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TILT STABILITY OF A LOCAL MINIMUM *

R. A. POLIQUIN† AND R. T. ROCKAFELLAR‡

Abstract. The behavior of a minimizing point when an objective function is tilted by adding
a small linear term is studied from the perspective of second-order conditions for local optimality.
The classical condition of a positive-definite Hessian in smooth problems without constraints is found

to have an exact counterpart much more broadly in the positivity of a certain generalized Hessian
mapping. This fully characterizes the case where tilt perturbations cause the minimizing point to
shift in a lipschitzian manner.
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1. Introduction.
Much of the theory of optimality conditions has proceeded from the fact that,

for a C2 function f on IRn, a necessary condition for a local minimum at a point x̄ is
the vanishing of the gradient ∇f(x̄) and the positive-semidefiniteness of the Hessian
∇2f(x̄), whereas a sufficient condition is the vanishing of ∇f(x̄) and the positive-
definiteness of ∇2f(x̄). Analogous patterns have been found for problems with C2

constraints and also for problems exhibiting nonsmoothness. The goal has been to
come up with necessary conditions that become sufficient with only a slight degree of
strengthening. But is this the best paradigm for modern purposes?

Optimization no longer revolves around making lists of solution candidates to
be checked out one by one, if it ever did. The role of optimality conditions is seen
rather in the justification of numerical algorithms, in particular their stopping criteria,
convergence properties and robustness. From that angle, the goal of theory could be
different. Instead of focusing on the threshold between necessity and sufficiency, one
might more profitably try to characterize the stronger manifestations of optimality
that support computational work. Indeed, this idea has motivated much of the effort
that has gone into parametric optimization—the study of how local solutions to a
problem may react to shifts in data.

Here we take up this theme more narrowly, but in other respects more broadly
than before. We investigate just one, fundamental mode of perturbation, but do so in
a very general setting.

Any problem of optimization in n variables can be expressed as one of minimizing
a function f over all of IRn, as long as f is allowed to have values in the extended-real-
line IR as a means of representing constraints through infinite penalties. If the aim is to
minimize a function f0 subject to a system of constraints, this is captured by defining
f(x) to be f0(x) when x belongs to the feasible set C, but letting f(x) = ∞ when
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x /∈ C. Keeping for now to such a level of abstraction, with the idea of introducing
various details of problem structure later, we are able to formulate succinctly the
property we propose to analyze.

Definition 1.1. A point x̄ will be said to give a tilt-stable local minimum of the
function f : IRn → IR if f(x̄) is finite and there exists δ > 0 such that the mapping

M : v 7→ argmin
|x−x̄|≤δ

{ f(x)− f(x̄)− 〈v, x− x̄〉 },

is single-valued and lipschitzian on some neighborhood of v = 0, with M(0) = x̄.
The lipschitzian requirement means the existence of a constant κ ≥ 0 for which

|M(v′′) −M(v′)| ≤ κ|v′′ − v′| when |v′| and |v′′| are small enough. The subtraction
from f of the affine function l(x) = f(x̄)+ 〈v, x− x̄〉, which agrees with f at x̄, serves
to tilt the objective in one direction or another, and the requirement is that such a
perturbation, if sufficiently small, should not affect the local solution disproportion-
ately to the size of v or threaten its uniqueness. The connection between this notion
of tilt stability and the classical picture of local optimality is as follows.

Proposition 1.2. For a C2 function f having ∇f(x̄) = 0, the point x̄ gives a
tilt-stable local minimum of f if and only if ∇2f(x̄) is positive-definite.

Proof. Sufficiency. We have ∇2f(x) positive-definite for all x in a convex neigh-
borhood X of x̄. In particular, f is strictly convex on X, so that for x̃ ∈ X and
ṽ = ∇f(x̃) we have

f(x) > f(x̃) + 〈ṽ, x− x̃〉 for all x ∈ X, x 6= x̃.

Then for δ > 0 small enough the mapping M in Definition 1.1 is single-valued on
∇f(X) with M(0) = x̄, and it agrees on that set with the inverse of the restriction
of ∇f to X. The standard implicit mapping theorem tells us that M is C1 around 0.
Hence M is lipschitzian on some neighborhood of 0.

Necessity. From M(0) = x̄ we have ∇2f(x̄) positive-semidefinite. Suppose
that ∇2f(x̄) is not positive-definite and thus is singular. There is a vector w̄ /∈
{∇2f(x̄)w |w ∈ IRn }. For τ > 0 so small that τw̄ lies in a neighborhood where M
is single-valued and lipschitzian with constant κ, we have |M(τw̄) −M(0)| ≤ κτ |w̄|.
Let xν = M(τνw̄) for any sequence of values τν ↓0 (with superscript ν → ∞). The
sequence of vectors wν = [xν − x̄]/τν is bounded in norm by κ|w̄|, so, by passing
to a subsequence if necessary, we can assume that it converges to some w̃. Because
∇f(xν) = τνw̄ and ∇f(x̄) = 0, we have w̄ = [∇f(x̄+τνwν)−∇f(x̄)]/τν → ∇2f(x̄)w̃,
hence w̄ = ∇2f(x̄)w̃, which is impossible.

Can some analogous characterization of tilt stability be given for functions f of a
wider class? This question has not previously been asked. In looking for an answer in
the absence of f being differentiable, we must appeal to optimality conditions based
on subgradients.

For any function f : IRn → IR and any point x̄ with f(x̄) finite, a vector v̄ is a
proximal subgradient of f at x̄ if there exist δ > 0 and r ≥ 0 such that

f(x) ≥ f(x̄) + 〈v̄, x− x̄〉 − r

2
|x− x̄|2 when |x− x̄| ≤ δ.

It is a subgradient (in general), written v̄ ∈ ∂f(x̄), if there is a sequence of points
xν → x̄ with f(xν) → f(x̄) at which there exist proximal subgradients vν such that
vν → v̄.
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When f is convex, ∂f(x̄) is the usual subgradient set of convex analysis. When
f is smooth, ∂f(x̄) is the singleton {∇f(x̄)}. For the indicator function δC associated
with a set C (which vanishes on C but is ∞ outside of C), the subgradients v at x̄ are
the normal vectors to C at x̄; the set ∂δC(x̄) is the normal cone to C at x̄, denoted
by NC(x̄). The book [1] provides details on this topic and other aspects of variational
analysis that will be important in what follows.

Two properties of f that relate to the set-valued subgradient mapping x 7→ ∂f(x)
and its graph

gph ∂f = { (x, v) | v ∈ ∂f(x) }

will be important. We say that f is subdifferentially continuous at x̄ for a vector
v̄ ∈ ∂f(x̄) if the function (x, v) 7→ f(x) is continuous relative to gph ∂f at (x̄, v̄), or
in other words, if for every δ > 0 there exists ε > 0 such that |f(x)− f(x̄)| < δ when
v ∈ ∂f(x) with |x − x̄| < ε and |v − v̄| < ε. On the other hand, f is prox-regular at
x̄ for v̄ if its epigraph is closed relative to a neighborhood of (x̄, f(x̄)) and there exist
ε > 0 and r > 0 such that

f(x′) > f(x) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for x′ 6= x when

|x′ − x̄| < ε, |x− x̄| < ε, |f(x)− f(x̄)| < ε, |v − v̄| < ε, v ∈ ∂f(x).

Prox-regularity thus requires, in a certain uniform local sense with respect to x̄ and
v̄, that all subgradients v ∈ ∂f(x) actually be proximal subgradients.

The concepts of prox-regularity and subdifferential continuity were introduced in
[2] and studied further in [3] and [4]. It was shown in those works that the class of
functions exhibiting these properties is very large. It includes, in addition to all C2

functions f , all lsc (lower semicontinuous) proper convex functions f , as well as many
of the functions that typically might be encountered in finite-dimensional optimization.
For instance, if f = f0 + δC for a function f0 that is C2, or expressible as a max of
finitely many C2 functions, and a set C specified by a finite family of equality and/or
inequality constraints on C2 functions, then at any point x̄ where the constraint system
satisfies the Mangasarian-Fromovitz constraint qualification the function f is both
prox-regular and subdifferentially continuous for every v̄ ∈ ∂f(x̄).

More generally, the class of prox-regular, subdifferentially continuous functions
includes all strongly amenable functions, which are defined as being representable
locally by the composition of an lsc proper convex function with a C2 mapping under
a constraint qualification on the domain of the convex function and the range of the
linearization of the mapping; cf. [5] and also [6]–[8]. Such functions are omnipresent in
applications, and they have a basic role both theoretically and computationally. For
more on the use of composite function formats in optimization, see [4], [9]–[19].

The first-order condition 0 ∈ ∂f(x̄) is always necessary for f to have a local
minimum at x̄. Second-order conditions have been developed in various forms, but
here we turn to a new form in terms of the generalized Hessian mapping introduced
by Mordukhovich [20], [21]. For any point x̄ and any subgradient v̄ ∈ ∂f(x̄), define
∂2f(x̄ | v̄) : IRn →→ IRn by

∂2f(x̄ | v̄) : w 7→ { z | (z,−w) ∈ Ngph ∂f (x̄, v̄) }.

When f is C2 and v̄ = ∇f(x̄), ∂2f(x̄ | v̄) reduces to the linear mapping w 7→ ∇2f(x̄)w.
In situations where f is given in terms of other functions, it is often possible to

draw upon the growing calculus of “coderivatives” to compute the generalized Hessian
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∂2f(x̄ | v̄). For any set-valued mapping T : IRn →→ IRm, the coderivative at x̄ for an
element v̄ ∈ T (x̄) is the mapping D∗T (x̄ | v̄) : IRm →→ IRn whose graph is obtained
from the normal cone Ngph T(x̄, v̄) by

z ∈ D∗T
(
x̄ | v̄

)
(w) ⇐⇒ (z,−w) ∈ Ngph T (x̄, v̄).

In such terms, one has ∂2f(x̄ | v̄) = D∗[∂f ](x̄|v̄). For more on coderivatives, their
history and calculus see [1], [22] and [23].

Our main result can now be stated. It will be proved in Section 3, following the
development of a monotonicity property in Section 2. Application to the constrained
minimization of a smooth function will be made in Section 4.

Theorem 1.3. For a function f : IRn → IR having 0 ∈ ∂f(x̄) and such that f
is both prox-regular and subdifferentially continuous at x̄ for v̄ = 0, the following are
equivalent and imply the existence of δ > 0 such that, for all v in some neighborhood
of 0, the mapping M in Definition 1.1 has M(v) as the unique x ∈ (∂f)−1(v) with
|x− x̄| ≤ δ.

(a) The point x̄ gives a tilt-stable local minimum of f .
(b) The mapping ∂2f(x̄ |0) is positive-definite in the sense that

〈z, w〉 > 0 whenever z ∈ ∂2f(x̄|0)(w), w 6= 0.

(c) There exist neighborhoods X of x̄ and V of 0 such that the mapping x ∈
X 7→ ∂f(x)∩V is strongly monotone and, locally around (x̄, 0), is maximal monotone.

(d) There is a proper, lsc, strongly convex function h on IRn along with neigh-
borhoods X of x̄ and V of 0 such that h is finite on X with h(x̄) = f(x̄) and 0 ∈ ∂h(x̄),
and furthermore gph ∂f ∩

[
X × V

]
= gph ∂h ∩

[
X × V

]
.

To understand (c), recall that a (generally set-valued) mapping T : IRn →→ IRn

is monotone if 〈v′ − v, x′ − v〉 ≥ 0 whenever v ∈ T (x) and v′ ∈ T (x′). It is strongly
monotone when T − λI is monotone for some λ > 0. It is maximal monotone,
locally around (x̄, v̄), if there exist neighborhoods X0 of x̄ and V0 of v̄ such that
every monotone mapping T ′ : IRn →→ IRn with gph T ′ ⊃ gphT ∩ [X0 × V0] has
gphT ′ ∩ [X0 × V0] = gphT ∩ [X0 × V0].

Observe in (d) that h need not agree with f on a neighborhood of x̄. In contrast
to the smooth case, tilt stability and the positive-definite generalized Hessian do not
entail the local convexity of f around x̄. An example is furnished by the function
f(x) = |1 − x2| on IR. This has a tilt-stable minimum at x̄ = 1 and at x̄ = −1,
although it is concave on the interval (−1, 1).

2. Coderivatives of Monotone Mappings.
The argument for our characterization of tilt stability will rely on certain mono-

tonicity properties of the subgradient mappings associated with prox-regular functions.
For this purpose we must first develop a fact about coderivatives in the presence of
monotonicity.

Theorem 2.1. If a mapping T : IRn →→ IRn is maximal monotone, one has for
every pair (x̄, v̄) ∈ gph T that

〈x′, v′〉 ≥ 0 when v′ ∈ D∗T (x̄ | v̄)(x′).

The verification of this fact will utilize the following connection between monotone
mappings and nonexpansive mappings. A mapping S : IRn →→ IRn is nonexpansive if
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wi ∈ S(zi) for i = 0, 1 implies |w1−w0| ≤ |z0−z1|. On the set dom S = { z |S(z) 6= ∅ },
such a mapping must actually be single-valued.

Proposition 2.2. The one-to-one linear transformation J : IRn × IRn → IRn ×
IRn with J(x, v) = (v+x, v−x) induces a one-to-one correspondence between mappings
T : IRn →→ IRn and mappings S : IRn →→ IRn through

gphS = J(gph T ), gphT = J−1(gph S),

in which T is monotone if and only if S is nonexpansive. Moreover, T is maximal
monotone if and only if dom S = IRn, or in other words, S is a single-valued mapping
from all of IRn into itself that is globally lipschitzian with constant 1.

Proof. See [1], 12.11 and 12.12.
Also to be used is the well known scalarization formula for coderivatives of locally

lipschitzian mappings.
Proposition 2.3. For a single-valued, locally lipschitzian mapping S : IRn →

IRm, any pair (z̄, w̄) ∈ gphS and any vector y ∈ IRm, one has D∗S(z̄ | w̄)(y) =
∂(yS)(z̄) for the locally lipschitzian function yS : IRn → IR given by (yS)(z) =
〈y, S(z)〉.

Proof. See [24]; or [1], 9.24(b).
Proof of Theorem 2.1. Let S correspond to T as in Proposition 2.2, with the pair

(z̄, w̄) ∈ gphS corresponding to the pair (x̄, v̄) ∈ gphT . The linear transformation
between the graph spaces induces a correspondence between normal cones to the
graphs in question, which comes out as the property that

(v′,−x′) ∈ Ngph T (x̄, v̄) ⇐⇒ (v′ − x′,−v′ − x′) ∈ Ngph S(z̄, w̄),

or equivalently

v′ ∈ D∗T (x̄ | v̄)(x′) ⇐⇒ v′ − x′ ∈ D∗S(z̄ | w̄)(v′ + x′).

By Proposition 2.2, S is globally lipschitzian with constant 1. Therefore, we have
for any y that the mapping yS is globally lipschitzian with constant |y|, so that for
all u ∈ ∂(yS)(z̄) we have |u| ≤ |y|. Applying Proposition 2.3, we see that |u| ≤ |y|
whenever u ∈ D∗S(z̄ | w̄)(y). Applying this to u = v′−x′ and y = v′+x′ in the case of
an arbitrary pair (x′, v′) with v′ ∈ D∗T (x̄ | v̄)(x′), we obtain |v′−x′| ≤ |v′+x′|. Hence
0 ≤ |v′ + x′|2 − |v′ − x′|2 = 4〈v′, x′〉, and we conclude that 〈v′, x′〉 ≥ 0, as claimed.

3. Proof of the Main Result.
In proving Theorem 1.3, we can focus on the case where x̄ = 0 and f(x̄) = 0.

These assumptions entail no real restriction and merely constitute a shift of variables.
We may then assume also without loss of generality that there exists r > 0 with

(3.1) f(x) > −r

2
|x|2 for all x 6= 0.

Locally, this inequality comes out of the prox-regularity of f and the definition of a
proximal subgradient. It is made into a global inequality by adding to f the indicator
of a sufficiently small ball centered at 0, which is an operation having no effect on the
property of tilt stability of f at x̄ = 0.

Recall that a mapping T : IRn →→ IRn is hypomonotone around a pair (x, v) ∈
gphT if T + αI is monotone near (x, v) for some α ≥ 0; cf. [25].
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Lemma 3.1. Let Ti : IRn →→ IRn for i = 1, 2, with (0, 0) ∈ gphT1 ⊂ gphT2.
Suppose T1 is locally maximal monotone around (0, 0), while T2 is hypomonotone
around (0, 0). Then the graphs of T1 and T2 must coincide locally around (0, 0).

Proof. Let T 1 be a maximal monotone extension of T1, as always exists (cf.[1],
12.6). By hypothesis, the graphs of T 1 and T1 agree in some neighborhood of (0, 0).
The local hypomonotonicity of T2 means the existence of some α ≥ 0 such that
T2 + αI is monotone around (0, 0). Because the sum of maximal monotone mappings
is maximal monotone when the domain of one meets the interior of the domain of the
other, cf. [26, Theorem 1], we have T 1 +αI maximal monotone. Hence locally, T1 +αI
is maximal monotone around (0, 0). Since gph[T1 + αI] ⊂ gph[T2 + αI], it follows
that T1 + αI = T2 + αI locally, and the same must therefore be true for T1 and T2

themselves.
A key element in the derivation of Theorem 1.3 will be the fact that the subgradi-

ent mapping of a prox-regular function has a “localization” T that is hypomonotone;
cf. [2, Theorem 3.2]. A localization of ∂f around (x̄, v̄) ∈ gph ∂f is a mapping whose
graph is obtained by intersecting gph ∂f with a neighborhood of (x̄, v̄).

Throughout the proof, “proto-derivatives” and “second-order epi-derivatives” will
be employed. A set-valued mapping T : IRn →→ IRn is proto-differentiable at a point x
for an element v ∈ T (x), as defined in [27], if the set-valued mappings

∆tT (x |v) : ξ 7→
[
T (x + tξ)− v

]/
t for t > 0

graph-converge as t ↓0 (i.e., one has set convergence of the graphs). If so, the limit
mapping, denoted by DT (x |v), is the proto-derivative of T at x for v. On the other
hand, a function f is twice epi-differentiable at x for a subgradient v ∈ ∂f(x), as
defined in [10], if the second-order difference quotient functions

∆2
t f(x |v) : ξ 7→

[
f(x + tξ)− f(x)− t〈v, ξ〉

]/1
2 t2 for t > 0,

epi-converge to a proper function as t ↓0 (i.e., one has set convergence of the epigraphs).
The epi-limit is then the second epi-derivative function d2f(x |v) : IRn → IR.

Proof that (a) implies (d). Let X = {x | |x − x̄| ≤ δ } (where δ is given in Def.
1.1) and g := (f + δX)∗, i.e.,

g(v) = max
x∈X

{
〈x, v〉 − f(x)

}
.

This function g is proper, lsc, convex and finite. Let

G(v) := argmax
x∈X

{ 〈x, v〉 − f(x) }.

Under our assumptions, G is single-valued and lipschitzian on V , and one can easily
verify that G(v) ∈ ∂g(v). Moreover, the mapping G is monotone on V . Indeed, if
xi ∈ G(vi) with vi ∈ V , then

〈x1 − x2, v1 − v2〉 = 〈x1, v1〉 − 〈x2, v1〉 − 〈x1, v2〉+ 〈x2, v2〉
= g(v1) + f(x1)− 〈x2, v1〉 − 〈x1, v2〉+ g(v2) + f(x2)

=
[
g(v1)− 〈x2, v1〉+ f(x2)

]
+

[
g(v2)− 〈x1, v2〉+ f(x1)

]
≥ 0.

It follows that ∂g(v) = G(v) for all v ∈ V , inasmuch as ∂g is a monotone mapping,
whereas G is single-valued continuous and monotone on V , hence maximal monotone
relative to V (cf. [1]; 12.7, 12.48).
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Therefore, g is a convex function that is differentiable on the open neighborhood
V of 0, with ∇g lipschitzian there and satisfying ∇g(0) = 0 (because G(0) = 0), as
well as ∇g(v) ∈ int X for v ∈ V , and

(3.2) ∇g(v) ∈ [∂f ]−1(v) for v ∈ V.

Also, because ∇g(v) gives the argmax in the conjugate formula for g, we have

(3.3) f(x) = 〈v, x〉 − g(v) when v ∈ V, x = ∇g(v).

Denote by h the function conjugate to g; thus, h(x) = supv∈IRn{ 〈x, v〉 − g(x) }.
The mapping ∂g : IRn →→ IRn is maximal monotone, and its inverse [∂g]−1, which

is ∂h, is maximal monotone as well; cf. [28]. Note that 0 ∈ ∂h(0) and that h(0) = 0.
Let T0 be the localization of ∂h obtained by inverting ∂g relative to V ; thus, T−1

0 is ∇g
on V but empty-valued outside of V . According to (3.3), the function (x, v) 7→ f(x)
is continuous on the graph of T0. Since gph T0 ⊂ gph ∂f by (3.2), any localization T
of ∂f around (0, 0) must include a localization of T0, which in turn is locally maximal
monotone around (0, 0). The prox-regularity of f allows us to choose the localization
T to be hypomonotone; cf. [2, Theorem 3.2]. We conclude from Lemma 3.1 that the
graphs of T and T0 must agree around (0, 0).

Let κ > 0 be a lipschitzian constant for ∇g on V . We will now demonstrate
that T0, or at least some localization of T0 around (0, 0), is strongly monotone with
constant κ−1, so that T must have this property too. This will conclude the proof of
(a)⇒(d). The tool will be [2, Prop. 5.7] as applied to h. It gives the criterion that
at each point (x, v) ∈ gphT0 in some neighborhood of (0, 0) where the graph of the
proto-derivative of T0 is an n-dimensional subspace of IR2n, the proto-derivative is
strongly monotone with constant κ−1.

The points (x, v) ∈ gph T0 where the graph of the proto-derivative is an n-
dimensional subspace are precisely the points (v, x) where the graph of the proto-
derivative of T−1

0 is an n-dimensional subspace. We now argue that at such a point
v the function g has a symmetric Hessian matrix ∇2g(v). To see this, recall that the
function ∇g is lipschitzian on V . Hence at points v ∈ V where the proto-derivative of
the mapping T−1

0 exists, the domain of the proto-derivative is the whole space (because
the set-valued mapping whose graph is given by lim supt ↓ 0

[
gph∇g −

(
v,∇g(v)

)]
/t

has the whole space as its domain). Therefore, the second-order epi-derivative of the
function g at the point

(
v,∇g(v)

)
has the whole space as its domain, which means that

it is purely quadratic, and that g has a “second-order expansion” at v; cf. [3, Theorem
3.1]. A convex function (or more generally any lower-C2 function) with the above
properties at the point v is necessarily twice differentiable there and has a symmetric
Hessian matrix ∇2g(v); cf. [3, Theorem 3.2].

Based on the above observation, [2, Prop. 5.7] therefore gives the criterion that
for each pair (v, x) such that v ∈ V , x = ∇g(v), and the Hessian ∇2g(v) exists, the
inverse of the linear transformation w 7→ ∇2g(v)w is strongly monotone with constant
κ−1. Because κ is a lipschitzian constant for ∇g, the norm of the Hessian matrix
∇2g(v) is bounded by κ where the Hessian exists. Then

(3.4) 〈z, w〉 ≥ κ−1|z|2 when z = ∇2g(v)w,

as can be seen for instance through a diagonalization based on the symmetry of the
Hessian. The inequality (3.4) means that the (possibly multivalued) inverse of the
mapping w 7→ ∇2g(v)w is strongly monotone with constant κ−1, as required.
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Proof that (d) implies (c). This implication is obvious.
Proof of (c) implies (b). Let T be the localization of ∂f around (0, 0) that is

strongly monotone with constant η in addition to being maximal monotone locally. Let
S be a maximal monotone extension of the monotone mapping T − ηI. The mapping
S + ηI is maximal monotone (again by [26, Theorem 1])and has a localization around
(0, 0) that includes T . The local max monotonicity of T implies that the graphs of T
and S + ηI must actually agree around (0, 0). Therefore,

(3.5) ∂2f(0|0) = D∗T (0|0) = D∗S(0|0) + ηI.

According to Theorem 2.1 we have 〈x′, v′〉 ≥ 0 when v′ ∈ D∗S(0|0)(x′). It follows then
from (3.5) that 〈x′, v′〉 ≥ η|x′|2 when v′ ∈ ∂2f(0|0)(x′). This yields (d), as needed.

Proof of (b) implies (a). We first show that a localization of ∂f around (0, 0) is
strongly monotone as well as locally max monotone; this shows that

(
∂f

)−1 is locally
single-valued and lipschitzian near 0.

Choose a localization T of ∂f around (0, 0) that is not only hypomonotone but
such that gphT is also a graphically lipschitzian manifold of dimension n around (0, 0).
The fact that gphT can be chosen as such a manifold was noted in [2, Theorem 4.7].
Graphically lipschitzian manifolds were introduced in [29].

Because gphT is a lipschitzian manifold we know that gphT has a linear tangent
space at almost every pair (x, v) ∈ gphT in some neighborhood of (x̄, v̄); cf. [29].
Moreover, at such points (x, v), the graph of DT (x |v) is an n-dimensional subspace of
IRn × IRn, again cf. [29]. Consequently, we define R : IRn →→ IRm to be the set-valued
mapping whose graph is given by the limsup of gphDT (x |v) over the set of points
(x, v) ∈ gphT converging to (0, 0) and such that gph DT (x |v) is an n-dimensional
subspace of IRn × IRn.

Claim. gph R ⊂ gph ∂2f(0 |0).
Justification. Recall that a function h : IRn → IR is a generalized quadratic

function if it is expressible in the form

h(x) =
{

1
2 〈x, Qx〉 if x ∈ N ,
∞ if x /∈ N ,

where N is a linear subspace of IRn and Q is a symmetric n × n matrix. According
to [3, Theorem 3.9], the second-order epi-derivative is generalized quadratic at each
point (x, v) ∈ gphT near (0, 0) where gphDT (x |v) is an n-dimensional subspace
(simply apply [3, Theorem 3.9] to the function f̃(x) = f(x) + (r/2)|x|2 (r given by
(3.1)); this function meets all the requirements of that theorem). We know that the
proto-derivative of the mapping T at (x, v) gives the subgradient mapping of the
second-order epi-derivative, cf. [2, Theorem 6.1]. This implies that

(3.6) DT (x |v)(w) =
{

Ax,v(w) + NT
x,v if w ∈ Nx,v,

∅ otherwise,

for some symmetric matrix Ax,v and a subspace Nx,v.
We will now verify that gphDT (x |v) ⊂ gph ∂2f(x |v). Take w̄ ∈ Nx,v and

ū ∈ NT
x,v. For w ∈ Nx,v and u ∈ NT

x,v we have〈(
Ax,v(w̄) + ū,−w̄

)
,
(
w,Ax,v(w) + u

)〉
=

〈
Ax,v(w̄), w

〉
+

〈
ū, w

〉
−

〈
w̄, Ax,v(w)

〉
−

〈
w̄, u〉 = 0
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(remember here that Ax,v is symmetric). This confirms that the vector
(
Ax,v(w̄) +

ū,−w̄
)

belongs to the normal cone to gphT at (x, v), or in other words that
(
w̄,

Ax,v(w̄)+ ū
)

lies in gph ∂2f(x | v). (The normal cone includes the polar of the tangent
cone, which in this case is the graph of the proto-derivative DT (x |v), cf. [1].)

We then have the desired result by the definition of the mapping R and the fact
that limsup of gph ∂2f(x | v) over the set of points (x, v) ∈ gph T converging to (0, 0)
is a subset of gph ∂2f(0, 0), cf. [23] and [1]. This finishes the justification of the claim.

Continuing with the proof of (b)⇒(a) in Theorem 1.3, we note that, by our
assumptions, one has 〈z, w〉 > 0 for all z ∈ R(w) with w 6= 0 (the latter being true
for all z ∈ ∂2f(0 | 0)(w) with w 6= 0). We will show that this condition implies the
existence of ε > 0 such that, for all δ ∈ (0, ε) and (x, v) ∈ gphT close enough to (0, 0)
with gphDT (x |v) an n-dimensional subspace, one has

(3.7) 〈z, w〉 ≥ δ|w|2 when z ∈ DT (x |v)(w) with w 6= 0.

Recall that for such (x, v), DT (x |v) has a representation in the form of (3.6). Actually,
in that representation we may choose the symmetric matrix Ax,v with the property
that Ax,v : Nx,v → Nx,v; cf. [29, proof of Proposition 4.1]. (In the cited proof, it is
shown that if the subgradient mapping of a closed proper convex function is a subspace
then the subgradient mapping has the desired representation. Our case follows from
the convex situation because the second-order epi-derivative of a prox-regular function
has the property that d2f(x |v) + ρ| · |2 is convex for some ρ > 0; cf. [1], 13.49 or
[2, Theorem 6.5].) Now suppose there exist (xε, vε) ∈ gph T converging to (0, 0) as
ε → 0 with DT (x |v) an n-dimensional subspace, and wε ∈ Nxε,vε with |wε| = 1 and
|Axε,vε(wε)| < ε. When this is true, then by taking a cluster point we can find w of
norm one with 0 ∈ R(w), a contradiction. Therefore, there exists ε > 0 such that
for each (x, v) ∈ gph T close to (0, 0) with DT (x |v) an n-dimensional subspace, the
subspace Nx,v contains only the origin or the minimum eigenvalue of Ax,v is greater
than ε. From this we have (3.7).

Next, from (3.7) we conclude that, for each δ ∈ (0, ε), DT (x |v) is strongly mono-
tone with constant δ. From [2, Prop. 5.7] we see that T is strongly monotone with
constant δ.

To complete the proof of the theorem, we need only establish the existence of a
neighborhood X of 0 such that the mapping v 7→ argminx∈X

{
f(x)−〈v, x〉

}
coincides

around 0 with the mapping v 7→
(
∂f

)−1(v) ∩ X. This is accomplished through [2,
Thm. 5.5] and the fact that T is strongly monotone. Using [2, Thm. 5.5] we conclude
that for some k > 0 and λ > 0, eλ − k| · |2 is convex on a neighborhood of 0. Here eλ

is the Moreau-envelope of parameter λ > 0, i.e.,

eλ(x) = min
x′

{
f(x′) +

1
2λ

∣∣x′ − x
∣∣2}.

This shows that eλ(x) ≥ k|x|2, which implies that f(x) ≥ k|x|2 on a neighborhood of
0 (because f(x) ≥ eλ(x)). From the previous fact we can find neighborhoods X and
V of 0 such that, for v ∈ V , the set argminx∈X

{
f(x)− 〈v, x〉

}
is nonempty and is in

the interior of X. For such v, argminx∈X

{
f(x)− 〈v, x〉

}
⊂

(
∂f

)−1(v). The inclusion
must then be an equation, because the potentially bigger set is just a singleton.

Remark 3.2. According to [30, Theorem 1.2], the mapping M is hypomonotone
and has the Aubin property near (0, x̄) ∈ gphM when x̄ gives a tilt-stable local min-
imum. The Aubin property refers to a lipschitzian-like property which is formulated
for mappings that might be set-valued.
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4. Application to Constrained Minimization.
Let f0 : IRn → IR be a C2 function and let C be a nonempty, closed subset of IRn.

As already noted, the minimization of f0 over C corresponds to the minimization of
f = f0 + δC over IRn, where δC is the indicator of C. In this case, x̄ gives a tilt-stable
minimum of f if and only if there exists δ > 0 such that the mapping

(4.1) M : v 7→ argmin
{

f0(x)− f0(x̄)− 〈v, x− x̄〉
∣∣∣ x ∈ C, |x− x̄| ≤ δ

}
is single-valued and lipschitzian on some neighborhood of v = 0. It is appropriate
to speak then of x̄ giving a tilt-stable local minimum of f0 relative to C. What does
Theorem 1.3 say about that property?

In this setting, we have ∂f(x̄) = ∇f0(x̄) + ∂δC(x̄). On the level of the first-order
condition for optimality, therefore, we have

(4.2) 0 ∈ ∂f(x̄) ⇐⇒ −∇f0(x̄) ∈ ∂δC(x̄) ⇐⇒ −∇f0(x̄) ∈ NC(x̄).

To proceed to the level of the second-order condition, we can appeal to the notion
of C being prox-regular at x̄ for a vector v̄, which by definition is equivalent to the
function δC being prox-regular at x̄ for v̄; see [2], where this class of sets is discussed
in some detail.

Proposition 4.1. If f = f0 + δC with f0 of class C2 and C closed, one has for
any x̄ ∈ C and w ∈ IRn that

(4.3) ∂2f(x̄ |0)(w) = ∇2f0(x̄)w + ∂2δC(x̄ | v̄)(w) for v̄ = −∇f0(x̄).

Furthermore, f is prox-regular and subdifferentially continuous at x̄ if and only if C
is prox-regular at x̄ for v̄.

Proof. By a calculus result of Mordukhovich [23], a mapping of the form T (x) =
F (x)+S(x) with F single-valued and of class C1 has D∗T (x |v) = ∇F (x)+D∗S(x |v−
F (x)). Here we apply this to F = ∇f0 and S = ∂δC . Trivially, the function δC is
subdifferentially continuous. But from [1], 13.35, the prox-regularity of a function is
preserved when a C2 function is added; the same holds for subdifferential continuity
as well.

Theorem 4.2. For a C2 function f0 on IRn and a closed set C ⊂ IRn, let x̄ be
a point of C satisfying the first-order condition −∇f0(x̄) ∈ ∂δC(x̄), and suppose that
C is prox-regular at x̄ (i.e., that δC is prox-regular there). Then x̄ gives a tilt-stable
local minimum of f0 relative to C if and only if, in terms of v̄ = −∇f0(x̄), one has

(4.4)
〈
w,∇2f0(x̄)w

〉
> −

〈
z, w

〉
whenever z ∈ ∂2δC(x̄ | v̄)(w), w 6= 0.

Proof. This is evident from the equivalence of (a) and (b) of Theorem 1.3 in the
context of Proposition 4.1.

When the set C is convex, the coderivative result in Theorem 2.1 can be brought
into this picture.

Corollary 4.3. For a C2 function f0 and a closed, convex set C, let x̄ be a point
satisfying the first-order condition −∇f0(x̄) ∈ ∂δC(x̄). Then, with v̄ = −∇f0(x̄), a
sufficient condition for x̄ to give a tilt-stable local minimum of f0 relative to C is that

(4.5)
〈
w,∇2f0(x̄)w

〉
> 0 whenever w ∈ dom ∂2δC(x̄ | v̄), w 6= 0.
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Proof. The convexity of C implies that the normal cone mapping NC = ∂δC

is maximal monotone; cf. [28]. Then 〈z, w〉 ≥ 0 by Theorem 2.1 whenever z ∈
∂2δC(x̄ | v̄)(w). Condition (4.5) is enough in that case to ensure that (4.4) holds.

When C is not just convex but also polyhedral, an exact formula for the general-
ized Hessian ∂2δC(x̄ | v̄) is available from [31]. In order to state this formula, we need
to deal with the critical cone for C at x̄ for a vector v̄ ∈ ∂δC(x̄) = NC(x̄); this is the
polyhedral convex cone

K(x̄, v̄) = {w ∈ TC(x̄) |w ⊥ v̄ },

where TC(x̄) denotes the tangent cone to C at x̄. Recall that a closed face F of a
polyhedral convex cone K is a polyhedral convex cone of the form

F = {x ∈ K |x ⊥ v } for some v ∈ K∗,

where K∗ denotes the polar of K.
Proposition 4.4. For a polyhedral convex set C, the generalized Hessian of the

indicator of C at x̄ for any v̄ ∈ ∂δC(x̄) is given, with respect to the critical cone
K(x̄, v̄), by

(4.6) z ∈ ∂2δC(x̄ | v̄)(w) ⇐⇒
{

there exist closed faces F1 and F2 of K(x̄, v̄)
with F2 ⊂ F1, w ∈ F2 − F1, z ∈ (F1 − F2)∗.

Proof. In [31, proof of Thm. 2], the normal cone to gphNC = gph ∂δC at the
point (x̄, v̄) is shown to be the union of products sets K∗ × K over all the cones
K = F1 − F2, where F1 and F2 are described as above.

Theorem 4.5. For a C2 function f0 and a polyhedral convex set C, let x̄ be a
point satisfying the first-order condition −∇f0(x̄) ∈ ∂δC(x̄). Then, with respect to
v̄ = −∇f0(x̄) and the critical cone K(x̄, v̄), a necessary and sufficient condition for x̄
to give a tilt-stable local minimum of f0 relative to C is that

(4.7)
〈
w,∇2f0(x̄)w

〉
> 0 for all w 6= 0 in K(x̄, v̄)−K(x̄, v̄).

Proof. On the basis of Theorem 4.2 and Proposition 4.4, we know that x̄ gives a
tilt-stable local minimum if and only if 〈w,∇2f0(x̄)w〉 > −〈z, w〉 whenever w 6= 0 and
there exist closed faces F1 and F2 of K(x̄, v̄) with F2 ⊂ F1, such that w ∈ F2−F1 and
z ∈ (F1 − F2)∗. In those circumstances one can always take z = 0, so the condition
comes down to having 〈w,∇2f0(x̄)w〉 > 0 for all w 6= 0 in the union of all cones F2−F1

generated by faces of K(x̄, v̄), as described. But all such faces lie in K(x̄, v̄), which in
particular is a closed face of itself. Therefore, the union is simply K(x̄, v̄) −K(x̄, v̄).

Note that K(x̄, v̄) −K(x̄, v̄) is a subspace of IRn, the smallest one that includes
K(x̄, v̄). When the critical cone K(x̄, v̄) is itself a subspace, condition (4.7) is the
same as 〈

w,∇2f0(x̄)w
〉

> 0 for all w 6= 0 in K(x̄, v̄),

which is the usual second-order sufficient condition for optimality in this framework
of polyhedral convexity.

Elaborations of Theorem 4.2 for other, nonpolyhedral classes of sets C must await
further advances in the calculus of generalized Hessians.
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