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LOCAL DIFFERENTIABILITY OF DISTANCE FUNCTIONS

R. A. POLIQUIN, R. T. ROCKAFELLAR, AND L. THIBAULT

Abstract. Recently Clarke, Stern and Wolenski characterized, in a Hilbert
space, the closed subsets C for which the distance function dC is continuously
differentiable everywhere on an open “tube” of uniform thickness around C.
Here a corresponding local theory is developed for the property of dC be-
ing continuously differentiable outside of C on some neighborhood of a point
x ∈ C. This is shown to be equivalent to the prox-regularity of C at x, which is
a condition on normal vectors that is commonly fulfilled in variational analysis
and has the advantage of being verifiable by calculation. Additional charac-
terizations are provided in terms of d2

C being locally of class C1+ or such that

d2
C + σ| · |2 is convex around x for some σ > 0. Prox-regularity of C at x

corresponds further to the normal cone mapping NC having a hypomonotone
truncation around x, and leads to a formula for PC by way of NC . The local
theory also yields new insights on the global level of the Clarke-Stern-Wolenski
results, and on a property of sets introduced by Shapiro, as well as on the con-
cept of sets with positive reach considered by Federer in the finite dimensional
setting.

1. Introduction

The distance function dC for a closed subset C of a Hilbert space H gives for
each u ∈ H the distance dC(u) = inf

{
|u − x|

∣∣ x ∈ C
}

. To what extent is dC
Fréchet or Gâteaux differentiable, or continuously differentiable (the Gâteaux case
then automatically implying the Fréchet sense)? This is of considerable interest
in variational analysis, not only for its connection to the geometry of C and the
projection mapping PC (giving for each u the set points of C nearest to u) but
also for its applications in optimization. The distance to the feasible set in a
problem of constrained minimization, for instance, can be used as a penalty in
setting up a computationally equivalent unconstrained problem. For convex C, the
differentiability of dC everywhere outside of C is well known, but for nonconvex
C, less has been understood, apart from results on generic differentiability as in
Borwein and Giles [1].
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Clarke, Stern and Wolenski [2] recently made headway by studying, as a gener-
alization of convex sets, the proximally smooth sets, which they defined to be the
closed sets C ⊂ H such that dC is (norm-to-norm-) continuously differentiable on
an open “tube” of the type

UC(r) :=
{
u ∈ H

∣∣ 0 < dC(u) < r
}

(1.1)

for some r > 0. They characterized such sets in several interesting ways. In
particular, they showed that C is proximally smooth if and only if there exists
r > 0 such that, for all u ∈ UC(r), the projection PC(u) is nonempty and each of
its elements x belongs also to PC(x + v) for v = r[u − x]/|u − x|; cf. [2, Theorem
4.1(d)]. Since the vectors v of the form v = λ[u − x]/|u − x| for some u ∈ P−1

C (x)
and λ > 0 are by definition the nonzero proximal normals to C at x, they spoke of
the latter as meaning that “every nonzero proximal normal v to C can be realized
by an r-ball”; an equivalent statement is that

0 ≥
〈 v
|v| , x

′ − x
〉
− 1

2r
|x′ − x|2, ∀x′ ∈ C.(1.2)

Sets that satisfy (1.2) have appeared elsewhere in the literature under several names.
We refer the reader to [3] and the references therein for more information.

Beyond the appeal of this global property on a tube, there is a need for local
information on the behavior of dC around a point x̄ ∈ C, because applications are
often of this character and do not require global considerations. What character-
izations can be given for the existence of an open neighborhood O of x̄ such that
dC is continuously differentiable on O\C (relative complement)? It might be imag-
ined that local results could be obtained by invoking global results about proximal
smoothness in the case of C ∩B for some closed ball B centered at x̄, but this runs
into serious difficulty over what happens at the points where the boundary of B
meets C. From another angle, the trouble can be seen in the fact that the tube
concept in (1.1) is hard to coordinate with that of a neighborhood of a point x̄
because of the way it depends also on other points of C near to x̄.

There is a need also for better understanding of how local properties of dC
correspond to those of PC . It is well known that a closed convex set C has its
projection mapping PC globally single-valued and nonexpansive (Lipschitz contin-
uous with modulus 1). For nonconvex sets C, where a distinction has to be made
between strong and weak closure, Clarke, Stern and Wolenski [2] showed that a
weakly closed set C is proximally smooth if and only if PC is single-valued on a
tube UC(r). Another result was obtained by Shapiro [4] on the local level. He
showed, for a strongly closed set C and a point x̄ ∈ C, that PC is single-valued on
a neighborhood of x̄ if the following property holds: there is a constant k > 0 along
with a neighborhood O of x̄ such that

dTC(x)(x′ − x) ≤ k|x′ − x|2 for all x, x′ ∈ C ∩O,(1.3)

where TC(x) denotes the general tangent cone (contingent cone) to C at x. We’ll
refer to this condition as the Shapiro property of C at x̄. (Shapiro actually intro-
duced in [4] a more general condition of C being what he called O(m)-convex at
x̄, for which this is the case of m = 2.) The single-valuedness of the projection
mapping on a neighborhood of x̄ was used by Federer to define sets with positive
reach near x̄. In the finite dimensional setting, Federer [5] established, among other
results, that the square of dC is continuously differentiable near x̄ whenever C has
positive reach near x̄.
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In taking up the challenge of a local theory of differentiability of the distance
function dC and its consequences for the projection mapping PC in the Hilbert space
setting, we rely on a different property of C at a point x̄, namely prox-regularity.
This property has so far been considered only in the finite-dimensional case, where
it was introduced by Poliquin and Rockafellar [6]; see also [7]–[9]. In defining it,
we denote by NC(x̄) the general cone of normals to C at a point x̄ ∈ C; a vector
v 6= 0 belongs to NC(x̄) if and only if there is a sequence of points xk → x̄ in C
at which there are proximal normals vk converging weakly to v. (Along with such
vectors v 6= 0, the cone NC(x̄) is defined to contain v = 0.)

Definition 1.1. A closed set C is prox-regular at x̄ for v̄, where x̄ ∈ C and v̄ ∈
NC(x̄), if there exist ε > 0 and ρ > 0 such that whenever x ∈ C and v ∈ NC(x) with
|x−x̄| < ε and |v−v̄| < ε, then x is the unique nearest point of

{
x′ ∈ C

∣∣ |x′−x̄| < ε
}

to x + ρ−1v. It is prox-regular at x̄ (without mention of a particular v̄) if this
property holds for every vector v̄ ∈ NC(x̄).

Poliquin and Rockafellar [6], developed prox-regularity more broadly, as a prop-
erty of functions and their subgradients, rather than sets and their normals. The
set version was obtained by specializing to indicator functions. Although we deal
here only with sets, the tie to functions is important because a number of funda-
mental results in variational analysis revolve around prox-regularity in that context.
For instance, prox-regularity is the key to connections between generalized second-
order derivatives of f and graphical derivatives of its subgradient mapping ∂f , and
thus in the indicator case it is the key to such derivatives of the mapping NC . By
putting prox-regularity of C at the center of our discussion, we provide access not
only to that larger framework but also to the many examples of prox-regularity in
the literature.

In concentrating on sets, we will find it helpful to have an alternative description
of prox-regularity alongside of Definition 1.1.

Proposition 1.2. A closed set C is prox-regular at x̄ if and only if it is prox-
regular at x̄ for the vector v̄ = 0. This is equivalent to the existence of ε > 0 and
ρ > 0 such that whenever x ∈ C and v ∈ NC(x) with |x − x̄| < ε and |v| < ε, one
has

0 ≥ 〈v, x′ − x〉 − ρ

2
|x′ − x|2 for all x′ ∈ C with |x′ − x̄| < ε.(1.4)

Proof. Obviously if C is prox-regular at x̄ for every v̄ ∈ NC(x̄), it is prox-regular
at x̄ for v̄ = 0. To prove the converse, assume that C is prox-regular at x̄ for the
vector 0 with constants ε > 0 and ρ > 0. Take v̄ ∈ NC(x̄) with v̄ 6= 0, and let
ε′ := min{ε/2, |v̄|/2}. For x ∈ C and v ∈ NC(x) with |x − x̄| < ε′ and |v − v̄| < ε′

we have

(ε/2|v̄|)|v| ≤ (ε/2|v̄|)|v − v̄ + v̄| ≤ (ε/4) + (ε/2) < ε.

By the choice of ε this implies that x is the unique closest point of
{
x′ ∈ C

∣∣ |x′−x̄| <
ε
}

to x + ρ−1(ε/2|v̄|)v. From this we conclude that C is prox-regular at x̄ for v̄
with constants ε′ and ρ′ := ε−12ρ|v̄|.

For the second claim of the proposition, note that the inequality in (1.4) can be
made strict for x′ 6= x ∈ C by replacing ρ with ρ′ > ρ. With the inequality in
(1.4) now strict, (1.4) is equivalent to saying that x is the unique closest point of{
x′ ∈ C

∣∣ |x′ − x̄| < ε
}

to x + ρ′
−1
v. Therefore C is prox-regular at x̄ for v̄ = 0 if
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and only if there exist ε > 0 and ρ > 0 such that whenever x ∈ C and v ∈ NC(x)
with |x− x̄| < ε and |v| < ε, one has (1.4).

A special virtue of prox-regularity is that it can be established in many situations
by checking whether a constraint qualification is satisfied. Poliquin and Rockafellar
in [6] gave a number of examples of sets exhibiting prox-regularity in finite dimen-
sions. In particular they showed that, under natural assumptions, a set C enjoying
a smooth constraint representation around a point x ∈ C is prox-regular at x for
any v ∈ NC(x); see Section 2.

We are ready to state our main result. In this theorem we work with the mapping
N r
C : H →→ H defined for r > 0 by

N r
C(x) =

{
NC(x) ∩ intB

(
0, r
)

if x ∈ C,
∅ if x /∈ C.

(Here B
(
0, r
)

denotes the closed ball of center 0 and radius r.) A mapping T :
H →→ H is hypomonotone on a subset O of X if there exists σ > 0 such that T +σI
is monotone on O; this corresponds to having

〈v1 − v2, x1 − x2〉 ≥ −σ|x1 − x2|2 whenever vi are in T (xi) and xi are in O.

Theorem 1.3. For a closed set C ⊂ H and any point x̄ ∈ C, the following prop-
erties are equivalent:

(a) C is prox-regular at x̄.
(b) dC is continuously differentiable on O\C for some open neighborhood O of

x̄.
(c) dC is Fréchet differentiable on O\C for some open neighborhood O of x̄.
(d) dC is Gâteaux differentiable on O \ C for some open neighborhood O of x̄,

and PC is nonempty-valued on O.
(e) d2

C is C1+ on an open neighborhood O of x̄. i.e., Fréchet differentiable on O
with the derivative mapping D(d2

C)(x) : H →→ H depending Lipschitz continuously
on x.

(f) There exist r > 0 and a neighborhood O of x̄ such that every nonzero proximal
normal to C at any x in C ∩O can be realized by an r-ball.

(g) For some r > 0 and neighborhood O of x̄, the truncated mapping Nr
C is

hypomonotone on O.
(h) There exists λ > 0 such that

x = PC(u), x 6= u

0 < |u− x̄| < λ

}
=⇒ x = PC(u′) for u′ = x+ λ

u− x
|u− x| .(1.5)

(i) PC is single-valued and strongly-weakly continuous (i.e., from the strong topol-
ogy in the domain to the weak topology in the range) on a neighborhood of x̄.

(j) C has the Shapiro property at x̄.
Then there is a neighborhood O of x̄ on which PC is single-valued, monotone

and Lipschitz continuous with PC = (I + N r
C)−1 on O for some r > 0, whereas

D(dC) = [I − PC ]/dC on O \ C. Here I : H → H denotes the identity mapping.
If the set C is weakly closed relative to a (strong) neighborhood of x̄ (which is

always the case when the space H is finite-dimensional), then one can add the
following to the set of equivalent properties:

(k) PC is single-valued around x̄.
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In the equivalence in Theorem 1.3 between the prox-regularity property (a) and
the Shapiro property (j), the implication from (j) to (g) could be seen already
in Shapiro’s paper [4] (written before prox-regularity was developed in [6]). By
providing the reverse implication along with the other equivalences, we place the
Shapiro property in a much stronger light. Shapiro also proved (in the same paper)
that a set with the Shapiro property has a (locally) Lipschitz continuous projection
mapping. This property was also noted by Federer in [5] for sets with positive reach
in finite dimensions.

Other aspects of Theorem 1.3 are worth noting as well. We see that Fréchet
differentiability of dC is sufficient to ensure the Lipschitz continuity of its derivative
(locally). We have a criterion for PC to be single-valued, monotone and Lipschitz
continuous around x̄, with an exact formula for PC in terms of a truncation of
the normal cone mapping NC . Moreover the hypomonotonicity of this truncation
characterizes prox-regularity.

Our paper is organized as follows. In Section 2 we discuss the relationship be-
tween p.l.n. (i.e., primal-lower-nice) functions and prox-regular sets. The results
obtained in this section enable us to conclude that (a) is equivalent to (g) in The-
orem 1.3. Section 3 is devoted to the remainder of the proof of Theorem 1.3 and
of the statement and proof of its corollaries. There too, we establish that C is
prox-regular at x̄ if and only if there exists σ > 0 such that the function d2

C +σ| · |2
is convex on some open neighborhood Oσ of x̄. In Section 4 we use the techniques
developed in Sections 2 and 3 to obtain results similar to Theorem 1.3, but on the
global level of proximally smooth sets. Several results of Clarke-Stern-Wolenski [2]
are rederived in this way, and others are added.

2. P.L.N. Functions

In finite-dimensional spaces, the equivalence between (a) and (g) in Theorem
1.3 can be derived in a much more general context, namely that of a prox-regular
function; see [6]. In the setting of an indicator function, it is actually a consequence
of earlier work on p.l.n. (primal-lower-nice) functions; for more on p.l.n. functions,
see [10]–[14]. Recall that a lower semicontinuous function f : H → R is p.l.n. at x̄,
a point where f is finite, if there exist t0 > 0, c > 0 and ε > 0 with the property
that

f(x′) ≥ f(x) + 〈v, x′ − x〉 − t

2

∣∣x′ − x∣∣2(2.1)

whenever t > t0,
∣∣v∣∣ < ct, v ∈ ∂pf(x),

∣∣x′ − x̄∣∣ < ε, and |x− x̄| < ε. Here ∂pf(x) is
the set of proximal subgradients to f at x, i.e., v ∈ ∂pf(x) if there exist t ≥ 0 such
that (2.1) is verified in a neighborhood of x (for more on proximal subgradient see
[2] and [9]). We will denote by ∂f(x) the set of weak-limiting proximal subgradients
to f at x; thus v ∈ ∂f(x) if there exists xk converging strongly to x with f(xk)
converging to f(x) and vk converging weakly to v with vk ∈ ∂pf(xk). Note that
for a closed set C and any point x ∈ C we have NC(x) = ∂δC(x), and the cone of
proximal normals to C at x is equal to ∂pδC(x); see [9] for more details.

The fact that a function is p.l.n. has powerful consequences. For example, if the
function is p.l.n. at x̄, then for all x in a neighborhood of x̄ we have ∂f(x) = ∂pf(x),
and this set is closed and convex; see [13, Theorem 2.4]. The connection between
prox-regular sets and p.l.n. functions will now be established.
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Proposition 2.1. The set C is prox-regular at x̄ ∈ C if and only if the indicator
of C is p.l.n. at x̄.

Proof. When the indicator of C is p.l.n. at x̄, then (as noted above) NC(x) agrees
with the cone of proximal normals to C at x for all x in a neighborhood of x̄. From
this we easily establish that C is prox-regular at x̄ for v̄ = 0, and therefore that C
is prox-regular at x̄, according to Proposition 1.2.

Now assume that C is prox-regular at x̄ for v̄ = 0. By Proposition 1.2, there
then exist ρ > 0 and ε > 0 such that

δC(x′) ≥ δC(x) + 〈v, x′ − x〉 − (ρ/2)|x′ − x|2

whenever |x − x̄| < ε, |x′ − x̄| < ε, |v| < ε with v ∈ NC(x). Let c = ε/ρ. If
v ∈ NC(x) and |v| ≤ ct, then (ρ/t)v ∈ NC(x) with |(ρ/t)v| ≤ ε. This implies that

δC(x′) ≥ δC(x) + (ρ/t)〈v, x′ − x〉 − (ρ/2)|x′ − x|2(2.2)

whenever t > 0, |x− x̄| < ε, |x′ − x̄| < ε, |v| < ct with v ∈ NC(x). Note that (2.2)
is equivalent to

δC(x′) ≥ δC(x) + 〈v, x′ − x〉 − (t/2)|x′ − x|2.(2.3)

This shows that δC is p.l.n. at x̄.

As a consequence of Proposition 2.1 we get the following piece of Theorem 1.3.

Corollary 2.2. Let C be a closed subset of H and let x̄ ∈ C. The set C is prox-
regular at x̄ if and only if for some r > 0 and some neighborhood O of x̄, Nr

C is
hypomonotone on O. In that case there exists an open neighborhood O of x̄ such
that for all x ∈ O ∩ C the normal cone NC(x) is closed and convex, with every
v ∈ NC(x) actually being a proximal normal to C at x.

Proof. This follows from [13, Cor. 2.3 and Thm. 2.4]. To use [13, Cor. 2.3], simply
note (as in the proof of Proposition 2.1) that the hypomonotonicity of Nr

C on some
neighborhood O of x̄ is equivalent to the existence of c > 0, t0 > 0 and ε > 0 with
the property that

〈v1 − v2, x1 − x2〉 ≥ −t|x1 − x2|2

whenever vi ∈ NC(xi), |vi| ≤ ct and |xi − x̄| ≤ ε.

In [6], a major class of sets enjoying prox-regularity locally was developed in
terms of constraint representations. It was shown that C ⊂ Rn is prox-regular at
x̄ if there is an open neighborhood O of x̄ such that

C ∩O =
{
x ∈ O

∣∣F (x) ∈ D
}

(2.4)

for a C2 mapping F : O → Rm and a closed, convex set D ⊂ Rm satisfying the
constraint qualification that the only vector y ∈ ND

(
F (x̄)

)
with ∇F (x̄)∗y = 0 is

y = 0. (The Jacobian matrix for F at x̄ is denoted here by ∇F (x̄), and its adjoint
by ∇F (x̄)∗.) Because D is convex, this constraint qualification is equivalent to
having

R+

[
D − F (x̄)

]
−∇F (x̄)Rn = Rm.

Provided we adopt an extended version of the alternate form of the constraint
qualification, this example carries forward to the setting of an infinite-dimensional
Hilbert space. In formulating the next result, we denote by DF (x) the Fréchet
derivative mapping associated with F at x.
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Proposition 2.3. For a closed set C ⊂ H and a point x̄ ∈ C, assume that (2.4)
holds for an open neighborhood O of x̄, a closed, convex set D in a Banach space
E, and a mapping F : O → E that is Fréchet differentiable and such that DF (x)
depends Lipschitz continuously on x ∈ O. If

R+

[
D − F (x̄)

]
−DF (x̄)(H) = E,

then C is prox-regular at x̄.

Proof. Apply [10, Theorem 2.4] to conclude that δC is p.l.n. at x̄, and then invoke
Proposition 2.1 of the present paper.

We will now show that if every nonzero proximal normal to a set C at any point
x of C can be realized by an r-ball, then C is uniformly prox-regular in the following
sense.

Definition 2.4. A closed set C is uniformly prox-regular with constant ρ > 0 if
whenever x ∈ C and v ∈ NC(x) with |v| < 1, then x is the unique nearest point of
C to x+ ρ−1v.

At first glance it might seem obvious that if every nonzero proximal normal to
a set C at any point x of C can be realized by some r-ball then C is uniformly
prox-regular, but in the definition of uniform prox-regularity, all normal vectors
v ∈ NC(x) with |v| < 1 are involved (not just the proximal normals). Although
it is true that every normal vector is a weak limit of proximal normal vectors, one
cannot control the norms of these proximal normal vectors. We get around these
difficulties by showing, with the help of the following proposition and Corollary 2.2,
that for a proximally smooth set C every vector v ∈ NC(x) must be a proximal
normal vector.

Proposition 2.5. Assume there exist r > 0 and an open neighborhood O of x̄ ∈ C
such that every nonzero proximal normal to C at any x in C ∩O can be realized by
an r-ball. Then N r

C is hypomonotone on O.

Proof. Let v be a nonzero proximal normal to C at x ∈ C ∩ O. We know that v
can be realized by an r-ball. Therefore, as we observed in the introduction, this
implies that

−
〈
v, x′ − x

〉
≥ −|v|

2r
|x′ − x|2, ∀x′ ∈ C.

So, for i = 1, 2, let vi be a proximal normal to C at xi with vi nonzero and xi ∈ O.
Then

−
〈
v1, x2 − x1

〉
≥ −|v1|

2r
|x2 − x1|2,

and

−
〈
v2, x1 − x2

〉
≥ −|v2|

2r
|x1 − x2|2,

which yields (even if vi = 0)〈
v1 − v2, x1 − x2

〉
≥ − 1

2r

[
|v1|+ |v2|

]
|x1 − x2|2.

Therefore if |vi| < r, then
〈
v1− v2, x1 − x2

〉
≥ −|x1− x2|2, which shows that SrC is

hypomonotone on O with constant σ = 1. Here SC(x) is the set of proximal normals
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to C at x. From this and from [13, Theorem 2.4] we deduce that SC(x) = NC(x)
for all x ∈ O, and that N r

C is hypomonotone on O with constant σ = 1.

Corollary 2.6. If every nonzero proximal normal to C at any point x of C can be
realized by an r-ball, then C is uniformly prox-regular with constant 1/r′ for every
0 < r′ < r.

Proof. Proposition 2.5 and Corollary 2.2 can be combined to show that C is prox-
regular at every x ∈ C, and that every vector v ∈ NC(x) for x ∈ C is actually a
proximal normal vector. Let 0 < r′ < r. It follows from (1.2) that for every x ∈ C
and v ∈ NC(x) with |v| < 1, the point x is the unique closest point of C to x+ r′v,
which shows that C is uniformly prox-regular with constants 1/r′.

The converse of Corollary 2.6 will be established later in Theorem 4.1. We will
further show in Theorem 4.1 that a set C is proximally smooth with associated
tube UC(r) if and only if the set C is uniformly prox-regular with constant 1/r′ for
every 0 < r′ < r.

3. Proof of the Main Theorem plus Corollaries

The proof of Theorem 1.3 is divided into several parts. The combination of
Corollary 2.2 and Proposition 2.5 with the coming 3.1, 3.4–3.6 will yield it in full.

A crucial step in showing that the distance function is continuously differentiable
on O \ C for some open neighborhood O of x̄ is that for some σ > 0, the function
d2
C+σ|·|2 is convex on a neighborhood of x̄. This property of d2

C can be obtained by
noticing that d2

C is the Moreau-Yosida regularization of the indicator function δC
with the norm square, and then applying the results of [6] in the finite-dimensional
case and [14] in a general Hilbert space. However this property of d2

C can easily
be established here without a direct appeal to those papers. Once we show that
d2
C + σ| · |2 is convex on a neighborhood of x̄, we will know that d2

C has proximal
subgradients at all points in a neighborhood of x̄. This will tell us in particular
that the projection mapping is nonempty-valued. The implication from (g) to (e)
in Theorem 1.3 will thereby be validated.

Proposition 3.1. Assume that C is prox-regular at x̄. Then
(i) PC is single-valued around x̄.
(ii) d2

C is C1+ around x̄.
(iii) For every σ > 0, there is a convex neighborhood Oσ of x̄ on which the

function d2
C + σ| · |2 is convex.

Moreover there is a neighborhood O of x̄ such that PC is monotone and Lipschitz
continuous with PC = (I+N r

C)−1 on O for some r > 0, while D(dC) = [I−PC ]/dC
on O \ C.

In the proof of Proposition 3.1 we employ Fréchet subgradients. Recall that v is
a Fréchet subgradient to a function f at x, denoted v ∈ ∂F f(x), provided

lim inf
y→0

f(x+ y)− f(x)− 〈v, y〉
|y| ≥ 0.

Proof. Assume that C is prox-regular at x̄. According to Corollary 2.2, N r
C is

hypomonotone on some neighborhood O of x̄ for some r > 0. Therefore there exist
ρ > 0 and ε > 0 such that

〈v1 − v2, x1 − x2〉 ≥ −ρ|x1 − x2|2(3.1)
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whenever vi ∈ NC(xi) with |vi| < ε and |xi − x̄| < ε, i = 1, 2 (just pick ε < r
with intB

(
x̄, ε
)
⊂ O). We may also assume that (3.1) holds when vi ∈ ∂F δC(xi)

with |vi| < ε and |xi − x̄| < ε, i = 1, 2. This is because the set ∂F δC(x) is always
included in the closure of the convex hull of NC(x), which is the same as NC(x) in
a neighborhood of x̄ (according to Corollary 2.2).

We first show that in a neighborhood of x̄, PC is single-valued and Lipschitz
continuous relative to its domain.

Claim. Let 0 < λ ≤ ρ with λ < 2. For i = 1, 2, let x′i ∈ PC(xi), where |xi − x̄| <
λε/2ρ. Then

|x′1 − x′2| ≤
(

2
2− λ

)
|x1 − x2|,

and

〈x1 − x2, x
′
1 − x′2〉 ≥

[
1− (λ/2)

]
|x′1 − x′2|2.

Proof of the Claim. It follows that |x′i − xi| < λε/2ρ and that |x′i − x̄| < λε/ρ ≤ ε.
So, as (2ρ/λ)(xi − x′i) is a proximal normal to C at x′i with |(2ρ/λ)(xi − x′i)| < ε
we have

〈(2ρ/λ)(x1 − x′1)− (2ρ/λ)(x2 − x′2), x′1 − x′2〉 ≥ −ρ|x′1 − x′2|2.
Therefore

〈x1 − x2, x
′
1 − x′2〉 − |x′1 − x′2|2 ≥ −(λ/2)|x′1 − x′2|2,

which means that 〈x1−x2, x
′
1−x′2〉 ≥

[
1− (λ/2)

]
|x′1−x′2|2. From this we conclude

that

|x1 − x2| ≥
[
1− (λ/2)

]
|x′1 − x′2|.

This is the same as |x′1 − x′2| ≤
(
2/(2− λ)

)
|x1 − x2|.

For 0 < λ ≤ ρ, with λ < 2, let x1 and x2 be two points of intB
(
x̄, λε/2ρ

)
(the

open ball of radius λε/2ρ around x̄). Assume that the Fréchet subdifferential of d2
C

is nonempty at x1 and x2. From [1, Theorem 11], we know that PC is nonempty-
valued at those points, and is in fact single-valued according to the Claim. Let
x′i = PC(xi). We deduce from [15, Lemma 3.6] that

∂F
(
d2
C

)
(xi) ⊂ ∂F δC(x′i) ∩

{
2(xi − x′i)

}
,(3.2)

i.e., ∂F
(
d2
C

)
(xi) = 2(xi − x′i) with 2(xi − x′i) ∈ ∂F δC(x′i). From the Claim we have

2〈(x1 − x′1)− (x2 − x′2), x1 − x2〉 = 2|x1 − x2|2 − 2〈x′1 − x′2, x1 − x2〉
≥ 2|x1 − x2|2 − 2|x′1 − x′2||x1 − x2|

≥ 2|x1 − x2|2 − 2
(

2
2− λ

)
|x1 − x2|2

= −
(

2λ
2− λ

)
|x1 − x2|2.

On the basis of [15, Theorem 3.8] we conclude that d2
C +

(
λ/(2− λ)

)
| · |2 is convex

on intB
(
x̄, λε/2ρ

)
. This shows (iii), and it also implies that ∂Fd2

C(x) = ∂d2
C(x)

for all x ∈ intB
(
x̄, λε/2ρ

)
. This in turn implies that ∂Fd2

C is nonempty-valued
on intB

(
x̄, λε/2ρ

)
, which shows that for all x in intB

(
x̄, λε/2ρ

)
the set PC(x) is

nonempty. The Claim can then be applied at all such points to conclude that PC
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is single-valued, monotone, and Lipschitz continuous. From (3.2) and the fact that
d2
C +

(
λ/(2 − λ)

)
| · |2 is convex on intB

(
x̄, λε/2ρ

)
we conclude that the Gâteaux

derivative mapping of d2
C on intB

(
x̄, λε/2ρ

)
is 2(I − PC). This shows that d2

C is
C1+ on intB

(
x̄, λε/2ρ

)
.

Fix λ̄ > 0 with λ̄ < min{ρ, 1}. Let T (x) = NC(x) ∩ intB
(
0, λ̄ε/2ρ

)
for x ∈

C ∩ intB
(
x̄, λ̄ε/2ρ

)
, and T (x) = ∅ otherwise. There only remains to show that

(I + T )−1(x) = PC(x) when x ∈ intB
(
x̄, λ̄ε/2ρ

)
. It can easily be verified that

PC(x) ⊂ (I + T )−1(x) for the x’s in question. We know that PC(x) is nonempty
when x ∈ intB

(
x̄, λ̄ε/2ρ

)
; therefore the desired equality will be obtained once we

show that (I + T )−1(x) is at most a singleton. For i = 1, 2, let x′i ∈ (I + T )−1(x)
with x ∈ intB

(
x̄, λ̄ε/2ρ

)
. It follows that (x − x′i) ∈ T (x′i). By the choice of T we

have x′i ∈ C ∩ intB
(
x̄, λ̄ε/2ρ

)
with 2ρ|x− x′i| < λ̄ε < ε (because λ̄ < 1). With the

help of (3.1) we have

−2ρ|x′1 − x′2|2 = 〈2ρ(x− x′1)− 2ρ(x− x′2), x′1 − x′2〉 ≥ −ρ|x′1 − x′2|2,

which implies that x′1 = x′2.
The formula for the derivative of dC follows immediately from the formula for

the derivative of d2
C .

In Theorem 1.3, (e) obviously implies (b), and that in turn implies (c). Before
going any further we will need to show that if the distance function is Fréchet
differentiable, then the projection mapping is strongly continuous.

Lemma 3.2. Let C be a nonempty closed subset of H. If d2
C is Fréchet differen-

tiable on some open set O, or equivalently dC is Fréchet differentiable on O \ C,
then PC is (single-valued and) strongly continuous on O.

Proof. As we saw in the proof of Proposition 3.1, the Fréchet derivative of d2
C at

the point u is 2(u−PC(u)). The function −d2
C is equal to a convex function minus

the norm square. Indeed, as observed by Asplund [16], one has

−d2
C(u) = sup

x∈C

{
− |u− x|2

}
= −|u|2 + sup

x∈C

{
2〈u, x〉 − |x|2

}
.

On the other hand, we know that the derivative of a convex function is strongly-
weakly continuous—see [17] for example. The preceding observation therefore im-
plies that the derivative of d2

C , and hence PC , is strongly-weakly continuous on
O. Let xk converge strongly to x, where x ∈ O. We have that D(d2

C)(xk) con-
verges weakly to D(d2

C)(x). We also have that |D(d2
C)(xk)| = 2dC(xk) converges

to |D(d2
C)(x)| = 2dC(x) (because dC is continuous—in fact it is Lipschitz). Thus,

we have weak convergence and convergence of the norms; this implies strong con-
vergence.

We will also need the following fact.

Lemma 3.3. Assume that dC is Fréchet differentiable on a neighborhood of a point
ū /∈ C. Then there exists δ > 0 such that whenever u ∈ intB

(
ū, δ
)

and PC(u) = x,
there exists t > 0 such that the point ut := u+ t(u− x) likewise has PC(ut) = x.

Proof. By Lemma 3.2, there exists ε > 0 such that PC is single-valued and con-
tinuous on intB

(
ū, 2ε

)
, with dC Fréchet differentiable there as well. Let σ =

sup
{
dC(u)

∣∣u ∈ intB(ū, ε)
}

. Then for all u ∈ intB(ū, ε) we have ε ≤ dC(u) ≤ σ,
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and as long as t ∈ (0, ε/σ) the point ut = u + t(u − PC(u)) lies in intB(ū, 2ε);
indeed,

|ut − ū| = |(u− ū) + t(u− PC(u))| ≤ |u− ū|+ t|u− PC(u)|
≤ |u− ū|+ tdC(u) < ε+ [ε/σ]σ = 2ε.

Fix δ ∈ (0, ε) and s ∈ (0, δ/σ) (thus s < 1) such that

|PC(us)− PC(u)| < dC(u) for all u ∈ intB(ū, δ),(3.3)

which is possible by the continuity of dC and PC because dC(u)−|PC(us)−PC(u)| →
dC(ū) > 0 as s↘0 and u → ū. Then for all u ∈ intB(ū, δ) we have sdC(u) < δ,
and moreover dC(us) > dC(u), since by (3.3)

dC(us) = |us − PC(us)| = |u+ s(u− PC(u))− PC(us)|
= |(1 + s)(u − PC(us)) + s(PC(us)− PC(u))|
≥ (1 + s)|u − PC(us)| − s|PC(us)− PC(u)|
> (1 + s)dC(u)− sdC(u) = dC(u).

Consider now any u ∈ intB(ū, δ), and let D =
{
w
∣∣ dC(w) ≥ dC(us)

}
. In

particular, us ∈ D. We know that there is a sequence of points uk converging to
u with PD(uk) 6= ∅; see [17]. Since dC(us) > dC(u), we eventually have dC(us) >
dC(uk), so uk /∈ D. Let wk ∈ PD(uk). Then uk − wk is a nonzero proximal
normal to D at wk, and wk must therefore be a boundary point of D and have
dC(wk) = dC(us). Furthermore, for k sufficiently large we have wk in the ball
intB(ū, 2δ) ⊂ intB(ū, 2ε), because uk eventually belongs to intB(u, δ) and

|uk − wk| = dD(uk) ≤ |uk − us| → |u− us| = s|u− PC(u)| = sdC(u) < δ.(3.4)

In particular, then, dC(wk) > ε and dC is Fréchet differentiable at wk with deriva-
tive D(dC)(wk) given by (wk − PC(wk))/dC(wk), which has norm 1.

In view of the constraint representation of D in its definition, the half-space
Hk :=

{
v
∣∣ 〈−D(dC)(wk), v〉 ≤ 0

}
then gives the general tangent cone (contingent

cone) to D at wk, and since proximal normals must lie in the polar of this tangent
cone, the vector uk−wk must be a nonnegative scalar multiple of the normal vector
−(wk − PC(wk))/dC(wk) to Hk. In fact we must have

uk − wk = −λk(wk − PC(wk))/dC(wk) with λk = |uk − wk| = dD(uk) > 0,

where eventually λk < δ < ε by (3.4); hence λk < ε ≤ dC(u) < dC(us) = dC(wk).
In terms of rk = dD(uk)/dC(wk) we then have rk ∈ (0, 1) and uk = (1 − rk)wk +
rkPC(wk). Thus, uk belongs to the line segment joining wk with PC(wk), and in
consequence we have PC(uk) = PC(wk) and λk = dC(wk) − dC(uk) = dC(us) −
dC(uk). This gives us

wk = uk + tk(uk − PC(uk))

with

tk :=
rk

1− rk
=

dD(uk)
dC(wk)− dD(uk)

=
dC(us)− dC(uk)

dC(uk)
.

Since tk converges to t := (dC(us)−dC(u))/dC(u) > 0, we obtain that wk converges
to ut and PC(wk) converges to PC(ut). But PC(wk) = PC(uk) → PC(u). Hence
for this t we have PC(ut) = PC(u), as desired.
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And now we show (part (i) below) that (c) implies (h) in Theorem 1.3. Note also
that we could add part (ii) of Proposition 3.4 to the list of equivalent properties in
Theorem 1.3.

Proposition 3.4. Assume dC is Fréchet differentiable on O \ C for some open
neighborhood O of x̄. Then there exists λ > 0 such that:

(i)

x = PC(u), x 6= u

0 < |u− x̄| < λ

}
=⇒ x = PC(u′) for u′ = x+ λ

u− x
|u− x| .(3.5)

(ii) For D =
{
y
∣∣ dC(y) ≥ λ

}
and for any u ∈ intB

(
x̄, λ

)
\ C one has dC(u) +

dD(u) = λ.

Proof. By Lemma 3.2 we may assume that there exists λ > 0 such that d2
C is

Fréchet differentiable on intB
(
x̄, 2λ

)
while PC is single-valued and strongly con-

tinuous there. Let x = PC(u) with |u − x̄| < λ and u /∈ C. It follows that
0 < |x − u| < λ. Since dC is Fréchet differentiable on a neighborhood of u, we
can apply Lemma 3.3 to get the existence of s > 0, with s < λ, such that for all
t ∈ (0, s) we have PC(ut) = x, where ut := u + t(u − x)/|u − x|. Note that for
all such t, one has ut /∈ C. Let λ0 be the supremum over all t ∈ [0, λ] such that
PC(ut) = x. The continuity of PC over intB

(
x̄, 2λ

)
(note that |ut−x̄| < 2λ) implies

that the supremum is attained, and since ut ∈ intB
(
x̄, 2λ

)
for t ∈ [0, λ] one has

uλ0 ∈ intB
(
x̄, 2λ

)
. We cannot have λ0 < λ, because when we apply Lemma 3.3

with uλ0 in place of u we arrive at a contradiction. Note that

ut = x+ (|u− x|+ t)
(u − x)
|u − x| ,

and since λ0 = λ we obtain (3.5). Let u′ := x + λ(u − x)/|u − x|. Since x ∈ C
(x = PC(u)) and u′ ∈ D :=

{
y
∣∣ dC(y) ≥ λ

}
, we have

dC(u) + dD(u) ≤ |u− x|+ |u− u′| = λ.(3.6)

On the other hand, dC(y) ≥ λ for any y ∈ D, which implies that

|y − u| ≥ dC(y)− dC(u) ≥ λ− dC(u).(3.7)

The combination of (3.6) and (3.7) yields (ii).

It is clear in Theorem 1.3 that (h) implies (f) . But property (f) implies, by
combining Corollary 2.2 with Proposition 2.5, that C is prox-regular at x̄. We
therefore have the equivalence between (a), (b), (c), (e), (f), (g) and (h). We now
turn our attention to adding (d), (i), and (k) to the list.

Proposition 3.5. Consider a closed set C ⊂ H, a point x̄ ∈ C and a neighborhood
O of x̄. The following properties are equivalent:

(i) dC is continuously differentiable on O \ C.
(ii) dC is Fréchet differentiable on O \ C.
(iii) dC is Gâteaux differentiable on O \ C and PC is non-empty on O.
(iv) PC is single-valued and strongly-weakly continuous on O.
If the set C is weakly closed relative to O, then one can add the following to the

set of equivalent properties:
(v) PC is single-valued on O.
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Proof. First recall that the Fréchet derivative of d2
C at an arbitrary point u is

2(u − PC(u)) (see the proof of Proposition 3.1). From this and Lemma 3.2 we
conclude that (i) is equivalent to (ii), and that (ii) implies (iii). Let

f(u) = sup
x∈C

{
2〈u, x〉 − |x|2

}
.

The function f is convex, and we saw in the proof of Lemma 3.2 that f(·)+d2
C(·) =

| · |2. From Hiriart-Urruty [24] we know that

PC(u) ⊂ (1
2 )∂f(u) for any u ∈ H.(3.8)

Since the derivative of a convex function is strongly-weakly continuous and equals
its subdifferential, we conclude that (iii) implies (iv) (under (iii), the Gâteaux
derivative of (1

2 )f on O \ C is PC). To show that (iv) implies (i), first use Phelps
[25, Lemma 7.7] to conclude that PC is maximal monotone on O. Since the sub-
differential of a convex function is monotone (see for example [25, Theorem 3.24]),
we get from (3.8) that the Gâteaux derivative of (1

2 )f equals PC(u) for any u ∈ O.
This shows that d2

C is continuously differentiable on O and that dC is continuously
differentiable on O \ C (strong-weak continuity of the Gâteaux derivative of d2

C

implies continuous differentiability—see the proof of Lemma 3.2).
Finally, it is an easy exercise to show that when a set is weakly closed and has

single-valued projections then its projection mapping is strongly-weakly continuous.
Therefore when the set C is weakly closed (iv) and (v) are equivalent.

To complete the proof of Theorem 1.3 we need only show that prox-regularity is
equivalent to the Shapiro property.

Proposition 3.6. A closed subset C of H is prox-regular at x̄ if and only if C has
the Shapiro property at x̄.

Proof. Assume that the set C is prox-regular at x̄. There exist r > 0 and a
neighborhood O of x̄ such that every proximal normal to C at x in C ∩ O can be
realized by an r-ball. This means that for every unit normal v to C at x in C ∩O
we have (1/2r)|x′ − x|2 ≥ 〈v, x′ − x〉 for every x′ ∈ C. From this we conclude that
C has the Shapiro property at x̄, since in this context the cones TC(x) and NC(x)
are polar to each other, and therefore, by Fenchel duality, we have

sup
v∈NC(x),|v|=1

〈v, x′ − x〉 = dTC(x)(x′ − x).

Now assume that C satisfies the Shapiro property at x̄ with constant k and neigh-
borhood O. As in Shapiro [4, Lemma 2.1] we conclude that 〈v1 − v2, x1 − x2〉 ≥
−2k|x1 − x2|2 whenever vi is a proximal normal to C at xi with xi in O ∩ C and
|vi| ≤ 1. As in Proposition 2.5 we deduce from [13, Theorem 2.4] that the set of
proximal normals to C at x ∈ O ∩ C is equal to the normal cone NC(x). There-
fore N1

C is hypomonotone on O, and we conclude from Corollary 2.2 that C is
prox-regular at x̄.

Now that the entire proof of Theorem 1.3 has been put together, we turn to
a couple of consequences of this theorem which give further characterizations of
prox-regular sets.

Corollary 3.7 (of Theorem 1.3). For a closed set C of H, the following are equiv-
alent:

(a) The set C is prox-regular at x̄.
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(b) For all σ > 0, the function d2
C + σ| · |2 is convex on a convex neighborhood

Oσ of x̄.
(c) For some σ > 0, the function d2

C + σ| · |2 is convex on a convex neighborhood
of x̄.

Proof. We already observed in Proposition 3.1 that for all σ > 0, the function
d2
C + σ| · |2 is convex on some open neighborhood Oσ of x̄ when the set is prox-

regular at x̄. On the other hand, if for some σ > 0 the function d2
C + σ| · |2 is

convex on a neighborhood of x̄, then the function d2
C has Fréchet subgradients at

all points in a neighborhood of x̄; but this is also true of −d2
C since we saw in the

proof of Lemma 3.2 that −d2
C + | · |2 is a convex function. Therefore d2

C is Fréchet
differentiable on a neighborhood of x̄, so C is prox-regular at x̄ by Theorem 1.3.

Corollary 3.8 (of Theorem 1.3). For a closed set C of H, the following are equiv-
alent:

(a) C is prox-regular at x̄.
(b) ∂pdC(x) is nonempty at all points x in a neighborhood of x̄.
(c) ∂FdC(x) is nonempty at all points x in a neighborhood of x̄.

Proof. Assume that C is prox-regular at x̄. From Theorem 1.3(e) we have that dC
is C1+ on O \ C for some open neighborhood O of x̄. This implies that ∂pdC(x)
is nonempty at all points x of O \ C. On the other hand, 0 is always a proximal
subgradient to dC at points x in C. This shows that (b) follows from (a).

Obviously (b) implies (c).
We will show that (c) implies (a) by verifying that d2

C is Fréchet differentiable
near x̄, which implies that dC is Fréchet differentiable on O \ C for some open
neighborhood O of x̄. This is easily established with the help of Lemma 3.9 below.
Indeed, according to Lemma 3.9, ∂Fd2

C is nonempty-valued on a neighborhood of
x̄. On the other hand, we know that for all x ∈ H , ∂F (−d2

C)(x) is nonempty (see
the proof of Lemma 3.2). From this we conclude that d2

C is Fréchet differentiable
on a neighborhood of x̄.

Lemma 3.9. If v ∈ ∂FdC(u), then 2dC(u)v ∈ ∂Fd2
C(u).

Proof. For each ε > 0, we have (by the definition of a Fréchet subgradient) that

〈v, x− u〉 ≤ dC(x)− dC(u) + ε|x− u|

for all x in a neighborhood of u. Therefore

〈2dC(u)v, x− u〉 ≤ 2dC(u)dC(x)− 2dC(u)dC(u) + 2dC(u)ε|x− u|

= dC(x)2 − dC(u)2 −
(
dC(x)− dC(u)

)2 + 2dC(u)ε|x− u|
≤ dC(x)2 − dC(u)2 + 2dC(u)ε|x− u|.

From this we conclude that 2dC(u)v ∈ ∂F d2
C(u).

4. Proximally Smooth Sets

The local theory that has been developed so far will now be applied to the global
setting of Clarke, Stern and Wolenski [2] to obtain certain of their characterizations,
along with some new ones.
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Theorem 4.1. Let C be a closed subset of H and let r > 0. The following proper-
ties are equivalent:

(a) C is uniformly prox-regular with constant 1/r′ for every 0 < r′ < r.
(b) dC is continuously differentiable on UC(r).
(c) dC is Fréchet differentiable on UC(r).
(d) dC is Gâteaux differentiable on UC(r), and PC is nonempty-valued on UC(r).
(e) d2

C is C1+ on UC(r), i.e., differentiable with locally Lipschitz continuous
derivative mapping (in fact with Lipschitz continuous derivative on UC(ρ) for each
positive ρ < r).

(f) Every nonzero proximal normal to C at any point x of C can be realized by
an r-ball.

(g) Whenever xi ∈ C and vi ∈ N r
C(xi), one has

〈v1 − v2, x1 − x2〉 ≥ −|x1 − x2|2.
If u ∈ UC(r) and x = PC(u), then x = PC(u′) for u′ = x+ r(u − x)/|u− x|.
(i) PC is single-valued and strongly-weakly continuous on UC(r).
(j) dTC(x)(x′−x) ≤ 1

2r |x′−x|2 whenever x′, x are in C (global Shapiro property).
Then PC is (single-valued) monotone on UC(r) and Lipschitz continuous on

UC(ρ) for any ρ ∈ (0, r), with PC = (I + N r
C)−1 on UC(r). Moreover, D(dC) =

[I − PC ]/dC on UC(r).
If C is weakly closed (which is always the case when the space H is finite-

dimensional), then one can add the following to the list of equivalent properties:
(k) PC is single-valued on UC(r).

In this theorem, the equivalence between (b) (i.e., the definition of proximal
smoothness), (d), (e), and (k) (when the set is weakly closed), along with the fact
that PC is single-valued, monotone and Lipschitz continuous under these equivalent
assumptions, was shown by Clarke, Stern and Wolenski [2]. They also proved that
proximal smoothness is equivalent to (f) under the extra assumption that PC(u) 6= ∅
for each u ∈ UC(r). The addition of (a), (c), (f), (g), (h), (i) and (j) to the list of
equivalent properties is new. Also new is the formula for PC in terms of a truncation
of the normal cone mapping NC . Our arguments are quite different than those of
[2] and provide an easier way of obtaining the equivalence between (b) and (f).

The following will be used in the proof of Theorem 4.1.

Lemma 4.2. Let C be a closed subset of H, and let 0 < ρ < r <∞. Assume that

〈v1 − v2, x1 − x2〉 ≥ −|x1 − x2|2

whenever xi ∈ C, vi ∈ N r
C(xi). Then:

(i) For xi in PC(ui) with ui ∈ UC(ρ), one has

|x1 − x2| ≤
(
r/(r − ρ)

)
|u1 − u2|

and

〈u1 − u2, x1 − x2〉 ≥
(
1− (ρ/r)

)
|x1 − x2|2.

(ii) PC is single-valued and monotone on UC(r) and Lipschitz continuous on
UC(ρ). Moreover, PC =

(
I +N r

C)−1 on UC(r).
(iii) d2

C is C1+ on UC(r), and the derivative of dC is equal to
(
I − PC

)
/dC on

UC(r).
(iv) The function d2

C +
(
ρ/(r − ρ)

)
| · |2 is convex on any convex subset included

in UC(ρ).
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Proof. (i) The vector (r/ρ)(ui−xi) is a proximal normal to C at xi, and it satisfies
|(r/ρ)(ui − xi)| < r. Therefore the assumptions ensure that

〈(r/ρ)(u1 − x1)− (r/ρ)(u2 − x2), x1 − x2〉 ≥ −|x1 − x2|2,
and

〈u1 − u2, x1 − x2〉 − |x1 − x2|2 ≥ −(ρ/r)|x1 − x2|2,

which means that 〈u1−u2, x1−x2〉 ≥
(
1− (ρ/r)

)
|x1−x2|2. From this we conclude

that |u1 − u2| ≥
(
1 − (ρ/r)

)
|x1 − x2|. This can also be written as |x1 − x2| ≤(

r/(r − ρ)
)
|u1 − u2|. This finishes the proof of (i).

(ii)–(iv) As in the proof of Proposition 3.1, we deduce from (i) that d2
C +(

ρ/(r − ρ)
)
| · |2 is convex on any convex subset of UC(ρ). This implies that the

Fréchet subdifferential of d2
C is nonempty on UC(r). From this we conclude that

PC(u) is nonempty for every u ∈ UC(r). Part (i) can then be used (as in Proposition
3.1) to show that PC is single-valued, monotone, and locally Lipschitz continuous
on UC(r) (in fact, Lipschitz continuous on UC(ρ)). We also have that d2

C is C1+

on UC(r).
If x = PC(u) for u ∈ UC(r), then one easily shows that x ∈

(
I + N r

C

)−1(u).
Therefore the desired equality

(
I + N r

C

)−1(u) = PC(u) will be obtained once we
show that

(
I+N r

C

)−1(u) is at most a singleton. For i = 1, 2, let xi ∈ (I+N r
C)−1(u)

with u ∈ UC(r). It follows that (u − xi) ∈ N r
C(xi) and that |u − xi| < r. Thus,

there exist s > 1 such that s|u − xi| < r (and we still have s(u − xi) ∈ NC(xi)).
We therefore have

−s|x1 − x2|2 = s〈(u − x1)− (u − x2), x1 − x2〉 ≥ −|x1 − x2|2,
which implies that x1 = x2.

Proof of Theorem 4.1. From Lemma 4.2 we conclude that (g) implies (e). This
lemma also gives us that PC is single-valued, monotone on UC(r) and Lipschitz
continuous on UC(ρ) for any ρ ∈ (0, r) with PC = (I + N r

C)−1 on UC(r), whereas
D(dC) = [I − PC ]/dC on UC(r).

Obviously (e) implies (b), which in turn is equivalent (by Proposition 3.5) to (c),
(d), and (i).

(c) implies (h): By Lemma 3.2 we have that PC is single-valued and strongly
continuous on UC(r). Let x = PC(u) with u ∈ UC(r). Since the function dC
is Fréchet differentiable on a neighborhood of u, we can apply Lemma 3.3 to get
the existence of s > 0 such that PC(ut) = x, where ut := u + t(u − x)/|u − x|
and 0 < t < s. Let λ0 be the supremum over all t ∈ [0, (r − dC(u))] such that
PC(ut) = x. The continuity of PC on UC(r) (note that ut ∈ UC(r)) implies that
the supremum is attained. We cannot have λ0 < (r − dC(u)), because this would
contradict Lemma 3.3. Note that ut = x + (dC(u) + t)(u − x)/|u − x|. Since
λ0 = (r − dC(u)), we obtain (h).

(h) obviously implies (f).
(f) implies (g): This follows from Proposition 2.5.
We now know that (b)–(i) are equivalent. Property (j) can also be added to this

list of equivalent properties, since one can easily show, as in the proof of Proposition
3.6, that (f) implies (j) and that (j) implies (g).

The fact that (f) implies (a) was noted in Corollary 2.6. Now assume that C is
uniformly prox-regular with constant 1/r′ for every 0 < r′ < r; we will show that
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(f) is fulfilled. According to the definition of uniform prox-regularity, we have for
all x ∈ C and v′ ∈ NC(x) with |v′| < 1 that x is the unique nearest point of C
to x + r′v′. This means that |x′ − (x + r′v′)| ≥ r′|v′| for every x′ ∈ C. If we fix
v ∈ NC(x) with |v| = 1 and take the limit as (r′, v′) converges to (r, v), we obtain
that |x′ − (x+ rv)| ≥ r for every x′ ∈ C. This gives (f).

When the set C is weakly closed and has single-valued projections on UC(r),
we obtain, as in Proposition 3.5, that PC is strongly-weakly continuous on UC(r).
This completes the proof of Theorem 4.1.

Remark. Another way to show that the Fréchet differentiability of dC on UC(r)
(for some r > 0) is sufficient for the proximal smoothness of C is to invoke [21,
Theorem 3, Corollaries 2 and 3]. Indeed, as was observed by Asplund ([16, page
236]), the Fréchet differentiability of | · |2 − d2

C at a point x is equivalent to the
(norm-to-norm-) continuous differentiability of this same function at the point x.
From this we can conclude that dC is continuously differentiable on the tube UC(r).

The proof of the following corollary parallels that of Corollary 3.8.

Corollary 4.3 ([2, Thm. 4.1]). Let C be a closed subset of H and r a positive
number. The following properties are equivalent:

(a) C is proximally smooth with associated tube UC(r).
(b) ∂pdC(x) is nonempty at all points x of UC(r).
(c) ∂FdC(x) is nonempty at all points x of UC(r).

Another new characterization of proximally smooth sets comes next.

Corollary 4.4. The set C is proximally smooth if and only if there exist some
σ > 0 and some tube around C such that d2

C +σ| · |2 is convex on any convex subset
of this tube.

Proof. When the set is proximally smooth with associated tube UC(r), we saw in
Lemma 4.2 that d2

C +
(
ρ/(r − ρ)

)
| · |2 is convex on any convex subset of UC(ρ) for

0 < ρ < r. The rest of the proof parallels that of Corollary 3.7, and is omitted.

Theorem 4.1 enables us to recover two well-known results concerning Chebyshev
sets, i.e., sets C for which PC is single-valued everywhere. Part (a) of the following
Corollary 4.5 was originally proved by Motzkin [22] in the finite-dimensional case
and by Klee [23] in the infinite-dimensional case, and it was re-derived by Clarke,
Stern and Wolenski in [2]. Part (b) of Corollary 4.5 is due to Asplund [16]. For a
thorough discussion of the “Chebyshev problem”, see Hiriart-Urruty [24].

Corollary 4.5. (a) A nonempty, weakly closed set C ⊂ H is convex if and only if
its projection mapping PC is single-valued on H.

(b) A closed set C ⊂ H is convex if and only if its projection mapping PC is
single-valued and strongly-weakly continuous on H.

Proof. It is well known that if C is nonempty, convex and closed (which is the same
as being weakly closed under convexity), then PC is single-valued and continuous
(in fact nonexpansive, i.e., Lipschitz continuous with constant 1). On the other
hand (under the assumption that C is weakly closed), if PC is single-valued on H ,
we get from Theorem 4.1(g) that 〈v1 − v2, x1 − x2〉 ≥ 0 when vi ∈ NC(xi). This,
according to [15, Thm. 3.8], shows that C is convex. Under the assumptions that
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PC is single-valued and strongly-weakly continuous on H we can also conclude from
Theorem 4.1(g) and [15, Thm. 3.8] that C is convex.

The following was established in [2, Cor. 4.15] in the finite-dimensional setting.

Corollary 4.6. If C is proximally smooth, then at every point x ∈ C the normal
cone NC(x) is closed and convex, with every v ∈ NC(x) actually being a proximal
normal.

Proof. Theorem 4.1 shows that C is prox-regular at any x ∈ C. We can then apply
Corollary 2.2 to obtain the desired conclusion.
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[16] E. Asplund, Čebyšev sets in Hilbert spaces, Trans. Amer. Math. Soc. 144 (1969), 235–240.
MR 40:6238

[17] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, 1984.
MR 87a:58002

[18] K.-S. Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27
(1978), 791–795. MR 58:23286

[19] J. M. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed sets in Banach
spaces II: Applications, Canad. J. Math. 39 (1987), 428–472. MR 88f:46034

[20] F. H. Clarke, Optimization and Nonsmooth Analysis, SIAM Publications, Philadelphia, 1990
(originally published in 1983). MR 85m:49002; MR 91e:49001

[21] E. Asplund and R. T. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Soc.
121 (1968), 31–47. MR 39:1968

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=88m:49013
http://www.ams.org/mathscinet-getitem?mr=96j:49014
http://www.ams.org/mathscinet-getitem?mr=84m:90107
http://www.ams.org/mathscinet-getitem?mr=94m:90111
http://www.ams.org/mathscinet-getitem?mr=22:961
http://www.ams.org/mathscinet-getitem?mr=96h:49039
http://www.ams.org/mathscinet-getitem?mr=97j:49025
http://www.ams.org/mathscinet-getitem?mr=98e:49043
http://www.ams.org/mathscinet-getitem?mr=98m:49001
http://www.ams.org/mathscinet-getitem?mr=99b:49016
http://www.ams.org/mathscinet-getitem?mr=92j:49008
http://www.ams.org/mathscinet-getitem?mr=93a:49013
http://www.ams.org/mathscinet-getitem?mr=95k:49035
http://www.ams.org/mathscinet-getitem?mr=95i:49032
http://www.ams.org/mathscinet-getitem?mr=92k:49027
http://www.ams.org/mathscinet-getitem?mr=40:6238
http://www.ams.org/mathscinet-getitem?mr=87a:58002
http://www.ams.org/mathscinet-getitem?mr=58:23286
http://www.ams.org/mathscinet-getitem?mr=88f:46034
http://www.ams.org/mathscinet-getitem?mr=85m:49002
http://www.ams.org/mathscinet-getitem?mr=91e:49001
http://www.ams.org/mathscinet-getitem?mr=39:1968


LOCAL DIFFERENTIABILITY OF DISTANCE FUNCTIONS 5249

[22] T. S. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes, Att. R. Acad.
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