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1. Introduction

A set-valued mapping Γ : IRn → IRm is proto-differentiable [1] at a point x and for a
particular element v ∈ Γ(x) if the set-valued mappings

∆x,v,t : ξ 7→
[
Γ(x + tξ)− v

]/
t,

regarded as a family indexed by t > 0, graph-converge as t↘0 (i.e., set convergence of
the graphs; see section 3). If so, the limit mapping is denoted by Γ′x,v and called the
proto-derivative of Γ at x for v. It assigns to each ξ ∈ IRn a subset Γ′x,v(ξ) of IRn, which
could be empty for some choices of ξ.

A key issue in parametric optimization is the proto-differentiability of the mapping
that associates with each vector of parameters the corresponding set of optimal solutions,
or in nonconvex programming perhaps some set of “quasi-optimal solutions” expressed by
a system of conditions related to optimality. Typical examples involve first-order optimal-
ity conditions in terms of the subgradients of the essential objective function in a given
problem. The question then comes down to whether the subgradient mapping of such
an objective function is proto-differentiable. These motivations in sensitivity analysis are
explained in [2], [3], and [4].

Many subgradient mappings are known to be proto-differentiable. In fact the subgra-
dient mapping ∂f of any fully amenable function f is proto-differentiable, as proved by
Poliquin [5]. A function f : IRn → IR is amenable at x̄, a point where f(x̄) is finite, if
on some open neighborhood V of x̄ there is a C2 mapping F : V → IRm and a convex,
lower semicontinuous function g : IRm → IR such that f(x) = g

(
F (x)

)
for x ∈ V and the

following condition (an abstract constraint qualification) is satisfied at x̄:

there is no vector y 6= 0 in Ndom g

(
F (x̄)

)
with ∇F (x̄)∗y = 0. (1.1)

Here ∇F (x̄) denotes the m × n Jacobian matrix of F at x̄, and ∇F (x̄)∗ is its transpose.
Further, Ndom g

(
F (x̄)

)
denotes the normal cone to the nonempty convex set dom g at the

point F (x̄). (When F (x̄) ∈ int(dom g) this cone consists just of the vector 0, and condition
(1.1) is then satisfied trivially.)

For f to be fully amenable, the assumption is added that g can be chosen to be
piecewise linear-quadratic. This means that dom g (the set of points where the value of g

is not ∞) can be expressed as the union of a finite collection of polyhedral (convex) sets,
on each of which g is given by a polynomial expression with no terms higher than degree
two. For more on amenable and fully amenable functions, see [2], [3], [5]–[8].

Examples of piecewise linear-quadratic convex functions g are polyhedral functions-
—having polyhedral epigraph—such as the indicator function and support function of a
polyhedral set, or the max of a finite collection of affine functions. Such functions are
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merely piecewise linear. On the other hand, a function giving the Euclidean distance
squared from a polyhedral set is piecewise linear-quadratic but not polyhedral.

Full amenability is a local property, in the sense that when it holds at x̄ it actually holds
at all points x in some neighborhood of x̄ relative to dom f . In speaking of subgradients
v ∈ ∂f(x) of a fully amenable function f , which need not be convex, we are able to take
advantage of the fact that such functions are Clarke regular. For Clarke regular functions,
the various definitions of ∂f(x) (cf. Clarke [9], Mordukhovich [10] and Rockafellar [11] in
particular) all agree.

The class of fully amenable functions is much larger than might at first be apparent.
Many examples of importance in mathematical programming have been indicated in [2],
[3], [6]–[8]. In this note we focus on two that are central: the pointwise maximum of a
collection of finitely many C2 functions and the indicator of a set defined by finitely many
C2 constraints under a constraint qualification. We also look at the essential objective
function of a smooth nonlinear programming problem having such a system of constraints.

Example 1. Let f be specified by

f(x) = max
{

f1(x), . . . , fm(x)
}
, (1.2)

where each function fi : IRn → IR is C2. Then f is everywhere fully amenable.

To see this, simply observe that f(x) = g
(
F (x)

)
for

F (x) =
(
f1(x), . . . , fm(x)

)
, g(w1, . . . , wm) = max{w1, . . . , wm}, (1.3)

and note that g is polyhedral. Condition (1.1) is automatically satisfied, since dom g is all
of IRm and therefore contains every point F (x) in its interior.

Example 2. Let f be an indicator function of the form

f(x) = δC(x) :=
{

0 if x ∈ C,
∞ if x /∈ C, where

C :=
{
x ∈ X

∣∣ fi(x) ∈ Ii, i = 1 . . .m
}
,

(1.4)

under the assumption that X is a polyhedral set in IRn, and for each i, fi : IRn → IR is

a function of class C2 while Ii is a closed interval in IR. Then f is fully amenable at any

point x̄ ∈ C at which the following basic constraint qualification is satisfied:{
the only multipliers yi ∈ NIi

(
fi(x̄)

)
satisfying

−
∑m

i=1yi∇fi(x̄) ∈ NX(x̄) are y1 = 0, . . . , ym = 0.
(1.5)
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The composite representation f = g◦F that yields the conclusion of full amenability
in Example 2 has

F (x) =
(
f1(x), . . . , fm(x), x

)
,

g = δD for D := I1 × · · · × Im ×X.
(1.6)

Then ND(F (x̄)
)

= NI1

(
f1(x̄)

)
× · · · × NIm

(
fm(x̄)

)
× NX

(
x̄
)
. Since D is a polyhedral

set, g is once more a polyhedral function. Again it should be noted that if the constraint
qualification holds at x̄, it must actually hold at all points of C in some neighborhood of
x̄. When f is an indicator δC , the subgradient set ∂f(x) is the normal cone NC(x) to C

at x (replaced by the empty set when x /∈ C).
Insight into the constraint qualification (1.5) is gained from the classical case where

X is the whole space, Ii = (−∞, 0] for i = 1, . . . , s, (so that NIi

(
fi(x̄)

)
equals [0,∞) if

fi(x̄) = 0 but equals {0} if fi(x̄) < 0), and Ii = {0} for i = s + 1, . . . ,m (so that for
such indices NIi

(
fi(x)

)
= (−∞,∞) as long as fi(x) = 0). The condition is then the dual

statement of the familiar Mangasarian-Fromovitz constraint qualification. More generally,
when Ii is the closed interval with lower bound ai and upper bound bi (these bounds
possibly being infinite), with ai < bi, the relation yi ∈ NIi

(
fi(x)

)
specifies the sign of the

multiplier yi in the following pattern, depending on whether the constraint fi(x) ∈ [ai, bi]
is satisfied with fi(x) at either bound or in between:

yi ∈ N[ai,bi]

(
fi(x)

)
⇐⇒

 yi ≥ 0 when ai < fi(x) = bi,
yi ≤ 0 when ai = fi(x) < bi,
yi = 0 when ai < fi(x) < bi.

(1.7)

The following variant of Example 2 adds a C2 objective function to the indicator δC .

Example 3. Suppose

f(x) = f0(x) + δC(x) =
{

f0(x) if x ∈ C,
∞ if x /∈ C,

where f0 is of class C2 and the set C has the form in Example 2. Then f is fully amenable

at any point x̄ ∈ C at which the constraint qualification (1.5) is satisfied.

This time the composite representation f = g◦F to take in verifying the asserted full
amenability is

F (x) =
(
f0(x), f1(x), . . . , fm(x), x

)
,

g(u0, u1, . . . , um, x) = u0 + δD

(
u1, . . . , um, x

)
,

(1.8)

for the same set D as in Example 2. Here too g is polyhedral.
Proto-derivatives of ∂f for the max functions f in Example 1 have been studied

by Auslender and Cominetti [12] and Penot [13]. Auslender and Cominetti obtained a
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formula for the mapping that corresponds to the “outer graphical limit” of the difference
quotient mappings in the definition of proto-differentiability, but they did not show that
the outer and corresponding “inner” limits coincide and thus did not establish proto-
differentiability itself. In Penot’s work the setting is potentially infinite-dimensional, and
proto-differentiability is proved only under a sharp restriction. None of these authors
utilized the composite representation (1.3), as we do here. Anyway, the formula we obtain
here for Example 1 is simpler than theirs and does not require any extra assumptions.
Expressions for the proto-derivatives of the subgradient mappings in Examples 2 and 3
have not previously been developed.

A relationship of fundamental importance in determining the proto-derivatives of the
mapping ∂f : IRn →→ IRn, when f is fully amenable, arises from a theory of generalized
second derivatives developed in Rockafellar [6], [7], [14], [15]. This theory utilizes epi-
convergence instead of pointwise convergence of second-order difference quotients, where
epi-convergence of a sequence of functions refers to set convergence of their epigraphs.

A lower semicontinuous function f : IRn → IR is said to be epi-differentiable, at a
point x where f(x) is finite, if the first-order difference quotient functions ∆x,tf : IRn → IR

defined by
∆x,tf(ξ) =

[
f(x + tξ)− f(x)

]/
t for t > 0

epi-converge as t↘0, the limit being a proper function (somewhere finite, nowhere −∞).
This limit is then the epi-derivative function f ′x. In like manner, f is twice epi-differentiable
at x for a vector v ∈ IRn if it is epi-differentiable at x and the second-order difference
quotient functions ∆2

x,v,tf : IRn → IR defined by

∆2
x,v,tf(ξ) =

[
f(x + tξ)− f(x)− t〈v, x〉

]/1
2 t2 for t > 0

epi-converge to a proper function as t↘0. The limit is then the second epi-derivative
function f ′′x,v(ξ).

Rockafellar established in [6] that when f is fully amenable at x, it is twice epi-
differentiable at x for every v ∈ ∂f(x). On the other hand, he showed in [15] that a
general convex function f is twice epi-differentiable at x for a vector v ∈ ∂f(x) if and only
if ∂f is proto-differentiable at x for v, and then

(∂f)′x,v(ξ) = ∂
( 1

2f ′′x,v

)
(ξ) for all ξ. (1.9)

(For an infinite-dimensional generalization see Do [16].) From these facts it follows that ∂f

is proto-differentiable for any function f that is both fully amenable and convex. Poliquin
[5] proved, however, that convexity is superfluous: for any fully amenable function f ,
the proto-derivatives of ∂f exist and can be determined through (1.9) from the formulas
known for second-order epi-derivatives of f . (Again there is no need to distinguish between
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different definitions of subgradients in formula (1.9).) Proceeding on this basis, Rockafellar
and Poliquin recently developed general calculus rules in [8] for the proto-derivatives of
subgradient mappings, but the particular mappings associated with Examples 1, 2 and 3
were not explicitly treated in that work.

2. Specialized Formulas

The convex functions g in the representations f = g◦F underlying Examples 1, 2 and 3
are not just piecewise linear-quadratic but piecewise linear, i.e., polyhedral. In this case
substantial simplifications are possible in formulas for the second-order epi-derivatives of f

and proto-derivatives of ∂f . We extract from [5], [6] and [8] the facts that will be needed.
For this purpose we denote by y·F , for any vector y ∈ IRm, the real-valued function defined
on IRn by

(y·F )(x) :=
〈
y, F (x)

〉
.

Theorem 1. Suppose f is fully amenable at x̄ and the function g in the local f(x) =
g
(
F (x)

)
composite representation in the definition can be taken to be polyhedral. Then for

all x in a neighborhood of x̄ relative to dom f , f is Clarke regular at x with its subgradients

given by

∂f(x) = ∇F (x)∗∂g
(
F (x)

)
=
{

v
∣∣ ∃ y ∈ ∂g

(
F (x)

)
with ∇F (x)∗y = v

}
(2.1)

and first-order epi-derivatives given by

f ′x(ξ) = g′F (x)

(
∇F (x)ξ

)
. (2.2)

For any v ∈ ∂f(x) the second-order epi-derivatives of f at x for v exist and are given by

f ′′x,v(ξ) = max
y∈Y (x,v)

〈
ξ,∇2(y·F )(x)ξ

〉
+ δΞ(x,v)(ξ), (2.3)

where Y (x, v) is a bounded, polyhedral set and Ξ(x, v) is a polyhedral cone, namely

Y (x, v) =
{

y ∈ ∂g
(
F (x)

) ∣∣∇F (x)∗y = v
}
,

Ξ(x, v) = N∂f(x)(v) =
{

ξ
∣∣ f ′x(ξ) = 〈v, ξ〉

}
=
{

ξ
∣∣ f ′x(ξ) ≤ 〈v, ξ〉

}
.

(2.4)

Furthermore, ∂f is proto-differentiable at x for v with

(∂f)′x,v(ξ) =
{{

∇2(y·F )(x)ξ
∣∣ y ∈ Ymax(x, v, ξ)

}
+ NΞ(x,v)(ξ) if ξ ∈ Ξ(x, v),

∅ if ξ /∈ Ξ(x, v),
(2.5)
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where Ymax(x, v, ξ) is the closed face of Y (x, v) consisting of the multiplier vectors y that

achieve the maximum in (2.3).

Proof. Only the special implications of the polyhedral nature of g need to be addressed,
since everything else is in the references cited; see [8, Sec. 2] for a synopsis. In general, the
term

γF (x)

(
∇F (x)ξ

)
= lim

t↘ 0

[
g
(
F (x) + t∇F (x)ξ

)
− g
(
F (x)

)
− t
〈
v, ξ
〉]/ 1

2 t2

would have to be added to the formula in (2.3) according to [6, Theorem 4.5]. But this
vanishes when g is polyhedral and consequently piecewise linear relative to the polyhedral
set dom g. Thus, (2.3) is correct.

Equation (2.5) can be derived from (1.9) by ordinary subdifferential calculus as applied
to (2.3). Denote the quadratic function of ξ in the max expression in (2.3) by Qy(ξ),
observing that this depends linearly on y. In this notation f ′′x,v(ξ) = h(ξ) + δΞ(x,v)(ξ) for
h = maxy∈Y (x,v) Qy. Therefore ∂f ′′x,v(ξ) = ∂h(ξ) + NΞ(x,v)(ξ), where

∂h(ξ) =
{
∇Qy(ξ)

∣∣∣ y ∈ Ymax(x, v, ξ)
}

with ∇Qy(ξ) = 2∇2(y·F )(x)ξ.

Invoking (1.9), we conclude that (2.5) holds.

Corollary 1. Under the assumptions in Theorem 1 each of the following properties implies

all the others:

(a) (∂f)′x,v(ξ) is nonempty for every ξ ∈ IRn,

(b) (∂f)′x,v(ξ) is bounded for every ξ ∈ IRn,

(c) f ′′x,v(ξ) is finite for every ξ ∈ IRn,

(d) ∂f(x) = {v},
(e) f is differentiable at x with ∇f(x) = v.

Proof. As seen from the formulas in the theorem, all these properties are equivalent to
having Ξ(x, v) = IRn.

We are ready now to treat Examples 1, 2 and 3 one by one. In every case the first-
order results are well known, but we include them in the theorem statement as an aid to
clarifying the context and fixing the notation.

Theorem 2. In Example 1, consider any x ∈ IRn and let I(x) denote the set of indices i

such that fi(x) = f(x). Then

∂f(x) = co
{
∇fi(x)

∣∣ i ∈ I(x)
}
, f ′x(ξ) = max

i∈I(x)

〈
∇fi(x), ξ

〉
. (2.6)
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For any v ∈ ∂f(x) the second-order epi-derivatives of f at x for v exist and are given by

f ′′x,v(ξ) = max
y∈Y (x,v)

∑m
i=1yi

〈
ξ,∇2fi(x)ξ

〉
+ δΞ(x,v)(ξ), (2.7)

where Y (x, v) is a polyhedral set and Ξ(x, v) is a polyhedral cone, namely

Y (x, v) =
{

y
∣∣∣ yi ≥ 0 if i ∈ I(x), yi = 0 if i /∈ I(x),∑m

i=1yi = 1,
∑m

i=1yi∇fi(x) = v
}

,

Ξ(x, v) =
{

ξ
∣∣∣ 〈∇fi(x)− v, ξ

〉
≤ 0 for all i ∈ I(x)

}
.

(2.8)

Furthermore, ∂f is proto-differentiable at x for v with

(∂f)′x,v(ξ) =

{{∑m
i=1yi∇2fi(x)ξ

∣∣∣ y ∈ Ymax(x, v, ξ)
}

+ Kx,v(ξ) if ξ ∈ Ξ(x, v),
∅ if ξ /∈ Ξ(x, v),

(2.9)

where Ymax(x, v, ξ) is the closed face of Y (x, v) consisting of the multiplier vectors y that

achieve the maximum in (2.7), and Kx,v(ξ) is the convex cone generated by the vectors

∇fi(x)− v for i ∈ I(x, ξ), this being the set of indices achieving the maximum in (2.6).

Proof. We are applying Theorem 1 to the case of F and g in (1.3), where

∂g(w) =
{

y
∣∣∣ yi ≥ 0 if wi = g(w), yi = 0 if wi < g(w),

∑m
i=1yi = 1

}
,

g′w(ω) = max
{

ωi

∣∣ i such that wi = g(w)
}
,

along with
(y·F )(x) =

∑m

i=1
yifi(x), ∇F (x)∗y =

∑m

i=1
yi∇fi(x). (2.10)

Through these specializations the formulas in Theorem 1 turn into to the ones here, but in
the case of Ξ(x, v) this may not be obvious; we must verify also that NΞ(x,v)(ξ) is the cone
described as Kx,v(ξ). From the definition of Ξ(x, v) in (2.4) and the formula for f ′x(ξ) in
(2.6) we have

ξ ∈ Ξ(x, v) ⇐⇒ max
i∈I(x)

〈
∇fi(x), ξ

〉
≤ 〈v, ξ〉

⇐⇒
〈
∇fi(x)− v, ξ

〉
≤ 0 for all i ∈ I(x),

as claimed. Since Ξ(x, v) is given this way by a system of linear constraints, its normal
cone NΞ(x,v)(ξ) at any of its elements ξ is the convex cone generated by the gradients of
the constraints

〈
∇fi(x) − v, ξ

〉
≤ 0 that are active at ξ. Thus, this normal cone is the
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convex cone generated by the vectors ∇fi(x)−v corresponding to the indices i ∈ I(x) such
that

〈
∇fi(x)− v, ξ

〉
= 0. In other words, it is Kx,v(ξ).

The relationship between formula (2.9) and the results of Auslender and Cominetti
[12] and Penot [13] will be discussed in Section 3.

Moving on now to Example 2, we denote by TC(x) the tangent cone to C at a point
x ∈ C, and similarly by TX(x) the tangent cone to the polyhedral set X at x. These
tangent cones are polar to the normal cones NC(x) and NX(x) (because we are dealing
with convex sets or more generally sets that are Clarke regular, for which the various
definitions in use for tangent cones all agree). The tangent cone notation will be useful
also in handling constraints: we denote by TIi

(ui) the tangent cone to the closed interval
Ii ⊂ IR at ui ∈ Ii, which simply indicates the directions in which one can move from ui

without leaving Ii. Specifically, in parallel with (1.7), in the case where Ii has lower bound
ai and upper bound bi (these possibly being infinite) with ai < bi, one has

T[ai,bi]

(
fi(x)

)
=

 (−∞, 0] when ai < fi(x) = bi,
[0,∞) when ai = fi(x) < bi,
(−∞,∞) when ai < fi(x) < bi.

(2.11)

When Ii is a singleton {ci} designating an equality constraint fi(x) = ci, the interval in
question is TIi

(
fi(x)

)
= {0}.

Theorem 3. In Example 2, consider any x ∈ C at which the constraint qualification (1.5)

is satisfied. Then

∂δC(x) = NC(x) =
{∑m

i=1yi∇fi(x)
∣∣∣ yi ∈ NIi

(
fi(x)

)}
+ NX(x),

(δC)′x(ξ) = δTC(x)(ξ)

=
{

0 if ξ ∈ TX(x) and
〈
∇fi(x), ξ

〉
∈ TIi

(
fi(x)

)
for all i,

∞ otherwise.

(2.12)

For any v ∈ NC(x) the second-order epi-derivatives of δC at x exist for v and are given by

(δC)′′x,v(ξ) = max
y∈Y (x,v)

{∑m
i=1yi

〈
ξ,∇2fi(x)ξ

〉}
+ δΞ(x,v)(ξ), (2.13)

where Y (x, v) is a bounded, polyhedral set and Ξ(x, v) is a polyhedral cone, namely

Y (x, v) =
{

y
∣∣∣ yi ∈ NIi

(
fi(x)

)
, v −

∑m
i=1yi∇fi(x) ∈ NX(x)

}
,

Ξ(x, v) =
{

ξ ∈ TC(x)
∣∣∣ 〈v, ξ

〉
= 0

}
=
{

ξ ∈ TX(x)
∣∣∣ 〈∇fi(x), ξ

〉
∈ TIi

(
fi(x)

)
for all i,

〈
v, ξ
〉

= 0
}

.

(2.14)
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Furthermore, the mapping ∂δC = NC is proto-differentiable at x for v with

(∂δC)′x,v(ξ) =

{{∑m
i=1yi∇2fi(x)ξ

∣∣∣ y ∈ Ymax(x, v, ξ)
}

+ Kx,v(ξ) if ξ ∈ Ξ(x, v),
∅ if ξ /∈ Ξ(x, v),

(2.15)

where Ymax(x, v, ξ) is the closed face of Y (x, v) consisting of the multiplier vectors y that

achieve the maximum in (2.13), and Kx,v(ξ) is the polyhedral cone defined by

Kx,v(ξ) =
{∑m

i=1 yi∇fi(x)
∣∣∣ yi ∈ NIi

(
fi(x)

)
, yi = 0 if

〈
∇fi(x), ξ

〉
6= 0

}
+
{

z ∈ NX(x)
∣∣∣ 〈z, ξ〉 = 0

}
+
{

sv
∣∣∣ s ∈ IR

}
.

(2.16)

Proof. This time we apply Theorem 1 to the mapping F and function g in (1.6). We
have in the notation w = (u1, . . . , um, x) ∈ D = I1 × · · · × Im ×X that

∂g(w) = ND(w) = NI1
(u1)× · · · ×NIm

(um)×NX(x),

g′w(ω) = δ
TD(w)

(ω) with TD(w) = TI1
(u1)× · · · × TIm

(um)× TX(x).
(2.17)

On the other hand, the transpose Jacobian matrix ∇F (x)∗ has the gradients ∇fi(x) as
its first m columns, followed by the n columns of the n× n identity matrix, so that in the
notation y = (y1, . . . , ym, z) ∈ IRm × IRn we have ∇F (x)∗y =

∑m
i=1 yi∇fi(x) + z. With

these choices the claimed formulas follow immediately from the ones in Theorem 1, except
for some work in identifying the cone NΞ(x,v)(ξ) in Theorem 1 with the cone Kx,v(ξ) in
(2.16), which we now undertake.

From (2.14) we know that Ξ(x, v) is the intersection of a certain family of polyhedral
cones: TX(x), the subspace H =

{
ξ
∣∣ 〈v, ξ〉 = 0

}
, and

Ki =
{

ξ
∣∣∣ 〈∇fi(x), ξ

〉
∈ TIi

(
fi(x)

)}
for i = 1, . . . ,m.

The normal cone to Ξ(x, v) at ξ is therefore the sum of the normal cones to each of these
sets at ξ (no closure operation being necessary because of the polyhedral property):

NΞ(x,v)(ξ) =
∑m

i=1
NKi

(ξ) + NTX(x)(ξ) + NH(ξ).

For any convex cone K, the normal cone NK(ξ) at a vector ξ ∈ K consists of the vectors
h in the polar cone K∗ such that 〈h, ξ〉 = 0. We calculate through this that

NKi
(ξ) =

{{
yi∇fi(x)

∣∣ yi ∈ NIi

(
fi(x)

) }
if
〈
∇fi(x), ξ

〉
= 0,

{0} if
〈
∇fi(x), ξ

〉
6= 0,
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whereas

NTX(x)(ξ) =
{

z ∈ NX(x)
∣∣∣ 〈z, ξ〉 = 0

}
, NH(ξ) =

{
sv
∣∣∣ s ∈ IR

}
.

Thus, NΞ(x,v)(ξ) is the same as the cone Kx,v(ξ) described in (2.16).

Note that although δC and (δC)′x are indicator functions (having no values other than
0 and ∞), (δC)′′x,v is generally not an indicator function. Second-order epi-derivatives of
δC can differ from 0 because they reflect the curvature properties of C. As a matter of
fact, it is only in the case where C is polyhedral and therefore totally lacking in curvature
that (δC)′′x,v is again an indicator.

For a simple illustration, suppose C is defined by a single C2 inequality constraint,
C =

{
x
∣∣ f1(x) ≤ 0

}
, and x̄ is a point where this is active. The condition takes the

form fi(x̄) ∈ I1 for I1 = (−∞, 0], and we have NI1

(
f1(x̄)

)
= [0,∞). The constraint

qualification requires ∇f1(x̄) 6= 0. The set ∂δC(x̄) = NC(x̄) consists of all nonnegative
multiples of ∇f1(x̄). In treating a particular element v̄ = ȳ1∇f1(x̄), we have to distinguish
the cases where ȳ1 > 0 or ȳ1 = 0 (and therefore v̄ = 0). With ȳ1 > 0, we get

(δC)′′x̄,v̄(ξ) =
{

ȳ1

〈
ξ,∇2f1(x̄)ξ

〉
if
〈
∇f1(x̄), ξ

〉
= 0,

∞ if
〈
∇f1(x̄), ξ

〉
6= 0,

(∂δC)′x̄,v̄(ξ) =
{{

ȳ1∇2f1(x̄)ξ + s∇f1(x̄)
∣∣ s ∈ IR

}
if 〈ξ,∇f1(x̄)〉 = 0,

∅ if 〈ξ,∇f1(x̄)〉 6= 0.

On the other hand, with ȳ = 0 we get

(δC)′′x̄,v̄(ξ) =
{

0 if
〈
∇f1(x̄), ξ

〉
≤ 0,

∞ if
〈
∇f1(x̄), ξ

〉
> 0,

(∂δC)′x̄,v̄(ξ) =


{0} if

〈
ξ,∇f1(x̄)

〉
< 0,{

s∇f1(x̄)
∣∣ s ≥ 0

}
if
〈
ξ,∇f1(x̄)

〉
= 0,

∅ if
〈
ξ,∇f1(x̄)

〉
> 0.

Next we tackle Example 3. Our result in this situation is closely related to the one
for Example 2, but to bring out connections with nonlinear programming theory we state
it in terms of the Lagrangian function

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x).

Theorem 4. In Example 3, consider any x ∈ C at which the constraint qualification (1.5)

is satisfied. Then

∂f(x) = ∇f0(x) + NC(x) =
{
∇xL(x, y)

∣∣∣ yi ∈ NIi

(
fi(x)

)}
+ NX(x),

f ′x(ξ) =
{〈

∇f0(x), ξ
〉

if ξ ∈ TX(x) and
〈
∇fi(x), ξ

〉
∈ TIi

(
fi(x)

)
for all i,

∞ otherwise.

(2.18)
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For any v ∈ ∂f(x) the second-order epi-derivatives of f at x exist for v and are given in

terms of the Lagrangian L by

f ′′x,v(ξ) = max
y∈Y (x,v)

〈
ξ,∇2

xxL(x, y)ξ
〉

+ δΞ(x,v)(ξ), (2.19)

where Y (x, v) is a bounded, polyhedral set and Ξ(x, v) is a polyhedral cone, namely

Y (x, v) =
{

y
∣∣∣ yi ∈ NIi

(
fi(x)

)
, v −∇xL(x, y) ∈ NX(x)

}
,

Ξ(x, v) =
{

ξ ∈ TC(x)
∣∣∣ 〈v −∇f0(x), ξ

〉
= 0

}
=
{

ξ ∈ TX(x)
∣∣∣ 〈∇fi(x), ξ

〉
∈ TIi

(
fi(x)

)
for all i,

〈
v −∇f0(x), ξ

〉
= 0

}
.

(2.20)

Furthermore, the mapping ∂f is proto-differentiable at x for v with

(∂f)′x,v(ξ) =

{{
∇2

xxL(x, y)ξ
∣∣∣ y ∈ Ymax(x, v, ξ)

}
+ Kx,v(ξ) if ξ ∈ Ξ(x, v),

∅ if ξ /∈ Ξ(x, v),
(2.21)

where Ymax(x, v, ξ) is the closed face of Y (x, v) consisting of the multiplier vectors y that

achieve the maximum in (2.19), and Kx,v(ξ) is the polyhedral cone defined by

Kx,v(ξ) =
{∑m

i=1 yi∇fi(x)
∣∣∣ yi ∈ NIi

(
fi(x)

)
but yi = 0 if

〈
∇fi(x), ξ

〉
6= 0

}
+
{

z ∈ NX(x)
∣∣ 〈z, ξ〉 = 0

}
+
{

s
[
v −∇f0(x)

] ∣∣∣ s ∈ IR
}

.
(2.22)

Proof. These facts can be derived in close parallel with the ones in Theorem 3, to which
they specialize when f0 ≡ 0. The composite representation in (1.8) serves this purpose,
but an alternative approach is to observe that because f0 is a C2 function the second epi-
derivatives of f in this case can be obtained from the ones in Theorem 3 merely by the
addition of the term

〈
ξ,∇2f0(x)ξ

〉
, and with v replaced by v − ∇f0(x) in the formulas

for Y (x, v) and Ξ(x, v). Then the proto-derivatives of ∂f(x) can be obtained similarly by
adding the term ∇2f0(x)ξ to the formula in Theorem 3 and replacing v by v −∇f0(x) in
the formula for Kx,v(ξ).

In Example 3 and Theorem 4 the function f0 has been assumed to be C2, but the
methodology is not limited to that case. We could easily go further by taking f = f0 + δC

with the set C chosen according to the specifications in Example 2, but with f0 taken
to be any fully amenable function. In particular, f0 could be a max function of the
kind in Example 1, hence nonsmooth. This generality is attained through the calculus
we have developed in [8], which provides formulas for f ′′x,v(ξ) and (∂f)′x,v(ξ) when f is
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expressed as the sum of two fully amenable functions under an associated “constraint
qualification” on the domains of the functions. For f = f0+δC this constraint qualification
is satisfied in particular when f0 is finite everywhere, as in the max function case. Then
∂f(x) = ∂f0(x) + NC(x), and for any v ∈ ∂f(x) one has in terms of the set

V (x, v) :=
{
(v0, v1)

∣∣ v0 ∈ ∂f0(x), v1 ∈ NC(x), v0 + v1 = v
}

the expressions

f ′′x,v(ξ) = max
(v0,v1)∈V (x,v)

{
(f0)′′x,v0

(ξ) + (δC)′′x,v1
(ξ)
}

, (2.23)

(∂f)′x,v(ξ) =
⋃

(v0,v1)∈Vmax(x,v,ξ)

{(
∂f0

)′
x,v0

(ξ) +
(
∂δC

)′
x,v1

(ξ)
}

,

where Vmax(x, v, ξ) is the set of vectors (v0, v1) that achieve the maximum in (2.23).

3. Comparison with Other Work

Recall that ∂f is proto-differentiable at x for v ∈ ∂f(x) if

lim sup
t↘ 0

[
gph ∂f − (x, v)

]
/t = lim inf

t↘ 0

[
gph ∂f − (x, v)

]
/t

(where gph stands for graph), and note that

(ξ, z) ∈ lim sup
t↘ 0

[
gph ∂f − (x, v)

]
/t ⇐⇒ z ∈ lim sup

ξ′→ξ

t↘ 0

[
∂f(x + tξ′)− v

]/
t.

As mentioned in the Introduction, proto-derivatives of ∂f for the max functions f in
Example 1 have been studied by Auslender and Cominetti [12] and Penot [13]. In [12] and
[13] the following formula is given for the outer graphical limit of the difference quotients:
For any v ∈ ∂f(x),

lim sup
ξ′→ξ

t↘ 0

[
∂f(x + tξ′)− v

]/
t =

⋃
I∗∈S(x,v,ξ)

⋃
y∈Y (I∗,v)

[∑m
i=1 yi∇2fi(x)ξ + E(I∗, y)

]
, (3.1)

where

Y (I∗, v) :=
{

y ∈ Y (x, v)
∣∣ yi = 0 for i /∈ I∗

}
,

S(x, v, ξ) :=
{
I∗ ⊂ I(x)

∣∣Y (I∗, v) 6= ∅ and ∃ tk ↘0, ξk → ξ,

with I∗ = I(x + tkξk) for all k
}
,

E(I∗, y) :=
{ ∑m

i=1 σi∇fi(x)
∣∣ ∑m

i=1 σi = 0, σi = 0 if i /∈ I∗, σi ≥ 0 if yi = 0
}
.
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It was observed by Cominetti and Auslender that an element I∗ of S(x, v, ξ) is actually
included in I(x, ξ) (the set of indices achieving the maximum in (2.6)). With this obser-
vation one can easily check that if S(x, v, ξ) is nonempty, then ξ must be an element of
Ξ(x, v). Furthermore in [13], under the condition that

lim inf
t↘ 0

[
M(I(x, ξ))− x

]/
t =

{
ξ′ ∈ IRn

∣∣ 〈∇fi(x), ξ′〉 = f ′x(ξ′) ∀i ∈ I(x, ξ)
}
, (3.2)

where M
(
I(x, ξ)

)
:=
{

x′ ∈ IRn
∣∣ fi(x′) = f(x′),∀i ∈ I(x, ξ)}, then ∂f is proto-differenti-

able at x for v “in the direction ξ” (see [13]) with

(∂f)′x,v(ξ) =
⋃

y∈Y (I(x,ξ),v)

[∑m
i=1 yi∇2fi(x)ξ + E(I(x, ξ), y)

]
. (3.3)

Finally, in both [12] and [13] the special case of
{
∇fi(x)

∣∣ i ∈ I(x, ξ)
}

linearly independent
is discussed (the case

{
∇fi(x)

∣∣ i ∈ I(x, ξ)
}

affinely independent is the only example
satisfying condition (3.2) that is provided in [13]). The formula for the proto-derivatives
in this case becomes

(∂f)′x,v(ξ) =
∑m

i=1 yi∇2fi(x)ξ + E
(
I(x, ξ), y

)
, (3.4)

where ξ ∈ Ξ(x, v) while y is the unique element of Y (x, v).
In order to simplify formulas (3.1) and (3.3), and to compare the various formulas with

each other, we need to give an alternate description of the cones Kx,v(ξ) and E(I∗, y).

Proposition 1. Fix ξ ∈ Ξ(x, v). For any y ∈ Y (x, v),

Kx,v(ξ) = E
(
I(x, ξ), y

)
. (3.5)

Furthermore, for any index set I∗ ∈ S(x, v, ξ) and any vector y ∈ Y (I∗, v), the polyhedral

cone E(I∗, y) is the convex cone generated by the vectors ∇fi(x) − v for i ∈ I∗. In

particular, E(I∗, y) ⊂ Kx,v(ξ).

Proof. Fix ξ ∈ Ξ(x, v), and y ∈ Y (x, v). Because

〈
v, ξ
〉

=
∑m

i=1
yi

〈
∇fi(x), ξ

〉
= max

i∈I(x)

〈
∇fi(x), ξ

〉
,

it follows that yi = 0 if i /∈ I(x, ξ). So actually v =
∑

i∈I(x,ξ) yi∇fi(x). If w ∈ Kx,v(ξ)
then, by Theorem 2, w is in the convex cone generated by the vectors ∇fi(x) − v for
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i ∈ I(x, ξ). We then have

w =
∑

i∈I(x,ξ)

µi

(
∇fi(x)− v

)
with µi ≥ 0

=
∑

i∈I(x,ξ)

µi

(
∇fi(x)−

∑
j∈I(x,ξ)

yj∇fj(x)
)

with µi ≥ 0

=
∑

i∈I(x,ξ)

(
µi − yi

∑
j∈I(x,ξ)

µj

)
∇fi(x) with µi ≥ 0.

Let σi =
(
µi − yi

∑
j∈I(x,ξ) µj

)
. Then σi ≥ 0 if yi = 0, and

∑
i∈I(x,ξ) σi = 0, i.e., w

is in E
(
I(x, ξ), y

)
. To establish the reverse inclusion in (3.5), take w in E

(
I(x, ξ), y

)
and let µi = σi + yiM, where M := max{−σi/yi | yi 6= 0}. It follows that µi ≥ 0 and∑

i∈I(x,ξ) µi(∇fi(x) − v) = w, i.e., w is in Kx,v(ξ). By a similar argument E(I∗, y) is the
convex cone generated by the vectors ∇fi(x)− v for i ∈ I∗.

In the special case with
{
∇fi(x)

∣∣ i ∈ I(x, ξ)
}

linearly independent, it is easy to see
that (3.4) agrees with (2.9). In other cases the reconciliation of (3.1) with (2.9) is not
a simple task. One difficulty in comparing the formulas is that it’s hard in the much
more complicated framework of (3.1) to identify just which index sets I∗ belong to the
collection S(x, v, ξ), a circumstance that led Cominetti and Auslender to comment that
the computation of S(x, v, ξ) can only be carried out in special situations. There is no
such obstacle in applying our formula (2.9).

Another difficulty, illustrated by the following example, is that E(I∗, y) can some-
times be a proper subset of Kx,v(ξ). Consider the function f(x1, x2) := maxi∈{1,2,3} fi(x),
where f1(x) = 1

2x2
1, f2(x) = x2, and f3(x) = −x2, at the points x = (0, 0), v =

(0, 0), and ξ = (1, 0). A simple calculation shows that Y (x, v) =
{

(1 − 2α, α, α)
∣∣ 0 ≤

α ≤ 1/2
}
, Kx,v(ξ) =

{
(ξ1, ξ2)

∣∣ ξ1 = 0
}
, and S(x, v, ξ) =

{
{1, 2}, {1, 3}, {1}

}
, with

E
(
{1, 2}, (1, 0, 0)

)
=
{

λ(0, 1)
∣∣λ ≥ 0

}
, and E

(
{1, 3}, (1, 0, 0)

)
=
{

λ(0, 1)
∣∣λ ≤ 0

}
. Never-

theless, the two formulas (2.9) and (3.1) are confirmed as agreeing in this example.
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