# PROTO-DERIVATIVES OF PARTIAL SUBGRADIENT MAPPINGS 

R. A. Poliquin and R. T. Rockafellar*


#### Abstract

Partial subgradient mappings have a key role in the sensitivity analysis of firstorder conditions for optimality, and their generalized derivatives are especially important in that respect. It is known that such a mapping is proto-differentiable when it comes from a fully amenable function with compatible parameterization, which is a common case in applications; the proto-derivatives can be evaluated then through projections. Here this result is extended to a still broader class of functions than fully amenable, namely, ones obtained by composing a $C^{2}$ mapping with a kind of piecewise- $C^{2}$ convex function under a constraint qualification.


Keywords. Variational analysis, subgradient mappings, proto-derivatives, second-order epi-derivatives, amenable functions, piecewise- $C^{2}$ functions, nonsmooth analysis.

1980 Mathematics Subject Classification (1985 Revision). Primary 49A52, 58C06, 58C20; Secondary 90C30

May 1997

[^0]
## 1. Introduction

Under natural assumptions, many common set-valued mappings in optimization and variational analysis are proto-differentiable. For example, the mapping that gives the feasible set in a parametrized optimization problem is typically proto-differentiable, and the same for the mapping that gives the solution set to a parameterized variational inequality, as shown in [1]. Proto-derivatives were introduced in that paper and further studied in [2]]-[16]]. They arise from graphical geometry in the following manner.

Let $\Gamma: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{n}$ be a set-valued mapping, and let $\bar{z} \in \Gamma(\bar{w})$. For $t>0$, the difference quotient mapping at $\bar{w}$ for $\bar{z}$ is

$$
\left(\Delta_{t} \Gamma\right)_{\bar{w}, \bar{z}}: \omega \mapsto[\Gamma(\bar{w}+t \omega)-\bar{z}] / t .
$$

If, as $t \searrow 0$, the graph of $\left(\Delta_{t} \Gamma\right)_{\bar{w}, \bar{z}}$ in $\mathbb{R}^{d} \times \mathbb{R}^{n}$ converges (in the Painlevé-Kuratowski sense) to some set $G$, one says that $\Gamma$ is proto-differentiable at $\bar{w}$ for $\bar{z}$. The limit mapping having $G$ as its graph is then the proto-derivative of $\Gamma$ at $\bar{w}$ for $\bar{z}$ and is denoted by $\Gamma_{\bar{w}, \bar{z}}^{\prime}$. It associates with each $\omega \in \mathbb{R}^{d}$ a (sometimes possibly empty) set $\Gamma_{\bar{w}, \bar{z}}^{\prime}(\omega) \subset \mathbb{R}^{n}$.

This paper centers on the proto-differentiability of an important kind of set-valued mapping in variational analysis: the partial subgradient mapping associated with a bivariate function. For a lower semicontinuous, proper function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}:=[-\infty, \infty]$, the subgradient mapping $\partial f: x \in \mathbb{R}^{n} \rightrightarrows v \in \mathbb{R}^{n}$ gives the set of (limiting proximal) subgradients $v$ to $f$ at $x$, i.e., $v \in \partial f(x)$ provided there exists $x_{k} \rightarrow x$ and $v_{k} \in \partial_{p} f\left(x_{k}\right)$ with $f\left(x_{k}\right) \rightarrow f(x)$ and $v_{k} \rightarrow v$ (here $\partial_{p} f\left(x_{k}\right)$ denotes the set of proximal subgradients to $f$ at $x_{k}$ ). When $x$ is written as $\left(x_{1}, x_{2}\right)$ with $x_{1} \in \mathbb{R}^{n_{1}}, x_{2} \in \mathbb{R}^{n_{2}}$ and $n_{1}+n_{2}=n$, subgradients can be taken in the first argument alone to get the partial subgradient mapping $\partial_{1} f: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n_{1}}$, which assigns to each $x=\left(x_{1}, x_{2}\right)$ the set $\partial_{1} f(x)$ of subgradients of $f\left(\cdot, x_{2}\right)$ at $x_{1}$.

Much effort has been devoted to identifying functions that have a proto-differentiable subgradient mapping or partial subgradient mapping. The motivation for such an endeavor comes mainly from sensitivity analysis. The proto-derivative of the inverse subgradient mapping (which exists if and only if the proto-derivative of the subgradient mapping exists), or of the inverse partial subgradient mapping, gives information on the rate of change of "quasi-solutions." These motivations are explained in detail by Levy and Rockafellar [17]. The purpose of this paper is to provide new examples of functions with proto-differentiable partial subgradient mapping.

The concept of a function $f$ being amenable at a point $\bar{x}$ has been central to examples of subgradient proto-differentiability. This refers to the existence on some neighborhood of
$\bar{x}$ of a composite representation $f(x)=g(F(x))$ in which $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a $C^{1}$ mapping, $g: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ is a lower semicontinuous, proper, convex function, and the basic constraint qualification holds:

$$
\left.\begin{array}{r}
y \in N_{\operatorname{dom} g}(F(\bar{x}))  \tag{1.1}\\
\nabla F(\bar{x})^{*} y=0
\end{array}\right\} \Longrightarrow y=0 .
$$

(Here $\operatorname{dom} g=\{y \mid g(y)<+\infty\}$, while $\nabla F(\bar{x})$ is the $m \times n$ Jacobian matrix for $F$ at $\bar{x}$, and $*$ denotes transpose.) One says that $f$ is strongly amenable when the representation can be chosen with $F$ of class $C^{2}$, and that $f$ is fully amenable if, in addition, $g$ can be taken to be piecewise linear-quadratic (p.l.q.), meaning that $\operatorname{dom} g$ is the nonempty union of finitely many polyhedral (convex) sets, relative to each of which $g$ is quadratic (with affine as a special case).

The class of fully amenable functions is more widespread in variational analysis and optimization than its definition might at first seem to suggest, cf. [7], [8], [15], [16]; its unusually favorable properties have therefore attracted interest. The proto-differentiability of the subgradient mappings $\partial f$ associated with fully amenable functions $f$ was demonstrated by Poliquin [4]. This result has been extended to partial subgradient mappings $\partial_{1} f$ in the following way by Levy and Rockafellar [17].

Theorem 1.1 [17]. Suppose for a function $f: \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \rightarrow \overline{\mathbb{R}}$ and a point $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)$ that $f\left(x_{1}, \bar{x}_{2}\right)$ is fully amenable in $x_{1}$ at $\bar{x}_{1}$ with compatible parameterization in $x_{2}$ at $\bar{x}_{2}$. Then for all $x$ sufficiently near to $\bar{x}$ and for all $v_{1} \in \partial_{1} f(x)$, the partial subgradient mapping $\partial_{1} f$ is proto-differentiable at $x$ for $v_{1}$, moreover with

$$
\begin{aligned}
\partial_{1} f(x) & =\operatorname{proj}_{1} \partial f(x) \\
\left(\partial_{1} f\right)_{x, v_{1}}^{\prime}(\xi) & =\bigcup_{v}\left\{\operatorname{proj}_{1}(\partial f)_{x, v}^{\prime}(\xi) \mid \operatorname{proj}_{1} v=v_{1}\right\} .
\end{aligned}
$$

Here $\operatorname{proj}_{1}$ denotes the projection mapping from $\mathbb{R}^{n}=\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$ onto $\mathbb{R}^{n_{1}}$. The notion of amenability in $x_{1}$ at $\bar{x}_{1}$ with compatible parameterization in $x_{2}$ at $\bar{x}_{2}$ adapts the constraint qualification in the definition of amenability to the setting of $f\left(x_{1}, x_{2}\right)=$ $g\left(F\left(x_{1}, x_{2}\right)\right)$ by modifying (1.1) to

$$
\left.\begin{array}{r}
y \in N_{\operatorname{dom} g}(F(\bar{x}))  \tag{1.2}\\
\nabla_{1} F(\bar{x})^{*} y=0
\end{array}\right\} \Rightarrow y=0,
$$

where $\nabla_{1} F(\bar{x})=\nabla_{1} F\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is the $m \times n_{1}$ Jacobian matrix for $F\left(x_{1}, \bar{x}_{2}\right)$ with respect to $x_{1}$ at $\bar{x}_{1}$. Because of the convexity of dom $g$, the constraint qualifications (1.1) and (1.2) are equivalent respectively to

$$
0 \in \operatorname{int}(\operatorname{dom} g-M) \quad \text { for } \quad M=\left\{F(\bar{x})+\nabla F(\bar{x}) \xi \mid \xi \in \mathbb{R}^{n}\right\},
$$

$$
0 \in \operatorname{int}\left(\operatorname{dom} g-M_{1}\right) \quad \text { for } \quad M_{1}=\left\{F(\bar{x})+\nabla_{1} F(\bar{x}) \xi_{1} \mid \xi_{1} \in \mathbb{R}^{n_{1}}\right\}
$$

The proof of Theorem 1.1 in [17] relied heavily on full amenability of $f$ and especially on the fact that the subgradient mapping $\partial g$ of the p.l.q. convex function $g$ involved in representing such a function $f$ is piecewise polyhedral: its graph is the union of finitely many polyhedral sets. (This was proved by Sun [18]; see also Rockafellar and Wets [16].) For that reason, the prospects of extending Theorem 1.1 beyond the class of fully amenable functions have seemed slim. But hope has emerged from progress on another front, that of extending the theory of first- and second-order epi-derivatives of a fully amenable functions to some kinds of functions that are only strongly amenable. Although we will not go into that theory here, such epi-derivatives of $f$ were instrumental originally in [4] in getting the proto-differentiability of $\partial f$. The proof of their existence in [15] hinged on the fact that second-order epi-derivatives of a p.l.q. function $g$ can be expressed through pointwise convergence as well as through epi-convergence in their definition. But Azé and Poliquin [19] have revealed that crucial aspects of the second-order epi-derivatives of p.l.q. functions carry over to the broader class of "piecewise- $C^{2}$ functions with polyhedral pieces."

Definition 1.2. A proper function $g: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ is piecewise- $C^{k}$ if $\operatorname{dom} g$ is the nonempty union of a finite collection of closed sets $D_{i}$ (for $i=1, \ldots, s$ ), and on each $D_{i}$ one has $g(x)=g_{i}(x)$ for some $C^{k}$ function defined on an open set that includes $D_{i}$. Such a function is said to have polyhedral pieces if, in addition, the sets $D_{i}$ are polyhedral.

Every p.l.q. function $g$ is obviously piecewise- $C^{2}$ with polyhedral pieces. Azé and Poliquin showed in [19] that the functions $f$ obtainable through the composition of a $C^{2}$ mapping $F$ with a convex function $g$ that is piecewise- $C^{2}$ with polyhedral pieces, under the basic constraint qualification (1.1), are twice epi-differentiable. The subgradient mapping $\partial f$ for such a strongly amenable function $f$ is proto-differentiable; cf. [19, Corollary 3.12]. This is due to [6, Theorem 2.2] which says that the primal-lower-nice function $f$ is twice epi-differentiable at $\bar{x}$ for $\bar{v} \in \partial f(\bar{x})$ if and only $\partial f$ is proto-differentiable at $\bar{x}$ for $\bar{v}$; this class of functions includes all strongly amenable functions. (For lsc, proper, convex functions, which are strongly amenable in particular, the equivalence between second-order epi-differentiability of $f$ and proto-differentiability of $\partial f$ was established earlier in [2].) This result was recently extended to the larger class of prox-regular functions in Poliquin and Rockafellar [12, Theorem 6.1].

These developments, while encouraging, have not answered the question of what might be said about partial subgradient mappings of functions that are strongly amenable but not fully amenable. Our main result lies in this direction. We state it after another definition, which will be needed in the theorem's hypothesis.

Definition 1.3. $A$ set $D \subset \mathbb{R}^{m}$ will be said to have a regular $C^{2}$ constraint representation at a point $\bar{u} \in D$ if there is a neighborhood $U$ of $\bar{u}$ along with $C^{2}$ functions $h_{j}$ for $j=1, \ldots, r$ and an integer $q \in[0, r]$ such that $D \cap U$ is the set of points $u \in U$ such that

$$
h_{j}(u)-h_{j}(\bar{u}) \begin{cases}\leq 0 & \text { for } j=1, \ldots, q \\ =0 & \text { for } j=q+1, \ldots, r\end{cases}
$$

and this system satisfies the Mangasarian-Fromovitz constraint qualification at $\bar{u}$ i.e., that the only $\mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$ with $\mu_{j} \geq 0$ for $j=1, \ldots, q$ and $\sum_{j=1}^{r} \mu_{j} \nabla h_{j}(\bar{u})=0$ is $\mu=$ $(0, \ldots, 0)$.

Any polyhedral set has a regular $C^{2}$ constraint representation; indeed, the constraint functions can be chosen to be linear.

Theorem 1.4. Suppose for a function $f: \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \rightarrow \overline{\mathbb{R}}$ and a point $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)$ that $f\left(x_{1}, \bar{x}_{2}\right)$ is strongly amenable in $x_{1}$ at $\bar{x}_{1}$ with compatible parameterization in $x_{2}$ at $\bar{x}_{2}$, with the convex function $g$ in the associated representation $f=g \circ F$ being piecewise- $C^{2}$. Assume further that
(a) $\operatorname{dom} g$ has a regular $C^{2}$ constraint representation at $F(\bar{x})$;
(b) $\partial f$ is proto-differentiable at $\bar{x}$ for every $v \in \partial f(\bar{x})$;
these properties hold in particular when $g$ is piecewise- $C^{2}$ with polyhedral pieces.
Then, for all $x$ sufficiently near to $\bar{x}$ and for all $v_{1} \in \partial_{1} f(x)$, the partial subgradient mapping $\partial_{1} f$ is proto-differentiable at $x$ for $v_{1}$ with

$$
\begin{align*}
\partial_{1} f(x) & =\operatorname{proj}_{1} \partial f(x)=\nabla_{1} F(x)^{*} \partial g(F(x))  \tag{1.4}\\
\left(\partial_{1} f\right)_{x, v_{1}}^{\prime}(\xi) & =\bigcup_{v}\left\{\operatorname{proj}_{1}(\partial f)_{x, v}^{\prime}(\xi) \mid \operatorname{proj}_{1} v=v_{1}\right\} . \tag{1.5}
\end{align*}
$$

Theorem 1.4 obviously implies Theorem 1.1, since p.l.q. functions are piecewise- $C^{2}$ with polyhedral pieces. Theorem 1.4 will be proved in the next section after some preliminaries.

## 2. Proof Developments

A fact about subgradients of piecewise- $C^{k}$ convex functions needs to be developed first.
Proposition 2.1. Let $g: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ be convex and piecewise- $C^{1}$, and let $L$ be the affine hull of the convex set $D=\operatorname{dom} g$. The expression in Definition 1.2 can then be chosen so that $D_{i}=\operatorname{cl}\left(\operatorname{int}_{L} D_{i}\right)$ for all $i$, where $\operatorname{int}_{L}$ denotes the interior relative to $L$. In that case one has at every point $u \in D$ that

$$
\partial g(u)=\operatorname{co}\left\{\nabla g_{i}(u) \mid i \in I(u)\right\}+N_{D}(u), \quad \text { where } I(u)=\left\{i \mid u \in D_{i}\right\} .
$$

Proof. The set $D$, expressible by Definition 1.2 as the union of finitely many closed sets $D_{i}$, is closed. By a translation of $g$ in $\mathbb{R}^{m}$, we can arrange that $0 \in L$, so that $L$ is a subspace. From convex analysis we know then that $N_{D}(u)+L^{\perp}=N_{D}(u)$ for all $u \in D$. Thus the claimed subgradient formula, along with the proposed improvement in the "pieces" that represent $g_{i}$, depends only on the restriction of $g$ to the subspace $L$. Without loss of generality, therefore, we can reduce to the case where $D$ is $m$-dimensional, or in other words where $L=\mathbb{R}^{m}$.

In that setting we invoke the Baire category theorem with respect to sets $B \cap D$ for balls $B$ with int $D \cap \operatorname{int} B \neq \emptyset$ : it is impossible for $B \cap D$ to be expressed as the union of countably many sets that are nowhere dense in $B \cap D$, so at least one of the sets $B \cap D_{i}$ must meet the interior of $B \cap D$, which by convexity is int $D \cap \operatorname{int} B$. This tells us that $B \cap D$ must meet $\operatorname{int} D_{i}$ for at least one $i$. Let $D_{i}^{\prime}=\operatorname{cl}\left(\operatorname{int} D_{i}\right)$ and organize the indices so that the nonempty sets among these are the ones for $i=1, \ldots, s^{\prime}$. Then $D=D_{1}^{\prime} \cup \cdots \cup D_{s^{\prime}}^{\prime}$, with $D_{i}^{\prime} \subset D_{i}$ and $D_{i}^{\prime}=\operatorname{cl}\left(\operatorname{int} D_{i}^{\prime}\right)$, and these sets therefore furnish the desired improvement.

Suppose henceforth that the $D_{i}$ 's themselves satisfy $D_{i}=\operatorname{cl}\left(\operatorname{int} D_{i}\right)$. Every point of $D$ is then the limit of points in the interior of some $D_{i}$. Because $g$ is convex, the gradient mapping $\nabla g$ is continuous relative to its domain of existence (cf. [20, Thm. 25.5]), which includes the open sets int $D_{i}$. In addition we know from the definition of a piecewise- $C^{1}$ function, that the gradient mapping for each function $g_{i}$ is continuous on an open set that includes $D_{i}$. Hence, whenever $\nabla g(u)$ exists, we have $\nabla g(u)=\nabla g_{i}(u)$ for some $i \in I(u)$. The claimed formula is immediate then from the formula for $\partial g$ in terms of $\nabla g$ provided in [20, Thm. 25.6].

Next we look more closely at proto-differentiation. For a set-valued mapping $\Gamma$ : $\mathbb{R}^{d} \rightrightarrows \mathbb{R}^{n}$ and elements $\bar{z} \in \Gamma(\bar{w})$, the proto-derivative has been defined by $\operatorname{gph} \Gamma_{\bar{w}, \bar{z}}^{\prime}=$ $\lim _{t \backslash 0} \operatorname{gph}\left(\Delta_{t} \Gamma\right)_{\bar{w}, \bar{z}}$, when this limit exists. More generally, we define the mapping $\Gamma_{\bar{w}, \bar{z}}^{\prime+}$ : $\mathbb{R}^{d} \rightrightarrows \mathbb{R}^{n}$ by $\operatorname{gph} \Gamma_{\bar{w}, \bar{z}}^{\prime+}=\lim \sup _{t \searrow 0} \operatorname{gph}\left(\Delta_{t} \Gamma\right)_{\bar{w}, \bar{z}}$.

Proposition 2.2. For a multifunction $\Gamma: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{n}=\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$, let $\operatorname{proj}_{1} \Gamma$ : $\mathbb{R}^{m} \rightrightarrows \mathbb{R}^{n_{1}}$ assign to each $w$ the image of $\Gamma(w)$ under the projection $\operatorname{proj}_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{1}}$. Let $\bar{z}_{1} \in\left(\operatorname{proj}_{1} \Gamma\right)(\bar{w})$ and assume that whenever $z_{1}^{\prime} \in\left(\operatorname{proj}_{1} \Gamma\right)_{\bar{w}, \bar{z}_{1}}^{\prime}(\omega)$ (for some $\omega$ ) there exist $t_{k} \searrow 0, w_{k} \rightarrow \bar{w}$ with $\left(w_{k}-\bar{w}\right) / t_{k} \rightarrow \omega,\left(z_{n}^{1}, z_{n}^{2}\right) \in \Gamma\left(w_{k}\right),\left(\bar{z}_{1}, \bar{z}_{2}\right) \in \Gamma(\bar{w})$ with $\left(z_{k}^{1}-\bar{z}_{1}\right) / t_{k}$ converging to $z_{1}^{\prime}$ and $\left(z_{k}^{2}-\bar{z}_{2}\right) / t_{k}$ converging to some $z_{2}^{\prime}$. Under these assumptions one has for all $\omega \in \mathbb{R}^{d}$ that

$$
\left(\operatorname{proj}_{1} \Gamma\right)_{\bar{w}, \bar{z}_{1}}^{\prime+}(\omega) \subset \bigcup_{\bar{z}}\left\{\operatorname{proj}_{1}\left(\Gamma_{\bar{w}, \bar{z}}^{\prime+}\right)(\omega) \mid \operatorname{proj}_{1} \bar{z}=\bar{z}_{1}\right\}
$$

Proof. Immediate from the definitions.
Corollary 2.3. Under the assumptions of Proposition 2.2, if $\Gamma$ is proto-differentiable at $\bar{w}$ for some $\bar{z} \in \Gamma(\bar{w})$ with $\operatorname{proj}_{1} \bar{z}=\bar{z}_{1}$ then $\left(\operatorname{proj}_{1} \Gamma\right)$ is proto-differentiable at $\bar{w}$ for $\bar{z}_{1}$ and for all $\omega \in \mathbb{R}^{d}$ one has

$$
\left(\operatorname{proj}_{1} \Gamma\right)_{\bar{w}, \bar{z}_{1}}^{\prime}(\omega)=\bigcup_{\bar{z}}\left\{\operatorname{proj}_{1}\left(\Gamma_{\bar{w}, \bar{z}}^{\prime}\right)(\omega) \mid \operatorname{proj}_{1} \bar{z}=\bar{z}_{1}\right\}
$$

Proof. This follows from Prop. 2.2 and [17, Prop. 2.2].
Proof of Theorem 1.4. Because of the constraint qualification built into the amenability assumption, the partial subgradient formula (1.4) holds on the basis of the general calculus in [8]. To obtain the desired proto-differentiability of $\partial_{1} f$ and the formula (1.5), we can utilize Corollary 2.3 and concentrate simply on verifying that the assumptions of Proposition 2.2 are fulfilled by $\Gamma=\partial f$. This amounts to producing, for arbitrary $\bar{v}_{1} \in \partial_{1} f(\bar{x})$, $\xi \in \mathbb{R}^{n}$, and $v_{1}^{\prime} \in\left(\partial_{1} f\right)_{\bar{x}, \bar{v}_{1}}^{\prime+}(\xi)$, elements $t_{k} \searrow 0, x_{k} \rightarrow \bar{x}$ and $\left(v_{1, k}, v_{2, k}\right) \in \partial f\left(x_{k}\right)$ and $\bar{v}_{2}$ with $\left(\bar{v}_{1}, \bar{v}_{2}\right) \in \partial f(\bar{x})$ such that $\left(x_{k}-\bar{x}\right) / t_{k} \rightarrow \xi,\left(v_{1, k}-\bar{v}_{1}\right) / t_{k} \rightarrow v_{1}^{\prime}$ and $\left(v_{2, k}-\bar{v}_{2}\right) / t_{k}$ converges to some $v_{2}^{\prime}$.

In taking $v_{1}^{\prime} \in\left(\partial_{1} f\right)_{\bar{x}, \bar{v}_{1}}^{\prime+}(\xi)$, we automatically have by definition the existence of $t_{k} \searrow 0$, $x_{k} \rightarrow \bar{x}$ and $v_{1, k} \in \partial f\left(x_{k}\right)$ such that $\left(x_{k}-\bar{x}\right) / t_{k} \rightarrow \xi$ and $\left(v_{1, k}-\bar{v}_{1}\right) / t_{k} \rightarrow v_{1}^{\prime}$. From (1.4), we can find $y_{k} \in \partial g\left(F\left(x_{k}\right)\right)$ with $v_{1, k}=\nabla_{1} F\left(x_{k}\right)^{*} y_{k}$. The set gph $\partial g$ is closed, and the constraint qualification (1.2) guarantees that the sequence of vectors $y_{k}$ is bounded, so we may assume without loss of generality that $y_{k} \rightarrow \bar{y}$ for a vector $\bar{y} \in \partial g(F(\bar{x}))$. Then $\bar{v}_{1}=\nabla_{1} F(\bar{x})^{*} \bar{y}$. Let $\xi_{k}=\left(x_{k}-\bar{x}\right) / t_{k}$, so that $\xi_{k} \rightarrow \xi$. We have

$$
\begin{aligned}
\frac{v_{1, k}-\bar{v}_{1}}{t_{k}} & =\frac{\nabla_{1} F\left(x_{k}\right)^{*} y_{k}-\nabla_{1} F(\bar{x})^{*} \bar{y}}{t_{k}} \\
& =\left(\frac{\nabla_{1} F\left(\bar{x}+t_{k} \xi_{k}\right)^{*}-\nabla_{1} F(\bar{x})^{*}}{t_{k}}\right) y_{k}+\nabla_{1} F(\bar{x})^{*}\left(\frac{y_{k}-\bar{y}}{t_{k}}\right)
\end{aligned}
$$

where the matrix quotient converges to a certain matrix $A$ (depending only on $\bar{x}$ and $\xi$ ), inasmuch as $F$ is $C^{2}$. This tells us that

$$
\nabla_{1} F(\bar{x})^{*}\left(\frac{y_{k}-\bar{y}}{t_{k}}\right) \rightarrow v_{1}^{\prime}-d_{1}, \text { where } d_{1}=A \bar{y}
$$

Further, the analysis reveals that for any sequence of vectors $\widetilde{y}_{k} \rightarrow \bar{y}$ with

$$
\widetilde{y}_{k} \in \partial g\left(F\left(x_{k}\right)\right) \text { and } \lim _{k \rightarrow \infty} \nabla_{1} F(\bar{x})^{*}\left(\frac{\widetilde{y}_{k}-\bar{y}}{t_{k}}\right)=v_{1}^{\prime}-d_{1}
$$

the vectors $\widetilde{v}_{1, k}:=\nabla_{1} F\left(x_{k}\right)^{*} \widetilde{y}_{k}$ converge to $\bar{v}_{1}$ while $\left(\widetilde{v}_{1, k}-\bar{v}_{1}\right) / t_{k}$ converges to $v_{1}^{\prime}$.
Recall that the set $\operatorname{dom} g$ has a regular $C^{2}$ representation at $F(\bar{x})$. This means that there exist a neighborhood $U$ of $F(\bar{x})$ along with $C^{2}$ functions $h_{j}$ for $j=1, \ldots, r$ and an integer $q \in[0, r]$ such that dom $g \cap U$ is the set of points $u \in U$ such that

$$
h_{j}(u)-h_{j}(F(\bar{x})) \begin{cases}\leq 0 & \text { for } j=1, \ldots, q, \\ =0 & \text { for } j=q+1, \ldots, r,\end{cases}
$$

and this system satisfies the Mangasarian-Fromovitz constraint qualification at $F(\bar{x})$ i.e., that the only $\mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$ with $\mu_{j} \geq 0$ for $j=1, \ldots, q$ and $\sum_{j=1}^{r} \mu_{j} \nabla h_{j}(F(\bar{x}))=0$ is $\mu=(0, \ldots, 0)$.

It is well known, see for example [21, Thm. 4.3], that for $u \in \operatorname{dom} g \cap U$ we have

$$
N_{\operatorname{dom} g}(u)=\left\{\begin{array}{l|l}
\sum_{j=1}^{r} \mu_{j} \nabla h_{j}(u) & \begin{array}{l}
\mu_{j} \geq 0 \text { for } j=1, \ldots, q \text { with } h_{j}(u)=h_{j}(F(\bar{x})) \\
\mu_{j}=0 \text { for } j=1, \ldots, q \text { with } h_{j}(u)<h_{j}(F(\bar{x}))
\end{array}
\end{array}\right\} .
$$

By Proposition 2.1, there exist for $i=1, \ldots, s, j=1, \ldots, r$, and each $k$, scalars $\lambda_{i, k} \in[0,1]$ with $\sum_{i=1}^{s} \lambda_{i, k}=1$ and $\mu_{j, k}$ with $\mu_{j, k} \geq 0$ for $j=1, \ldots, q$ such that

$$
\begin{equation*}
y_{k}=\sum_{i=1}^{s} \lambda_{i, k} \nabla g_{i}\left(F\left(x_{k}\right)\right)+\sum_{j=1}^{r} \mu_{j, k} \nabla h_{j}\left(F\left(x_{k}\right)\right) . \tag{2.1}
\end{equation*}
$$

We may assume without loss of generality that $\lambda_{i, k} \rightarrow \lambda_{i}($ as $k \rightarrow \infty)$, with $\lambda_{i} \in[0,1]$, $\sum_{i=1}^{s} \lambda_{i}=1$. We may also assume that $\mu_{j, k} \rightarrow \mu_{j}$ as $k \rightarrow \infty$. (If not we, could divide (2.1) by $\rho_{k}=\max \left\{\left|\mu_{j, k}\right|\right\}$. Obviously $\lambda_{i, k} / \rho_{k} \rightarrow 0$. In the limit we would therefore have a sum of multiples of the $\nabla h_{j}(F(\bar{x}))$ 's equaling 0 and with the coefficient of $\nabla h_{j}(F(\bar{x}))$ for $1 \leq j \leq q$ nonnegative. But by the Mangasarian-Fromovitz constraint qualification, all coefficients must be 0 , a contradiction.) Therefore

$$
\bar{y}=\sum_{i=1}^{s} \lambda_{i} \nabla g_{i}(F(\bar{x}))+\sum_{j=1}^{r} \mu_{j} \nabla h_{j}(F(\bar{x})) .
$$

Under our assumptions, the vectors

$$
\nabla_{1} F(\bar{x})^{*}\left[\sum_{i=1}^{s} \lambda_{i, k}\left[\frac{\nabla g_{i}\left(F\left(x_{k}\right)\right)-\nabla g_{i}(F(\bar{x}))}{t_{k}}\right]+\sum_{j=1}^{r} \mu_{j, k}\left[\frac{\nabla h_{j}\left(F\left(x_{k}\right)\right)-\nabla h_{j}(F(\bar{x}))}{t_{k}}\right]\right]
$$

converge to a certain vector $d_{1}^{\prime}$. Note that $d_{1}^{\prime}$ only depends on $\bar{x}, \xi$, the $\lambda_{i}$ 's and the $\mu_{j}$ 's. Consequently,

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \nabla_{1} F(\bar{x})^{*}\left[\sum_{i=1}^{s}\left[\frac{\lambda_{i, k}-\lambda_{i}}{t_{k}}\right] \nabla g_{i}(F(\bar{x}))+\sum_{j=1}^{r}\left[\frac{\mu_{j, k}-\mu_{j}}{t_{k}}\right] \nabla h_{j}(F(\bar{x}))\right]  \tag{2.2}\\
& =v_{1}^{\prime}-d_{1}-d_{1}^{\prime}
\end{align*}
$$

Our goal is to replace $\lambda_{i, k}$ by $\widetilde{\lambda}_{i, k}$ with $\widetilde{\lambda}_{i, k}$ converging to $\lambda_{i}$, and $\mu_{j, k}$ by $\widetilde{\mu}_{j, k}$ with $\widetilde{\mu}_{j, k} \rightarrow \mu_{j}$. With

$$
\widetilde{y}_{k}:=\left[\sum_{i=1}^{s} \widetilde{\lambda}_{i, k} \nabla g_{i}\left(F\left(x_{k}\right)\right)+\sum_{j=1}^{r} \widetilde{\mu}_{j, k} \nabla h_{j}\left(F\left(x_{k}\right)\right)\right],
$$

we will choose $\widetilde{\lambda}_{i, k}$ and $\widetilde{\mu}_{j, k}$ so that

$$
\widetilde{y}_{k} \in \partial g\left(F\left(x_{k}\right)\right) .
$$

In addition we'll have as in (2.2)

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \nabla_{1} F(\bar{x})^{*}\left[\sum_{i=1}^{s}\left[\frac{\widetilde{\lambda}_{i, k}-\lambda_{i}}{t_{k}}\right] \nabla g_{i}(F(\bar{x}))+\sum_{j=1}^{r}\left[\frac{\widetilde{\mu}_{j, k}-\mu_{j}}{t_{k}}\right] \nabla h_{j}(F(\bar{x}))\right] \\
& =v_{1}^{\prime}-d_{1}-d_{1}^{\prime} .
\end{aligned}
$$

Moreover we will show that

$$
\sum_{i=1}^{s}\left[\frac{\widetilde{\lambda}_{i, k}-\lambda_{i}}{t_{k}}\right] \nabla g_{i}(F(\bar{x}))+\sum_{j=1}^{r}\left[\frac{\widetilde{\mu}_{j, k}-\mu_{j}}{t_{k}}\right] \nabla h_{j}(F(\bar{x}))
$$

converges to some vector $\theta_{1}$; we then have $\nabla_{1} F(\bar{x})^{*}(\bar{x}) \theta_{1}=v_{1}^{\prime}-d_{1}-d_{1}^{\prime}$. It follows that $\widetilde{y}_{k} \rightarrow \bar{y}$. Then with $\widetilde{v}_{j, k}=\nabla_{j} F\left(x_{k}\right)^{*} \widetilde{y}_{k}$ for $j=1,2$ we'll have (of course) ( $\left.\widetilde{v}_{1, k}-\bar{v}_{1}\right) / t_{k} \rightarrow v_{1}^{\prime}$ and with $\bar{v}_{2}:=\nabla_{2} F(\bar{x})^{*} \bar{y}$, it is absolutely elementary to show that $\left(\widetilde{v}_{2, k}-\bar{v}_{2}\right) / t_{k}$ converges to some $v_{2}^{\prime}$. The proof will therefore be completed once we show that we can find $\widetilde{\lambda}_{i, k}$ and $\widetilde{\mu}_{j, k}$ with the above properties.

The proof now proceeds by induction on the number of indices with $\left(\lambda_{i, k}-\lambda_{i}\right) / t_{k}$ or $\left(\mu_{j, k}-\mu_{j}\right) / t_{k}$ unbounded (as $k \rightarrow \infty$ ). Let $N$ be the number of such indices. Let

$$
\begin{gathered}
v_{i}=\nabla_{1} F(\bar{x})^{*} \nabla g_{i}(F(\bar{x})), \quad d_{j}=\nabla_{1} F(\bar{x})^{*} \nabla h_{j}(F(\bar{x})), \\
a_{i, k}=\frac{\lambda_{i, k}-\lambda_{i}}{t_{k}} \text { and } b_{j, k}=\frac{\mu_{j, k}-\mu_{j}}{t_{k}} .
\end{gathered}
$$

Note that by our assumptions

$$
\begin{equation*}
\sum_{i=1}^{s} a_{i, k} v_{i}+\sum_{j=1}^{r} b_{j, k} d_{j} \tag{2.3}
\end{equation*}
$$

is bounded as $k \rightarrow \infty$ ( by (2.2) it actually converges to $\left.v_{1}^{\prime}-d_{1}-d_{1}^{\prime}\right)$. Also note that

$$
\begin{equation*}
\sum_{i=1}^{s} a_{i, k}=0 \tag{2.4}
\end{equation*}
$$

because $\sum_{i=1}^{s} \lambda_{i, k}=1=\sum_{i=1}^{s} \lambda_{i}$.
$\mathrm{N}=1$ : From (2.4) we can not have only one $a_{i, k}$ unbounded (if this is the case assume without loss of generality that $a_{1, k}$ is unbounded. When we divide (2.4) by $a_{1, k}$, in the limit we have that $1=0 ; \mathrm{hmm}$ !). Since there is only a finite number of indices, me may assume by relabeling if necessary that $b_{1, k}$ is unbounded. From (2.3) we conclude that $d_{1}=0$. Therefore simply let $\widetilde{\mu}_{1, k}=\mu_{1}$.

Assume true $N=1,2, \ldots, m-1$. Let $N=m$. Let

$$
\alpha_{k}=\max \left\{\max _{i=1, \ldots, s}\left|a_{i, k}\right|, \max _{j=1, \ldots, r}\left|b_{j, k}\right|\right\}
$$

Assume (without loss of generality) that $\left(a_{i, k} / \alpha_{k}\right) \rightarrow a_{i}$ and that $\left(b_{j, k} / \alpha_{k}\right) \rightarrow b_{j}$. Note that $a_{i}$ equals 0 when $a_{i, k}$ is bounded and that $b_{j}$ equals 0 when $b_{j, k}$ is bounded. From (2.3) and (2.4) we have

$$
\begin{equation*}
\sum_{i=1}^{s} a_{i} v_{i}+\sum_{j=1}^{r} b_{j} d_{j}=0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{s} a_{i}=0 \tag{2.6}
\end{equation*}
$$

Let

$$
\beta_{k}^{0}=\min \left\{1, \min \left\{\left.\frac{\lambda_{i, k}}{t_{k} \alpha_{k} a_{i}} \right\rvert\, 1 \leq i \leq s, \lambda_{i}=0, a_{i} \neq 0\right\}\right\} .
$$

If there is $i$ with $\lambda_{i}=1$ and $a_{i} \neq 0$ then let

$$
\beta_{k}^{1}=\min \left\{\beta_{k}^{0}, \frac{\lambda_{i, k}-1}{t_{k} \alpha_{k} a_{i}}\right\},
$$

if not let $\beta_{k}^{1}=\beta_{k}^{0}$. Let

$$
\beta_{k}^{2}=\min \left\{1, \min \left\{\left.\frac{\mu_{j, k}}{t_{k} \alpha_{k} b_{j}} \right\rvert\, 1 \leq j \leq q, \mu_{j}=0, b_{j} \neq 0\right\}\right\}
$$

Finally let

$$
\beta_{k}=\min \left\{\beta_{k}^{1}, \beta_{k}^{2}\right\} .
$$

Note that $\beta_{k} \rightarrow 1$. In addition note that if $0<\lambda_{i}<1$ for all $i=1, \ldots, s$ with $a_{i} \neq 0$ and $\mu_{j}>0$ for $j=1, \ldots, q$ with $b_{j} \neq 0$ then $\beta_{k}^{0}=\beta_{k}^{1}=\beta_{k}^{2}=\beta_{k}=1$ (this will be important in Claim 5).
For $i=1, \ldots, s$ let

$$
\widetilde{\lambda}_{i, k}=\lambda_{i, k}-t_{k} \alpha_{k} a_{i} \beta_{k},
$$

and for $j=1, \ldots, r$ let

$$
\widetilde{\mu}_{j, k}=\mu_{j, k}-t_{k} \alpha_{k} b_{j} \beta_{k},
$$

We may assume without loss of generality that $\widetilde{\lambda}_{i, k} \rightarrow \lambda_{i}$ and $\widetilde{\mu}_{j, k} \rightarrow \mu_{j}$ (because there is a only a finite number of indices $i$ and $j$, there exists either some $i$ with $t_{k} \alpha_{k}=\left({ }_{-}^{+}\right)\left(\lambda_{i, k}-\lambda_{i}\right)$ for all $k$ in an infinite subset of $\mathbb{N}$ or some $j$ with $t_{k} \alpha_{k}=\left({ }_{-}^{+}\right)\left(\mu_{j, k}-\mu_{j}\right)$ for all $k$ in an infinite subset of $\mathbb{N}$; in either case a subsequence of $t_{k} \alpha_{k}$ converges to 0$)$.

The role of $\beta_{k}$ is to ensure that

$$
\begin{equation*}
\left[\sum_{i=1}^{s} \widetilde{\lambda}_{i, k} \nabla g_{i}\left(F\left(x_{k}\right)\right)+\sum_{j=1}^{r} \widetilde{\mu}_{j, k} \nabla h_{j}\left(F\left(x_{k}\right)\right)\right] \in \partial g\left(F\left(x_{k}\right)\right) . \tag{2.7}
\end{equation*}
$$

We first show:
Claim 1. For all $k$ large enough and for all $i, \widetilde{\lambda}_{i, k} \in[0,1]$ and if $\lambda_{i, k}=0$ then $\widetilde{\lambda}_{i, k}=0$.
Proof of Claim 1. First note that if $\lambda_{i, k}=0$ for all $k$ large, then $\lambda_{i}=0, a_{i}=0$ and $\widetilde{\lambda}_{i, k}=0$ for all $k$ large.

If $a_{i}=0$ then $\widetilde{\lambda}_{i, k}=\lambda_{i, k}$. So assume that $a_{i} \neq 0$. If $\lambda_{i} \in(0,1)$ then eventually $\widetilde{\lambda}_{i, k} \in(0,1)$ because $t_{k} \alpha_{k} \rightarrow 0$ and $\lambda_{i, k} \rightarrow \lambda_{i}$.
If $\lambda_{i}=0$ then for large $k, a_{i, k}=\left(\lambda_{i, k}-0\right) / t_{k}>0\left(\right.$ if $\lambda_{i, k}=0$ for all $k$ large, then $a_{i}=0$ a contradiction) so that $\alpha_{k} a_{i}>0$ (recall that $a_{i, k} /\left(\alpha_{k} a_{i}\right)$ converges to 1 ). Therefore by the choice of $\beta_{k}$,

$$
\widetilde{\lambda}_{i, k}=\lambda_{i, k}-t_{k} \alpha_{k} a_{i} \beta_{k} \geq \lambda_{i, k}-t_{k} \alpha_{k} a_{i} \frac{\lambda_{i, k}}{t_{k} \alpha_{k} a_{i}}=0
$$

Clearly in this case $\widetilde{\lambda}_{i, k} \leq 1$ because $\alpha_{k} a_{i}>0$ so that $\widetilde{\lambda}_{i, k} \leq \lambda_{i, k}$.
If $\lambda_{i}=1$ then for large $k, a_{i, k}=\left(\lambda_{i, k}-1\right) / t_{k}<0\left(\right.$ if $\lambda_{i, k}=1$ for all $k$ large, then $a_{i}=0$ a contradiction) so that $\alpha_{k} a_{i}<0$. This shows that $\widetilde{\lambda}_{i, k} \geq \lambda_{i, k}$. On the other hand

$$
\tilde{\lambda}_{i, k}=\lambda_{i, k}-t_{k} \alpha_{k} a_{i} \beta_{k} \leq \lambda_{i, k}-t_{k} \alpha_{k} a_{i}\left(\frac{\lambda_{i, k}-1}{t_{k} \alpha_{k} a_{i}}\right)=1 .
$$

Claim 2. $\sum_{i=1}^{s} \widetilde{\lambda}_{i, k}=1$

## Proof of Claim 2.

$$
\begin{aligned}
\sum_{i=1}^{s} \widetilde{\lambda}_{i, k} & =\sum_{i=1}^{s}\left(\lambda_{i, k}-t_{k} \alpha_{k} a_{i} \beta_{k}\right) \\
& =\sum_{i=1}^{s} \lambda_{i, k}-t_{k} \alpha_{k} \beta_{k} \sum_{i=1}^{s} a_{i} \\
& =1-t_{k} \alpha_{k} \beta_{k}(0)(\text { from }(2.6)) \\
& =1
\end{aligned}
$$

Claim 3. For all $k$ large enough and for all $1 \leq j \leq q, \widetilde{\mu}_{j, k} \geq 0$ and if $\mu_{j, k}=0$ then $\widetilde{\mu}_{j, k}=0$.

Proof of Claim 3. First note that if $\mu_{j, k}=0$ for all $k$ large, then $\mu_{j}=0, b_{j}=0$ and $\widetilde{\mu}_{j, k}=0$ for large $k$.

If $b_{j}=0$ then $\widetilde{\mu}_{j, k}=\mu_{j, k} \geq 0$. So assume that $b_{j} \neq 0$. If $\mu_{j}>0$ then eventually $\widetilde{\mu}_{j, k}>0$ because $t_{k} \alpha_{k} \rightarrow 0$ and $\mu_{j, k} \rightarrow \mu_{j}$.
If $\mu_{j}=0$ then $b_{j, k}=\left(\mu_{j, k}-0\right) / t_{k}>0$ (if $\mu_{j, k}=0$ for all $k$ large, then $b_{j}=0$ a contradiction) so that $\alpha_{k} b_{j}>0$. Therefore

$$
\widetilde{\mu}_{j, k}=\mu_{j, k}-t_{k} \alpha_{k} b_{j} \beta_{k} \geq \mu_{j, k}-t_{k} \alpha_{k} b_{j} \frac{\mu_{j, k}}{t_{k} \alpha_{k} b_{j}}=0
$$

By our subgradient assumptions on $g$, the combination of Claims 1,2 and 3 shows that (2.7) is valid. Indeed by our choice of $\widetilde{\lambda}_{i, k}$ we have

$$
\sum_{i=1}^{s} \widetilde{\lambda}_{i, k} \nabla g_{i}\left(F\left(x_{k}\right)\right) \in \operatorname{co}\left\{\nabla g_{i}\left(F\left(x_{k}\right)\right) \mid F\left(x_{k}\right) \in D_{i}\right\}
$$

because $\sum_{i=1}^{s} \widetilde{\lambda}_{i, k}=1, \widetilde{\lambda}_{i, k} \in[0,1]$ and $\widetilde{\lambda}_{i, k}=0$ precisely when $\lambda_{i, k}=0$ in other words when potentially $F\left(x_{k}\right) \notin D_{i}$. On the other hand

$$
\sum_{j=1}^{r} \widetilde{\mu}_{j, k} \nabla h_{j}\left(F\left(x_{k}\right)\right) \in N_{\operatorname{dom} g}\left(F\left(x_{k}\right)\right),
$$

because $\widetilde{\mu}_{j, k} \geq 0$ for $1 \leq j \leq q$ and $\widetilde{\mu}_{j, k}=0$ precisely when $\mu_{j, k}=0$ i.e. when potentially $h_{j}\left(F\left(x_{k}\right)\right)-h_{j}(F(\bar{x}))<0$.

## Claim 4.

$$
\sum_{i=1}^{s}\left(\frac{\widetilde{\lambda}_{i, k}-\lambda_{i}}{t_{k}}\right) v_{i}+\sum_{j=1}^{r}\left(\frac{\widetilde{\mu}_{j, k}-\mu_{j}}{t_{k}}\right) d_{j}=\sum_{i=1}^{s}\left(\frac{\lambda_{i, k}-\lambda_{i}}{t_{k}}\right) v_{i}+\sum_{j=1}^{r}\left(\frac{\mu_{j, k}-\mu_{j}}{t_{k}}\right) d_{j} .
$$

## Proof of Claim 4.

$$
\begin{align*}
\sum_{i=1}^{s}\left(\frac{\widetilde{\lambda}_{i, k}-\lambda_{i}}{t_{k}}\right) v_{i}+\sum_{j=1}^{r}\left(\frac{\widetilde{\mu}_{j, k}-\mu_{j}}{t_{k}}\right) d_{j}= & \sum_{i=1}^{s}\left(\frac{\lambda_{i, k}-\lambda_{i}}{t_{k}}\right) v_{i}+\sum_{j=1}^{r}\left(\frac{\mu_{j, k}-\mu_{j}}{t_{k}}\right) d_{j} \\
& -\beta_{k} \alpha_{k}\left[\sum_{i=1}^{s} a_{i} v_{i}+\sum_{j=1}^{r} b_{j} d_{j}\right] \\
= & \sum_{i=1}^{s}\left(\frac{\lambda_{i, k}-\lambda_{i}}{t_{k}}\right) v_{i}+\sum_{j=1}^{r}\left(\frac{\mu_{j, k}-\mu_{j}}{t_{k}}\right) d_{j} \tag{2.5}
\end{align*}
$$

Claim 5. Without any loss of generality, we may assume that there exists some $i$ with $\widetilde{\lambda}_{i, k}=\lambda_{i}$ for all $k$ or some $j$ with $\widetilde{\mu}_{j, k}=\mu_{j}$ for all $k$.
Proof of Claim 5. Fix $k \in \mathbb{N}$. If $\beta_{k}=\frac{\lambda_{i, k}}{t_{k} \alpha_{k} a_{i}}$ for some $i$ with $\lambda_{i}=0$ and $a_{i} \neq 0$, then for such $i$,

$$
\widetilde{\lambda}_{i, k}=\lambda_{i, k}-t_{k} \alpha_{k} a_{i} \beta_{k}=0=\lambda_{i}
$$

If $\beta_{k}=\frac{\mu_{j, k}}{t_{k} \alpha_{k} b_{j}}$ for some $j$ with $\mu_{j}=0,1 \leq j \leq q$, and $b_{j} \neq 0$, then for such $j$,

$$
\widetilde{\mu}_{j, k}=\mu_{j, k}-t_{k} \alpha_{k} b_{j} \beta_{k}=0=\mu_{j} .
$$

If $\beta_{k}=\frac{\lambda_{i, k}-1}{t_{k} \alpha_{k} a_{i}}$ for some $i$ with $\lambda_{i}=1$ and $a_{i} \neq 0$, then

$$
\tilde{\lambda}_{i, k}=\lambda_{i, k}-t_{k} \alpha_{k} a_{i}\left(\frac{\lambda_{i, k}-1}{t_{k} \alpha_{k} a_{i}}\right)=1=\lambda_{i} .
$$

If any of the three cases mentioned above is true for all $k$ in an infinite subset of $\mathbb{N}$, then we are done because there is only a finite number of indices $i$ and $j$ (some index $i$ or $j$ would be repeated infinitely often, then take an appropriate subsequence). If not this means that $\beta_{k}=1$ for all $k$ sufficiently large (see the comment made after the introduction of the $\beta_{k}$ 's). Again because there is only a finite number of indices we may assume by taking a subsequence if necessary that there exists some $i$ with $\alpha_{k}=\left|a_{i, k}\right|$ for all $k$ or there exists some $j$ with $\alpha_{k}=\left|b_{j, k}\right|$ for all $k$. If $\alpha_{k}=\left|a_{i, k}\right|$ then $a_{i} \alpha_{k}=a_{i, k}$ (because $a_{i, k} / \alpha_{k}=a_{i, k} /\left|a_{i, k}\right| \rightarrow a_{i}$ ), and

$$
\begin{aligned}
\widetilde{\lambda}_{i, k} & =\lambda_{i, k}-t_{k} \alpha_{k} a_{i} \\
& =\lambda_{i, k}-t_{k} a_{i, k} \\
& =\lambda_{i, k}-\left(\lambda_{i, k}-\lambda_{i}\right) \\
& =\lambda_{i},
\end{aligned}
$$

for all $k$. If on the other hand $\alpha_{k}=\left|b_{j, k}\right|$, then by a similar argument $\widetilde{\mu}_{j, k}=\mu_{j}$ for all $k$.

So finally we have produced $\widetilde{\lambda}_{i, k}$ and $\widetilde{\mu}_{j, k}$ with $\widetilde{\lambda}_{i, k} \rightarrow \lambda_{i}, \widetilde{\mu}_{j, k} \rightarrow \mu_{j}$ and

$$
\widetilde{y}_{k}:=\left[\sum_{i=1}^{s} \widetilde{\lambda}_{i, k} \nabla g_{i}\left(F\left(x_{k}\right)\right)+\sum_{j=1}^{r} \widetilde{\mu}_{j, k} \nabla h_{j}\left(F\left(x_{k}\right)\right)\right] \in \partial g\left(F\left(x_{k}\right)\right) .
$$

By Claim 4, for all $k$

$$
\nabla_{1} F(\bar{x})^{*}\left(\frac{\widetilde{y}_{k}-\bar{y}}{t_{k}}\right)=\nabla_{1} F(\bar{x})^{*}\left(\frac{y_{k}-\bar{y}}{t_{k}}\right) .
$$

And the number of indices with $\frac{\widetilde{\lambda}_{i, k}-\lambda_{i}}{t_{k}}$ or $\frac{\widetilde{\mu}_{j, k}-\mu_{j}}{t_{k}}$ unbounded is strictly less than $m$ (Claim 5). This completes the proof.

## References.

1. R. T. Rockafellar, "Proto-differentiability of set-valued mappings and its applications in optimization," in Analyse Non Linéaire, H. Attouch et al. (eds.), Gauthier-Villars, Paris, 1989, 449-482.
2. R. T. Rockafellar, "Generalized second derivatives of convex functions and saddle functions," Trans. Amer. Math. Soc., 320 (1990), 810-822.
3. R. T. Rockafellar, "Nonsmooth analysis and parametric optimization," in Methods of Nonconvex Analysis (A. Cellina, ed.), Springer-Verlag Lecture Notes in Math., 1446 (1990), 137-151.
4. R. A. Poliquin, "Proto-differentiation of subgradient set-valued mappings," Canadian J. Math., 42 (1990), 520-532.
5. R. Cominetti, "On pseudo-differentiability," Trans. Amer. Math. Soc., 324 (1991), 843-865.
6. R. A. Poliquin, "An extension of Attouch's theorem and its application to secondorder epi-differentiation of convexly composite functions," Trans. Amer. Math. Soc., 332 (1992), 861-874.
7. R. A. Poliquin and R. T. Rockafellar, "Amenable functions in optimization," in Nonsmooth Optimization Methods and Applications (F. Giannessi, ed.), Gordon and Breach, Philadelphia, 1992, 338-353.
8. R. A. Poliquin and R. T. Rockafellar, "A calculus of epi-derivatives applicable to optimization," Canadian J. Math., 45 (1993), 879-896.
9. R. A. Poliquin and R. T. Rockafellar, "Proto-derivative formulas for basic subgradient mappings in mathematical programming," Set-Valued Analysis, 2 (1994), 275-290.
10. A. Levy, R. A. Poliquin and L. Thibault, "Partial extension of Attouch's theorem with applications to proto-derivatives of subgradient mappings," Trans. Amer. Math. Soc., 347 (1995), 1269-1294.
11. R. A. Poliquin and R. T. Rockafellar, "Second-order nonsmooth analysis in nonlinear programming," in Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific Publishers, 1995, 322-350.
12. R. A. Poliquin and R. T. Rockafellar, "Prox-regular functions in variational analysis," Trans. Amer. Math. Soc., 348 (1996), 1805-1838.
13. R. A. Poliquin and R. T. Rockafellar, "Generalized Hessian properties of regularized nonsmooth functions," SIAM J. Optimization, 6 (1996), 1121-1137.
14. A. B. Levy and R. T. Rockafellar, "Sensitivity analysis of solutions to generalized equations," Trans. Amer. Math. Soc., 345 (1994), 661-671.
15. R. T. Rockafellar, "First- and second-order epi-differentiability in nonlinear programming," Trans. Amer. Math. Soc., 307 (1988), 75-107.
16. R. T. Rockafellar and R. J-B Wets, Variational Analysis, Springer-Verlag, 1997.
17. A. B. Levy and R. T. Rockafellar, "Variational conditions and the proto-differentiation of partial subgradient mappings," Nonlinear Anal. Th. Meth. Appl., 26 (1996), 19511964.
18. J. Sun, On Monotropic Piecewise Quadratic Programming, Ph.D. dissertation, University of Washington, 1986.
19. D. Azé and R. A. Poliquin, "Equi-calmness and epi-derivatives that are pointwise limits," J. Math. Anal. Appl., to appear.
20. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
21. R. T. Rockafellar, "Lagrange multipliers and optimality," SIAM Review, 35 (1993), 183-238.

Dept. of Mathematical Sciences, Univ. of Alberta, Edmonton, Alberta, Canada T6G 2G1 rene.poliquin@ualberta.ca

Dept. of Mathematics, Univ. of Washington, Seattle, WA 98195 USA
rtr@math.washington.edu


[^0]:    * This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant OGP41983 for the first author and by the National Science Foundation under grant DMS-9500957 for the second author. This paper was written in part while the first author was visiting the Université de Perpignan; thanks to D. Azé, J.-N. Corvellec, C.D. Horvath and the department of mathematics.

