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1. Introduction

Under natural assumptions, many common set-valued mappings in optimization and varia-
tional analysis are proto-differentiable. For example, the mapping that gives the feasible set
in a parametrized optimization problem is typically proto-differentiable, and the same for
the mapping that gives the solution set to a parameterized variational inequality, as shown
in [1]. Proto-derivatives were introduced in that paper and further studied in [2]]–[16]].
They arise from graphical geometry in the following manner.

Let Γ : IRd →→ IRn be a set-valued mapping, and let z̄ ∈ Γ(w̄). For t > 0, the difference
quotient mapping at w̄ for z̄ is

(∆tΓ)w̄,z̄ : ω 7→
[
Γ(w̄ + tω)− z̄

]/
t.

If, as t↘0, the graph of (∆tΓ)w̄,z̄ in IRd×IRn converges (in the Painlevé-Kuratowski sense)
to some set G, one says that Γ is proto-differentiable at w̄ for z̄. The limit mapping having
G as its graph is then the proto-derivative of Γ at w̄ for z̄ and is denoted by Γ′w̄,z̄. It
associates with each ω ∈ IRd a (sometimes possibly empty) set Γ′w̄,z̄(ω) ⊂ IRn.

This paper centers on the proto-differentiability of an important kind of set-valued
mapping in variational analysis: the partial subgradient mapping associated with a bivari-
ate function. For a lower semicontinuous, proper function f : IRn → IR := [−∞,∞], the
subgradient mapping ∂f : x ∈ IRn →→ v ∈ IRn gives the set of (limiting proximal) subgra-
dients v to f at x, i.e., v ∈ ∂f(x) provided there exists xk → x and vk ∈ ∂pf(xk) with
f(xk) → f(x) and vk → v (here ∂pf(xk) denotes the set of proximal subgradients to f

at xk). When x is written as (x1, x2) with x1 ∈ IRn1 , x2 ∈ IRn2 and n1 + n2 = n, sub-
gradients can be taken in the first argument alone to get the partial subgradient mapping
∂1f : IRn →→ IRn1 , which assigns to each x = (x1, x2) the set ∂1f(x) of subgradients of
f(·, x2) at x1.

Much effort has been devoted to identifying functions that have a proto-differentiable
subgradient mapping or partial subgradient mapping. The motivation for such an endeavor
comes mainly from sensitivity analysis. The proto-derivative of the inverse subgradient
mapping (which exists if and only if the proto-derivative of the subgradient mapping exists),
or of the inverse partial subgradient mapping, gives information on the rate of change of
“quasi-solutions.” These motivations are explained in detail by Levy and Rockafellar [17].
The purpose of this paper is to provide new examples of functions with proto-differentiable
partial subgradient mapping.

The concept of a function f being amenable at a point x̄ has been central to examples
of subgradient proto-differentiability. This refers to the existence on some neighborhood of

1



x̄ of a composite representation f(x) = g
(
F (x)

)
in which F : IRn → IRm is a C1 mapping,

g : IRm → IR is a lower semicontinuous, proper, convex function, and the basic constraint
qualification holds:

y ∈ Ndom g

(
F (x̄)

)
∇F (x̄)∗y = 0

}
=⇒ y = 0. (1.1)

(Here dom g =
{
y|g(y) < +∞

}
, while ∇F (x̄) is the m × n Jacobian matrix for F at x̄,

and ∗ denotes transpose.) One says that f is strongly amenable when the representation
can be chosen with F of class C2, and that f is fully amenable if, in addition, g can be
taken to be piecewise linear-quadratic (p.l.q.), meaning that dom g is the nonempty union
of finitely many polyhedral (convex) sets, relative to each of which g is quadratic (with
affine as a special case).

The class of fully amenable functions is more widespread in variational analysis and
optimization than its definition might at first seem to suggest, cf. [7], [8], [15], [16]; its un-
usually favorable properties have therefore attracted interest. The proto-differentiability
of the subgradient mappings ∂f associated with fully amenable functions f was demon-
strated by Poliquin [4]. This result has been extended to partial subgradient mappings
∂1f in the following way by Levy and Rockafellar [17].

Theorem 1.1 [17]. Suppose for a function f : IRn1 × IRn2 → IR and a point x̄ = (x̄1, x̄2)
that f(x1, x̄2) is fully amenable in x1 at x̄1 with compatible parameterization in x2 at

x̄2. Then for all x sufficiently near to x̄ and for all v1 ∈ ∂1f(x), the partial subgradient

mapping ∂1f is proto-differentiable at x for v1, moreover with

∂1f(x) = proj1 ∂f(x),

(∂1f)′x,v1
(ξ) =

⋃
v

{
proj1(∂f)′x,v(ξ)

∣∣∣ proj1 v = v1

}
.

Here proj1 denotes the projection mapping from IRn = IRn1 × IRn2 onto IRn1 . The
notion of amenability in x1 at x̄1 with compatible parameterization in x2 at x̄2 adapts
the constraint qualification in the definition of amenability to the setting of f(x1, x2) =
g
(
F (x1, x2)

)
by modifying (1.1) to

y ∈ Ndom g

(
F (x̄)

)
∇1F (x̄)∗y = 0

}
=⇒ y = 0, (1.2)

where ∇1F (x̄) = ∇1F (x̄1, x̄2) is the m× n1 Jacobian matrix for F (x1, x̄2) with respect to
x1 at x̄1. Because of the convexity of dom g, the constraint qualifications (1.1) and (1.2)
are equivalent respectively to

0 ∈ int(dom g −M) for M =
{
F (x̄) +∇F (x̄)ξ

∣∣ ξ ∈ IRn
}
, (1.1′)
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0 ∈ int(dom g −M1) for M1 =
{
F (x̄) +∇1F (x̄)ξ1

∣∣ ξ1 ∈ IRn1
}
. (1.2′)

The proof of Theorem 1.1 in [17] relied heavily on full amenability of f and especially
on the fact that the subgradient mapping ∂g of the p.l.q. convex function g involved in
representing such a function f is piecewise polyhedral: its graph is the union of finitely
many polyhedral sets. (This was proved by Sun [18]; see also Rockafellar and Wets [16].)
For that reason, the prospects of extending Theorem 1.1 beyond the class of fully amenable
functions have seemed slim. But hope has emerged from progress on another front, that of
extending the theory of first- and second-order epi-derivatives of a fully amenable functions
to some kinds of functions that are only strongly amenable. Although we will not go into
that theory here, such epi-derivatives of f were instrumental originally in [4] in getting
the proto-differentiability of ∂f . The proof of their existence in [15] hinged on the fact
that second-order epi-derivatives of a p.l.q. function g can be expressed through pointwise
convergence as well as through epi-convergence in their definition. But Azé and Poliquin
[19] have revealed that crucial aspects of the second-order epi-derivatives of p.l.q. functions
carry over to the broader class of “piecewise-C2 functions with polyhedral pieces.”

Definition 1.2. A proper function g : IRm → IR is piecewise-Ck if dom g is the nonempty

union of a finite collection of closed sets Di (for i = 1, . . . , s), and on each Di one has

g(x) = gi(x) for some Ck function defined on an open set that includes Di. Such a

function is said to have polyhedral pieces if, in addition, the sets Di are polyhedral.

Every p.l.q. function g is obviously piecewise-C2 with polyhedral pieces. Azé and
Poliquin showed in [19] that the functions f obtainable through the composition of a C2

mapping F with a convex function g that is piecewise-C2 with polyhedral pieces, under the
basic constraint qualification (1.1), are twice epi-differentiable. The subgradient mapping
∂f for such a strongly amenable function f is proto-differentiable; cf. [19, Corollary 3.12].
This is due to [6, Theorem 2.2] which says that the primal-lower-nice function f is twice
epi-differentiable at x̄ for v̄ ∈ ∂f(x̄) if and only ∂f is proto-differentiable at x̄ for v̄;
this class of functions includes all strongly amenable functions. (For lsc, proper, convex
functions, which are strongly amenable in particular, the equivalence between second-order
epi-differentiability of f and proto-differentiability of ∂f was established earlier in [2].) This
result was recently extended to the larger class of prox-regular functions in Poliquin and
Rockafellar [12, Theorem 6.1].

These developments, while encouraging, have not answered the question of what might
be said about partial subgradient mappings of functions that are strongly amenable but not
fully amenable. Our main result lies in this direction. We state it after another definition,
which will be needed in the theorem’s hypothesis.
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Definition 1.3. A set D ⊂ IRm will be said to have a regular C2 constraint representation
at a point ū ∈ D if there is a neighborhood U of ū along with C2 functions hj for j = 1, . . . , r

and an integer q ∈ [0, r] such that D ∩ U is the set of points u ∈ U such that

hj(u)− hj(ū)
{
≤ 0 for j = 1, . . . , q,
= 0 for j = q + 1, . . . , r,

and this system satisfies the Mangasarian-Fromovitz constraint qualification at ū i.e., that

the only µ = (µ1, . . . , µr) with µj ≥ 0 for j = 1, . . . , q and
∑r

j=1 µj∇hj

(
ū
)

= 0 is µ =
(0, . . . , 0).

Any polyhedral set has a regular C2 constraint representation; indeed, the constraint
functions can be chosen to be linear.

Theorem 1.4. Suppose for a function f : IRn1 × IRn2 → IR and a point x̄ = (x̄1, x̄2) that

f(x1, x̄2) is strongly amenable in x1 at x̄1 with compatible parameterization in x2 at x̄2,

with the convex function g in the associated representation f = g◦F being piecewise-C2.

Assume further that

(a) dom g has a regular C2 constraint representation at F (x̄);

(b) ∂f is proto-differentiable at x̄ for every v ∈ ∂f(x̄);

these properties hold in particular when g is piecewise-C2 with polyhedral pieces.

Then, for all x sufficiently near to x̄ and for all v1 ∈ ∂1f(x), the partial subgradient

mapping ∂1f is proto-differentiable at x for v1 with

∂1f(x) = proj1 ∂f(x) = ∇1F (x)∗∂g
(
F (x)

)
, (1.4)

(∂1f)′x,v1
(ξ) =

⋃
v

{
proj1(∂f)′x,v(ξ)

∣∣∣ proj1 v = v1

}
. (1.5)

Theorem 1.4 obviously implies Theorem 1.1, since p.l.q. functions are piecewise-C2

with polyhedral pieces. Theorem 1.4 will be proved in the next section after some prelim-
inaries.
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2. Proof Developments

A fact about subgradients of piecewise-Ck convex functions needs to be developed first.

Proposition 2.1. Let g : IRm → IR be convex and piecewise-C1, and let L be the affine

hull of the convex set D = dom g. The expression in Definition 1.2 can then be chosen so

that Di = cl(intL Di) for all i, where intL denotes the interior relative to L. In that case

one has at every point u ∈ D that

∂g(u) = co
{
∇gi(u) | i ∈ I(u)

}
+ ND(u), where I(u) =

{
i
∣∣ u ∈ Di

}
.

Proof. The set D, expressible by Definition 1.2 as the union of finitely many closed
sets Di, is closed. By a translation of g in IRm, we can arrange that 0 ∈ L, so that L

is a subspace. From convex analysis we know then that ND(u) + L⊥ = ND(u) for all
u ∈ D. Thus the claimed subgradient formula, along with the proposed improvement in
the “pieces” that represent gi, depends only on the restriction of g to the subspace L.
Without loss of generality, therefore, we can reduce to the case where D is m-dimensional,
or in other words where L = IRm.

In that setting we invoke the Baire category theorem with respect to sets B ∩D for
balls B with int D ∩ intB 6= ∅: it is impossible for B ∩D to be expressed as the union of
countably many sets that are nowhere dense in B ∩D, so at least one of the sets B ∩Di

must meet the interior of B∩D, which by convexity is int D∩intB. This tells us that B∩D

must meet int Di for at least one i. Let D′
i = cl(int Di) and organize the indices so that the

nonempty sets among these are the ones for i = 1, . . . , s′. Then D = D′
1 ∪ · · · ∪D′

s′ , with
D′

i ⊂ Di and D′
i = cl(int D′

i), and these sets therefore furnish the desired improvement.

Suppose henceforth that the Di’s themselves satisfy Di = cl(int Di). Every point of
D is then the limit of points in the interior of some Di. Because g is convex, the gradient
mapping ∇g is continuous relative to its domain of existence (cf. [20, Thm. 25.5]), which
includes the open sets int Di. In addition we know from the definition of a piecewise-C1

function, that the gradient mapping for each function gi is continuous on an open set that
includes Di. Hence, whenever ∇g(u) exists, we have ∇g(u) = ∇gi(u) for some i ∈ I(u).
The claimed formula is immediate then from the formula for ∂g in terms of ∇g provided
in [20, Thm. 25.6].

Next we look more closely at proto-differentiation. For a set-valued mapping Γ :
IRd →→ IRn and elements z̄ ∈ Γ(w̄), the proto-derivative has been defined by gph Γ′w̄,z̄ =
limt↘ 0 gph(∆tΓ)w̄,z̄, when this limit exists. More generally, we define the mapping Γ′+w̄,z̄ :
IRd →→ IRn by gphΓ′+w̄,z̄ = lim supt↘ 0 gph(∆tΓ)w̄,z̄.
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Proposition 2.2. For a multifunction Γ : IRd →→ IRn = IRn1 × IRn2 , let proj1 Γ :
IRm →→ IRn1 assign to each w the image of Γ(w) under the projection proj1 : IRn → IRn1 .

Let z̄1 ∈ (proj1 Γ)(w̄) and assume that whenever z′1 ∈ (proj1 Γ)′+w̄,z̄1
(ω) (for some ω) there

exist tk↘0, wk → w̄ with (wk − w̄)/tk → ω, (z1
n, z2

n) ∈ Γ(wk), (z̄1, z̄2) ∈ Γ(w̄) with

(z1
k− z̄1)/tk converging to z′1 and (z2

k− z̄2)/tk converging to some z′2. Under these assump-

tions one has for all ω ∈ IRd that

(proj1 Γ)′+w̄,z̄1
(ω) ⊂

⋃
z̄

{
proj1(Γ

′+
w̄,z̄)(ω)

∣∣∣ proj1 z̄ = z̄1

}
.

Proof. Immediate from the definitions.

Corollary 2.3. Under the assumptions of Proposition 2.2, if Γ is proto-differentiable at

w̄ for some z̄ ∈ Γ(w̄) with proj1 z̄ = z̄1 then (proj1 Γ) is proto-differentiable at w̄ for z̄1

and for all ω ∈ IRd one has

(proj1 Γ)′w̄,z̄1
(ω) =

⋃
z̄

{
proj1(Γ

′
w̄,z̄)(ω)

∣∣∣ proj1 z̄ = z̄1

}
.

Proof. This follows from Prop. 2.2 and [17, Prop. 2.2].

Proof of Theorem 1.4. Because of the constraint qualification built into the amenability
assumption, the partial subgradient formula (1.4) holds on the basis of the general calculus
in [8]. To obtain the desired proto-differentiability of ∂1f and the formula (1.5), we can
utilize Corollary 2.3 and concentrate simply on verifying that the assumptions of Propo-
sition 2.2 are fulfilled by Γ = ∂f . This amounts to producing, for arbitrary v̄1 ∈ ∂1f(x̄),
ξ ∈ IRn, and v′1 ∈ (∂1f)′+x̄,v̄1

(ξ), elements tk↘0, xk → x̄ and (v1,k, v2,k) ∈ ∂f(xk) and v̄2

with (v̄1, v̄2) ∈ ∂f(x̄) such that (xk − x̄)/tk → ξ, (v1,k − v̄1)/tk → v′1 and (v2,k − v̄2)/tk

converges to some v′2.

In taking v′1 ∈ (∂1f)′+x̄,v̄1
(ξ), we automatically have by definition the existence of tk↘0,

xk → x̄ and v1,k ∈ ∂f(xk) such that (xk − x̄)/tk → ξ and (v1,k − v̄1)/tk → v′1. From (1.4),
we can find yk ∈ ∂g

(
F (xk)

)
with v1,k = ∇1F (xk)∗yk. The set gph ∂g is closed, and the

constraint qualification (1.2) guarantees that the sequence of vectors yk is bounded, so
we may assume without loss of generality that yk → ȳ for a vector ȳ ∈ ∂g

(
F (x̄)

)
. Then

v̄1 = ∇1F (x̄)∗ȳ. Let ξk = (xk − x̄)/tk, so that ξk → ξ. We have

v1,k − v̄1

tk
=
∇1F (xk)∗yk −∇1F (x̄)∗ȳ

tk

=
(
∇1F (x̄ + tkξk)∗ −∇1F (x̄)∗

tk

)
yk +∇1F (x̄)∗

(
yk − ȳ

tk

)
,
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where the matrix quotient converges to a certain matrix A (depending only on x̄ and ξ),
inasmuch as F is C2. This tells us that

∇1F (x̄)∗
(

yk − ȳ

tk

)
→ v′1 − d1, where d1 = Aȳ.

Further, the analysis reveals that for any sequence of vectors ỹk → ȳ with

ỹk ∈ ∂g
(
F (xk)

)
and lim

k→∞
∇1F (x̄)∗

(
ỹk − ȳ

tk

)
= v′1 − d1

the vectors ṽ1,k := ∇1F (xk)∗ỹk converge to v̄1 while (ṽ1,k − v̄1)/tk converges to v′1.

Recall that the set dom g has a regular C2 representation at F (x̄). This means that
there exist a neighborhood U of F (x̄) along with C2 functions hj for j = 1, . . . , r and an
integer q ∈ [0, r] such that dom g ∩ U is the set of points u ∈ U such that

hj(u)− hj

(
F (x̄)

) {
≤ 0 for j = 1, . . . , q,
= 0 for j = q + 1, . . . , r,

and this system satisfies the Mangasarian-Fromovitz constraint qualification at F (x̄) i.e.,
that the only µ = (µ1, . . . , µr) with µj ≥ 0 for j = 1, . . . , q and

∑r
j=1 µj∇hj

(
F (x̄)

)
= 0 is

µ = (0, . . . , 0).

It is well known, see for example [21, Thm. 4.3], that for u ∈ dom g ∩ U we have

Ndom g(u) =


r∑

j=1

µj∇hj(u)

∣∣∣∣∣ µj ≥ 0 for j = 1, . . . , q with hj(u) = hj

(
F (x̄)

)
µj = 0 for j = 1, . . . , q with hj(u) < hj

(
F (x̄)

)
 .

By Proposition 2.1, there exist for i = 1, . . . , s, j = 1, . . . , r, and each k, scalars
λi,k ∈ [0, 1] with

∑s
i=1 λi,k = 1 and µj,k with µj,k ≥ 0 for j = 1, . . . , q such that

yk =
s∑

i=1

λi,k∇gi

(
F (xk)

)
+

r∑
j=1

µj,k∇hj

(
F (xk)

)
. (2.1)

We may assume without loss of generality that λi,k → λi (as k → ∞), with λi ∈ [0, 1],∑s
i=1 λi = 1. We may also assume that µj,k → µj as k → ∞. (If not we, could divide

(2.1) by ρk = max{|µj,k|}. Obviously λi,k/ρk → 0. In the limit we would therefore have
a sum of multiples of the ∇hj

(
F (x̄)

)
’s equaling 0 and with the coefficient of ∇hj

(
F (x̄)

)
for 1 ≤ j ≤ q nonnegative. But by the Mangasarian-Fromovitz constraint qualification, all
coefficients must be 0, a contradiction.) Therefore

ȳ =
s∑

i=1

λi∇gi

(
F (x̄)

)
+

r∑
j=1

µj∇hj

(
F (x̄)

)
.
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Under our assumptions, the vectors

∇1F (x̄)∗

 s∑
i=1

λi,k

[
∇gi

(
F (xk)

)
−∇gi

(
F (x̄)

)
tk

]
+

r∑
j=1

µj,k

[
∇hj

(
F (xk)

)
−∇hj

(
F (x̄)

)
tk

]
converge to a certain vector d′1. Note that d′1 only depends on x̄, ξ, the λi’s and the µj ’s.
Consequently,

lim
k→∞

∇1F (x̄)∗

 s∑
i=1

[
λi,k − λi

tk

]
∇gi

(
F (x̄)

)
+

r∑
j=1

[
µj,k − µj

tk

]
∇hj

(
F (x̄)

)
= v′1 − d1 − d′1.

(2.2)

Our goal is to replace λi,k by λ̃i,k with λ̃i,k converging to λi, and µj,k by µ̃j,k with
µ̃j,k → µj . With

ỹk :=

 s∑
i=1

λ̃i,k∇gi

(
F (xk)

)
+

r∑
j=1

µ̃j,k∇hj

(
F (xk)

) ,

we will choose λ̃i,k and µ̃j,k so that

ỹk ∈ ∂g
(
F (xk)

)
.

In addition we’ll have as in (2.2)

lim
k→∞

∇1F (x̄)∗

 s∑
i=1

[
λ̃i,k − λi

tk

]
∇gi

(
F (x̄)

)
+

r∑
j=1

[
µ̃j,k − µj

tk

]
∇hj

(
F (x̄)

)
= v′1 − d1 − d′1.

Moreover we will show that

s∑
i=1

[
λ̃i,k − λi

tk

]
∇gi

(
F (x̄)

)
+

r∑
j=1

[
µ̃j,k − µj

tk

]
∇hj

(
F (x̄)

)
converges to some vector θ1; we then have ∇1F (x̄)∗(x̄)θ1 = v′1 − d1 − d′1. It follows that
ỹk → ȳ. Then with ṽj,k = ∇jF (xk)∗ỹk for j = 1, 2 we’ll have (of course) (ṽ1,k−v̄1)/tk → v′1

and with v̄2 := ∇2F (x̄)∗ȳ, it is absolutely elementary to show that (ṽ2,k− v̄2)/tk converges
to some v′2. The proof will therefore be completed once we show that we can find λ̃i,k and
µ̃j,k with the above properties.
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The proof now proceeds by induction on the number of indices with (λi,k − λi)/tk or
(µj,k − µj)/tk unbounded (as k →∞). Let N be the number of such indices. Let

vi = ∇1F (x̄)∗∇gi

(
F (x̄)

)
, dj = ∇1F (x̄)∗∇hj

(
F (x̄)

)
,

ai,k =
λi,k − λi

tk
and bj,k =

µj,k − µj

tk
.

Note that by our assumptions

s∑
i=1

ai,kvi +
r∑

j=1

bj,kdj (2.3)

is bounded as k →∞ ( by (2.2) it actually converges to v′1 − d1 − d′1). Also note that

s∑
i=1

ai,k = 0, (2.4)

because
∑s

i=1 λi,k = 1 =
∑s

i=1 λi.

N=1: From (2.4) we can not have only one ai,k unbounded (if this is the case assume
without loss of generality that a1,k is unbounded. When we divide (2.4) by a1,k, in the
limit we have that 1 = 0; hmm!). Since there is only a finite number of indices, me may
assume by relabeling if necessary that b1,k is unbounded. From (2.3) we conclude that
d1 = 0. Therefore simply let µ̃1,k = µ1.

Assume true N = 1, 2, . . . ,m− 1. Let N = m. Let

αk = max
{

max
i=1,...,s

|ai,k|, max
j=1,...,r

|bj,k|
}

.

Assume (without loss of generality) that (ai,k/αk) → ai and that (bj,k/αk) → bj . Note
that ai equals 0 when ai,k is bounded and that bj equals 0 when bj,k is bounded. From
(2.3) and (2.4) we have

s∑
i=1

aivi +
r∑

j=1

bjdj = 0 (2.5)

and
s∑

i=1

ai = 0. (2.6)

Let
β0

k = min
{

1,min
{

λi,k

tkαkai

∣∣∣ 1 ≤ i ≤ s, λi = 0, ai 6= 0
}}

.
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If there is i with λi = 1 and ai 6= 0 then let

β1
k = min

{
β0

k,
λi,k − 1
tkαkai

}
,

if not let β1
k = β0

k. Let

β2
k = min

{
1,min

{
µj,k

tkαkbj

∣∣∣ 1 ≤ j ≤ q, µj = 0, bj 6= 0
}}

.

Finally let
βk = min{β1

k, β2
k}.

Note that βk → 1. In addition note that if 0 < λi < 1 for all i = 1, . . . , s with ai 6= 0 and
µj > 0 for j = 1, . . . , q with bj 6= 0 then β0

k = β1
k = β2

k = βk = 1 (this will be important in
Claim 5).

For i = 1, . . . , s let
λ̃i,k = λi,k − tkαkaiβk,

and for j = 1, . . . , r let
µ̃j,k = µj,k − tkαkbjβk,

We may assume without loss of generality that λ̃i,k → λi and µ̃j,k → µj (because there is a
only a finite number of indices i and j, there exists either some i with tkαk = (+

− )(λi,k−λi)
for all k in an infinite subset of lN or some j with tkαk = (+

− )(µj,k − µj) for all k in an
infinite subset of lN; in either case a subsequence of tkαk converges to 0).

The role of βk is to ensure that s∑
i=1

λ̃i,k∇gi

(
F (xk)

)
+

r∑
j=1

µ̃j,k∇hj

(
F (xk)

) ∈ ∂g
(
F (xk)

)
. (2.7)

We first show:

Claim 1. For all k large enough and for all i, λ̃i,k ∈ [0, 1] and if λi,k = 0 then λ̃i,k = 0.

Proof of Claim 1. First note that if λi,k = 0 for all k large, then λi = 0, ai = 0 and
λ̃i,k = 0 for all k large.

If ai = 0 then λ̃i,k = λi,k. So assume that ai 6= 0. If λi ∈ (0, 1) then eventually
λ̃i,k ∈ (0, 1) because tkαk → 0 and λi,k → λi.

If λi = 0 then for large k, ai,k = (λi,k − 0)/tk > 0 (if λi,k = 0 for all k large, then ai = 0 a
contradiction) so that αkai > 0 (recall that ai,k/(αkai) converges to 1). Therefore by the
choice of βk,

λ̃i,k = λi,k − tkαkaiβk ≥ λi,k − tkαkai
λi,k

tkαkai
= 0.
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Clearly in this case λ̃i,k ≤ 1 because αkai > 0 so that λ̃i,k ≤ λi,k.

If λi = 1 then for large k, ai,k = (λi,k − 1)/tk < 0 (if λi,k = 1 for all k large, then ai = 0 a
contradiction) so that αkai < 0. This shows that λ̃i,k ≥ λi,k. On the other hand

λ̃i,k = λi,k − tkαkaiβk ≤ λi,k − tkαkai

(
λi,k − 1
tkαkai

)
= 1.

Claim 2.
∑s

i=1 λ̃i,k = 1

Proof of Claim 2.
s∑

i=1

λ̃i,k =
s∑

i=1

(
λi,k − tkαkaiβk

)
=

s∑
i=1

λi,k − tkαkβk

s∑
i=1

ai

= 1− tkαkβk(0) (from (2.6))

= 1.

Claim 3. For all k large enough and for all 1 ≤ j ≤ q, µ̃j,k ≥ 0 and if µj,k = 0 then

µ̃j,k = 0.

Proof of Claim 3. First note that if µj,k = 0 for all k large, then µj = 0, bj = 0 and
µ̃j,k = 0 for large k.

If bj = 0 then µ̃j,k = µj,k ≥ 0. So assume that bj 6= 0. If µj > 0 then eventually
µ̃j,k > 0 because tkαk → 0 and µj,k → µj .

If µj = 0 then bj,k = (µj,k − 0)/tk > 0 (if µj,k = 0 for all k large, then bj = 0 a
contradiction) so that αkbj > 0. Therefore

µ̃j,k = µj,k − tkαkbjβk ≥ µj,k − tkαkbj
µj,k

tkαkbj
= 0.

By our subgradient assumptions on g, the combination of Claims 1,2 and 3 shows that
(2.7) is valid. Indeed by our choice of λ̃i,k we have

s∑
i=1

λ̃i,k∇gi

(
F (xk)

)
∈ co{∇gi

(
F (xk)

) ∣∣ F (xk) ∈ Di}
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because
∑s

i=1 λ̃i,k = 1, λ̃i,k ∈ [0, 1] and λ̃i,k = 0 precisely when λi,k = 0 in other words
when potentially F (xk) /∈ Di. On the other hand

r∑
j=1

µ̃j,k∇hj

(
F (xk)

)
∈ Ndom g

(
F (xk)

)
,

because µ̃j,k ≥ 0 for 1 ≤ j ≤ q and µ̃j,k = 0 precisely when µj,k = 0 i.e. when potentially
hj

(
F (xk)

)
− hj

(
F (x̄)

)
< 0.

Claim 4.
s∑

i=1

( λ̃i,k − λi

tk

)
vi +

r∑
j=1

( µ̃j,k − µj

tk

)
dj =

s∑
i=1

(λi,k − λi

tk

)
vi +

r∑
j=1

(µj,k − µj

tk

)
dj .

Proof of Claim 4.
s∑

i=1

( λ̃i,k − λi

tk

)
vi +

r∑
j=1

( µ̃j,k − µj

tk

)
dj =

s∑
i=1

(λi,k − λi

tk

)
vi +

r∑
j=1

(µj,k − µj

tk

)
dj

− βkαk

 s∑
i=1

aivi +
r∑

j=1

bjdj


=

s∑
i=1

(λi,k − λi

tk

)
vi +

r∑
j=1

(µj,k − µj

tk

)
dj

(cf. (2.5))

Claim 5. Without any loss of generality, we may assume that there exists some i with

λ̃i,k = λi for all k or some j with µ̃j,k = µj for all k.

Proof of Claim 5. Fix k ∈ lN. If βk =
λi,k

tkαkai
for some i with λi = 0 and ai 6= 0, then

for such i,
λ̃i,k = λi,k − tkαkaiβk = 0 = λi.

If βk =
µj,k

tkαkbj
for some j with µj = 0, 1 ≤ j ≤ q, and bj 6= 0, then for such j,

µ̃j,k = µj,k − tkαkbjβk = 0 = µj .

If βk =
λi,k − 1
tkαkai

for some i with λi = 1 and ai 6= 0, then

λ̃i,k = λi,k − tkαkai

(
λi,k − 1
tkαkai

)
= 1 = λi.
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If any of the three cases mentioned above is true for all k in an infinite subset of lN,
then we are done because there is only a finite number of indices i and j (some index i

or j would be repeated infinitely often, then take an appropriate subsequence). If not this
means that βk = 1 for all k sufficiently large (see the comment made after the introduction
of the βk’s). Again because there is only a finite number of indices we may assume by
taking a subsequence if necessary that there exists some i with αk = |ai,k| for all k or
there exists some j with αk = |bj,k| for all k. If αk = |ai,k| then aiαk = ai,k (because
ai,k/αk = ai,k/|ai,k| → ai), and

λ̃i,k = λi,k − tkαkai

= λi,k − tkai,k

= λi,k − (λi,k − λi)

= λi,

for all k. If on the other hand αk = |bj,k|, then by a similar argument µ̃j,k = µj for all k.

So finally we have produced λ̃i,k and µ̃j,k with λ̃i,k → λi, µ̃j,k → µj and

ỹk :=

 s∑
i=1

λ̃i,k∇gi

(
F (xk)

)
+

r∑
j=1

µ̃j,k∇hj

(
F (xk)

) ∈ ∂g
(
F (xk)

)
.

By Claim 4, for all k

∇1F (x̄)∗
(

ỹk − ȳ

tk

)
= ∇1F (x̄)∗

(
yk − ȳ

tk

)
.

And the number of indices with
λ̃i,k − λi

tk
or

µ̃j,k − µj

tk
unbounded is strictly less than m

(Claim 5). This completes the proof.
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