ξ)

}
for all v ∈ ∂f(x), (3.3)

and in terms of the set V (x, v, ξ) giving the elements (v1, . . . , vm) for which the maximum

in this formula is achieved, also

(∂f)′x,v(ξ) =
⋃

(v1,...,vm)∈V (x,v,ξ)

{
(∂f1)′x,v1

(ξ) + · · ·+ (∂fm)′x,vm
(ξ)

}
(3.4)

Proof. By assumption, for i = 1, . . . ,m there exists on a neighborhood Vi of x̄ a C1

mapping Fi : Vi → IRdi and a lsc, proper, convex function gi : IRdi → IR such that

there is no yi 6= 0 in N
(
F (x̄)|dom gi

)
with ∇Fi(x̄)∗yi = 0. (3.5)

On the neighborhood V = V1 ∩ · · · ∩ Vm of x̄ let F : V → IRd1 × · · · × IRdm be given by
F (x) =

(
F1(x), . . . , Fm(x)

)
, and let g : IRd1×· · ·×IRdm → IR be given by g(w1, . . . , wm) =

g1(w1) + · · · + gm(wm). Then g
(
F (x)

)
= f1(x) + · · · + fm(x) = f(x). Moreover, F is of

class C1 and g is lower semicontinuous, proper, convex with

dom g = dom g1 × · · · × dom gm,

∂g(w) = ∂g(w1)× · · · × ∂gm(wm),

N(w|dom g) = N(w1|dom g1)× · · · ×N(wm|dom gm)

(these expressions for normal cones and subgradients being immediate in the context of
convex analysis). Due to the product form of N(w|dom g) and the block-diagonal structure
of the Jacobian ∇F (x̄), the fact that (3.5) holds for every i translates into the constraint
qualification (3.1). Thus, f is amenable.

The same reasoning when the fi’s are fully amenable establishes that f is fully
amenable. In that case the mapping F is C2 because each Fi is C2, and the function
g is piecewise linear-quadratic because each gi is piecewise linear-quadratic.
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Applying the formulas in (2.6) relative to our local representation, we obtain on the
first-order level that

∂f(x̄) = ∇F1(x̄)∗∂g1

(
F1(x̄)

)
+ · · ·+∇Fm(x̄)∗∂gm

(
Fm(x̄)

)
,

N(x̄|dom f) = ∇F1(x̄)∗N
(
F1(x̄)|dom g1

)
+ · · ·+∇Fm(x̄)∗N

(
Fm(x̄)|dom gm

)
,

f ′x̄(ξ) = (g1)′F1(x̄)

(
∇F1(x̄)ξ

)
+ · · ·+ (gm)′Fm(x̄)

(
∇Fm(x̄)ξ

)
,

where by these same formulas (2.6) as applied to the individual fi’s we have

∂fi(x̄) = ∇Fi(x̄)∗∂gi

(
Fi(x̄)

)
,

N(x̄|dom fi) = ∇Fi(x̄)∗N
(
Fi(x̄)|dom gi

)
,

(fi)′x̄(ξ) = (gi)′Fi(x̄)

(
∇Fi(x̄)ξ

)
.

(3.6)

If the convex functions gi are piecewise linear-quadratic, their second-order epi-derivatives
are expressed by (2.7), from which it is evident that for u = (u1, · · · , um)

g′′u(ω) = (g1)′′u1
(ω1) + · · ·+ (gm)′′um

(ωm).

Because 〈y, F 〉 = 〈y1, F1〉 + · · · + 〈ym, Fm〉 for y = (y1, . . . , ym) ∈ IRd1 × · · · × IRdm , it is
also clear that〈

ξ,∇2〈y, F 〉(x̄)ξ
〉

=
〈
ξ,∇2〈y1, F1〉(x̄)ξ

〉
+ · · ·+

〈
ξ,∇2〈ym, Fm〉(x̄)ξ

〉
.

We therefore deduce from (2.6) on the second-order level, relative to full amenability, that

f ′′x̄,v(ξ) = max
y∈U(x̄,v)

m∑
i=1

{
(gi)′′Fi(x̄),yi

(
∇Fi(x̄)ξ

)
+

〈
ξ,∇2〈yi, Fi〉(x̄)ξ

〉 }
, (3.7)

where y ∈ U(x̄, v) if and only if yi ∈ ∂gi

(
Fi(x̄)

)
for i = 1, . . . ,m and ∇F1(x̄)∗y1 + · · · +

∇Fm(x̄)∗ym = v. At the same time we have

(fi)′′x̄,vi
(ξ) = (gi)′′Fi(x̄),yi

(
∇Fi(x̄)ξ

)
+

〈
ξ,∇2〈yi, Fi〉(x̄)ξ

〉
by (2.6). Thus, (3.7) agrees with (3.3).

To prove (3.4), recall that for a fully amenable function the set of subgradients is
polyhedral. Therefore for some finite index set J and vj

i ∈ ∂fi(x̄) we have

f ′′x̄,v(ξ) = max
j∈J

{
(f1)′′x̄,vj

1
(ξ) + · · ·+ (fm)′′

x̄,vj
m

(ξ)
}

. (3.8)
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Recall further that the second-order epi-derivative of an amenable function is the sum of
a piecewise linear-quadratic convex function with a quadratic. Therefore we easily have
that (

f ′′x̄,v

)′
ξ
(ξ′) = max

j∈J(ξ)

{(
(f1)′′x̄,vj

1

)′
ξ
(ξ′) + · · ·+

(
(fm)′′

x̄,vj
m

)′
ξ
(ξ′)

}
, (3.9)

where J(ξ) is the set of indices where the maximum is attained. Because the directional
derivatives appearing on the right hand side of (3.9) are lower semicontinuous (as functions
of ξ′) we deduce that the left hand side of (3.9) is also lower semicontinuous. From this is
follows that

(
f ′′x̄,v

)′
ξ
(·) is the support function of ∂f ′′x̄,v(ξ), and that

∂f ′′x̄,v(ξ) =
⋃

j∈J(ξ)

{
∂(f1)′′x̄,vj

1
(ξ) + · · ·+ ∂(fm)′′

x̄,vj
m

(ξ)
}

.

To complete the proof of (3.4) simply invoke formula (2.5).
To complete the proof, it is necessary only to demonstrate, from our assumptions,

that condition (3.1) holds not just for x̄, but for all x in some neighborhood of x̄ relative
to dom f . Then not only will f be amenable (or, as the case may be, fully amenable)
at such neighboring points, which we already could conclude from Theorem 2.11, but the
differentiation formulas we have established at x̄ will be valid at those points x as well.

Consider a sequence of points xν ∈ dom f with xν → x̄, and suppose that (3.1)
(with x̄ replaced by xν) is not satisfied at any of these points. It must be verified that
this hypothesis leads to a contradiction with our knowledge that (3.1) holds at x̄. For
each index ν we have the existence of vectors vν

i ∈ N(xν |dom fi), not all 0, such that
vν
1 + · · · + vν

m = 0. This property of the vectors vν
i is retained if they are rescaled by a

common factor λν for each ν. Without loss of generality, therefore, we can assume that
|vν

1 | + · · · + |vν
m| = 1 for all ν. Then, by passing to subsequences if necessary, we can

suppose that vν
i converges for each i to a certain vi. Clearly |v1| + · · · + |vm| = 1, so the

vectors vi are not all 0. We must prove that vi ∈ N(x̄|dom fi), however.
Fixing i and returning to the representation of fi = gi◦Fi that we utilized earlier,

we invoke Theorem 2.11 in recalling that fi is amenable also at points near to x̄ within
dom fi, hence at the points xν for ν sufficiently large. The relations in (3.6) therefore
hold at such points xν as well as at x̄. This gives us vectors yν

i ∈ N
(
Fi(xν)|dom gi

)
such that ∇Fi(xν)∗yν

i = vν
i . If these vectors yν

i formed an unbounded sequence, we
could obtain by passing to a subsequence corresponding to ν in a certain index set N

that 0 < |yν
i | −→ν∈N

∞ and ȳν
i := yν

i /|yν
i | −→ν∈N

ȳi 6= 0. Since ∇Fi(xν)∗ȳν
i = vν

i /|yν
i | −→ν∈N

0 we
would get ∇Fi(x̄)∗ȳi = 0, yet from the fact that ȳν

i ∈ N
(
Fi(xν)|dom gi) with Fi(xν) →

Fi(x̄) ∈ dom gi, we would have ȳi ∈ N
(
Fi(x̄)|dom gi

)
, inasmuch as gi is convex. The

existence of such a vector ȳi would be contrary to the constraint qualification assumed
for the representation fi = gi◦Fi at x̄. It follows that the sequence of vectors yν

i must be
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bounded. A subsequence must converge then to some yi. By parallel reasoning we are able
to conclude that yi ∈ N

(
F (x̄)|dom gi) and ∇Fi(x̄)∗ȳi = vi. This proves by way of (3.6)

that vi ∈ N(x̄|dom fi), as required.

Corollary 3.2. Let x̄ ∈ C =
⋂m

i=1 Ci, where the sets Ci are all amenable at x̄, and the

constraint qualification is satisfied that if
∑m

i=1 vi = 0 with vi ∈ N(x̄|Ci), then vi = 0 for

all i. Then C is amenable at x̄ with

N(x̄|C) =
∑m

i=1
N(x̄|Ci), T (x̄|C) =

⋂m

i=1
T (x̄|Ci).

If each Ci is fully amenable at x̄, then C is fully amenable at x̄ as well.

The domain condition (3.1) in Theorem 3.1 reduces in the case of f = f1 + f2 to

N(x|dom f1) ∩ −N(x|dom f2) = {0}. (3.10)

Inasmuch as the cones N(x|dom fi) are closed and convex, this relation can be written in
dual form as

T (x|dom f1)− T (x|dom f2) = IRn, (3.11)

where T (x|dom fi) = N(x|dom fi)∗ (polar cone). The tangent cone condition in (3.11) is
the kind of condition that has been used in the study of Clarke regularity by Ward and
Borwein [18]. For convex functions fi (or more generally, functions fi for which dom fi is
a convex set), (3.10) and (3.11) are equivalent to the relative interior condition

ri(dom f1) ∩ ri(dom f2) 6= ∅, with dim(dom f1) + dim(dom f2) = n.

This is the condition commonly invoked when calculating subgradients in convex analysis
(cf. [17, Theorem 23.8]), except that the dimensionality restriction is superfluous in that
context.

Condition (3.10) is trivially satisfied, for instance, when x̄ belongs to the interior of
either dom f1 or dom f2. We record some common instances.

Corollary 3.3. Suppose f = f1 + f2 for a function f1 : IRn → IR that happens to be

amenable at x̄ and a C1 function f2 : IRn → IR. Then f is amenable at all points x in

some neighborhood of x̄ relative to dom f = dom f1, with

∂f(x) = ∂f1(x) +∇f2(x), f ′x(ξ) = (f1)′x(ξ) +
〈
∇f2(x), ξ

〉
.

If f1 is fully amenable at x̄ and f2 is C2, then f is fully amenable at all such neighboring

points x, and for each v ∈ ∂f(x) one has

f ′′x,v(ξ) = (f1)′′x,v1
(ξ) +

〈
ξ,∇2f2(x)ξ

〉
,

(∂f)′x,v(ξ) = (∂f1)′x,v1
(ξ) +∇2f2(x)ξ, where v1 = v −∇f2(x).

The second derivative formula in Corollary 3.2 is covered also by a result in Rockafellar
[1, Proposition 2.10] which does not assume full amenability but merely the twice epi-
differentiability of f1 at x relative to each v1 ∈ ∂f1(x).
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Corollary 3.4. Suppose f = f0 +δC for a finite function f0 : IRn → IR and a set C ⊂ IRn.

If f0 and C are amenable at a point x̄ ∈ C, then f is amenable at every point x in some

neighborhood of x̄ relative to C, with

∂f(x) = ∂f0(x) + N(x|C), f ′x(ξ) = (f0)′x(ξ) + δT (x|C)(ξ). (3.12)

If f0 and C are fully amenable at x̄, there is the additional conclusion that f is fully

amenable at all such neighboring points x with

f ′′x,v(ξ) = max
v0+v1=v

v0∈∂f0(x), v1∈N(x|C)

{
(f0)′′x,v0

(ξ) + (δC)′′x,v1
(ξ)

}
for all v ∈ ∂f(x). (3.13)

When f0 happens to be differentiable at x, this reduces to

f ′′x,v(ξ) = (f0)′′x,v0
(ξ) + (δC)′′x,v1

(ξ) with v0 = ∇f0(x), v1 = v − v0 ∈ N(x|C).

We move on now to a general chain rule. Although amenability has the operation
of composition already built into its definition, such a rule still has significant content
because it avoids the necessity in every application of having to revert to a composite
representation in which the “outer” function g is convex.

Theorem 3.5 (chain rule). Suppose f(x) = g
(
F (x)

)
for a C1 mapping F : IRn → IRd

and a function g : IRd → IR. Let x̄ be a point such that g is amenable at F (x̄) and

there is no y 6= 0 in N
(
F (x̄)|dom g

)
with ∇F (x̄)∗y = 0. (3.14)

Then f is amenable at all points x in some neighborhood of x̄ relative to dom f , with

∂f(x) = ∇F (x)∗∂g
(
F (x)

)
,

N(x|dom f) = ∇F (x)∗N
(
F (x)|dom g

)
,

f ′x(ξ) = g′F (x)

(
∇F (x)ξ

)
.

If g is fully amenable at F (x̄) and F is a C2 mapping, f is fully amenable at all such

neighboring points x, with

f ′′x,v(ξ) = max
y∈∂g

(
F (x)

)
∇F (x)∗y=v

{
g′′F (x),y

(
∇F (x)ξ

)
+

〈
ξ,∇2〈y, F 〉(x)ξ

〉}
(3.15)

and, in terms of the set M(x, v, ξ) of vectors y achieving the maximum in this formula,

also

(∂f)′x,v(ξ) =
⋃

y∈M(x,v,ξ)

{
∇F (x)∗(∂g)′F (x),y

(
∇F (x)ξ

)
+∇2〈y, F 〉(x)ξ

}
. (3.16)
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Proof. From the hypothesis there is a local representation g(w) = h
(
G(w)

)
in a neigh-

borhood of w̄ := F (x̄), where G is a C1 mapping, h is a lower semicontinuous, proper,
convex function, and

there is no z 6= 0 in N
(
G(w̄)|dom h

)
with ∇G(w̄)∗z = 0. (3.17)

For this we have through specialization of (2.6) the formulas

∂g(w̄) = ∇G(w̄)∗∂h
(
G(w̄)

)
,

N(w̄|dom g) = ∇G(w̄)∗N
(
G(w̄)|dom h

)
,

g′w̄(ω) = h′G(w̄)

(
∇G(w̄)ω

)
.

(3.18)

The key is to consider the local representation f(x) = h
(
H(x)

)
of f , where H = G◦F and

∇H(x̄) = ∇G(w̄)∇F (x̄). We must check that this representation satisfies the constraint
qualification associated with amenability. Suppose z ∈ N

(
H(x̄)|dom h

)
and∇H(x̄)∗z = 0.

Let y = ∇G(w̄)∗z. We have ∇F (x̄)∗y = 0 by the product form of ∇H(x̄), but also
y ∈ N(w̄|dom g) by the middle formula in (3.18). Our assumption (3.14) implies that
y = 0. But then z = 0 by (3.17).

The representation f = h◦H fits the original pattern in the definition of amenability
and confirms that property for f at x̄. It further allows us to invoke the first-order formulas
in (2.6) with the appropriate shift of notation:

∂f(x̄) = ∇H(x̄)∗∂h
(
H(x̄)

)
,

N(x̄|dom f) = ∇H(x̄)∗N
(
H(x̄)|dom h

)
,

f ′x̄(ξ) = h′H(x̄)

(
∇H(x̄)ξ

)
.

(3.19)

These formulas, in combination with the ones in (3.18), immediately yield the first-order
formulas asserted in the theorem, at least at the point x̄.

When F is C2 and g is fully amenable at w̄ = F (x̄), we can choose G to be C2 and h

to be piecewise linear-quadratic, verifying from the representation f = h◦H that f is fully
amenable at x̄. In very much the same way we then obtain the second-order formula in
the theorem at x̄. We have

g′′w̄,y(ω) = max
z∈∂h

(
G(w̄)

)
∇G(w̄)∗z=y

{
h′′G(w̄),z

(
∇G(w̄)ω

)
+

〈
ω,∇2〈z,G〉(w̄)ω

〉}
, (3.20)

but on the other hand

f ′′x̄,v(ξ) = max
z∈∂h

(
H(x̄)

)
∇H(x̄)∗z=v

{
h′′H(x̄),z

(
∇H(x̄)ξ

)
+

〈
ξ,∇2〈z,H〉(x̄)ξ

〉}
. (3.21)
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One calculates by the classical chain rule for smooth functions that

∇2〈z,H〉(x̄) = ∇F (x̄)∗∇2〈z,G〉(w̄)∇F (x̄) +∇2
〈
∇G(w̄)∗z, F

〉
(x̄).

In placing this expression in (3.21) and using (3.20) together with the first-order relations
already available, we get the claimed formula (3.15).

We omit the proof of (3.16) because the proof follows an already well established
pattern (see the proof of the addition rule) i.e., write (3.15) as the maximum over finitely
many points, obtain the directional derivative, take subgradients and finally (in this case)
invoke the formula in Proposition 2.10.

Corollary 3.6. Suppose f(x) = g(Ax + a) for a linear transformation A : IRn → IRm, a

vector a ∈ IRm and a function g : IRm → IR. Let x̄ be a point such that g is amenable at

Ax̄ + a and

there is no y 6= 0 in N(Ax̄ + a |dom g) with A∗y = 0. (3.20)

Then f is amenable at all points x in some neighborhood of x̄ relative to dom f , with

∂f(x) = A∗∂g(Ax + a),

N(x|dom f) = A∗N(Ax + a|dom g),

f ′x(ξ) = g′Ax+a(Aξ).

If g is fully amenable at Ax̄, f is fully amenable at all such neighboring points x, with

f ′′x,v(ξ) = max
y∈∂g(Ax+a)

A∗y=v

g′′Ax+a, y(Aξ) (3.23)

and, in terms of the set M(x, v, ξ) of all vectors y achieving the maximum in this formula,

also

(∂f)′x,v(ξ) =
⋃

y∈M(x,v,ξ)

A∗(∂g)′Ax+a, y(Aξ). (3.24)

Another direct consequence of Theorem 3.5 is a rule for “partial epi-differentiation.”

Corollary 3.7 (partial epi-differentiation). For a function f : IRd × IRn → IR, consider

for each u ∈ IRd the function fu := f(u,·) on IRn. Suppose f is amenable at (ū, x̄) and

there is no y 6= 0 with (y, 0) ∈ N
(
ū, x̄

∣∣ dom f). (3.25)

Then for all pairs (u, x) in some neighborhood of (ū, x̄) relative to dom f , the function fu

is amenable at x with

(fu)′x(ξ) = f ′(u,x)(0, ξ),

∂fu(x) =
{

y
∣∣ ∃v with (y, v) ∈ ∂f(u, x)

}
,

N(x|dom fu) =
{

y
∣∣ ∃v with (y, v) ∈ N(u, x |dom f)

}
.

(3.26)
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If f is fully amenable at (ū, x̄), then fu is fully amenable at x, with

(fu)′′x,v(ξ) = max
(y,v)∈∂f(u,x)

f ′′(u,x),(y,v)(0, ξ). (3.27)

and, in terms of the set M(x, v, ξ) of vectors y achieving the maximum in this formula,

also

(∂fu)′x,v(ξ) =
⋃

y∈M(x,v,ξ)

(∂f)′(u,x),(y,v)(0, ξ). (3.28)

Proof. Focusing first on u = ū, consider fū to be the composition f◦F where F (x) =
(ū, x). Since F is affine, its second derivatives all vanish, and Theorem 3.5 gives the
desired results. Observe now through Theorem 2.11 (first part) that the condition on
(ū, x̄) is inherited by all points (u, x) in some neighborhood of (ū, x̄) relative to dom f .
For such (u, x), therefore, the same argument can be applied, and Theorem 3.5 once more
gives the formulas claimed.

Remark: The maximum in the second-order formulas 3.3, 3.13, 3.15, 3.23, and 3.27 may
be taken over the set of corresponding extreme points. By doing, as in Proposition 2.10,
we then have alternative versions of the proto-derivative formulas 3.4, 3.16, 3.24, and 3.28.
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