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1 Introduction

Let W 1
p denote the Banach space consisting of all Rn-valued absolutely continuous func-

tions x(·) on [0, 1] with ẋ(·) ∈ Lp. (The norm can be taken as ‖x(·)‖1
p = |x(0)|+ ‖ẋ(·)‖p,

where | · | is the Euclidean norm of a vector in Rn.) The generalized problem of Bolza,
which will be the focus of our attention in this paper, concerns the minimization over
W 1

1 of a functional

J(x(·)) = l(x(0), x(1)) +
∫ 1

0
L(t, x(t), ẋ(t))dt, (1)

where the functions l and L, in contrast to the traditional setting for the calculus of
variations, need not be differentiable or even continuous, and for some purposes may be
extended-real-valued. These features account for the ability of such a seemingly simple
problem statement to cover the many complications built into the classical problem of
Bolza, including constraints of all kinds on (x(0), x(1)) and (x(t), ẋ(t)): such constraints
can be represented through penalties, finite or infinite. The generalized problem covers
not only classical models but problems in optimal control as well.

In the inherited terminology of the subject, an arc x∗(·) ∈ W 1
1 furnishes a strong

local minimum of J if J(x∗(·)) ≤ J(x(·)) for all x(·) in a set of the form

{x(·) ∈ W 1
1 : |x(t)− x∗(t)| ≤ ε for all t ∈ [0, 1] }

for some ε > 0, whereas it gives a weak local minimum if the comparison merely holds
on the smaller kind of set

{x(·) ∈ W 1
1 : |x(t)− x∗(t)| ≤ ε and |ẋ(t)− ẋ∗(t)| ≤ ε for a.e. t ∈ [0, 1] }.

For an arc furnishing a weak minimum, the classical first-order necessary condition is
a transversality condition plus the Euler-Lagrange equation. In the case of a strong
minimum, the Euler-Lagrange equation is supplemented by the Weierstrass condition.
In both cases the Euler-Lagrange equation can be written instead as the Hamiltonian
equation, as long as L has positive-definite a second-derivative matrix with respect to the
velocity argument. But these conditions rely on differential calculus for their derivation
and even their formulation. Attempts at extending them to the general problem of Bolza
must confront possible nonsmoothness and discontinuity in l and L, and this calls for a
different level of analysis.

While much has already been accomplished in this direction, as will be reviewed
presently, most derivations of an extended Euler condition for functions L of general
character have dealt only with the case of a strong minimum, yet they have not at the
same time provided the anticipated necessity of the Weierstrass condition, except in
situations where convexity assumptions make it virtually automatic. We aim to address
this discrepancy in two ways. First, we establish the necessity of a state-of-the-art Euler
condition in the case of a weak minimum for problems with integrands L much more
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general than those successfully handled in this respect so far. Second, we show that in
the case of a strong minimum involving such integrands, the Weierstrass condition must
indeed hold as well. By the Weierstrass condition we mean the inequality

L(t, x∗(t), y) ≥ L(t, x∗(t), ẋ∗(t)) + 〈p(t), y − ẋ∗(t)〉 for all y, a.e. in t (2)

holding for an adjoint arc p(·) ∈ W 1
1 that is paired with x∗(·) through the Euler condition,

whatever it may be. The classical Weierstrass condition can also be viewed from another
angle as relating to a lower semicontinuity property of the functional (1), but that mode
of thinking leads instead to relaxation theory—the study of the relation between the
problem with L and the same problem with L̄, the integrand obtained by convexifying
L(t, x, y) in the y argument—which is not our topic here. It may be observed however
that if (2) does hold, then L(t, x∗(t), ẋ∗(t)) = L̄(t, x∗(t), ẋ∗(t)) a.e., so an important
implication for relaxation theory is immediate.

Bolza problems with nondifferentiable, possibly extended-real-valued data elements
l and L were first studied in papers of Rockafellar [25, 26, 27], in the fully convex case,
where l(x, y) and L(t, x, y) are convex functions of (x, y) ∈ Rn × Rn. In that case
subgradients in the sense of convex analysis can be utilized in place of gradients for
the purpose of expressing extensions of Euler’s equation and other conditions. Euler’s
equation relative to an optimal arc x∗ comes out as asserting the existence of an adjoint
arc p such that

(ṗ(t), p(t)) ∈ ∂L(t, x∗(t), ẋ∗(t)) a.e. in t, (3)

where the set on the right consists of the subgradients of the convex function L(t, ·, ·)
at (x∗(t), ẋ∗(t)). Due to full convexity, this condition is always sufficient for a global
minimum and, under a constraint qualification (with respect to the constraints implicit
in the problem formulation with ∞), it is also necessary. Indeed, no distinction is
needed between a strong or weak minimum, and the Weierstrass condition is automatic.
Also, the Euler condition can always be recast equivalently as a subgradient type of
Hamiltonian equation.

The 1973 dissertation of Clarke [3] greatly broadened the scope of this approach by
introducing a robust concept of subgradient for nonconvex functions. Convexity was
replaced to an important degree by assumptions of Lipschitz continuity on L or its
associated epigraphical mapping. Clarke showed in [4] that a generalized subgradient
version of Euler’s equation,

(ṗ(t), p(t)) ∈ ∂̄L(t, x∗(t), ẋ∗(t)) a.e. in t, (4)

where ∂̄ signifies subgradients in his broader sense, must hold as a necessary condition
for a weak minimum in problems without full convexity, as long as certain assumptions
are satisfied, which include L(t, ·, ·) being Lipschitz continuous around (x∗(t), ẋ(t)). In
[6] he obtained a subgradient Hamiltonian condition for a strong minimum, but without
the intermediary of an Euler condition. In [9] (see also the book [10], p. 187) he did
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state, for a strong minimum, the Weierstrass condition (2) in combination with an Euler
condition, but the latter in the form

ṗ(t) ∈ ∂̄xL(t, x∗(t), ẋ∗(t)) and p(t) ∈ ∂̄yL(t, x∗(t), ẋ∗(t)) a.e. in t. (5)

Although (4) and (5) would be identical if one were dealing with gradients, they can
be quite different for subgradients. Under the assumption of local Lipschitz continu-
ity made by Clarke in his presentation of this result, (5) is typically weaker than (4),
as he well recognized in [10], since the closure of the graph of the mapping (x, y) 7→
∂̄xL(t, x, y) × ∂̄yL(t, x, y) includes the graph of the mapping (x, y) 7→ ∂̄L(t, x, y). (In
special circumstances, (5) can provide some information beyond (4), but this is excep-
tional; an example will be seen at the end of this paper.) Time independence of L was
also assumed by Clarke in this connection, but he based the arguments on his work with
the maximum principle in [7], which would also support an approach under less serious
restrictions.

Since these contributions, Loewen and Rockafellar [20, 21] have used Clarke’s Hamil-
tonian condition to derive a sharper version of the Euler condition than (4) as necessary
for a strong minimum. This version, described below, involves less convexification in
the formation of subgradient sets. It is the Euler condition we adopt here. Loewen
and Rockafellar did not require L to be finite and locally Lipschitz continuous, but they
imposed convexity of L(t, x, y) in y. For this reason, they were easily able to get the
Weierstrass condition too, on the side; see also Clarke [12] for a subsequent contribution
under such assumptions, and Ioffe [17] and Rockafellar [28, 29] for subgradient con-
nections between Lagrangians and Hamiltonians more generally in the case of partially
convex integrands.

The move toward application of a less-convexified subgradient set received much
impetus from work of Mordukhovich [22, 23]. Recently also, Mordukhovich succeeded
in demonstrating in [24] that a sharpened subgradient version of the Euler condition is
necessary for an “intermediate” minimum with certain integrands L(t, x, y) that are not
convex in y, an intermediate minimum being a minimum relative to a neighborhood in
the W 1

p norm for some p <∞. This did not entail the Weierstrass condition at the same
time, however.

As a final observation in this vein, we note that for integrands not depending on x the
Weierstrass condition in combination with the Euler condition is an easy outcome of the
application of convex analysis to the description of solutions of optimal control problems
exhibiting linearity with respect to state variables; cf. Ioffe and Tikhomirov [19]. (We
are indebted to Tikhomirov for the observation that in the Euler–type condition (5)
with separately taken subdifferentials, one of them, namely with respect to y, can be the
smaller non–convex subdifferential while the other must still be the generalized gradient
of Clarke.)

These results have left the status of the Euler condition unclear with regard to its
necessity for a weak minimum in general problems with non-Lipschitz L, and more
importantly its pairing with the Weierstrass condition in the case of a strong minimum.

3



We do not exclude the possibility that the recent arguments of Loewen-Rockafellar and
Mordukhovich might be adjustable to cover the case of the weak minimum but this is not
obvious and would require effort. Maybe the same can be said about Clarke’s landmark
derivation of the Euler condition in [6] based on calmness as a constraint qualification.
Here, though, we apply different tactics in attempting to resolve the issues. As far as
the Weierstrass condition is concerned, it would be too much to hope that it would hold
for every adjoint arc p(·) appearing in the Euler condition, but one may naturally ask
whether it must hold for at least one such arc.

We are not able at the current stage of our technique to take on the full generality of
extended-real-valued L, but at least we can handle integrands that can well be discon-
tinuous. While integrands with ∞ have already yielded to analysis of Euler possibilities
for a strong minimum, only Lipschitz continuous integrands, or ones with convexity in y,
have previously been covered by work in the directions in which we are headed here. The
endpoint function l poses fewer hurdles. We do allow it to be extended-real-valued, and
our results therefore apply to problems with constraints on x(0) and x(1) as represented
through infinite penalties.

To formulate our main result precisely, we must begin by clarifying the kind of
subgradients that are involved. These need only be described in a setting of Hilbert
spaces, inasmuch as that includes not only Rn but the subspace W 1

2 of W 1
1 in which our

methodology allows us to work through truncation.
For any Hilbert space X and function f : X → R̄ (where R̄ denotes the extended real

line [−∞,∞]), a proximal subgradient of f at a point x with f(x) finite is an element
x∗ ∈ X∗ such that there exist ε > 0 and k > 0 for which

f(x+ u)− f(x)− 〈x∗, u〉 ≥ −k‖u‖2, if ‖u‖ < ε.

The set of all proximal subgradients of f at x will be denoted by ∂pf(x). The limiting
proximal subdifferential of f at x, when f is l.s.c. at x, is the set

∂f(x) = lim sup
u→ x

f(u) → f(x)

∂pf(u)

(with the limsup taken with respect to weak (sequential) convergence of the proximal
subgradients).

This is the same as the subdifferential adopted as the vehicle of basic nonsmooth
analysis in Rn by Mordukhovich (see [22] and its references) and in infinite-dimensional
spaces developed as the approximate subdifferential by Ioffe [16], and a considerable
body of theory is therefore available to us when utilizing it. It is smaller than the Clarke
subdifferential, which would correspond to its convex hull in a certain extended sense.

Our choice of the proximal subdifferential as the starting point for our efforts is
explained by a specific advantage that it has over competitors like the Dini or Fréchet
subdifferentials in handling integral functionals. If I(u(·)) =

∫ 1
0 g(t, u(t))dt on L2 and
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v(·) ∈ ∂pI(u(·)), then v(t) ∈ ∂pg(t, u(t)) for almost every t (the subgradients being taken
in the u argument only). Effective treatment of integral functionals is of course essential
to our aims.

In minimizing the functional J over the space W 1
1 we adopt the following assumptions

on the functions l and L relative to the candidate arc x∗(·) later to be involved in the
necessary condition:

(A1) l(x, y) is l.s.c., possibly with ∞ but not −∞, and l(x∗(0), x∗(1)) finite;

(A2) L(t, x, y) is an everywhere finite and lower semicontinuous function of (x, y) for
almost every t ∈ [0, 1], and it is measurable with respect to t in the sense that the
set valued mapping t 7→ epiL(t, ·, ·) from [0, 1] into Rn ×Rn is measurable;

(A3) for any N > 0 there are an ε > 0 and k(t) ∈ L1, c(t) ∈ L1 such that

|L(t, x, y)− L(t, x′, y)| ≤ k(t)|x− x′| and |L(t, x, y)| ≤ c(t)

when |y − ẋ∗(t)| ≤ N, |x− x∗(t)| ≤ ε, |x′ − x∗(t)| ≤ ε.

Note that convexity of L(t, x, y) with respect to y is not assumed. Furthermore, L need
not be locally Lipschitz continuous with respect to (x, y), but merely in x for fixed y, and
even that only around the points (x∗(t), ẋ∗(t)). As a function of y alone, L(t, x, y) could
well have discontinuities, provided that lower semicontinuity, at least, is maintained.

Theorem 1 Suppose that x∗(·) furnishes a local minimum of J(x(·)) in the norm of W 1
1

(as holds in particular if x∗(·) furnishes a classical strong minimum), and that (A1)−(A3)
hold. Then there is an arc p(·) in W 1

1 such that following three relations are satisfied:

(a) Euler condition: ṗ(t) ∈ conv{w : (w, p(t)) ∈ ∂L(t, x∗(t), ẋ∗(t))} a.e. in t;

(b) Weierstrass condition: L(t, x∗(t), y) ≥ L(t, x∗(t), ẋ∗(t)) + 〈p(t), y − ẋ∗(t)〉 for all
y, a.e. in t;

(c) transversality condition: (p(0),−p(1)) ∈ ∂l(x∗(0), x∗(1)).

Moreover, the Euler condition (a) and transversality condition (c) hold even if x∗(·)
merely furnishes a classical weak minimum.

In the Euler condition (a), the subgradients are those of the limiting proximal subd-
ifferential, also called approximate (e.g. [14, 15]) or generalized derivatives (e.g. [22]) of
L(t, x, y) with respect to (x, y). (Mordukhovich’s result in [24], in contrast, appeals to a
larger subdifferential generated by taking proximal subgradient limits in (t, x, y) rather
than just in (x, y).)
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Our technique for proving Theorem 1 rests on the “fuzzy subgradient calculus” that
was first developed for Dini and Fréchet subdifferentials by Ioffe in [14, 15, 16]. Here we
require an analogous result for proximal subgradients in Hilbert spaces. The modified
argument that we use to obtain this result (involving the uniform lower semicontinuity
condition (ULC) below) can be applied in fact to a wide range of subdifferentials, not
just proximal ones; see Borwein and Ioffe [1].

We also draw on various results about convexification, some new. In particular we
show how to calculate from the subgradients of L those of the corresponding relaxed
Lagrangian. In dealing with the relaxed problem we use a standard-looking theorem
which, however, is not completely covered by the other results we are aware of, e.g. in
contributions of Warga [30], Ioffe and Tikhomirov [18], Ekeland and Temam [13], and
Clarke [5]. Among these, Clarke’s relaxation result comes closest to ours, but he assumes
that L(t, ·, ·) is Lipschitz whereas we do not.

We employ the strategy of first establishing the Euler condition under a slightly
different set of assumptions. These assumptions are satisfied in particular for the relaxed
problem corresponding under the normalization x∗(t) ≡ 0 to the truncated ε-integrand

LNε =

{
L(t, x, y) + ε|y|2 if |y| ≤ N,

∞ if |y| > N,

which we consider on W 1
2 instead of W 1

1 . We use our convexification formula to get both
the Euler condition and the Weierstrass condition for LNε in this setting. By passing to
the limit as N →∞ and ε→ 0 we then obtain our general result in W 1

1 .
The crucial difficulty that has to be overcome in proving the Euler condition is that

unless the sequence of adjoint arc derivatives ṗν(·) we generate converges pointwise to
ṗ(·), the condition ultimately obtained in terms of x∗(·) and p(·) can at best be of
Clarke type—with full subgradient convexification. We achieve pointwise convergence
by introducing pν(·) carefully as a proximal subgradient of the restriction of J to the
Hilbert space W 1

2 , and then resort to methodology of infinite-dimensional nonsmooth
analysis.

This approach has two advantages over the limit approach of Mordukhovich. It does
not require continuity of L(t, x, y) in t, and it leads directly to the necessity of the Euler
condition for a weak minimum instead of just an “intermediate” kind of minimum.
But it requires very delicate analysis as N → ∞ and ε → 0 and therefore, unlike
Mordukhovich’s, has little claim to providing support for the construction of numerical
approximations.

The last section of the paper provides examples which help to clarify the relationship
between our necessary conditions and the earlier ones obtained by Clarke.

2 “Fuzzy Calculus” of Proximal Subgradients

We shall begin our discussion by estimating the proximal subgradients of a sum of
functions by means of proximal subgradients of the summands. For functions on Rn,
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the necessary estimate is provided by the “fuzzy calculus” developed in [15]. We refer
to [16, 1] for similar results involving other (than proximal) subdifferentials in infinite
dimensional spaces.

Theorem 2 Let X be a Hilbert space and f1,. . . , fk be (extended-real-valued) functions
defined and lower semicontinuous in a neighborhood of x̄ and finite at x̄. Assume that
the following uniform lower semicontinuity property holds on the diagonal:

(ULC) there is a δ > 0 such that for any k sequences {xir}, i = 1, . . . , k, r = 1, 2, . . .
belonging to the δ–ball around x̄ and such that ‖xir − xjr‖ → 0 as r → 0, there is
a sequence {ur} of elements of the ball such that ‖xir − ur‖ → 0 and

lim inf
r 7→∞

∑
i

(fi(xir)− fi(ur)) ≥ 0.

Then for any x∗ ∈ ∂p(
∑

i fi)(x̄) and any ε > 0 there are ui, ui
∗, i = 1, . . . , k such that

|fi(ui)− fi(x̄)| ≤ ε, ‖ui − x̄‖ < ε, ui
∗ ∈ ∂pfi(ui), ‖

∑
ui
∗ − x∗‖ < ε.

Proof. The structure of the proof is very similar to that of the finite-dimensional
proof of [15]. First we observe that we can assume without loss of generality that
x̄ = 0, fi(0) = 0 and x∗ = 0. (If not, we replace fi(x) by fi(x̄+ x)− fi(x̄)− k−1〈x∗, x〉.)

By definition the condition 0 ∈ ∂p(
∑

i fi)(0) means that there are N > 0, δ > 0 such
that ∑

fi(x) ≥ −N‖x‖2 when ‖x‖ ≤ δ.

We can assume δ so small that it does not exceed the δ in (ULC), and fi(x) ≥ −1 if
‖x‖ ≤ δ.

Consider the function

φr(x1, . . . , xk) =
∑

i

fi(xi) +N
∑

i

‖xi‖2 + r
∑
i,j

‖xi − xj‖2.

This gives

0 = φr(0, . . . , 0) ≥ αr = inf{φr(x1, . . . , xk) : ‖xi‖ ≤ δ} ≥ −k.

Take xir to satisfy
φr(x1r, . . . , xkr) ≤ αr + 1/r.

Then
−k + r

∑
i,j

‖xir − xjr‖2 ≤ φr(x1r, . . . , xkr) ≤ 1/r,

so that ‖xir − xjr‖2 ≤ (k + 1)/r → 0.
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By (ULC) there are ur such that ‖xir − ur‖ 7→ 0 and∑
i

fi(xir) ≥
∑

i

fi(ur) + o(1).

It follows that

0 ≤
∑

i

fi(ur) + kN‖ur‖2 ≤
∑

i

fi(xir) +N
∑

i

‖xir‖2 + o(1)

≤ φr(x1r, . . . , xkr) + o(1) ≤ 1/r + o(1) = o(1),

hence
∑

i fi(ur) + kN‖ur‖2 → 0. But
∑

i fi(ur) +N‖ur‖2 ≥ 0, so ur must go to zero as
well as all xir. The above inequality now implies that

0 ≤
∑

i

lim inf
r→∞

fi(xir) ≤ lim sup
r→∞

∑
i

fi(xir) = 0

which means that for each i we have fi(xir) → 0 or, equivalently, |fi(xir)− fi(0)| → 0.
Take now a sufficiently small σ, say, σ < δ/2 and an r = r(σ) such that ‖xir‖ <

σ, i = 1, . . . , k and r−1(σ) < σ3. By the smooth variational principle of Borwein–Preiss
[2], there are quadratic functions

∆i(x) = ‖x‖2 − 〈ai, x〉+ βi

with ‖ai‖ ≤ 2δ and points ui, i = 1, . . . , k such that ‖ui − xir‖ < σ and the function

g(x1, . . . , xk) = φr(x1, . . . , xk) + σ
∑

i

∆i(xi)

attains at (u1, . . . , uk) a minimum on the set of (x1, . . . , xk) satisfying ‖xi‖ < δ and

g(u1, . . . , uk) ≤ g(x1r, . . . , xkr).

As ‖ui‖ ≤ 2σ < δ, this means that the function∑
i

fi(xi) +N
∑

‖xi‖2 + r
∑
i,j

‖xi − xj‖2 + σ(
∑

i

(‖xi‖2 − 〈ai, xi〉)

attains an unconditional local minimum at (u1, . . . , uk). Setting xi = ui + hi, we get
from this fact that

∑
i

[
fi(ui + hi)− fi(ui) + (N + σ)(‖hi‖2 + 2〈ui, hi〉)− σ〈ai, hi〉

]
+r

∑
i,,j

(
‖hi‖2 + ‖hj‖2 + 2〈ui − uj|hi − hj〉 − 2〈hi|hj〉

)
≥ 0

for all sufficiently small hi.
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Setting consecutively for i = 1, . . . , k, hj = δijh, ui
∗ = −2(N+σ)ui+σai+2r

∑
j(ui−

uj) and M = N + σ, we deduce from the last inequality that

fi(ui + h)− fi(ui) ≥ 〈ui
∗, h〉 −M‖h‖2, ∀i = 1, . . . , k,

which means that
ui
∗ ∈ ∂pfi(ui).

On the other hand, ∑
i

ui
∗ = −2(N + σ)

∑
i

ui + σ
∑

i

ai

+2r
∑
ij

(ui − uj)

= −2(N + σ)
∑

i

ui + σ
∑

i

ai,

that is

‖
∑

i

ui
∗‖ ≤ (2N + σ)

∑
i

‖ui‖+ σ
∑

i

‖ai‖ ≤ 2k(2N + σ)σ + kσ · 2σ.

It remains, given ε > 0, to take a σ < ε/2 so small that the quantity at the right-hand
part of the last inequality is smaller than ε and fi(x) ≥ fi(0)− ε if ‖x‖ ≤ σ.

3 Subgradients Under Convexification

Let f : Rm×Rn → R̄ be a lower semicontinuous function such that its convex hull with
respect to the second variable

f̄(z, y) = convyf(z, y)

is proper (everywhere greater than −∞ and such that for any z there is a y with
f(z, y) < ∞). What can be said about interrelation between ∂f̄ and ∂f? This is the
question we are going to answer in this section.

The main tool in answering this question is a parametric representation for f̄ based
on Carathéodory’s theorem for the convex hull operation:

f̄(z, y) = inf
λ0 ≥ 0, . . . , λn ≥ 0∑

i yi = y,
∑

i λi = 1

n∑
i=0

Φ(z, yi, λi),

where

Φ(z, y, λ) =


λf(z, y/λ), if λ > 0

0, if λ = 0 and y = 0
+∞, otherwise.

9



This can also been written in terms of the parameter element

u = (y0, . . . , yn, λ0, . . . , λn) ∈ (Rn)n+1 ×Rn+1

as
f̄(z, y) = inf

u
F (z, y, u),

where

F (z, y, u) =
n∑

i=0

Φ(z, yi, λi) + δ
(
u

∣∣∣ n∑
i=0

yi = y,
n∑

i=0

λi = 1
)
.

Here δ(u|C) stands for the indicator function of C (i.e., the one equal to zero on C and
+∞ outside of C).

Theorem 3 Assume that the following two conditions are satisfied:

(B) For each (z̄, ȳ) ∈ Rm ×Rn and each α ∈ R, there is an ε > 0 such that the set

{(z, y, u) : |z − z̄| ≤ ε, |y − ȳ| ≤ ε, F (z, y, u) ≤ α}

is compact.

(C) The set domf(z, ·) = {y : f(z, y) < ∞} does not depend on z, and for every y of
this set f(·, y) is locally Lipschitzian.

Consider any (z̄, ȳ) with f(z̄, ȳ) finite. Then for any (w̄, v̄) ∈ ∂f̄(z̄, ȳ) there is an
element ū = (ȳ0, . . . , ȳn, λ̄0, . . . , λ̄n) satisfying f̄(z̄, ȳ) = F (z̄, ȳ, ū), along with vectors
wi, i = 0, . . . , n, such that ∑

i

λ̄iwi = w̄ (6)

and such that, for each i with λ̄i > 0, one has for ŷi = ȳi/λ̄i that

(wi, v̄) ∈ ∂f(z̄, ŷi) ∀i. (7)

Corollary 1 Suppose under the assumption given in the theorem that ȳ is “exposed”
for f at z̄, in the sense that the minimum defining f̄(z̄, ȳ) is attained only by vectors
ū = (ȳ0, . . . , ȳn, λ̄0, . . . , λ̄n) in which for every i with λ̄i > 0 the vector ŷi = ȳi/λ̄i agrees
with ȳ. (In other words from∑

i

λ̄iŷi = ȳ, λ̄i ≥ 0,
∑

i

λ̄i = 1,
∑

i

λ̄if(z̄, ŷi) = f̄(z̄, ȳ),

it follows that ŷi = ȳ for every i with λ̄i > 0.)
Then for (w̄, v̄) ∈ ∂f̄(z̄, ȳ), one has

w̄ ∈ conv {w : (w, v̄) ∈ ∂f(z̄, ȳ)}

and

f(z̄, y) ≥ f(z̄, ȳ) + 〈v̄, y − ȳ〉, ∀y.
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Before proving the theorem, we discuss in some more detail the condition (B) intro-
duced in the statement of the theorem.

Proposition 1 Condition (B) is implied by

(B1) lim inf
z → z̄
y → ȳ
λ↘ 0

λf(z, y/λ) = ∞ when ȳ 6= 0.

Proof. In combination with f being l.s.c., (B1) means that Φ is l.s.c. It follows that
F is l.s.c. The next claim is that the set

{(z, y, λ) : z ∈ Z, λ ∈ [0, 1], Φ(z, y, λ) ≤ α}

is bounded for any bounded set Z ⊂ Rm and any α ∈ R. If this were not true, we
could find sequences {zν} ⊂ Z, {λν} ⊂ [0, 1] and an unbounded sequence {yν} such
that Φ(zν , yν , λν) ≤ α. Without loss of generality it can be supposed that zν converges
to some z̄, that λν > 0 and that 0 < |yν | → ∞.

The condition Φ(zν , yν , λν) ≤ α can then be written as

α ≥ λνf(zν , yν/λν) = λ̂νf(zν , ŷν/λ̂ν)|yν |

with ŷν = yν/|yν |, λ̂ν = λν/|yν | → 0. We can suppose that ŷν → ŷ, where |ŷ| = 1. Then

lim inf
ν→∞

λ̂νf(zν , ŷν
i /λ̂

ν)| ≤ lim
ν→∞

(α/|yν |) = 0

in contradiction with (B1).
From this property of Φ we conclude in particular the existence for any bounded

Z ⊂ Rn of β ∈ R such that

Φ(z, y, λ) ≥ β, when z ∈ Z, λ ∈ [0, 1].

Returning to the formula for F (z, y, u), we apply this with Z = {z : |z − z̄| ≤ ε} for
some z̄ and ε > 0. We get for u = (y0, . . . , yn, λ0, . . . , λn) that

|z − z̄| ≤ ε
|y − ȳ| ≤ ε
F (z, y, u) ≤ α

 =⇒ Φ(z, yi, λi) ≤ α− nβ and λi ∈ [0, 1], ∀i = 0, . . . , n.

Since the set of (z, yi, λi) satisfying

|z − z̄| ≤ ε, λi ∈ [0, 1], Φ(z, yi, λi) ≤ γ

is bounded for every γ ∈ R, the boundedness property required by (B) does hold.
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Proposition 2 Condition (B1) is equivalent to f(z, y) being coercive in y locally uni-
formly in z in the sense that

(B2) for any z̄ and ε > 0 there is a nondecreasing function θ : [0,∞) → R̄ with θ(0)
finite,
θ(s)/s→∞ as s→∞, such that

f(z, y) ≥ θ(|y|), when |z − z̄| ≤ ε.

Proof. If (B2) holds, then (when ȳ 6= 0)

lim inf
z → z̄
y → ȳ
λ↘ 0

λf(z, y/λ) ≥ lim inf
y → ȳ
λ↘ 0

λθ(|y|/λ) = |ȳ| lim inf
y → ȳ
λ↘ 0

θ(|y|/λ)

|y|/λ
= ∞.

Thus (B1) holds. Conversely, under (B1) we can get a function θ with the property
demanded by (B2) by taking

θ(s) = min
|z − z̄| ≤ ε
|y| ≥ s
λ ∈ [0, 1]

Φ(z, y, λ).

This is easily seen from the properties of Φ revealed in Proposition 1.

Proposition 3 Denote by

h(z, v) = supy{〈y, v〉 − f(z, y)}

the “Hamiltonian” associated with f . Then (B1) is equivalent to

(B3) h(z, v) is u.s.c. and everywhere <∞.

Proof. Sufficiency: if (B3) holds, one can take θ to be the conjugate of the function

ψ(t) = max
|z − z̄| ≤ ε
|v| ≤ t

h(z, v)

to get a function satisfying (B2).
Necessity: we can think of h as defined by parametric optimization:

−h(z, v) = miny G(z, v, y) with G(z, v, y) = f(z, y)− 〈y, v〉.

From (B2) and the lower semicontinuity of f we see that G has the basic properties
guaranteeing that −h is l.s.c., as required.
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Proof of the theorem. By definition there exist sequences

(wν , vν) → (w̄, v̄), (zν , yν) → (z̄, ȳ) with f̄(zν , yν) → f̄(z̄, ȳ), and (wν , vν) ∈ ∂pf̄(zν , yν).

In particular, this implies through the convexity of f̄(z, y) in y that

f(zν , y) ≥ f̄(zν , y) ≥ f̄(zν , yν) + 〈vν , y − yν〉, ∀y. (8)

Because (B) holds, the set

U(z, y) = {u : F (z, y, u) = f̄(z, y)}

is nonempty when f̄(z, y) <∞, and the set-valued mapping U : (z, y) 7→ U(z, y) carries
any set of the form {(z, y) : |z− z̄| ≤ ε, |y− ȳ| ≤ ε, f̄(z, y) ≤ α} for a sufficiently small
ε into a bounded set of vectors u. Also,

lim sup
(z′, y′) → (z, y)

f̄(z′, y′) → f̄(z, y) <∞

U(z′, y′) = U(z, y). (9)

For any (z, y) of a neighborhood of (zν , yν) and any u we have (for some u ∈ U(zν , yν))

F (z, y, u) ≥ f̄(z, y) ≥ f̄(zν , yν) + 〈wν , z − zν〉+ 〈vν , y − yν〉+ O(|y − yν |2 + |z − zν |2)
≥ F (zν , yν , uν) + 〈wν , z − zν〉+ 〈vν , y − yν〉+ O(|y − yν |2 + |z − zν |2),(10)

or in other words,∑n
i=0 Φ(z, yi, λi) ≥ ∑n

i=0 Φ(zν , yν
i , λ

ν
i )

+ 〈wν , z − zν〉+ 〈vν ,
∑n

i=0 yi −
∑n

i=0 y
ν
i 〉

+ O(|z − zν |2 +
∑n

i=0 |yi − yν
i |2),

when λi ≥ 0,
∑

i λi = 1;
∑

i yi = y.
Consider the functions

φν
i (z, y) = Φ(z, y, λν

i ).

Then the inequality above means that

(wν , vν , . . . , vν) ∈ ∂p(
∑

i

φν
i )(z

ν , yν
0 , . . . , y

ν
n). (11)

Applying Theorem 2 (with the account of the fact that φν
i does not depend on yj with

j 6= i), we find, for any ν = 1, 2, . . . , vectors (ẑν
i , ŷ

ν
i , ŵ

ν
i , v̂

ν
i ) such that for all i with

λν
i > 0

|ẑν
i − zν | ≤ 1/ν, |ŷν

i − yν | ≤ 1/ν,
|v̂ν

i − vν | ≤ 1/ν, |∑i ŵ
ν
i − wν | ≤ 1/ν,

and (ŵν
i , v̂

ν
i ) ∈ ∂pφ

ν
i (ẑ

ν
i , ŷ

ν
i ).

 (12)
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This means that for any i with λν
i > 0

f(z, yi/λ
ν
i ) ≥ f(ẑν

i , ŷ
ν
i /λ

ν
i )

+ 〈(ŵν
i /λ

ν
i )|z − ẑν

i 〉+ O(|z − ẑν
i |2)

+ 〈v̂ν
i , (yi − yν

i (·))/λν
i 〉+ O(|yi − yν

i (·)|2). (13)

from which we conclude that

((ŵν
i /λ

ν
i ), v̂

ν
i ) ∈ ∂pf(ẑν

i , ŷ
ν
i /λ

ν
i ).

From (9) and the local boundedness of the mapping U mentioned earlier, we can suppose
that the vectors uν = (yν

0, . . . , y
ν
n, λ

ν
0, . . . , λ

ν
n) converge to some

ū = (ȳ0, . . . , ȳn, λ̄0, . . . , λ̄n) ∈ U(z̄, ȳ). We also observe that by (C) and (12)(13) the
vectors ŵν

i /λ
ν
i are uniformly bounded as well as ŵν

i . So we may assume that every
ŵν

i converges to a certain pi with pi = 0 if λ̄i = 0. Therefore, as ẑν
i → z̄, ŷν

i → ȳi

and v̂ν
i → v̄ by (13), we get, setting wi = pi/λ̄i, that for every i with λ̄i > 0, both

(wi, v̄) ∈ ∂f(z̄, ȳi/λ̄i) and
∑

i λ̄iwi =
∑

i pi = w̄. This completes the proof of Theorem 3.

4 An Auxiliary Problem - Relaxation

As the first step of the proof of Theorem 1 we shall consider the same functional J(·)
but under somewhat different set of assumptions. Namely, instead of (A2) and (A3) we
assume the following:

(A′2) L(t, x, y) is l.s.c (extended-real-valued) as a function of (x, y), the set-valued map
t 7→ epiL(t, ·, ·) is measurable, and the sets

domL(t, x, ·) = {y : L(t, x, y) <∞} = R(t)

do not depend on x and are bounded by a square integrable function r(t), that is
to say, |x| ≤ r(t) if x ∈ R(t);

(A′3) |L(t, x, y)− L(t, x′, y)| ≤ ω(t, |x− x′|) and |L(t, x, y)| ≤ c(t),

for all x, x′ of a certain ε-ball (ε > 0) around x∗(t) and y ∈ R(t), where ω(t, δ) is
a nonnegative Carathéodory function for almost every t converging monotonously
to zero as δ → 0 and c(t) is summable.

The last condition says that the dependence of L on x is continuous uniformly in
y ∈ R(t) for almost every t. This is definitely the case when L(t, ·, ·) is continuous (as
R(t) is bounded) or if L is obtained from a function satisfying (A1) - (A3) by changing its
value to +∞ outside of R(t). We also observe that implicit in (A′3) is that ω(t, δ) ≤ c(t)
so that

∫ 1
0 ω(t, δ)dt→ 0 as δ → 0.

For any ε > 0 we denote by L̄ε(t, x, y) the convex hull of L(t, x, y) + ε|y − ẋ∗(t)|2
with respect to the third argument, and by J̄ε(·) the functional obtained from J(·) by
replacing L(t, x, y) by L̄ε(t, x, y) under the integral. We write L̄ and J̄ for L̄ε and J̄ε

when ε = 0.
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Theorem 4 We posit (A1), (A′2) and (A′3), and assume that x∗(·)is a local minimum
of J(·) in W 1

1 . Then x∗(·)is a local minimum of J̄ε(·) in W 1
1 , and J̄ε(x∗(·)) = J(x∗(·))

for any sufficiently small ε > 0

This is a kind of relaxation theorem which differs from standard results of that
type (cf. [18], [13]) through the fact that we consider a local minimum in the W 1

1 -
topology rather than a global minimum, or a local minimum in the topology of uniform
convergence.

Proof We claim first that

L̄(t, x∗(t), ẋ∗(t)) = L(t, x∗(t), ẋ∗(t)) a.e.. (14)

Supposing the contrary, we deduce that there is a γ > 0 such that for t in a set of
positive measure the set Uγ(t) of vectors u = (y0, . . . , yn, λ0, . . . , λn) ∈ (Rn)n+1 × Rn+1

with

λi ≥ 0,
∑

i

λi = 1,
∑

i

λiyi = ẋ∗(t),
∑

i

λiL(t, x∗(t), yi) ≤ L(t, x∗(t), ẋ∗(t))− γ, (15)

is nonempty. On the other hand, as R(t) is uniformly bounded, we can find a δ > 0
such that J(x(·)) ≥ J(x∗(·)) for any x(·) with x(0) = x∗(0) and ẋ(t) = ẋ∗(t) on a set of
measure not smaller than 1− δ.

Choose a set ∆ of positive measure, less than δ such that Uγ 6= ∅ for all t ∈ ∆, and
let

ū(t) = (ȳ0(t), . . . , ȳn(t), λ̄0(t), . . . , λ̄n(t))

be a measurable selection of Uγ(t) on ∆. We can extend ū(t) to the rest of [0, 1] by
ȳi(t) = ẋ∗(t), λ̄i(t) = (n + 1)−1. Then, of course,

∑
i λ̄i(t)ȳi(t) = ẋ∗(t) for almost all t.

Set

Λ̄ = {(λ0(·), . . . , λn(·)) : λi(t) ≥ 0, i = 0, . . . , n,
∑

i

λi(t) = 1 a.e.};

Λ = {(λ0(·), . . . , λn(·)) : λi(t) ∈ {0, 1}, i = 0, . . . , n,
∑

i

λi(t) = 1 a.e.}

Then, obviously, (λ̄0(t), . . . , λ̄n(t)) ∈ Λ̄ for almost all t.
By Lyapunov’s theorem on vector measures, for any finite set of vector functions

hs(t) = (hs
0(t), . . . , h

s
n(t)) ∈ L1, s = 1, . . . ,m,

the images of Λ and Λ̄ under the map

(λ0, . . . , λn) 7→
( ∫ 1

0

∑
i

λi(t)h
1
i (t)dt, . . . ,

∫ 1

0

∑
i

λi(t)h
m
i (t)dt

)
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coincide (and are convex compact). Hence there is a sequence {(λν
0(·), . . . , λν

n(·))} of
elements of Λ such that∫ 1

0

∑
i

λν
i (t)ȳi(t)dt =

∫ 1

0

∑
i

λ̄i(t)ȳi(t)dt =
∫ 1

0
ẋ∗(t)dt = x∗(1)− x∗(0)

and ∫ 1

0

∑
i

λν
i (t)hi(t)dt→

∫ 1

0

∑
i

λ̄i(t)hi(t)dt, ∀ (h0(·), . . . , hn) ∈ L1. (16)

Set

xν(t) = x∗(0) +
∫ t

0

∑
i

λν
i (τ)ȳi(τ)dτ.

Then (16) along with the boundedness of R(t) imply that xν(·) → x∗(·) uniformly, and
by (A′3) (which justifies the application of the Lebesgue majorized convergence theorem)

lim
ν→∞

J(xν(·)) = lim
ν→∞

(l(xν(0), xν(1)) +
∫ 1

0
L(t, xν(t), ẋν(t))dt)

= l(x∗(0), x∗(1)) + lim
ν→∞

∫ 1

0
L(t, x∗(t), ẋ

ν(t))dt

= l(x∗(0), x∗(1)) + lim
ν→∞

∫ 1

0

∑
i

λν
i (t)L(t, x∗(t), ȳi(t))dt

= l(x∗(0), x∗(1)) +
∫ 1

0

∑
i

λ̄i(t)L(t, x∗(t), ȳi(t))dt. (17)

By (15) it follows that

lim
ν→∞

(J(xν(·)− J(x∗(·)) =
∫
∆

( ∑
i

λ̄i(t)L(t, x∗(t), ȳi(t))− L(t, x∗(t), ẋ∗(t))
)
dt < 0.

On the other hand, ẋν(t) = ẋ∗(t) on the complement of ∆ which is a set of measure
greater than 1 − δ and xν(0) = x∗(0), xν(1) = x∗(1) which implies that J(xν) ≥ J(x∗)
according to the choice of δ. This is a contradiction proving the claim.

We next note the following simple fact.

Lemma 1 Let f be an l.s.c. function on Rn×Rn satisfying (B), and let for given (z̄, ȳ)
we have f(z̄, ȳ) = f̄(z̄, ȳ), f̄ being the convex hull of f with respect to y. Take an ε > 0
and set fε(z, y) = f(z, y) + ε|y − ȳ|2. Then ȳ is exposed for fε at z̄ in the sense of
Corollary 1. Moreover, if a sequence of vectors uν = (yν

0 , . . . , y
ν
n, λ

ν
0, . . . , λ

ν
n)) is such

that (λi
ν ≥ 0,

∑
i λi

ν = 1) and∑
i

λi
νyν

i → ȳ,
∑

i

λi
νfε(z̄, y

ν
i ) → fε(z̄, ȳ) = f(z̄, ȳ),

then
∑

i λi
ν(yν

i − ȳ)2 → 0.
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Proof We may assume that
∑

i λi
ν(yν

i − ȳ)2 converges to a certain a. Then

f(z̄, ȳ) = lim
ν→∞

∑
i

λi
νfε(z̄, y

ν
i )

= lim inf
ν→∞

∑
i

λi
ν(f(z̄, yν

i ) + ε(yν
i − ȳ)2)

≥ εa+ lim inf
ν→∞

∑
i

λi
νf(z̄, yν

i )

≥ εa+ f̄(z̄, ȳ) = εa+ f(z̄, ȳ),

whence a = 0, which proves the lemma.

Now we can conclude the proof. Assume the theorem is not valid. Then for an ε > 0
we can find a sequence of xν(·) converging to x∗(·) in W 1,1, and satisfying for some
positive aν

J̄ε(x
ν(·)) + aν < J̄(x∗(·)) = J̄ε(x∗(·)). (18)

Then there are ȳν
i (t), λ̄ν

i (t), i = 1, ..., n, such that λ̄ν = (λ̄ν
0, . . . , λ̄

ν
1) ∈ Λ̄ and∑

i

λ̄ν
i (t)ȳ

ν
i (t) = ẋν(t);

∑
i

λ̄ν
i (t)Lε(t, x

ν(t), ȳν
i (t)) = L̄ε(t, x

ν(t), ẋν(t)) a.e.

As Lε(t, ·, ·) satisfies (B) (since L(t, ·, ·) does) the function L̄ε(t, ·, ·) is l.s.c. for all t, so
that

lim inf
ν→∞

∑
i

λ̄ν
i (t)Lε(t, x

ν(t), ȳν
i (t)) ≥ L̄ε(t, x∗(t), ẋ∗(t)) = L(t, x∗(t), ẋ∗(t)) a.e.

Together with (A′3) this implies that

lim inf
ν→∞

∑
i

λ̄ν
i (t)Lε(t, x∗(t), ȳ

ν
i (t)) ≥ L̄ε(t, x∗(t), ẋ∗(t)).

It follows from Lemma 1 that∑
i

λ̄ν
i (t)(ȳ

ν
i (t)− ẋ∗(t))

2 → 0 a.e. (19)

Applying again the theorem of Lyapunov, we find a vector function (λν
0(t), . . . , λ

ν
n(t))

with values in Λ such that

• for the function

zν(t) = xν(0) +
∫ t

0

∑
i

λν
i (τ)ȳ

ν
i (τ)dτ (20)

the equality zν(t) = xν(t) holds for t = 1 and (for finitely but) sufficiently many
other points t to make sure (in view of boundedness of R(t)) that zν(t) and xν(t)
are close enough to guarantee (owing to (A′3)) that

|L(t, xν(t), ȳν
i (t))− L(t, zν(t), ȳν

i (t))| ≤ aν/2, a.e.; (21)
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• for all i = 0, . . . , n, and all ν∫ 1

0

∑
i

λν
i (t)(ȳ

ν
i (t)− ẋν(t))2dt =

∫ 1

0

∑
i

λ̄ν
i (t)(ȳ

ν
i (t)− ẋν(t))2dt, (22)

and

• for every ν ∫ 1

0

∑
i

λ̄ν
i (t)L(t, xν(t), ȳν

i (t)) =
∫ 1

0

∑
i

λν
i (t)L(t, xν(t), ȳν

i (t)). (23)

We observe now that, as every λν
i (t) may assume only values 0 and 1, and their sum

is identically one, for any function φ(y) we have
∑

i λ
ν
i (t)φ(ȳν

i (t)) = φ(żν(t)). Therefore
(19), (20) and (22) mean that ‖zν(·) − x∗(·)‖1

1 → 0. For the same reason, we conclude
from (23) and (21) that J(zν(·)) ≤ J̄(xν(·)) + aν/2 which gives together with (19) that
J(zν(·)) ≤ J(x∗(·))− aν/2 — a contradiction. This concludes the proof of the theorem.

5 The Auxiliary Problem—A Necessary Condition

We continue to consider the same problem as in the preceding section assuming in
addition the following

(A4) L(t, ·, ·) is Lipschitz continuous around every point (x, y) with |x− x∗(t)| ≤ ε, y ∈
intR(t).

Theorem 5 We posit (A1), (A′2), (A′3) with ω(t, δ) = k(t) · δ, k(t) being a summable
function, and (A4) and assume that J(x∗(·)) is finite and x∗(·) is a local minimum of
J(x(·)) in W 1

1 . If the measure of the set

{t : ẋ∗(t) ∈ intR(t)},

is positive, then there is an absolutely continuous function p(t) with values in Rn such
that the Euler condition and the transversality conditions of Theorem 1 are satisfied.

The proof of the theorem consists of several steps.

Step 1 – Reformulation. It follows from (A′2), because J(x∗(·)) is finite, that no loss
of generality will result from the assumption that x∗(t) ≡ 0 (otherwise we replace x by
x∗(t) + x). Consider the function f(t, x, y) coinciding with L(t, x, y) if |x| ≤ ε and equal
to +∞ otherwise. Then zero is also a local minimum of the functional

I(x(·)) = l(x(0), x(1)) +
∫ 1

0
L(t, x(t), ẋ(t))dt.
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Let us further define the following three functionals on Rn × L1 × L1:

I0(a, z(·), y(·)) = l(a, a+
∫ 1
0 y(t)dt);

I1(a, z(·), y(·)) =
∫ 1
0 L(t, z(t), y(t))dt;

I2(a, z(·), y(·)) =
∫ 1
0 k(t)|z(t)− a−

∫ t
0 y(τ)dτ |dt.

In terms of these we get from (A′3) that

I(x(·)) ≤ I0(x(0), z(·), ẋ(·)) + I1(x(0), z(·), ẋ(·)) + I2(x(0), z(·), ẋ(·)),

from which we conclude that

a∗ = x∗(0) = 0, z∗(t) = x∗(t) ≡ 0, y(t) = ẋ∗(t) ≡ 0,

give a local minimum to
∑2

0 Ii(a, z(·), y(·)) on Rn × L1 × L1 and, consequently, also on
Rn × L2 × L2.

Step 2 – Verification of (ULC).

Lemma 2 The functionals Ii(a, z(·), y(·)) satisfy the (ULC) condition of Theorem 2.

Proof. As follows from (A′4),

x∗(1)− x∗(0) ∈ int
∫ 1

0
R(t)dt.

Choose δ > 0 so small that 2δB ⊂
∫ 1
0 R(t)dt, where B is the unit ball in Rn. Let the

sequences of (aν
i , z

ν
i (·), yν

i (·)) ∈ Rn × L2 × L2 be such that

|aν
i |+ ‖zν

i (·)‖2 + ‖yν
i (·)‖2 ≤ δ,

2∑
0

Ii(a
ν
i , z

ν
i (·), yν

i (·)) <∞

for all ν and all i = 0, 1, 2.

|aν
i − aν

j |+ ‖zν
i (·)− zν

j (·)‖2 + ‖yν
i (·)− yν

j (·)‖2 → 0.

We have to find a sequence of (aν , zν(·), yν(·)) with the property that

|aν
i − aν |+ ‖zν

i (·)− zν(·)‖2 + ‖yν
i (·)− yν(·)‖2 → 0

and

lim inf
ν→∞

2∑
i=0

[Ii(a
ν
i , z

ν
i (·), yν

i (·))− Ii(a
ν , zν(·), yν(·))] ≥ 0.

To this end we set

ξν =
∫ 1

0
(yν

1 (t)− yν
0 (t))dt→ 0
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and choose, for any unit vector e ∈ Rn, a measurable selection ue(t) of R(t) such that∫ 1

0
ue(t)dt =

∫ 1

0
yν

0 (t)dt+ δe.

Let further vν(t) be the ue(t) corresponding to e = −ξν/|ξν | when ξν 6= 0. Then∫ 1

0
yν

0 (t)dt = (1 + |ξν |/δ)−1(
∫ 1

0
yν

1 (t)dt+ (|ξν |/δ)
∫ 1

0
vνdt).

It easily follows from the Lyapunov vector measure theorem that there is a subset ∆ν

of measure |ξν |/(δ + |ξν |) such that∫ 1

0
[χ∆ν (t)vν(t) + (1− χ∆ν )yν

1 (t)]dt =
∫ 1

0
yν

0 (t)dt,

where χ∆ is the characteristic function of ∆. (Just consider the function

∆ 7→
( ∫ 1

0
[χ∆(t)vν(t) + (1− χ∆)yν

1 (t)]dt,
∫ 1

0
χ∆dt

)
from the collection of Lebesgue measurable subsets of [0, 1] into Rn+1 and observe that
the theorem of Lyapunov can be applied as vν(t) and yν

1 (t) are bounded as selections of
R(t).)

Now we set aν = aν
0, z

ν = zν
1 (t) and define yν(·) to be equal to yν

1 (t)if ξν = 0 and to

yν(·) = (1− χ∆ν )yν
1 (t) + χ∆νvν(t)

if ξν 6= 0. Then

I0(a
ν
0, z

ν(·), yν(·)) = I0(a
ν
0, z

ν
0 (·), yν

0 (·));

|I1(aν , zν(·), yν(·))− I1(a
ν
1, z

ν
1 (·), yν

1 (·))| ≤ 2
∫
∆ν
c(t)dt→ 0

(by (A′3) and as mes ∆ν → 0) and (setting k =
∫ 1
0 k(t)dt)

|I2(aν
2, z

ν(·), yν(·))− I2(a
ν
2, z

ν
2 (·), yν

2 (·))|

≤
∫ 1

0
k(t)|zν

1 (t)− zν
2 (t)|dt+ k

∫ 1

0
|yν

1 (t)− yν
2 (t)|dt+ 2k

∫
∆ν
c(t)dt −→ 0.

This completes the proof of the lemma.

20



Step 3– Application of the “fuzzy calculus”. It follows from the conclusion of
Step 1 that

0 ∈ ∂p(I0 + I1 + I2)(0, 0, 0),

(where p stands for the proximal subgradient (in Rn × L2 × L2)). By Theorem 2, for
any i = 0, 1, 2 there are two sequences of triples (aν

i , z
ν
i (·), yν

i (·))) and (bνi , w
ν
i (·), vν

i (·)) in
Rn × L2 × L2 such that

|Ii(aν
i , z

ν
i (·), yν

i (·))− Ii(0, 0, 0)| < 1/ν, |aν
i | < 1/ν, ‖zν

i (·)‖ < 1/ν, ‖yν
i (·)‖ < 1/ν;

|
∑

bνi | < 1/ν, ‖
∑

wν
i (·)‖ < 1/ν, ‖

∑
vν

i (·)‖ < 1/ν;

(bνi , w
ν
i (·), vν

i (·)) ∈ ∂pIi(a
ν
i , z

ν
i (·), yν

i (·))

(all norms are, of course, in L2). The latter means that there are rν such that

Ii(a
ν
i + α, zν

i (·) + ξ(·), yν
i (·) + η(·))− Ii(a

ν
i , z

ν
i (·), yν

i (·))

≥ 〈bνi , α〉+
∫ 1

0
[〈wν

i (t), ξ(t)〉+ 〈vν
i (t), η(t)〉]dt

−rν(|α|2 + ‖ξ(·)‖2 + ‖η(·)‖2)

for all α, ξ(·), η(·) sufficiently close to zero.

Step 4 – Analysis. What does the above inequality mean for each of the three func-
tionals? For i = 0 it means that

l(aν
0 + α, aν

0 + α+
∫ 1

0
(yν

0 (t) + η(t))dt)− l(aν
0, a

ν
0 +

∫ 1

0
yν

0 (t)dt)

≥ 〈bν0, α〉+
∫ 1

0
[〈wν

0(t), ξ(t)〉+ 〈vν
0 (t), η(t)〉]dt− rν(|α|2 + ‖ξ(·)‖2 + ‖η(·)‖2).

Setting α = 0 and η(·) = 0 in this inequality, we conclude that wν
0(t) ≡ 0. Setting

cν0 = aν
0 +

∫ 1
0 y

ν
0 (t)dt, dν =

∫ 1
0 v

ν
0 (t)dt, and taking η(t) ≡ β ∈ Rn, we see that

l(aν
0 + α, cν0 + α+ β)− l(aν

0, c0) ≥ 〈bν0, α〉+ 〈dν , β〉 − rν(|α|2 + |β|2),

which shows that (bν0 − dν , dν) ∈ ∂pl(a
ν
0, c0).

We further observe that vν
0 (t)must be a constant, for otherwise, taking α = 0, we get

0 ≥ sup
{ ∫ 1

0
〈vν

0 (t)− dν |η(t)〉dt− rν‖η(·)‖2 :
∫ 1

0
η(t)dt = 0

}
> 0.

Thus, for i = 0, we have: there is a dν ∈ Rn such that

(bν0 − dν , dν) ∈ ∂pl(a
ν
0, c

ν
0);

vν
0 (t) ≡ dν ,
wν

0(t) ≡ 0.
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For i = 1 we have the inequality∫ 1

0
[L(t, zν

1 (t) + ξ(t), yν
1 (t) + η(t))− L(t, zν

1 (t), yν
1 (t))]dt

≥
∫ 1

0

[
〈wν

1(t), ξ(t)〉+ 〈vν
1 (t), η(t)〉 − rν(|ξ(t)|2 + |η(t)|2)

]
dt+ 〈bν1, α〉 − rν |α|2

for all sufficiently small (α, ξ(·), η(·)) ∈ Rn × L2 × L2. It is obvious that bν1 must be zero.
Standard measurable selection arguments imply that for almost every t

L(t, zν
1 (t) + ξ, yν

1 (t) + η)− L(t, zν
1 (t), yν

1 (t)) ≥ 〈wν
1(t), ξ〉+ 〈vν

1 (t), η〉 − rν(|ξ|2 + |η|2)

for all (ξ, η). In other words

(wν
1(t), v

ν
1 (t)) ∈ ∂pL(t, zν

1 (t), yν
1 (t)) a.e. (24)

Finally, for i = 2, we have the inequality∫ 1

0
k(t)

[
|zν

2 (t) + ξ(t)− aν
2 − α−

∫ t

0
(yν

2 (τ) + η(τ))dτ | − |zν
2 (t)− aν

2 −
∫ t

0
yν

2 (τ)dτ |
]
dt

≥
∫ 1

0

[
〈wν

2(t), ξ(t)〉+ 〈vν
2 (t), η(t)〉 − rν(|ξ(t)|2 + |η(t)|2)

]
dt+ 〈bν2, α〉 − rν |α|2)

for all sufficiently small (α, ξ(·), η(·)) ∈ Rn × L2 × L2.
This is all the more valid for (ξ(·), η(·)) ∈ L∞. So considering the inequality in

Rn ×L∞ ×L∞ and taking into account that k(t)zν
2 (t) is a summable function (which is

implied by the fact that the proximal subdifferential is nonempty) we conclude that there
is a measurable qν(t) (with values in Rn) which satisfies |qν(t)| ≤ 1 almost everywhere
and actually is a unit vector proportional to

zν
2 (t)− aν

2 −
∫ t

0
yν

2 (τ)dτ

(if the latter is not equal to zero) and such that

wν
2(t) = k(t)qν(t); vν

2 (t) = −
∫ 1

t
k(τ)qν(τ)dτ ; bν2 = −

∫ 1

0
k(t)qν(t)dt.

Summarizing, we conclude: there are (for sufficiently large ν)

aν ∈ Rn; zν(·) ∈ L2; yν(·) ∈ L2;
bν ∈ Rn; wν(·) ∈ L2; vν(·) ∈ L2;
dν ∈ Rn; qν(·) ∈ L∞

(namely, aν = aν
0, b

ν = bν0, z
ν(t) = zν

1 (t), yν(t) = yν
1 (t), wν(t) = wν

1(t), v
ν(t) = vν

1 (t))
such that

|aν | ≤ 1/ν; ‖zν(·)‖2 ≤ 1/ν; ‖yν(·)‖2 ≤ 1/ν; (25)
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(bν − dν , dν) ∈ ∂pl(a
ν , cν); (26)

(wν(t), vν(t)) ∈ ∂pf(t, zν(t), yν(t))a.e.; (27)

|bν −
∫ 1

0
k(t)qν(t)dt| ≤ 1/ν, ‖qν(·)‖∞ ≤ 1; (28)

‖wν(·) + k(·)qν(·)‖2 ≤ 1/ν; (29)

‖vν(·) + dν −
∫ 1

t
k(τ)qν(τ)dτ‖2 ≤ 1/ν (30)

We also observe that the inequalities

|Ii(aν
i , z

ν
i (·), yν

i (·))− Ii(0, 0, 0)| < 1/ν, i = 0, 1, 2

along with lower semicontinuity of the terminal function and the integrand on the
one hand, and (A3) on the other (which makes possible the application of the Fatou
lemma) allows to state that l(aν , cν) → l(0, 0) and(up to selection of a subsequence)
f(t, zν(t), yν(t)) → f(t, 0, 0) almost everywhere.

Step 5 – Conclusion. Observe that {dν} must be a bounded sequence. Indeed, as
k(·) ∈ L1, the functions t →

∫ 1
t k(τ)q

ν(τ)dτ form a precompact system in the topology
of uniform convergence. Thus, if dν are unbounded (in which case we can just assume
that |dν | 7→ ∞), then also |vν(t)| goes to infinity a.e. as ν 7→ ∞. It follows that the
Lipschitz constant of f(t, ·, ·) at (zν(t),yν(t)) is not smaller than |vν(t)| which, however,
contradicts (A4) and the condition of the theorem, as both zν(t) and yν(t) go to zero
almost everywhere.

Set

pν(t) = −dν +
∫ 1

t
k(τ)qν(τ)dτ.

As dν are uniformly bounded and the functions t →
∫ 1
t k(τ)q

ν(τ)dτ form a precompact
system in the topology of uniform convergence, we may assume that pν(t) converge
uniformly to a certain function p(t). By (30)

‖vν(·)− p(·)‖2 → 0. (31)

We notice further that pν(1) = −dν , |pν(0) + (bν − dν)| ≤ 1/ν by (28), so there is a
vector sν with |sν | ≤ 1/ν such that by (27)

(pν(0) + sν ,−pν(1)) ∈ ∂pl(a
ν , cν). (32)

Therefore p(·) satisfies the transversality condition. On the other hand, we notice
(taking (28) into account) that the sequence of k(·)qν(·) is weak precompact in L1.
By the Mazur theorem, there is a sequence of convex combinations of k(·)qν(·) norm
converging in L1, and even almost everywhere. As we assume that pν(·) converge to
p(·) uniformly, the limit must be ṗ(·). By (29) the sequence of corresponding convex
combinations of wν(·) contains a subsequence converging almost everywhere to ṗ(·).

The proof of the theorem is now concluded with the following simple lemma.
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Lemma 3 Let φ(x, y) for x, y ∈ Rn be l.s.c., and let

(wν , vν) ∈ ∂pφ(xν , yν), and φ(wν , vν) → φ(x̄, ȳ)

where xν 7→ x̄, yν 7→ ȳ, vν 7→ v̄ and wν are uniformly bounded. Let uν be a sequence of
convex combinations of wk, for k ≥ ν, converging to a certain u. Then

u ∈ conv{w : (w, v̄) ∈ ∂φ(x̄, ȳ)},

Proof. We have

uν =
n+1∑
i=1

αν
iw

ki(ν).

As every sequence {wki(ν)}, i = 1, ..., n+1, is bounded we can choose a sequence if inte-
gers, say {νs} such that for each i the sequences of wki(νs) and ανs

i converge respectively
to certain wi and αi as s→∞. Obviously, αi ≥ 0 and

∑
αi = 1, and (wi, v̄) ∈ ∂φ(x̄, ȳ)

by definition.

6 Proof of Theorem 1

With no loss of generality we can suppose, as in the proof of Theorem 5, that x∗(t) ≡ 0.
Fix some N > 0, ε > 0, and let BN denote the ball of radius N around the origin in
Rn. We set

Lε(t, x, y) = L(t, x, y) + ε|y|2;
LNε(t, x, y) = Lε(t, x, y) + δ(y,BN);

L̄Nε(t, x, y) = convyLNε(t, x, y).

The latter, as above, is the convex hull of LNε with respect to y. Because LNε satisfies
conditions (B) (which is obvious) and (C) (because of (A3)), we shall be able to apply
Theorem 3 to it when the time comes.

We further define functionals Jε, JNε and J̄Nε by replacing the integrand in the
definition of J by Lε, LNε or L̄Nε respectively. It is clear that zero is the local minimum
in W 1

1 of both Jε and JNε. As the condition of Theorem 4 is obviously satisfied for JN

(with R(t) ≡ BN), we conclude that

L(t, 0, 0) = LNε(t, 0, 0) = L̄Nε(t, 0, 0) a.e. (33)

and zero is also a local minimum of J̄Nε in W 1
1 .

We further notice that L̄Nε satisfies (A4) as, being finite and convex on BN , the
function L̄Nε(t, x, ·) is Lipschitz continuous at every y with |y| < N . This means that
Theorem 5 can be applied and therefore there is a function p(·) ∈ W 1

1 such that

ṗ(t) ∈ conv{w : (w, p(t)) ∈ ∂L̄Nε(t, 0, 0)}, a.e. (34)
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and
(p(0),−p(1)) ∈ ∂l(0, 0). (35)

As follows from (33) and Lemma 1, zero is an exposed point of LNε(t, 0, ·). Therefore
by Corollary 1 (after Theorem 3), for every w with (w, p(t)) ∈ ∂L̄Nε(t, 0, 0) we have
that

w ∈ conv{u : (u, p(t)) ∈ ∂LNε(t, 0, 0)}, a.e. (36)

and
LNε(t, 0, y)− LNε(t, 0, 0)− 〈p(t), y〉 ≥ 0

or equivalently,

L(t, 0, y) + ε|y|2 − L(t, 0, 0)− 〈p(t), y〉 ≥ 0, when |y| ≤ N. (37)

It is clear that ∂LNε(t, 0, 0) = ∂Lε(t, 0, 0) as LNε(t, x, y) = Lε(t, x, y) near the origin.
Furthermore, Lε is the sum of L and a smooth function whose derivative is zero at zero.
Therefore, combining (34) and (36), we get

ṗ(t) ∈ conv{w : (w, p(t)) ∈ ∂L(t, 0, 0)}. (38)

Denote by PNε the collection of p(·) ∈ W 1
1 satisfying (35), (37), (38). It is clear that

PN ′ε′ ⊂ PNε, if N ′ > N, ε′ < ε. (39)

As follows from (A3) and (38), there is a summable function k(t) such that |w| ≤
k(t) if (w, p(t)) ∈ ∂L(t, 0, 0). Therefore {ṗ(·) : p(·) ∈ PNε} is a weakly compact set
in L1 for any N, ε. Now the same argument as in the proof of Theorem 5 shows that
{p(0) : p(·) ∈ PNε} must be bounded: if |pν(0)| → ∞ for a sequence of pν(·) ∈ PNε,
then |pν(t)| → ∞ for any t because of the weak compactness of derivatives which,
however, contradicts (37).

Thus, every PNε is relatively weak compact in W 1
1 . But it is also weak closed which,

again, can be proved as in the proof of Theorem 5 with the help of Lemma 3. Therefore
PNε are actually weak compact and from (39) we can now deduce that⋂

N,ε

PNε 6= ∅.

For any p(·) of the intersection, both (35) and (36) are valid, while (37) gives

L(t, 0, y)− L(t, 0, 0)− 〈p(t), y〉 ≥ 0, ∀y

almost everywhere on [0, 1].
The final statement of the theorem is justified by the observation that (36) and the

implication (36) ⇒ (38) hold for arbitrarily small N .
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7 Examples

Two examples will illustrate the main features or our result. The first demonstrates
that, for a non-differentiable integrand, there may be a solution of the Euler inclusion
not satisfying the Weierstrass condition even in the case of a local minimum relative to
the W 1

1 -norm. The second brings out contrasts with previous works of Clarke.

Example 1. Let n = 1 and L(x, y) = min{2|y|, 1 + |y|} − |x|. Then x∗(t) ≡ 0 is an
absolute minimum in the problem

minimize J(x(·)) =
∫ 1

0
L(x(t), ẋ(t))dt, x(0) = x(1) = 0.

Indeed, for x(·) 6= 0 we have

J(x(·)) ≥
∫ 1

0
(|ẋ(t)| − |x(t)|)dt ≥

∫ 1

0
(|ẋ(t)| −

∫ t

0
|ẋ(τ)|dτ)dt =

∫ 1

0
|ẋ(t)|(1− t)dt > 0.

The Euler condition gives

ṗ(t) ∈ conv {w : (w, p(t)) ∈ {−1, 1} × [−2, 2]} = [−1, 1],

that is, |p(t)| ≤ 2, |ṗ(t)| ≤ 1. In particular, p(t) ≡ α satisfies the relations if |α| ≤ 2
whereas the Weierstrass condition will be satisfied only for |α| ≤ 1.

Next we provide an example demonstrating the relative strength of necessary condi-
tions of three types, so as to be able to compare our result with those of Clarke; here ∂̄
stands for Clarke’s generalized gradient. The three types are:

1. Our necessary conditions in Theorem 1,

2. Clarke’s Euler condition (4) (given in [6] only for integrands that are locally Lips-
chitz continuous in (x, y)) plus the Weierstrass and the transversality conditions,
and

3. Clarke’s “separated” Euler condition (5) (given in [9, 10] only for locally Lipschitz
integrands that are independent of t) plus the Weierstrass and the transversality
conditions.

Example 2. Again we take n = 1 and set

J(x(·)) = x(0)− γx(1) +
∫ 1

0
max {|ẋ(t)| − |x(t)|, 0}dt.
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We shall test the above conditions by the curves

xα(t) = αet, α ≥ 0

none of which is optimal as we shall see. We have ẋ(t) = x(t) along every such curve, so
we have to work with the subdifferentials of L(x, y) = max {|y| − |x|, 0} only at points
(x, y) with y = x ≥ 0. At any such point we have (leaving easy calculations to the
reader):

∂̄xL(x, y) =

{
[−1, 0], if x > 0,
{0}, if x = 0;

∂̄yL(x, y) =

{
[0, 1], if x > 0,
[−1, 1], if x = 0;

∂̄L(x, y) =

{
{(−λ, λ) : 0 ≤ λ ≤ 1}, if x > 0;
[−1, 1]× [−1, 1] if x = 0;

∂L(x, y) =

{
{(−λ, λ) : 0 ≤ λ ≤ 1}, if x > 0;
{(±λ, λ) : |λ| ≤ 1} if x = 0.

{w : (w, p) ∈ ∂L(x, y)} =

{
{−p}, if x > 0,
{±|p|, |p|}, if x = 0.

The Weierstrass condition for xα

L(xα(t), y)− L(xα(t), ẋα(t))− 〈p, y − ẋα(t)〉 ≥ 0, ∀ y (40)

is valid whenever p(t) ∈ [0, 1] for α > 0 and p(t) ∈ [−1, 1] for α = 0. The transversality
condition is

p(0) = 1, p(1) = γ. (41)

Now we see that (5), (40), (41) is satisfied for x∗(·) = xα(·) for α > 0, 1 ≥ γ ≥ 0:
take, say p(t) = 1 − (1 − γ)t. The Euler condition in Clarke’s form (4) and the one in
Theorem 1 do not have solutions satisfying also (40), (41), for positive α and γ 6= e−1.
Indeed, in this case (4) takes the form ṗ = −p.

For α = 0, Clarke’s separated Euler condition (5) recognizes x(t) ≡ 0 as being
nonoptimal for all 0 ≤ γ ≤ 1 whereas (4) fails to disqualify xα(·): the same p(t) =
1− (1− γ)t satisfies all the conditions in this case.

Finally, Theorem 1 confirms non-optimality of x(t) ≡ 0 if γ < e−1 and fails to do so
if e−1 ≤ γ ≤ 1 Indeed, the Euler condition of the theorem takes the form

−|p(t)| ≤ ṗ(t) ≤ |p(t)|,

any solution of the inequality satisfies e−tp(0) ≤ |p(t)| ≤ etp(0)
We see that the Euler condition of Theorem 1 is strictly sharper than Clarke’s Euler

Lagrange condition (4) and, on the other hand, each of the other two conditions can in
certain situations work better than the other. We observe however that in the example
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the set of values of (α, γ) for which Theorem 1 works successfully whereas the separated
condition of Clarke does not is much more massive. We believe this is a typical case
and the situations in which Clarke’s separated condition would work better than that
of Theorem 1 are rather exceptional and highly unstable for the set

lim sup
(u,v)→(x,y)

∂̄xL(u, v)× ∂̄yL(u, v)

always contains the generalized gradient of Clarke at (x, y) (leaving aside ∂L(x, y)),
typically even as a proper subset.

We also finally observe that also the Hamiltonian condition of [10] for generalized
Bolza problems cannot be applied in the situation of the last example for its Hamiltonian
in this case is extended–real–valued (not everywhere finite) as required by the condition.
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