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1. Introduction

In concept, any problem of optimization in n real variables can be represented as a problem
of minimizing, over the entire space IRn, a function f with values in IR = [−∞,∞]. Points
x that should not be candidates in the minimization can effectively be excluded by setting
f = ∞ there. Such a representation is especially useful in getting to the heart of theoretical
issues in parametric optimization, because it allows problem parameters to be viewed just
as additional variables on which f depends.

Our aim is to try to understand in this abstract setting, on the most fundamental
level of variational analysis, the circumstances in which locally optimal solutions behave in
a “stable” manner with respect to shifts in parameter values. The model we adopt is that
of a family of minimization problems in x ∈ IRn parameterized by u ∈ IRd, as specified by
a function f : IRn × IRd → IR. Within the family we single out a problem

P minimize f(x, ū) over x ∈ IRn,

and compare it with perturbed versions that come from shifting the associated parameter
vector ū to some nearby vector u. For technical reasons, we further consider, along with
such basic perturbations, tilt perturbations that correspond to adding a small linear term
to the objective. Thus, we regard P as imbedded in the larger family of problems

P(u, v) minimize f(x, u)− 〈v, x〉 over x ∈ IRn,

with both u ∈ IRd and v ∈ IRn parameters, so that P = P(ū, v̄) for v̄ = 0. In the
developments that follow, however, v̄ might just as well be any vector, so we refer to the
unperturbed problem around which we work as P(ū, v̄) rather than P.

Throughout, we assume that f is lower semicontinuous (lsc) and proper, i.e., not
identically ∞ and nowhere taking on −∞. The set of feasible solutions to P(u, v) consists
then, by definition, of the points x such that f(u, x) is finite. We denote by x̄ a feasible
solution to P(ū, v̄) and investigate it in terms of the functions mδ : IRd × IRn → IR and
mappings Mδ : IRd × IRn →→ IRn (set-valued) that are defined for δ > 0 by

mδ(u, v) = inf
|x−x̄|≤δ

{
f(x, u)− 〈v, x〉

}
,

Mδ(u, v) = argmin
|x−x̄|≤δ

{
f(x, u)− 〈v, x〉

}
.

(1.1)

Here Mδ(u, v) could consist of a single-point x, in which case Mδ is single-valued at (u, v),
but it might contain many points or be empty. By convention, argmin = ∅ when the
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expression being minimized can only be ∞; that ensures having Mδ(u, v) be empty when
P(u, v) has no feasible solutions x satisfying |x − x̄| ≤ δ, i.e., when mδ(u, v) = ∞. Aside
from that case, Mδ(u, v) is nonempty and mδ(u, v) is finite.

In such notation, to say that x̄ is a locally optimal solution to P(ū, v̄) is to say that
x̄ ∈Mδ(ū, v̄) for some δ > 0 (sufficiently small). The stability properties of locally optimal
solutions that we target for study revolve around x̄ being the only point of Mδ(ū, v̄) and
having this single-valuedness of the mapping Mδ at (ū, v̄) persist in a Lipschitzian manner
with respect to certain parameter shifts away from (ū, v̄).

Definition 1.1 (solution stability). A point x̄ is a stable locally optimal solution to P(ū, v̄)
(in the basic sense, i.e., relative to the specified parameterization in u only) if there is a

δ > 0 such that, on some neighborhood U of ū, the mapping u 7→Mδ(u, v̄) is single-valued

and Lipschitz continuous with Mδ(ū, v̄) = x̄, and the function u 7→ mδ(u, v̄) is likewise

Lipschitz continuous on U .

It is a tilt stable locally optimal solution if these properties hold with respect to v

instead of u, i.e., for the mapping v 7→ Mδ(ū, v) and the function v 7→ mδ(ū, v) on some

neighborhood V of v̄. It is a fully stable locally optimal solution if these properties hold

with respect to (u, v) for the full mapping (u, v) 7→Mδ(u, v) and function (u, v) 7→ mδ(u, v)
on some neighborhood U × V of (ū, v̄).

Full stability implies both (basic) stability and tilt stability but in general may differ
from those properties. With x and u in IR and (x̄, ū) = (0, 0), for instance, the case of
f(x, u) = (x − u)4 exhibits stability without full stability, whereas f(x, u) = (x − u1/3)2

has tilt stability without full stability.

Note that in the definition of tilt stability it would not really be necessary to say
anything about mδ, since the formula for this function in (1.1) implies that mδ(ū, v) is
finite and concave in v (as long as f(x̄, ū) is finite). In other situations the Lipschitz
continuity of mδ is not automatic, however, even in the face of Lipschitz continuity of Mδ.
For example, the lsc, proper function f : IR× IR→ IR defined by f(x, u) = x2 when u = 0
but f(x, u) = 1 + x2 when u 6= 0 has, for (x̄, ū) = (0, 0) and v̄ = 0, that Mδ(u, v̄) = 0 for
all u, yet mδ(u, v̄) is discontinuous at u = ū.

Stability properties of one kind or another have extensively been investigated for
optimal solutions to conventional nonlinear programming problems as well as for Karush-
Kuhn-Tucker pairs in such problems or, more broadly, solutions to “generalized equations”
and variational inequalities. The pioneering contribution of Robinson [1] put the focus on
single-valued Lipschitzian behavior of optimal solutions. The literature on the subject
is vast; the articles of Klatte and Kummer [2] and Dontchev and Rockafellar [3] provide
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an overview with many references to Lipschitzian behavior and also to calmness (“upper
Lipschitzian” behavior) under perturbations.

The approach we take to stability differs from most of that literature, not merely in
adopting the format of extended-real-valued functions, but in the tools we use. Crucial
among them is the form of localized Lipschitz continuity for set-valued mappings that was
defined by Aubin [4] and the criterion for it that was derived by Mordukhovich [5] in terms
of his coderivative mappings. These tools of variational analysis have already been applied
to stability issues by those authors in some general ways and also by Rockafellar and
Wets in their recent book [6], which offers a thorough exposition of the concepts and their
history (in finite dimensions). In other work, Dontchev and Rockafellar [7] have applied
such methodology in finer detail to nonlinear programming and variational inequalities
over polyhedral sets. Closest to our present effort, however, is the paper of Poliquin
and Rockafellar [8], where tilt stability was first explored—in the simpler framework of a
minimization problem perturbed by tilt vectors only.

The chief contribution in [8] was a characterization of tilt stability of locally optimal
solutions in terms of positive definiteness of the generalized Hessian for f in the sense of
Mordukhovich [5]. Here we build on the results in [8] by adding a parameterization in u

alongside of the tilt perturbations in v. As in [8], a function property called prox-regularity
turns out to be essential. That property, which was introduced by Poliquin and Rockafellar
[9] for the sake of fundamental developments in second-order nonsmooth analysis, must be
adapted however to the additional parameterization. Likewise, the generalized Hessian in
x is no longer enough and must be extended as part of the effort to make sure that the
functions f(·, u) depend reasonably on u.

We concentrate on characterizing full stability, being content with the fact that nec-
essary and sufficient conditions for full stability immediately yield sufficient conditions for
basic stability. The task of characterizing basic stability on its own appears much more
difficult and perhaps not even appropriate. After all, tilt perturbations are a special case
of other perturbations (one could have f(x, u) = f0(x)− 〈u, x〉, say), so a universal result
about basic stability could not escape having to account for them somehow. Indeed, it
might well be that such a result would require a sort of extra “constraint qualification”
that is tantamount to insisting on good tilt behavior. Anyway, from a practical point of
view, as in connection with numerical methodology for instance, there is likely to be little
interest in situations where tilt stability is absent.

The assumptions behind our characterization of full stability, stated in Theorem 2.3,
cover a very broad range of parameterized optimization problems expressible in the pattern
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of P(u, v). That includes not only nonlinear programming models in standard formats
but also extended nonlinear programming models in which the objective function can be
represented as the composition of a C2 mapping with a proper, lsc, convex function. We
establish this in Proposition 2.2.

In order to apply our results to such special cases, one has to invoke a calculus of
generalized Hessian mappings to see what one gets for the particular forms of f(x, u)
that come up. We have not undertaken to do that because it is a major project in itself
and is better reserved for other papers in which the calculus rules suited for the job can
systematically be laid out. Here, as a critical first step, we identify the underpinnings to
stability at a depth not previously plumbed.

2. Main Results

In dealing with subgradients, we follow the notation and terminology of the book [6]. For a
function g : IRn → IR and a point x ∈ IRn, a vector v ∈ IRn is a regular subgradient of g at
x if g(x) is finite and g(x+w) ≥ g(x)+ 〈v, w〉+ o(|w|). It is a (general) subgradient at x if
g(x) is finite and there exist sequences {xν}∞ν=1 and {vν}∞ν=1 with vν a regular subgradient
of g at xν , such that vν → v, xν → x, and g(xν) → g(x). The set of all such (general)
subgradients of g at x includes the regular subgradients at x and is denoted by ∂g(x). A
set-valued subgradient mapping ∂g : IRn →→ IRn is thereby defined, which is empty-valued
outside of dom g =

{
x

∣∣ g(x) < ∞
}
. The graph of ∂g is the set gph ∂g ⊂ IRn × IRn

consisting of the pairs (x, v) such that v ∈ ∂g(x).
Also of use to us will be the concept of v being a horizon subgradient of g at x. This

refers to the existence of sequences {xν}∞ν=1 and {vν}∞ν=1 with vν a regular subgradient of
g at xν , such that xν → x, g(xν) → g(x), and λνvν → v for some scalar sequence {λν}∞ν=1

with λν ↘0. The set of horizon subgradients v of g at x is denoted by ∂∞g(x).

Prox-regularity arises from consideration of regular subgradients with a second-order
aspect. A proximal subgradient of g at x is a regular subgradient v for which the error
term o(|w|) can be specialized to (r/2)|w|2. Prox-regularity refers to a situation in which
proximal subgradients prevail locally and with the same r. Specifically, g is prox-regular at
x̄ for v̄ if it is locally lsc at x̄ (cf. [6; 1.33, 1.34]), has v̄ ∈ ∂g(x̄), and there are neighborhoods
X of x̄ and V of v̄ along with ε > 0 and r ≥ 0 such that

g(x′) ≥ g(x) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for all x′ ∈ X

when v ∈ ∂g(x), v ∈ V, x ∈ X, g(x) ≤ g(x̄) + ε.
(2.1)

It is continuously prox-regular at x̄ for v̄ if, in addition, g(x) is continuous as a function
of (x, v) ∈ gph ∂g at (x̄, v̄). (The latter property, by itself, is known as the subdifferential
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continuity of g at x̄ for v̄.) In that case one can arrange, by a shrinking of the neighborhoods
X and V if necessary, that

g(x′) ≥ g(x) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for all x′ ∈ X

when v ∈ ∂g(x), v ∈ V, x ∈ X.
(2.2)

The class of continuously prox-regular functions is very wide and includes not only
convex functions, C2 functions and lower-C2 functions, but also any such function plus the
indicator of a set defined by finitely many C2 constraints under a constraint qualification.
Many, if not most, of the essential objective functions in finite-dimensional optimization
are covered. An overview is provided in [6; Chap. 13]. An elaboration for the parametric
situation at hand will be given below in Proposition 2.2.

For the indicator δD of a set D ⊂ IRn, the subgradient set ∂δD(x) is denoted by ND(x)
and its elements are called the normal vectors to D at x.

Generalized Hessians are derived from normal vectors to the graphs of subgradient
mappings. For any mapping S : IRm →→ IRp, we denote by gphS the set of all pairs
(z, w) ∈ IRm × IRn such that w ∈ S(z). For any such pair (z, w), the coderivative of S at
z for w is the mapping D∗S(z |w) : IRp →→ IRm defined by

D∗S(z |w)(w′) =
{
z′

∣∣ (z′,−w′) ∈ Ngph S(z, w)
}
. (2.3)

When S is single-valued and C1 around z with Jacobian matrix ∇S(z), the coderivative
for w = S(z) reduces to the adjoint linear mapping w′ 7→ ∇S(z)∗w′.

For a subgradient mapping ∂g : IRn →→ IRn and a pair (x, v) ∈ gph ∂g, the mapping
D∗(∂g)(x |v) is the coderivative Hessian associated with g at x for v in the sense of Mor-
dukhovich [5] and is denoted by ∂2g(x |v). If g is C2 around x with Hessian matrix ∇2g(x),
then ∂2g(x |v) for v = ∇g(x) reduces to the linear mapping v′ 7→ ∇2g(x)v′.

In the context of our parametric model, as specified by the function f : IRn×IRd → IR,
these concepts need some adaptation. The spotlight there is on the partial subgradient
mapping ∂xf : IRn × IRd →→ IRn defined by

∂xf(x, u) =
{

set of subgradients v of fu := f(·, u) at x
}

= ∂fu(x). (2.4)

The importance of ∂xf comes from the elementary rule that wherever a function on IRn

has a local minimum, its subgradient set must contain 0. Application of that rule to
f(·, u)− 〈v, ·〉 yields the first-order necessary condition with which we must work:

x locally optimal in P(u, v) =⇒ v ∈ ∂xf(x, u). (2.5)
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In particular, any local optimal solution x̄ to P(ū, v̄) must have v̄ ∈ ∂xf(x̄, ū).

Although the constraints in P(u, v) are only implicit in our general framework, as
signaled by ∞ values of f , a notion of “constraint qualification” comes in anyway. The
basic constraint qualification at a feasible solution x to P(u, v) is the condition

Q(x, u) (0, y) ∈ ∂∞f(x, u) =⇒ y = 0.

In our reference problem P(ū, v̄), we will be concerned primarily with x̄ and Q(x̄, ū).

Note that ∂∞f(x, u) refers to horizon subgradients of f as a function of both arguments,
not just in x. As demonstrated in [6; 10.12], the constraint qualification Q(x, u) guarantees
in connection with the optimality condition in (2.5) the existence of y such that (v, y) ∈
∂f(x, u). In other words, it implies that

∂xf(x, u) ⊂
{
v

∣∣ ∃ y with (v, y) ∈ ∂f(x, u)
}
.

In the circumstances we ultimately will be working with (in Theorem 2.3), this inclusion
will turn out actually to be an equation (cf. Proposition 3.4). Nonetheless, the mapping
∂xf : IRn × IRd →→ IRn rather than the mapping ∂f : IRn × IRd →→ IRn × IRd will be the
vehicle for stating our results.

In analyzing the parametric behavior of locally optimal solutions on the platform of
the optimality condition in (2.5), we will inevitably be concerned not only with ∂xf but
also with its partial inverse

M : (u, v) 7→
{
x

∣∣ v ∈ ∂xf(x, u)
}
. (2.6)

Because the first-order condition v ∈ ∂xf(x, u) is also necessary for optimality in the
minimization problem that defines Mδ(u, v) in (1.1) when |x− x̄| < δ, we know that

x ∈Mδ(u, v), |x− x̄| < δ =⇒ x ∈M(u, v). (2.7)

Much will hinge on ascertaining when the graphs of Mδ and M actually coincide around
(ū, v̄, x̄) for small δ, with M single-valued and Lipschitz continuous in such localization.
The analysis will center on the coderivative mappings D∗(∂xf)(x, u |v) : IRn →→ IRn × IRd

at points (x, u, v) ∈ gph ∂xf near (x̄, ū, v̄).

It should be observed that the mapping D∗(∂xf)(x, u |v) is not the same as the
coderivative Hessian mapping

∂2
xf(x, u |v) := D∗(∂fu)(x |v) = ∂2fu(x |v) for fu = f(·, u). (2.8)
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With f ∈ C2 and v = ∇xf(x, u) for instance, ∂2
xf(x, u |v) comes out as v′ 7→ ∇2

xxf(x, u)v′,
while D∗(∂xf)(x, u |v) comes out as v′ 7→ (∇2

xxf(x, u)v′,∇2
uxf(x, u)v′). But the mapping

∂2
xf(x, u |v)(v′) cannot even be identified in general with the mapping

v′ 7→
{
x′

∣∣ ∃u′, (x′, u′) ∈ D∗(∂xf)(x, u |v)(v′)
}
. (2.9)

The former has u fixed in its definition, whereas the latter, which for comparison might
be denoted by ∂̃2

xf(x, u |v), depends on limits being taken in the u argument as well, and
its graph may therefore be larger. Limits in u are a source of strength, however. The
positive definiteness that we eventually require will be imposed on ∂̃2

xf(x̄, ū | v̄) instead of
∂2

xf(x̄, ū | v̄), although the notation ∂̃2
xf(x̄, ū | v̄) will not be employed in expressing it.

The notion of prox-regularity must now be expanded in order for it to be able to
account for parametric effects in u.

Definition 2.1 (parametric prox-regularity). The lsc expression f(x, u) is prox-regular in
x at x̄ for v̄ with compatible parameterization by u at ū if v̄ ∈ ∂xf(x̄, ū) and there exist

neighborhoods U of ū, X of x̄, and V of v̄, along with ε > 0 and r ≥ 0 such that

f(x′, u) ≥ f(x, u) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for all x′ ∈ X

when v ∈ ∂xf(x, u), v ∈ V, x ∈ X, u ∈ U, f(x, u) ≤ f(x̄, ū) + ε.
(2.10)

It is continuously prox-regular in x at x̄ for v̄ with compatible parameterization by u at ū

if, in addition, f(x, u) is continuous as a function of (x, u, v) ∈ gph ∂xf at (x̄, ū, v̄).

Our attention will be focused on the parametric version here of continuous prox-
regularity, which obviously entails continuous prox-regularity of f(·, ū) at x̄ for v̄, in par-
ticular, but spreads some of it uniformly to subgradients of neighboring functions f(·, u).
According to its definition, it provides the existence of a neighborhood X × U × V of
(x̄, ū, v̄) ∈ gph ∂xf such that, for a certain r ≥ 0, one has

f(x′, u) ≥ f(x, u) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for all x′ ∈ X

when (x, u, v) ∈ [X × U × V ] ∩ gph ∂xf.
(2.11)

Strongly amenable functions furnish a prime source of examples for parametric con-
tinuous prox-regularity, as we show next. Amenable functions were first studied as a class
in [10]. Parametric amenability, as defined in the next proposition, was introduced in [11].

Proposition 2.2 (prox-regularity from amenability). Suppose that f(x, u) is strongly

amenable in x at x̄ with compatible parameterization by u at ū, in the sense that on some
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neighborhood of (x̄, ū) there is a composite representation f(x, u) = g(F (x, u)) in which

F : IRn × IRd → IRm is a C2 mapping and g : IRm → IR is a convex, proper, lsc function

for which F (x̄, ū) ∈ D := dom g and

z ∈ ND(F (x̄, ū)), ∇xF (x̄, ū)∗z = 0 =⇒ z = 0. (2.12)

Then, as long as v̄ ∈ ∂xf(x̄, ū), one has f(x, u) continuously prox-regular in x at x̄ for v̄

with compatible parameterization by u at ū. Moreover Q(x̄, ū) holds.

Proof. From (2.12) we have in particular that f is strongly amenable at (x̄, ū) as a function
of (x, u), since that property by definition (cf. [6; 10.23]) concerns a representation f = g◦F

of the same kind but which need only satisfy

z ∈ ND(F (x̄, ū)), ∇xF (x̄, ū)∗z = 0, ∇uF (x̄, ū)∗z = 0 =⇒ z = 0,

where ND = ∂∞g (because g is convex; cf. [6; 8.12]). This condition implies by the
subgradient chain rule in [6; 10.6] that ∂∞f(x̄, ū) consists of all (v, y) such that there
exists z ∈ ND(F (x̄, ū)) with ∇xF (x̄, ū)∗z = v and ∇uF (x̄, ū)∗z = y. Clearly, then, it is
impossible to have (0, y) ∈ ∂∞f(x̄, ū) unless y = 0. Thus, Q(x̄, ū) is satisfied.

The condition in (2.12) carries over from (x̄, ū) to all nearby (x, u) with F (x, u) ∈ D,
for if not there would be a contradiction based on a simple argument of taking limits. This
condition ensures by the same subgradient chain rule that for such (x, u) one has

∂xf(x, u) = ∇xF (x, u)∗∂g(F (x, u)) =
{
v = ∇xF (x, u)∗z

∣∣ z ∈ ∂g(F (x, u))
}
. (2.13)

Assuming v̄ ∈ ∂f(x̄, ū), let S be the mapping that associates with (x, u, v) the set of
vectors z on the right of (2.13). We argue that S is locally bounded at (x̄, ū, v̄), i.e., that
there exist ε > 0 and ζ > 0 such that

|(x, u, v)− (x̄, ū, v̄)| ≤ ε, z ∈ S(x, u, v) =⇒ |z| ≤ ζ, (2.14)

moreover with (2.13) holding under these circumstances. The reason is that if we had se-
quences (xν , uν , vν) → (x̄, ū, v̄) and zν ∈ S(xν , uν , vν) with 0 < |zν | → ∞, the vectors λνzν

for λν = 1/|zν |↘0 would cluster at some z̄ 6= 0. Then from having ∇xF (xν , uν)∗[λνzν ] =
λνvν and zν ∈ ∂g(F (xν , uν)) we would get ∇xF (x̄, ū)∗z̄ = 0 and z̄ ∈ ∂∞g(F (x̄, ū)). Here
we have ∂∞g(F (x̄, ū)) = ND(F (x̄, ū), so this would contradict (2.12).

Now let X×U×V be a neighborhood of (x̄, ū, v̄) small enough that f = g◦F on X×U
and |(x, u, v)− (x̄, ū, v̄)| ≤ ε when (x, u, v) ∈ X × U × V . Suppose (xν , uν , vν) → (x̄, ū, v̄)
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in X × U × V with vν ∈ ∂xf(xν , uν). Is it true that f(xν , uν) → f(x̄, ū)? Taking
advantage of the formula in (2.13) at (xν , uν , vν), select zν ∈ ∂g(F (xν , uν)) such that
∇xF (xν , uν)∗zν = vν . We have |zν | ≤ ζ through (2.14), so by passing to subsequences we
can reduce to the case where zν converges to some z̄. The pairs (F (xν , uν), zν) ∈ gph ∂g
converge then to (F (x̄, ū), z̄), and since g is convex (hence subdifferentially continuous)
this implies that g(F (xν , uν)) → g(F (x̄, ū)). Thus, f(xν , uν) → f(x̄, ū) as required.

Observe next that because F is of class C2 and the neighborhood U is bounded, there
exists r > 0 such that, for all z with |z| ≤ ζ and u ∈ U , the function hzu : x 7→ 〈z, F (x, u)〉
has hzu(x′) ≥ hzu(x) + 〈∇hzu(x), x′ − x〉 − r

2 |x
′ − x|2 for all x, x′ ∈ X. This tells us that

〈z, F (x′, u)− F (x, u)〉 ≥ 〈∇xF (x, u)∗z, x′ − x〉 − r

2
|x′ − x|2

when x, x′ ∈ X, u ∈ U, |z| ≤ ζ.
(2.15)

For any x, x′ ∈ X, u ∈ U , and v ∈ V with v ∈ ∂xf(x, u), we have v = ∇xF (x, u)∗z
for some z ∈ ∂g(F (x, u), necessarily satisfying |z| ≤ ζ by the local boundedness of S in
(2.14). The convexity of g yields g(F (x′, u)) ≥ g(F (x, u)) + 〈z, F (x′, u)−F (x, u)〉, and in
combination with (2.15) we therefore have f(x′, u)− f(x, u) = g(F (x′, u))− g(F (x, u)) ≥
〈v, x′ − x〉 − r

2 |x
′ − x|2. In other words we have (2.11), as required.

As obvious very special cases of Proposition 2.2, f could be any C2 function (take
F = f and let g(t) = t on IR) or any lsc, proper convex function (take g = f and F = I).
For a broader discussion of the rich possibilities, see [11] and [6; 10.24].

Theorem 2.3 (full stability). Let x̄ be a feasible solution to P(ū, v̄) at which the first-order

condition v̄ ∈ ∂xf(x̄, ū) is satisfied along with the constraint qualification Q(x̄, ū). Suppose

f(x, u) is continuously prox-regular in x at x̄ for v̄ with compatible parameterization by

u at ū. Then for x̄ to be a locally optimal solution to P(ū, v̄) that is fully stable, it is

necessary and sufficient that the following second-order conditions be fulfilled:

(a) (x′, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(v′), v′ 6= 0 ⇒ 〈v′, x′〉 > 0,

(b) (0, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(0) ⇒ u′ = 0.

Moreover in that case it follows, when δ > 0 is sufficiently small, that for all (u, v) in some

neighborhood of (ū, v̄) one has Mδ(u, v) = M(u, v) ∩
{
x

∣∣ |x − x̄| < δ
}
. In addition, the

Lipschitz modulus of Mδ at (ū, v̄) is given then by

(lipMδ)(ū, v̄) = max
{ |(u′, v′)|

|x′|

∣∣∣ (x′, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(v′), x′ 6= 0
}
, (2.16)

where (lipMδ)(ū, v̄) is the upper limit of |Mδ(u1, v1)−Mδ(u2, v2)|/|(u1, v1)− (u2, v2)| as

(u1, v1) → (ū, v̄) and (u2, v2) → (ū, v̄) with (u1, v1) 6= (u2, v2).
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This is our main result. It will be proved in §5. The proof of equivalence really
centers just on the single-valuedness and Lipschitz continuity of Mδ. The local Lipschitz
continuity of mδ that has been incorporated into the definition of full stability is already
a consequence merely of assuming Q(x̄, ū) (cf. Proposition 3.5).

Theorem 2.3 covers the chief characterization of tilt stability in [8] as the case where
the parameterization in u drops out and only the tilt vectors v remain. It adds to that
characterization the corresponding specialization of the modulus formula in (2.16), i.e.,
(lipMδ)(v̄) = max

{
|v′|/|x′|

∣∣x′ ∈ ∂2f(x̄ | v̄)(v′), x′ 6= 0
}
. Of course it also provides a

criterion for the basic form of stability in Definition 1.1.

Corollary 2.4 (basic stability). The properties in Theorem 2.3 suffice for x̄ to be a locally

optimal solution to P(ū, v̄) that is stable (in the basic sense).

Corollary 2.5 (amenable case). Suppose f(x, u) is strongly amenable in x at x̄ with

compatible parameterization by u at ū. Then for x̄ to be a locally optimal solution to

P(ū, v̄) that is fully stable, it is necessary and sufficient that the second-order conditions

(a) and (b) of Theorem 2.3 be fulfilled along with the first-order condition v̄ ∈ ∂xf(x̄, ū).

Proof. This is immediate from Theorem 2.3 and Proposition 2.2.

Corollary 2.6 (smooth case). Let f be of class C2 around (x̄, ū). In order for x̄ to be a

locally optimal solution to P(ū, v̄) that is fully stable, it is necessary and sufficient that

∇xf(x̄, ū) = v̄ with ∇2
xxf(x̄, ū) positive definite.

Proof. For f of this type we have the amenability in Corollary 2.5. The coderivative
mapping D∗(∂xf)(x̄, ū) reduces to the linear mapping v′ 7→ (∇2

xxf(x̄, ū)v′,∇2
uxf(x̄, ū)v′),

as noted earlier. Condition (a) of Theorem 2.3 turns into the positive definiteness of
∇2

xxf(x̄, ū), while condition (b) trivializes.

It would be possible to derive the fact in Corollary 2.6 by classical methods, but we
present it this way to show how it fits into the broader scene. The direct argument is not
as easy as might be imagined, however; cf. the corresponding case of tilt stability in [8].

Corollary 2.6 brings attention to the “positive definiteness” in (a) of Theorem 2.3 as
expressing a second-order sufficient condition for optimality , at least in combination with
(b). This role was observed previously by Poliquin and Rockafellar in their tilt stability
setting in [8]. Although second-order conditions in terms of coderivative Hessians can,
in general, be far from the sharpest conditions for confirming local optimality, if only
that were the issue, our results show that they are sharp for confirming local optimality
together with stability. In the unconstrained optimization in Corollary 2.6, especially the
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tilt case with u suppressed, such a gap between stable and unstable second-order sufficient
conditions is absent, but it appears to prevail almost everywhere else.

Theorem 2.3 requires f to belong to a class of prox-regular functions. Proposition 2.2
underscores the breadth of this class. Still, one can ask whether the stability conclusions
might hold for an even larger class. The answer is essentially negative, however.

Theorem 2.7 (effective need for prox-regularity). Let x̄ be a locally optimal solution to

P(ū, v̄) that is fully stable and satisfies Q(x̄, ū). Then there is a proper, lsc function f̂

that has the prox-regularity ascribed to f in Theorem 2.3 and is locally equivalent to f for

purposes of optimization, in the following sense: For the problems P̂(u, v) obtained with

f̂ in place of f , the associated m̂δ and M̂δ for δ sufficiently small agree with mδ and Mδ

on a neighborhood of (ū, v̄). Indeed, one can take f̂(x, u) convex in x and such that, for

(u, v) near to (ū, v̄), if v ∈ ∂xf̂(x, u) then v ∈ ∂xf(x, u) and f̂(x, u) = f(x, u).

This theorem will be proved in §5 as well. The need for replacing f by a “locally
equivalent” function f̂ to get a converse result can be seen already from examples focused
on tilt stability. On IR2, let f(x, u) = |x| sin(1/x)+2|x| with f(0, u) = 0. The increasingly
wild oscillations prevent f from having the prox-regularity demanded in Theorem 2.3
relative to (x̄, ū) = (0, 0) and v̄ = 0. The function f̂(x, u) = |x| does have all the properties
though. (It is convex and therefore covered by Proposition 2.2.) For any δ > 0 and
(u, v) ∈ W = IR × (−1, 1) we have m̂δ(u, v) = mδ(u, v) = 0 and M̂δ(u, v) = Mδ(u, v) = 0.
Thus, f and f̂ are equivalent in the sense described in Theorem 2.7.

3. Prox-Regularity Under the Constraint Qualification

Laying the groundwork for the proof of Theorem 2.3, we show that the combination of
parametric prox-regularity with the constraint qualification Q(x̄, ū) produces even more
uniformity than has been explicitly built into Definition 2.1. The analysis revolves around
a form of “graphically localized Lipschitz continuity” of set-valued mappings which will
also be important later in the study of the mappings ∂xf and M but for now is utilized in
an epigraphical context.

A mapping S : IRm →→ IRp has the Aubin property at z̄ for w̄, an element of S(z̄), if
there are neighborhoods Z of z̄ and W of w̄ along with κ ≥ 0 such that

S(z′) ∩W ⊂ S(z) + κ|z′ − z|IB for all z, z′ ∈ Z. (3.1)

Here IB is the closed unit ball in IRp. This property, which Aubin called “pseudo-Lipschitz
continuity” in [4], reduces for single-valued S to Lipschitz continuity around z̄. A powerful
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criterion has been found by Mordukhovich [5], [12], [13]: As long as gphS is closed relative
to a neighborhood of (z̄, w̄), the Aubin property holds if and only if

z′ ∈ D∗S(z̄ | w̄)(0) =⇒ z′ = 0, (3.2)

where moreover the lowest limiting value at (z̄, w̄) of the moduli κ that work in (3.1)
has been characterized as the “norm” of the coderivative mapping D∗S(z̄ | w̄). (That
characterization will ultimately be the source of formula (2.16) in Theorem 2.3.) The
great advantage of the Mordukhovich criterion is that, because coderivatives of S arise from
normal vectors to gphS, it can be invoked in tandem with the calculus of coderivatives
that comes out of the calculus of normal vectors. See [6; Chap. 9] as well as [14].

The constraint qualification Q(x̄, ū) has an interpretation in this context in terms of
the epigraphs

epi fu = epi f(·, u) :=
{
(x, α) ∈ IRn × IR

∣∣ f(x, u) ≤ α
}
.

As shown in [6; 10.16], it amounts to the Mordukhovich criterion for the epigraphical
mapping E : u 7→ epi fu at ū for (x̄, f(x̄, ū)) and therefore to the Aubin property holding
there. (The graph of this mapping is closed because f is lsc.)

Proposition 3.1 (consequences of the basic constraint qualification). Under the con-

straint qualification Q(x̄, ū), there exist neighborhoods X1 of x̄ and U1 of ū along with

ε > 0 and κ ≥ 0 such that

x ∈ X1, u, u
′ ∈ U1

f(x, u) ≤ f(x̄, ū) + ε

}
=⇒ ∃x′ with

{
|x′ − x| ≤ κ|u′ − u|,

f(x′, u′) ≤ f(x, u) + κ|u′ − u|.
(3.3)

Proof. We have just observed that Q(x̄, ū) corresponds to having the Aubin property of
the set-valued mapping E : u 7→ epi fu hold at ū for (x̄, ᾱ), where ᾱ := f(x̄, ū), so the task
is to show that this yields (3.3).

With convenient adjustments of notation to fit the epigraphical setting, the Aubin
property in question can be identified with the existence of neighborhoods X1 of x̄ and U1

of ū along with ε > 0 and κ ≥ 0 such that, for all u, u′ ∈ U1, one has

[epi fu] ∩
(
[X1 × [ᾱ− ε, ᾱ+ ε]

)
⊂ [epi fu′ ] + κ|u′ − u|

(
IB × [−1, 1]

)
,

or in other words the implication

x ∈ X1

α ≥ f(x, u)

|α− ᾱ| ≤ ε

 =⇒ ∃(x′, α′) with


f(x′, u′) ≤ α′,

|x′ − x| ≤ κ|u′ − u|,

|α′ − α| ≤ κ|u′ − u|.

(3.4)
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Because f is lsc in this implication, we can arrange (by shrinking X1 and U1 if necessary)
that f(x, u) ≥ ᾱ − ε when (x, u) ∈ X1 × U1. Then only the inequality α ≤ ᾱ + ε has
force on the left. On the other hand, only the upper bound provided by the inequality
|α′ − α| ≤ κ|u′ − u| has force on the right. Thus, we can enhance (3.4) to

x ∈ X1

α ≥ f(x, u)

α ≤ ᾱ+ ε

 =⇒ ∃(x′, α′) with


f(x′, u′) ≤ α′,

|x′ − x| ≤ κ|u′ − u|,

α′ ≤ α+ κ|u′ − u|.

(3.5)

When (3.5) is invoked in the case of α = f(x, u), the x′ it produces has f(x′, u′) ≤
f(x, u) + κ|u′ − u|. Since (3.5) holds for arbitrary u, u′ ∈ U1, we have (3.3).

We use this now to bring out some important consequences of parametric prox-
regularity.

Proposition 3.2 (persistence of prox-regularity). Let the constraint qualification Q(x̄, ū)
hold with v̄ ∈ ∂xf(x̄, ū), and suppose that f(x, u) is continuously prox-regular in x at x̄ for

v̄ with compatible parameterization by u at ū. Then an open neighborhood X ×U × V of

(x̄, ū, v̄) can be found for which the uniform proximal subgradient property in (2.11) holds

and, in addition,

(a) f(x, u) is continuous as a function of (x, u, v) ∈ [X × U × V ] ∩ gph ∂xf ,

(b) gph ∂xf is closed relative to X × U × V .

In particular, then, one has for all (x̃, ũ, ṽ) ∈ [X × U × V ] ∩ gph ∂xf that f(x, u) is

continuously prox-regular in x at x̃ for ṽ with compatible parameterization by u at ũ.

Proof. Let X0, U0 and V0 be neighborhoods as in the definition of continuous prox-
regularity, so that (2.11) holds for them and a certain r. Let X1, U1, λ and κ have the
property in Proposition 3.1. Choose an open neighborhood X × U × V of (x̄, ū, v̄) such
that X × U × V ⊂ X0 × U0 × V0, X × U ⊂ X1 × U1, and

(x, u, v) ∈ [X × U × V ] ∩ gph ∂xf =⇒ f(x, u) < f(x̄, ū) + λ,

the latter being possible because f(x, u) is continuous at (x̄, ū) as a function of (x, u, v) ∈
[X × U × V ] ∩ gph ∂xf . Then (2.11) holds for the neighborhoods X, U and V , and (3.3)
can be invoked in the simplified form:

(x, u) ∈ X × U, u′ ∈ U

(x, u, v) ∈ gph ∂xf, v ∈ V

}
=⇒ ∃x′ with

{
|x′ − x| ≤ κ|u′ − u|,

f(x′, u′) ≤ f(x, u) + κ|u′ − u|.
(3.6)
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Consider any sequence of points (xν , uν , vν) ∈ [X × U × V ] ∩ gph ∂xf that converges
to a point (x̃, ũ, ṽ) ∈ [X × U × V ]. We have to demonstrate that f(xν , uν) → f(x̃, ũ) and
(x̃, ũ, ṽ) ∈ gph ∂xf .

We first apply (3.6) to x = x̃, u = ũ, and u′ = uν to obtain for each ν the existence of
x̃ν such that |x̃ν − x̃| ≤ κ|uν − ũ| and f(x̃ν , uν) ≤ f(x̃, ũ) + κ|uν − ũ|. Then x̃ν → x̃ and
f(x̃ν , uν) → f(x̃, ũ) (because f is lsc). Eventually x̃ν ∈ X, so that we have

f(x̃ν , uν) ≥ f(xν , uν) + 〈vν , x̃ν − xν〉 − r

2
|x̃ν − xν |2.

The second and third terms on the right tend to 0 as (xν , uν) → (x̃, ũ), so from knowing
that f(x̃ν , uν) → f(x̃, ũ) we may conclude that f(xν , uν) → f(x̃, ũ) (because f is lsc).
This establishes (a).

Next we consider any point x̂ ∈ X and apply (3.6) to x = x̂, u = ũ and u′ = uν

to get for each ν the existence of x̂ν such that |x̂ν − x̃| ≤ κ|uν − ũ| and f(x̂ν , uν) ≤
f(x̃, ũ) + κ|uν − ũ|. We have x̂ν → x̃ and f(x̂ν , uν) → f(x̂, ũ) (again because f is lsc).
Furthermore, we have from (2.11) that

f(x̂ν , uν) ≥ f(xν , uν) + 〈vν , x̂ν − xν〉 − r

2
|x̂ν − xν |2.

Limits are known for all the terms in this inequality, and in passing to them we obtain

f(x̂, ũ) ≥ f(x̃, ũ) + 〈ṽ, x̂− x̃〉 − r

2
|x̂− x̃|2.

This has been shown to hold for arbitrary x̂ inX, which is a neighborhood of x̃, so it follows
that ṽ is a regular subgradient of f(·, ũ) at x̃ and hence in particular that ṽ ∈ ∂xf(x̃, ũ).
This establishes (b).

Corollary 3.3 (nonparametric case). Suppose that a function g : IRn → IR is continuously

prox-regular at x̄ for v̄. Then an open neighborhood X×V of (x̄, v̄) can be found for which

the uniform proximal subgradient property in (2.2) holds and, in addition,

(a) g(x) is continuous as a function of (x, v) ∈ [X × V ] ∩ gph ∂g,

(b) gph ∂g is closed relative to X × V .

In particular, then, one has for all (x̃, ṽ) ∈ [X × V ] ∩ gph ∂g that g is continuously prox-

regular at x̃ for ṽ.

Proof. Here we take f(x, u) ≡ g(x).

Proposition 3.4 (subgradients under parametric prox-regularity). Under the hypothesis

of Proposition 3.2, there is a neighborhood of (x̄, ū, v̄) such that, as long as (x, u, v) lies in

this neighborhood, one has

v ∈ ∂xf(x, u) ⇐⇒ ∃ y with (v, y) ∈ ∂f(x, u). (3.7)
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Proof. Because Q(x̄, ū) holds, the constraint qualification Q(x, u) holds too when (x, u)
is close enough to (x̄, ū) with f(x, u) close enough to f(x̄, ū). (Otherwise a contradiction
can be reached by a simple argument based on the definition of ∂∞f(x̄, ū).) As part of
the continuous prox-regularity that is assumed, we know that when (x, u, v) approaches
(x̄, ū, v̄) within gph ∂xf , f(x, u) automatically approaches f(x̄, ū), so the proviso about
f(x, u) being close enough to f(x̄, ū) is superfluous.

The constraint qualification Q(x, u) guarantees that “⇒” holds in (3.7); see [6; 10.11].
For the converse, suppose that (v, y) ∈ ∂f(x, u) with (x, u, v) in an open neighborhood
X × U × V of (x̄, ū, v̄) of the kind in Proposition 3.2. Then by definition there is a
sequence of points (xν , uν , vν , yν) → (x, u, v, y) with f(xν , uν) → f(x, u) and (vν , yν) a
regular subgradient of f at (xν , uν). Then vν is a regular subgradient of f(·, uν) at xν

and in particular vν ∈ ∂xf(xν , uν). Eventually (xν , uν , vν) belongs to the neighborhood
X × U × V , and by appealing to (b) of Proposition 3.2 we see that the limit (x, u, v) still
lies in gph ∂xf . Thus, “⇐” holds in (3.7) when (x, u, v) ∈ X × U × V .

We finish off with a result about the behavior of the functions mδ and mappings Mδ

in (1.1), which will be needed later in the proof of Theorem 2.3.

Proposition 3.5 (convergence in local optimality). Suppose Mδ(ū, v̄) = {x̄} for some

δ > 0 and the constraint qualification Q(x̄, ū) is satisfied. Then mδ is Lipschitz continuous

around (ū, v̄), and for every ε > 0 there is a neighborhood W of (ū, v̄) such that

(u, v) ∈W =⇒ ∅ 6= Mδ(u, v) ⊂
{
x

∣∣ |x− x̄| < ε
}
.

Proof. In terms of the function

gδ(u, v, x) :=
{
f(x, u)− 〈v, x〉 if |x− x̄| ≤ δ,
∞ if |x− x̄| > δ,

we have mδ(u, v) = infx gδ(u, v, x) and Mδ(u, v) = argminx gδ(u, v, x). Here gδ is lsc and
proper on IRd×IRn×IRn, and for each (u, v) the level sets of the form

{
x

∣∣ gδ(u, v, x) ≤ α
}
,

α ∈ IR, are of course all contained in the ball
{
x

∣∣ |x− x̄| ≤ δ
}
. Further, we have

∂
∞
gδ(ū, v̄, x̄) =

{
(y, 0, w)

∣∣ (w, y) ∈ ∂∞f(x̄, ū)
}

by the calculus rule in [6; 8.8(c)], so that, from Q(x̄, ū), gδ has (y, z, 0) ∈ ∂∞gδ(ū, v̄, x̄)
only for (y, z) = (0, 0). On the basis of this constraint qualification we know that mδ is
Lipschitz continuous on some neighborhood of (ū, v̄); cf. [6; 10.13]. The rest then follows
from the fundamental theorem on parametric optimization in [6; 1.17].
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4. Coderivative Analysis of Subgradient Mappings

Our investigation shifts now to coderivatives of the mapping ∂xf and its partial inverse M
introduced in (2.6).

Proposition 4.1 (partial inverse mapping). The mapping M has its coderivatives related

to those of ∂xf by

(u′,−v′) ∈ D∗M(u, v |x)(−x′) ⇐⇒ (x′, u′) ∈ D∗(∂xf)(x, u |v)(v′). (4.1)

When gph ∂xf is closed locally around (x, u, v), the condition

(0, u′) ∈ D∗(∂xf)(x, u |v)(v′) =⇒ (u′, v′) = (0, 0) (4.2)

is necessary and sufficient for M to have the Aubin property at (u, v) for x.

Proof. By definition, (u′,−v′) ∈ D∗M(u, v |x)(−x′) means that (u′,−v′, x′) belongs to
Ngph M (u, v, x). Since the elements (u, v, x) of gphM correspond simply to the elements
(x, u, v) of gph ∂xf , this is the same as having (x′, u′,−v′) ∈ Ngph ∂xf (x, u, v). But that
means (x′, u′) ∈ D∗(∂xf)(x, u |v)(v′).

Local closedness of gph ∂xf around (x, u, v) corresponds to local closedness of gphM
around (u, v, x) and allows the Aubin property of M at (u, v) for x to be captured by the
Mordukhovich criterion: (u′,−v′) ∈ D∗M(u, v |x)(0) only for (u′,−v′) = (0, 0). When the
latter is translated through (4.1), it comes out as (4.2).

Corollary 4.2 (Aubin property of the partial inverse). Under the hypothesis of Theorem

2.3, conditions (a) and (b) in the statement of that theorem guarantee that M has the

Aubin property at (ū, v̄) for x̄.

Proof. The hypothesis in question guarantees through Proposition 3.2 that gph ∂xf is
closed locally around (x̄, ū, v̄). The issue then is whether (4.2) holds there. Let (0, u′) ∈
D∗(∂xf)(x̄, ū | v̄)(v′). From condition (a) of Theorem 2.3, we must have v′ = 0. But then
by condition (b) of Theorem 2.3, we must have u′ = 0. Thus, (4.2) is correct.

Proposition 4.3 (partial coderivatives). Consider in terms of fu = f(·, u) the set-valued

mapping G : IRd →→ IRn × IRn defined by

G(u) = gph ∂fu =
{
(x, v)

∣∣ (x, u, v) ∈ gph ∂xf
}
. (4.3)

When gph ∂xf is closed locally around (x̄, ū, v̄), condition (b) of Theorem 2.3 is equivalent

to G having the Aubin property at ū for (x̄, v̄). Furthermore, (b) ensures that for all

(x, u, v) ∈ gph ∂xf in some neighborhood of (x̄, ū, v̄), one has

∂2fu(x |v)(v′) ⊂
{
x′

∣∣ ∃u′ with (x′, u′) ∈ D∗(∂xf)(x, u |v)(v′)
}
. (4.4)
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Proof. The elements (u, x, v) of gphG correspond under permutation to the elements
(x, u, v) of gph ∂xf . From this we get

(x′, u′) ∈ D∗(∂xf)(x, u |v)(v′) ⇐⇒ (x′, u′,−v′) ∈ Ngph ∂xf (x, u, v)

⇐⇒ (u′, x′,−v′) ∈ Ngph G(u, x, v)

⇐⇒ u′ ∈ D∗G(u |x, v)(−x′, v′).

(4.5)

The local closedness of gph ∂xf around (x̄, ū, v̄) corresponds to the local closedness of
gphG around (ū, x̄, v̄). With such closedness, G has the Aubin property at ū for (x̄, v̄)
if and only if the Mordukhovich criterion is satisfied, namely that u′ ∈ D∗G(ū | x̄, v̄)(0, 0)
only for u′ = 0. This is identical under (4.5) to condition (b) of Theorem 2.3.

The Aubin property of G at ū for (x̄, v̄) entails the Aubin property at u for (x, v)
whenever (u, x, v) is near enough to (ū, x̄, v̄) in gphG. Thus, for all such (u, x, v) in gphG,
also within the neighborhood of (ū, x̄, v̄) where gphG is locally closed, the Mordukhovich
criterion is satisfied; we can write this as

(u′, 0, 0) ∈ Ngph G(u, x, v) =⇒ u′ = 0. (4.6)

Fix any such element of gphG, say (ũ, x̃, ṽ). By determining the normal vectors to the
set G(ũ) = gph ∂fũ at (x̃, ṽ), we can determine the coderivative mapping D∗(∂fũ)(x̃ | ṽ) =
∂2fũ(x̃ | ṽ). Observing that

G(ũ) =
{
(x, v)

∣∣F (x, v) ∈ gphG
}

for F : (x, v) 7→ (ũ, x, v), (4.7)

we apply the chain rule for normal vectors in [6; 6.14]. Because gphG is locally closed
around (ũ, x̃, ṽ), this chain rule is valid as long as the constraint qualification holds that

(u′, x′, v′) ∈ Ngph G(ũ, x̃, ṽ), ∇F (x̃, ṽ)∗(u′, x′, v′) = (0, 0) =⇒ (u′, x′, v′) = (0, 0, 0).

Trivially, though, ∇F (x̃, ṽ)∗(u′, x′, v′) = (0, 0) only when (x′, v′) = (0, 0), so this constraint
qualification comes out as (4.6) in the case of (u, x, v) = (ũ, x̃, ṽ) and thus is indeed satisfied.
The chain rule allows us to deduce from (4.7) that

NG(ũ)(x̃, ṽ) ⊂
{
(x,′′ v′′)

∣∣ ∃ (u′, x′, v′) ∈ Ngph G(ũ, x̃, ṽ)

with ∇F (x̃, ṽ)∗(u′, x′, v′) = (x,′′ v′′)
}

=
{
(x′, v′)

∣∣ ∃u′ with (u′, x′, v′) ∈ Ngph G(ũ, x̃, ṽ)
}
.

(4.8)

Noting that gphD∗(∂fũ)(x̃ | ṽ) consists of the pairs (v′, x′) with (x′,−v′) ∈ NG(ũ)(x̃, ṽ),
whereas gphD∗(∂xf)(x̃, ũ | ṽ) consists by (4.5) of all (v′, x′, u′) such that (u′, x′,−v′) ∈
Ngph G(ũ, x̃, ṽ), we obtain from (4.8) that (4.4) holds.

In support of the final proposition in this section, the following lemma will be crucial.
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Lemma 4.4 (positive definiteness estimate). Let g : IRn → IR be continuously prox-

regular at x̃ for ṽ and let ε > 0. If the inequality 〈x′, v′〉 ≥ ε|v′|2 holds for all (v′, x′) ∈
gph ∂2g(x̃, ṽ) such that x′ = λv′ for some λ ∈ IR, then it also holds without that restriction.

Proof. Consider any µ ∈ (0, ε). Let G = gph ∂g. Under our inequality assumption there
must be an open neighborhood X0 × V0 of (x̃, ṽ) such that

(x, v) ∈ [X0 × V0] ∩ gph ∂g, (λv′, v′) ∈ gph ∂2g(x |v), |v′| = 1 =⇒ λ ≥ µ, (4.9)

inasmuch as gph ∂2g(x |v) consists of the vectors (v′, x′) with (x′,−v′) ∈ Ngph ∂g(x, v), and
graph of the mapping Ngph ∂g is closed (by the general definition of normal cones).

We can suppose (by shrinking X0 and V0 if necessary) that X0×V0 lies within a neigh-
borhood X × V for which the continuous prox-regularity property in (2.2) is operational
and moreover, through Corollary 3.3, makes g continuously prox-regular at x for v when
(x, v) ∈ [X × V ] ∩ gph ∂g. Consider now within [X0 × V0] ∩ gph ∂g any point (x, v) with
the special property that the ∂g is proto-differentiable at x for v and the corresponding
derivative mapping D(∂g)(x |v) : IRn →→ IRn is generalized linear. (This property is known
actually to hold in an almost everywhere sense because continuous prox-regularity makes
gph ∂g be a graphically Lipschitzian manifold of dimension n in its localization relative to
X × V ; cf. [9; Prop. 4.8]. The points (x, v) in question are the “Rademacher points” of
gph ∂g near (x̃, ṽ). Proto-differentiability is the graphical counterpart to function differen-
tiability; see [6]. A mapping is generalized linear when its graph is a subspace.)

In this situation, three facts are at our disposal. First, according to a theorem
of Rockafellar and Zagrodny [15], the graph of D(∂g)(x |v) is included in the graph of
D∗(∂g)(x |v) = ∂2g(x |v), so that by (4.9) we have

(λv′, v′) ∈ gphD(∂g)(x |v), |v′| = 1 =⇒ λ ≥ µ, (4.10)

Second, because of the proto-differentiability, D(∂g)(x |v) is the subgradient mapping ∂h
for h = d2g(x |v), the second subderivative function associated with g at x for v; this
holds through prox-regularity as shown in [9; Cor. 6.2]. Third, the generalized linearity of
∂h corresponds to h being a generalized (purely) quadratic function: the sum of a purely
quadratic function on IRn and the indicator of a subspace. Thus, there is a subspace L of
IRn along with a symmetric, positive semidefinite matrix Q ∈ IRn×n such that

D(∂g)(x |v)(v′) =
{
Qv′ + L⊥ when v′ ∈ L,
∅ when v′ /∈ L.

(4.11)

In combining (4.11) with (4.10), we see that the eigenvalues λ of Q relative to L must
all satisfy λ ≥ µ. This tells us that the generalized linear mappingD(∂g)(x |v) is µ-strongly
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monotone. We invoke next the criterion in [9; Prop. 5.7]: because the mappingsD(∂g)(x |v)
of the special type just investigated are all µ-strongly monotone, the localization of ∂g that
we are working with is itself µ-strongly monotone.

A monotone mapping T has 〈x′, v′〉 ≥ 0 whenever x′ ∈ D∗T (x |v)(v′), as shown by
Poliquin and Rockafellar [8; Thm. 2.1]; therefore, a µ-monotone mapping T (for which
T −µI is monotone) has 〈x′, v′〉 ≥ µ|v′|2 whenever x′ ∈ D∗T (x |v)(v′). In particular, then,
in taking T to be our localization of ∂g, we see that

(x, v) ∈ [X0 × V0] ∩ gph ∂g, x′ ∈ ∂2g(x |v)(v′) =⇒ 〈x′, v′〉 ≥ µ|v′|2.

Applying this at (x, v) = (x̃, ṽ) and recalling that µ was an arbitrary value in (0, ε), we
reach the desired conclusion that 〈x′, v′〉 ≥ ε|v′|2 whenever x′ ∈ ∂2g(x̃ | ṽ)(v′).

Proposition 4.5 (uniform positive definiteness). Let the constraint qualification Q(x̄, ū)
hold with v̄ ∈ ∂xf(x̄, ū), and suppose that f(x, u) is continuously prox-regular in x at x̄

for v̄ with compatible parameterization by u at ū. If conditions (a) and (b) of Theorem

2.3 hold as well, there must actually exist a constant ε > 0 and a neighborhood X×U ×V
of (x̄, ū, v̄) for which, in terms of fu = f(·, u), one has

x′ ∈ ∂2fu(x |v)(v′)

(x, u, v) ∈ [X × U × V ] ∩ gph ∂xf

}
=⇒ 〈x′, v′〉 ≥ ε|v′|2. (4.12)

Conversely, if this property holds, then condition (a) of Theorem 2.3 must hold with

(x′, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(v′) =⇒ 〈x′, v′〉 ≥ ε|v′|2. (4.13)

Proof. Our hypothesis ensures through Proposition 3.2 that for all (x, u, v) near enough
to (x̄, ū, v̄) with v ∈ ∂fu(x) the function fu is continuously prox-regular at x for v. In
combining it with condition (b) of Theorem 2.3 and invoking Proposition 4.3, we get the
coderivative inclusion in (4.4) to hold locally. Suppose now that condition (a) of Theorem
2.3 is satisfied along with condition (b). To justify the locally uniform positive definiteness
property claimed in that case, we will rely on Lemma 4.4, according to which we can obtain
(4.12) by demonstrating that

λz ∈ ∂2fu(x |v)(z)

(x, u, v) ∈ [X × U × V ] ∩ gph ∂xf

}
=⇒ λ ≥ ε.

Through the inclusion in (4.4), it suffices to verify the existence of ε > 0 such that

(λz,w) ∈ D∗(∂xf)(x, u |v)(z)

(x, u, v) ∈ [X × U × V ] ∩ gph ∂xf

}
=⇒ λ ≥ ε. (4.14)
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Suppose there is no such ε. Then there must exist sequences (xν , uν , vν) → (x̄, ū, v̄)
in gph ∂xf along with scalars λν ↘0 and vectors zν and wν with zν 6= 0, such that
(λνzν , wν) ∈ D∗(∂xf)(xν , uν |vν)(zν). The latter means by definition that (λνzν , wν ,−zν)
is a normal vector to gph ∂xf at (xν , uν , vν). Rescaling, we can make |zν | = 1.

By passing to subsequences, we can suppose zν converges to some z with |z| = 1
and, as for wν , reduce to two cases: either wν converges to some w or 0 < |wν | → ∞.
In the first case we have in the limit that (0, w,−z) is normal to gph ∂xf at (x̄, ū, v̄), so
(0, w) ∈ D∗(∂xf)(x̄, ū | v̄)(z). But that is excluded by condition (a) of Theorem 2.3. In the
second case, let ŵν = wν/|wν | and ẑν = zν/|wν |. Then ẑν → 0, whereas, by passing once
more to subsequences if necessary, we can suppose ŵν converges to some ŵ with |ŵ| = 1.
We have (λν ẑν , ŵν ,−ẑν) normal to gph ∂xf at (xν , uν , vν), and hence in the limit that
(0, ŵ, 0) is normal to gph ∂xf at (x̄, ū, v̄). Then (0, ŵ) ∈ D∗(∂xf)(x̄, ū | v̄)(0), but that is
impossible under condition (b) of Theorem 2.3.

Turning now to the converse claim at the end of the proposition, we drop the assump-
tion that (a) and (b) of Theorem 2.3 hold and suppose instead that (4.12) is satisfied by
ε and a neighborhood X × U × V . Let (x′, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(v′), so that (x′, u′,−v′)
is a normal vector to gph ∂xf at (x̄, ū, v̄). By definition, then, there exist sequences
(x̄ν , ūν , v̄ν) → (x̄, ū, v̄) in X×U×V and (x̃ν , ũν , ṽν) → (x′, u′, v′) in which (x̃ν , ũν ,−ṽν) is
a regular normal vector to gph ∂xf at (x̄ν , ūν , v̄ν). Since gph ∂fu is merely the cross section
of gph ∂xf obtained by fixing the u argument, (x̃ν ,−ṽν) is then a regular normal vector
to gph ∂fūν at (x̄ν , v̄ν). This implies x̃ν ∈ D∗(∂fūν )(x̄ν | v̄ν)(ṽν) = ∂2fūν (x̄ν | v̄ν)(ṽν), so
〈x̃ν , ṽν〉 ≥ ε|ṽν |2 by (4.12). Taking the limit we get the inequality in (4.13), as desired.

5. Proof of the Main Result

Two auxiliary facts still have to be established in order to set the stage completely for the
proof of necessity and sufficiency in Theorem 2.3. We first deal with one needed in the
sufficiency argument. We denote by IB(v, λ) the closed ball of radius λ around v.

Lemma 5.1 (subgradient inversion estimate). Let g : IRn → IR be convex and let O be

an open convex set on which g is finite and strongly convex with modulus µ. Suppose

v0 ∈ O and w0 ∈ ∂g(v0), and let λ > 0 be small enough that the IB(v0, λ) lies in O. Then

for every w ∈ IB(w0, λµ) there is a unique v ∈ IB(v0, λ) with w ∈ ∂g(v). Furthermore, the

single-valued mapping w 7→ v defined in this way is Lipschitz continuous on IB(w0, λµ)
with constant 1/µ.

Proof. Fix any λ0 > λ small enough that IB(v0, λ0) still lies in O. Define g0(v) to be
g(v0 + v) − 〈w0, v〉 when v ∈ λ0IB but ∞ otherwise. Then ∂g0(v) = ∂g(v0 + v) − w0 for
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v ∈ λIB and in particular 0 ∈ ∂g0(0). It will suffice to prove that for every w ∈ µλIB there
is a unique v ∈ λIB with w ∈ ∂g0(v), and that the associated mapping w 7→ v has the
Lipschitz property claimed.

Because g is continuous on O by virtue of its convexity, g0 is lsc on IRn as well as
µ-strongly convex on its effective domain λ0IB. Then the subgradient mapping ∂g0 is
µ-strongly monotone, and the conjugate convex function g∗0 is differentiable on IRn, its
gradient mapping being globally Lipschitz continuous with constant 1/µ; see [6; 11.13,
12.60]. This makes ∂g∗0 reduce to ∇g∗0 , and since ∂g∗0 = (∂g0)−1 in general, it follows that
we have v = ∇g∗0(w) if and only if w ∈ ∂g0(v).

Our task reduces to demonstrating that in these circumstances we have v ∈ λIB when
w ∈ λµIB. We know in general from the theory of conjugate functions that

∂g∗0(w) = argminv

{
g0(v)− 〈v, w〉

}
= argminv

{
g(v0 + v)− 〈v, w0 + w〉+ δλ0IB(v)

}
.

The rules of subgradient calculus tell us that the minimum is attained at v if and only if
0 ∈ ∂g(v0 + v)− [w0 + w] +Nλ0IB(v). Therefore, v = ∇g∗0(w) if and only if v ∈ λ0IB and
there exists θ ≥ 0 such that w0 +w− θv ∈ ∂g(v0 + v), in which case w− θv ∈ ∂g0(v). Here
necessarily θ = 0 unless |v| = λ0. Thus we can finish off by showing that if w−θv ∈ ∂g0(v)
and |v| = λ0, then |w| > µλ.

We accomplish this by appealing to the fact that ∂g0 is µ-strongly monotone with
0 ∈ ∂g0(0). In combination with the relation w−θv ∈ ∂g0(v) this yields 〈w−θv, v〉 ≥ µ|v|2,
hence 〈w, v〉 ≥ (µ+ θ)|v|2. That implies |w| ≥ (µ+ θ)|v| = (µ+ θ)|λ0| > µλ.

Proof of sufficiency in Theorem 2.3. Assume the hypothesis of Theorem 2.3 along
with conditions (a) and (b). Full stability will be demonstrated, and the assertion about
Mδ(u, v) equaling M(u, v) will be obtained as a by-product.

Our assumptions yield the uniform positive definiteness property in Proposition 4.5.
In particular, in order to get started, we observe that this implies for the function fū that

x′ ∈ ∂2fū(x̄ | v̄)(v′), v′ 6= 0 =⇒ 〈v′, x′〉 > 0.

Since fū is continuously prox-regular at x̄ for v̄ in consequence of the parametric continuous
prox-regularity of f , we have everything in place to apply the main result of Poliquin and
Rockafellar in [8] and conclude that we at least have tilt stability. All that we really need
from this, however, is the fact that, for δ > 0 sufficiently small, we have Mδ(ū, v̄) = {x̄}.
Then we can invoke Proposition 3.5 in tandem with (2.7) to see that, for some neighborhood
W of (ū, v̄), we have mδ Lipschitz continuous on W and

∅ 6= Mδ(u, v) = Mδ(u, v) ∩
{
x

∣∣ |x− x̄| < δ
}

⊂ M(u, v) ∩
{
x

∣∣ |x− x̄| < δ
}

for all (u, v) ∈W.
(5.1)
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We know from Corollary 4.2, on the other hand, that M has the Aubin property at (ū, v̄)
for x̄. The Lipschitz modulus of M at (ū, v̄) for x̄ (in the set-valued sense of the Aubin
property—see [6; 9.36]) is given then by the “norm” |D∗M(ū, v̄)|+ in [6; 9.40]. By virtue
of the equivalence in (4.1), and this “norm” value can be expressed as the max on the right
side of (2.16).

Thus, if we can prove that the mapping (u, v) 7→M(u, v)∩
{
x

∣∣ |x− x̄| < δ
}

is single-
valued around (ū, v̄), it will follow that, on some neighborhood of (ū, v̄), this single-valued
mapping is Lipschitz continuous and agrees with Mδ, as claimed. Furthermore, we will
have the formula in (2.16) for the Lipschitz modulus of Mδ at (ū, v̄), and be done.

Everything therefore hinges on establishing this single-valuedness. From [8], as already
noted, we already have it forM(ū, v) as a function of v around v̄. It might seem an easy step
to go from that to the local single-valuedness of M(u, v) in v for parameter vectors u near
ū, using the fact the functions fu, like fū, exhibit prox-regularity locally by Proposition
3.2, together with the fact that the coderivative Hessians associated with these functions
are positive definite by Proposition 4.5. At best, though, we could only get from such
an argument a separate domain of single-valuedness of M(u, v) in v for each u, whereas
we require that these domains come together as a neighborhood of (ū, v̄) in (u, v) jointly.
That makes everything much more complicated.

Let X × U × V be a bounded open neighborhood of (x̄, ū, v̄) small enough to ensure
the properties in Proposition 3.2 (for a certain prox-regularity parameter r ≥ 0) and also
the uniform positive definiteness in Proposition 4.5. Suppose further that U × V is small
enough that it lies in the neighborhood W where (5.1) holds. Fix any s > r and let

f̄(x, u) :=
{
f(x, u) if |x− x̄| ≤ δ,
∞ if |x− x̄| > δ,

k(x, u, v) := f̄(x, u)− 〈v, x〉+ (s/2)|x− x̄|2.
(5.2)

Further, in terms of this define

ϕ(u, v) := infx k(x, u, v), Φ(u, v) := argminx k(x, u, v). (5.3)

Our first objective is to show by techniques of variational analysis that ϕ is Lipschitz
continuous on a neighborhood of (ū, v̄).

To this end we note first that when (u, v) ∈ U × V there exists x with k(x, u, v) <∞;
indeed, any x ∈ Mδ(u, v) has this property, since (5.1) holds and U × V ⊂ W . Therefore
ϕ < ∞ on U × V . On the other hand, k is lsc and we have for each α ∈ IR that the
set

{
(v, u, x)

∣∣ (v, u) ∈ V × U, k(v, u, x) ≤ α
}

is bounded. This guarantees by the basic
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theorem on parametric optimization in [6; 1.17] that ϕ is lsc on U × V with ϕ > −∞ and

Φ(u, v) 6= ∅ when (u, v) ∈ U × V, where Φ(ū, v̄) = {x̄}. (5.4)

Moreover we have then from [6; 10.13] that

∂ϕ(u, v) ⊂
{
(y, w)

∣∣ ∃x ∈ Φ(u, v) with (0, y, w) ∈ ∂k(x, u, v)
}
,

∂
∞
ϕ(u, v) ⊂

{
(y, w)

∣∣ ∃x ∈ Φ(v, u) with (0, y, w) ∈ ∂∞k(x, u, v)
}
,

(5.5)

where we calculate via [6; 8.8(c)] that

(0, y, w) ∈ ∂k(x, u, v) ⇐⇒ (0, y, w) ∈ (∂f̄(x, u), 0) + (s[x− x̄]− v, 0,−x)

⇐⇒ (v − s[x− x̄], y) ∈ ∂f̄(x, u) and w = −x,

(0, y, w) ∈ ∂∞k(x, u, v) ⇐⇒ (0, y) ∈ ∂∞f̄(x, u) and w = 0.

(5.6)

Applying the last formula to (ū, v̄) and observing that ∂∞f̄(x̄, ū) = ∂∞f(x̄, ū) because
Φ(ū, v̄) = {x̄}, we see through the constraint qualification Q(x̄, ū) that the only choice of
(y, w) satisfying (0, y, w) ∈ ∂∞k(x̄, ū, v̄) is (y, w) = (0, 0). The second formula in (5.5) then
yields ∂∞ϕ(ū, v̄) = (0, 0). A function is Lipschitz continuous on a neighborhood of any
point where it is finite, lsc, has no nonzero horizon subgradient [6; 9.13], so we conclude
that ϕ is Lipschitz continuous around (ū, v̄).

Continuity of ϕ at (ū, v̄) implies continuity of the set-valued mapping Φ at (ū, v̄),
where it is single-valued; see [6; 1.17(b)]. Thus, for some open neighborhood U0 × V0 of
(v̄, ū) within U × V , which can be taken to be convex, we have

Φ(u, v) ⊂
{
x

∣∣ |x− x̄| < δ
}

when (u, v) ∈ U0 × V0. (5.7)

By choosing U0× V0 even smaller, we can arrange to have the additional property, needed
below, that

x ∈ Φ(u, v) =⇒ x ∈ X, v − s[x− x̄] ∈ V. (5.8)

Under (5.7), ∂f̄(x, u) reduces to ∂f(x, u) in (5.6), and we obtain then from (5.5) that

∂ϕ(u, v) ⊂
{
(y,−x)

∣∣x ∈ Φ(v, u), (v, y) ∈ ∂f(x, u) + (s[x− x̄], 0)
}

when (u, v) ∈ U0 × V0.
(5.9)

The Lipschitz continuity of ϕ on U0 × V0 implies that ∂∞ϕ(u, v) = {(0, 0)} for (u, v) ∈
U0 × V0 [6; 9.13] and allows us to apply the partial subgradient rule in [6; 10.11] to see
that ∅ 6= ∂vϕ(u, v) ⊂

{
w

∣∣ ∃ y with (y, w) ∈ ∂ϕ(u, v)
}

and get then from (5.9) that

∂vϕ(u, v) ⊂
{
− x

∣∣x ∈ Φ(u, v)
}

when (u, v) ∈ U0 × V0. (5.10)
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Next we determine what it means for x to belong to Φ(u, v) when (u, v) ∈ U0 × V0.
Because of (5.7), the subgradient optimality condition for x to furnish the minimum in
(5.3) takes the form of requiring 0 ∈ ∂xf(x, u)− v + s[x− x̄]. Hence

Φ(u, v) ⊂
{
x

∣∣ v − s[x− x̄] ∈ ∂xf(x, u)
}

when (u, v) ∈ U0 × V0. (5.11)

It will be demonstrated that this makes Φ be single-valued. Fix any (u, v) ∈ U0 × V0 and
suppose that x, x′ ∈ Φ(v, u). In particular we have (x, u, v−s[x−x̄]) and (x′, u, v−s[x′−x̄])
in X × U × V by (5.8) and therefore by prox-regularity

f(x′, u) ≥ f(x, u) + 〈v − s[x− x̄], x′ − x〉 − r

2
|x′ − x|2,

f(x, u) ≥ f(x′, u) + 〈v − s[x′ − x̄], x− x′〉 − r

2
|x′ − x|2,

from which it follows (by adding the two inequalities) that 0 ≥ (s − r)|x′ − x|2. Thus
x′ = x (inasmuch as s > r), and the single-valuedness of Φ is confirmed.

The single-valuedness of Φ on U0 × V0 produces the single-valuedness of the mapping
∂vϕ on that set by (5.10) and reveals that for each u ∈ U0 the function ϕu = ϕ(·, u) is
strictly differentiable with respect to v ∈ V0 [6; 9.18], in fact with gradient ∇ϕu(u, v) = −x
for the unique x ∈ Φ(u, v). Strict differentiability at every point of an open set is equivalent
to continuous differentiability on that set [6; 9.19].

The achievement so far can be summarized as follows in terms of ϕ and its “slices”
ϕu. We have an open neighborhood U0 × V0 of (v̄, ū) on which ϕ is finite and Lipschitz
continuous and such that, for each u ∈ U0, ϕu is continuously differentiable on V0 with

−∇ϕu(v) = unique x ∈ Φ(u, v)

= unique x with |x− x̄| < δ, v − s[x− x̄] ∈ ∂fu(x).
(5.12)

In particular, −∇ϕū(v̄) = x̄.

Keeping u as an arbitrary element of U0, let Fu(v) = −∇ϕu(v) on V0 for simplicity.
Then Fū(v̄) = x̄ and Fu is a continuous, single-valued mapping from V0 to IRn with its
graph related to that of ∂fu through (5.12) by

(v,x) ∈ gphFu ⇐⇒ (v, x) ∈ Ω, L(v, x) ∈ gph fu, where

Ω = V0 ×
{
x

∣∣ |x− x̄| < δ
}
, L(v, x) =

(
x, v − s[x− x̄]

)
.

(5.13)

The affine mapping L is invertible and gives a “change of coordinates” through which
normal cones to gphFu can be identified with normal cones to gph ∂fu; by way of the rule
in [6; 6.7] we obtain

(v′,−x′) ∈ Ngph Fu
(v, x) ⇐⇒ (sv′ − x′, v′) ∈ Ngph ∂fu

(
x, v − s[x− x̄]

)
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and can write this in coderivative form as

v′ ∈ D∗Fu(v |x)(x′) ⇐⇒ sv′ − x′ ∈ D∗(∂fu)(x |w)(−v′) for w = v − s[x− x̄]. (5.14)

Appealing now to the fact that the pairs (v, x) in this situation have x ∈ X and w ∈ V by
(5.7), we make use of the uniform positive definiteness of D∗(∂fu)(x |w) for such (x,w) (as
we arranged by making our neighborhoods be such that (4.12) holds) to see from (5.14)
that

v′ ∈ D∗Fu(v |x)(x′) =⇒ 〈sv′ − x′,−v′〉 ≥ ε| − v′|2

=⇒ 〈−x′,−v′〉 ≥ s|v′|2 + ε|v′|2

=⇒ |x′||v′| ≥ (s+ ε)|v′|2 =⇒ |v′| ≤ (s+ ε)−1|x′|.

This inequality on the coderivatives of Fu guarantees, in the face of the stipulated convexity
of V0, that Fu itself is Lipschitz continuous on V0 with constant (s + ε)−1. That is an
immediate outcome of the calculus of the Lipschitz modulus in [6; 9.31, 9.38, 9.40] as
specialized to the case of a single-valued mapping like Fu.

We now introduce on V0 the mapping Gu : v 7→ v− s[Fu(v)− x̄], noting that Gu(v) =
∇vψ(u, v) for the function ψ : (u, v) 7→ 1

2 |v|2+sϕ(u, v)+s〈v, x̄〉. The choice of this mapping
is motivated by the fact that w = Gu(v) if and only if w = v−s[x−x̄] for the unique x such
that |x−x̄| < δ and v−s[x−x̄] ∈ ∂fu(x). Then obviously w ∈ ∂fu(x), so that x ∈M(u,w).
In particular we have Gū(v̄) = v̄. If we can determine a neighborhood V1 of v̄ along with
a neighborhood U1 of ū such that for each (u,w) ∈ U1 × V1 there is a unique v ∈ V0 with
Gu(v) = w, we will be able to conclude that for such (u,w) there is a unique x ∈M(u,w)
with |x− x̄| < δ. That will confirm that the mapping (u,w) 7→M(u,w)∩

{
x

∣∣ |s− x̄| < δ
}

is single-valued on U1 × V1, and we will be finished.

Our key to this final stage will be Lemma 5.1. As preparation for using it, we demon-
strate that the gradient mapping Gu is strongly monotone: for v, v′ ∈ V0 we have〈

Gu(v′)−Gu(v), v′ − v
〉

=
〈
v′ − sFu(v′) + sx̄− v + sFu(v)− sx̄, v′ − v

〉
= |v′ − v|2 − s

〈
Fu(v′)− Fu(v), v′ − v

〉
≥ |v′ − v|2 − s|Fu(v′)− Fu(v)||v′ − v|

≥ |v′ − v|2 − s(s+ ε)−1|v′ − v|2 = ε(s+ ε)−1|v′ − v|2.

This monotonicity implies that ψ(u, v) is µ-strongly convex in v ∈ V0 with modulus µ =
ε(s + ε)−1. Since ψ(u, v) is continuous in (u, v) ∈ U0 × V0 (it inherits this from ϕ), the
vector Gu(v) = ∇vψ(u, v) depends continuously on (u, v) ∈ U0 × V0 as well [16; 25.7].
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Take λ > 0 small enough that IB(v̄, 2λ) ⊂ V0. Let gu(v) = ψ(u, v) if v ∈ IB(v̄, 2λ)
but gu(v) = ∞ otherwise. Then gu is convex as a function on IRn and agrees with ψ(u, ·)
on the open set Ou =

{
v

∣∣ |v − v̄| < 2λ
}
. There, gu is strongly convex with modulus µ,

and its gradient mapping is Gu; the unique subgradient w ∈ ∂gu(v) is w = Gu(v) when
v ∈ Ou. By virtue of Lemma 5.1, there exists then for each w ∈ IB(Gu(v̄), λµ) a unique
v ∈ IB(v̄, λ) with w = Gu(v).

All that remains is to observe that by choosing U1 to be a small enough neighbor-
hood of ū within U0 we can obtain (through the continuous dependence of Gu(v̄) on u)
the existence of a neighborhood V1 of v̄ within V0 such that, for all u ∈ U1 we have
IB(Gu(v̄), λµ) ⊃ V1.

In moving on to the necessity in Theorem 2.3, we will have to have help from a different
auxiliary result.

Lemma 5.2 (dual criterion for localized strong convexity). Let h : IRn → IR be a proper,

lsc, convex function whose conjugate h∗ is differentiable on a certain open convex set

O ⊂ IRn, moreover with its gradient mapping ∇h∗ : O → IRn Lipschitz continuous on O

with constant 1/σ (for some σ > 0). Let λ > 0 and Oλ =
{
v

∣∣ IB(v, λ) ⊂ O
}
. Then

h(x′) ≥ h(x) + 〈v, x′ − x〉+
σ

2
|x′ − x|2 if v ∈ ∂h(x) ∩Oλ, |x′ − x| ≤ λ

σ
, (5.15)

and therefore also

〈x′ − x, v′ − v〉 ≥ σ|x′ − x|2 whenever

{
v ∈ ∂h(x), v′ ∈ ∂h(x′),
v, v′ ∈ Oλ, |x′ − x| ≤ λ/σ.

(5.16)

Proof. For any v, v′ ∈ O we have h∗(v′)− h∗(v) =
∫ 1

0
〈∇h∗(v + t[v′ − v]), v′ − v〉dt. The

estimate 〈∇h∗(v + t[v′ − v]), v′ − v〉 ≤ 〈∇h∗(v), v′ − v〉 + (t/σ)|v′ − v|2 holds under our
assumptions, so the integral gives us

h∗(v′)− h∗(v) ≤ 〈∇h∗(v), v′ − v〉+
1
2σ
|v′ − v|2.

Therefore, in terms of the indicator function δλIB of the closed λ-ball around 0 and the
function j(w) = 1

2 |w|2, we have for any choice of v ∈ Oλ that

h∗(v′) ≤ k(v′ − v) for all v′ ∈ IRn, where

k(w) := h∗(v) + 〈∇h∗(v), w〉+ σ−1j(w) + δλIB(w).
(5.17)

Fix v ∈ Oλ and take conjugates of both sides of (5.17) as convex functions of v′, using x′

as the variable to describe the conjugate functions. That produces the inequality

h∗∗(x′) ≥ k∗(x′) + 〈v, x′〉 for all x′ ∈ IRn. (5.18)
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Here h∗∗ = h because h is lsc, proper and convex, and k∗ calculates to

k∗(x′) = −h∗(v) +
(
σ−1j + δλIB

)∗(
x′ −∇h∗(v)

)
.

The function conjugate to σ−1j is σj and the function conjugate to δλIB is λ| · |, and
consequently

(
σ−1j + δλIB

)∗ = σj λ| · |, with “ ” denoting the operation of epi-addition
(inf-convolution):

(
σj λ| · |

)
(u) = inf

u′

{
σj(u′) + λ|u− u′|

}
=

{
σj(u) when |u| ≤ λ/σ,
λ(σ−1 + |u|) when |u| ≥ λ/σ. (5.19)

Let x = ∇h∗(v); this relation is the same as x ∈ ∂h∗(v) when h∗ is differentiable at v
and hence is equivalent also to v ∈ ∂h(x) as well as to h(x) + h∗(v) = 〈x, v〉 (by convex
analysis; cf. [6; 11.3]). We obtain from (5.18) and our calculations that

h(x′) ≥ h(x) + 〈v, x′ − x〉+
(
σj λ| · |

)
(x′ − x) for all x′ ∈ IRn.

This yields (5.15) through (5.19). By symmetry, of course, we also have

h(x) ≥ h(x′) + 〈v′, x− x′〉+
σ

2
|x− x′|2 if v′ ∈ ∂h(x′) ∩Oλ, |x− x′| ≤ λ

σ
.

In combining this inequality with the one in (5.15) we obtain (5.16).

Proof of necessity in Theorem 2.3. The hypothesis furnishes for us a neighborhood
X × U × V of (x̄, ū, v̄) for which the properties in Proposition 3.2 hold. An additional
assumption now is that, for some δ > 0 sufficiently small, the mapping Mδ is single-
valued and Lipschitz continuous around (ū, v̄), its value at (ū, v̄) being x̄. Without loss of
generality we can suppose these properties hold for Mδ on U × V , and that

Mδ(u, v) ∈
{
x

∣∣ |x− x̄| < δ
}
⊂ X for (u, v) ∈ U × V. (5.20)

We can also arrange that (5.1) holds for W = U × V , through Proposition 3.5 and (2.7).

Define f̄ , k, ϕ and Φ as in (5.2) and (5.3) but with s = 0, so ϕ = mδ and Φ = Mδ.
The subgradient calculus used in the proof of sufficiency after those definitions remains
valid and reveals that ϕ, which is Lipschitz continuous on an open convex neighborhood
U0 × V0, say, of (ū, v̄) in U × V , exhibits as instances of (5.10) and (5.11) the relations

∂vϕ(u, v) = −Mδ(u, v),

Mδ(u, v) ∈
{
x

∣∣ v ∈ ∂xf(x, u)
}

= M(u, v).
(5.21)
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The first of these implies moreover that for each u ∈ U0 the function ϕu = ϕ(u, ·) is
continuously differentiable on V0 with gradient ∇ϕu(v) = −Mδ(u, v). In fact our Lipschitz
assumption on Mδ gives us a constant κ > 0 such that for each u ∈ U0 the mapping ∇ϕu

is Lipschitz continuous on V0 with constant κ.

Let gu = −ϕu, so that gu(v) = supx

{
〈v, x〉 − f̄(x, u)

}
, or in other words, gu is

conjugate to f̄u under the Legendre-Fenchel transform. In particular, gu is a proper, lsc,
convex function on IRn that is differentiable on V0 with ∇gu(v) = Mδ(u, v). Let hu be
conjugate in turn to gu. Then hu = g∗u = f̄∗∗u and gu = h∗u = f̄∗u , and we have by the usual
relation between subgradients of conjugate convex functions that v ∈ ∂hu(x) if and only
if x ∈ ∂gu(v), so that

v ∈ ∂hu(x) ⇐⇒ x = ∇gu(v) = Mδ(u, v), as long as u ∈ U0, v ∈ V0. (5.22)

We apply Lemma 5.2 now to hu and its conjugate function gu on the set O = V0 with
1/σ = κ. Let λ > 0 be small enough that IB(v̄, λ) ⊂ V0, so the set Oλ =

{
v

∣∣ IB(v̄, λ) ⊂ V0

}
is an open neighborhood of v̄. Then (5.16) holds for hu, where by (5.24) the relations
v ∈ ∂h(x) and v′ ∈ ∂h(x′) can be written as x = Mδ(u, v) and x′ = Mδ(u, v′).

Choose X1 to be a neighborhood of x̄ within X so small that |x′ − x| ≤ λ/σ when
x, x′ ∈ X1. Let U1 × V1 be a neighborhood of (ū, v̄) within U0 × Oλ small enough that
(u, v) ∈ U1 × V1 implies Mδ(u, v) ∈ X1. Then (5.16) yields the inequality

〈x′ − x, v′ − v〉 ≥ σ|x′ − x|2 when
{
x = Mδ(u, v), x′ = Mδ(u, v′),
u ∈ U1, v, v

′ ∈ V1.
(5.23)

In terms of the mapping Tu obtained by restricting Mδ(u, ·) to V1, (5.23) says that T−1
u is

strongly monotone with constant σ. Let Su be the mapping whose graph is the intersection
of gphM(u, ·) with V1 ×

{
x

∣∣ |x− x̄| < δ
}
, so that S−1

u is the mapping whose graph is the
intersection of gph ∂fu with

{
x

∣∣ |x − x̄| < δ
}
× V1. We have gphTu ⊂ gphSu by (5.20)

and the second relation in (5.21), hence also T−1
u (x) ⊂ S−1

u (x) ⊂ ∂fu(x) for all x.

For the constant r in the prox-regularity of f , we know that the mappings ∂fu are
monotone when u ∈ U1. Let s > r and consider the mappings T−1

u + sI and S−1
u + sI. As

long as u ∈ U1, both of these are strongly monotone, the first with constant σ+ s and the
second surely with constant s− r. Hence the inverses (T−1

u + sI)−1 and (S−1
u + sI)−1 are

single-valued on their domains. Because gphT−1
u ⊂ gphS−1

u , we have gph(T−1
u + sI)−1 ⊂

gph(S−1
u + sI)−1, so it follows that

x ∈ (T−1
u + sI)−1(z) =⇒ (T−1

u + sI)−1(z) = (S−1
u + sI)−1(z) = {x}. (5.24)
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Expressing z in the form v + sx, we find that this means

x ∈ (T−1
u + sI)−1(v + sx) ⇐⇒ v + sx ∈ (T−1

u + sI)(x) ⇐⇒ x ∈ Tu(v),

and similarly with Su substituted for Tu. Thus, (5.24) asserts that whenever x ∈ Tu(v) we
have Tu(v) = Su(v) = {x}. This has been established for arbitrary u ∈ U1, so in recalling
the definitions of Tu and Su we are able to conclude that

M(u, v) ∩
{
x

∣∣ |x− x̄| < δ
}

= Mδ(u, v) for all (u, v) ∈ U1 × V1. (5.25)

This localization of M therefore inherits the Lipschitz continuity of Mδ. Hence in
particular the Aubin property holds for M at (ū, v̄) for x̄. That implies by Proposition
4.1 that condition (b) of Theorem 2.3 must hold. Furthermore, in terms of the inverse
mappings, (5.25) states that gphTu =

[{
x

∣∣ |x − x̄| < δ
}
× V1

]
∩ gph ∂fu when u ∈ U1.

This reveals that the coderivatives of these truncated mappings must coincide: DTu(x |v) =
D∗(∂fu)(x |v) = ∂2fu(x |v) at the common graph points (x, v). Because Tu is strongly
monotone with constant σ we have 〈x′, v′〉 ≥ σ|v′|2 for x′ ∈ DTu(x |v)(v′), hence likewise

〈x′, v′〉 ≥ σ|v′|2 for x′ ∈ ∂2fu(x |v)(v′) when v ∈ ∂fu(x) = ∂xf(x, u),

provided that (u, v) ∈ U1 × V1. That guarantees through the converse part of Proposition
4.5 that the positive definiteness condition (a) holds in Theorem 2.3.

Proof of Theorem 2.7. This is really just an extension of the proof of necessity in
Theorem 2.3. That proof utilized the function f̄ in (5.2) and, in terms of f̄u = f̄(·, u), in-
troduced the conjugate functions gu = f̄∗ = −mδ(u, ·) and hu = g∗u = f̄∗∗u . The conjugacy
relations imply in turn that h∗u = gu and also that hu(x) = ∞ when |x − x̄| > δ, since
f̄u(x) has this property by definition. Hence

gu(v) = sup
x∈IRn

{
〈v, x〉 − hu(x)

}
= sup
|x−x̄|≤δ

{
〈v, x〉 − hu(x)

}
, (5.26)

where the maximum is attained at x if and only if v ∈ ∂hu(x).

Take f̂(x, u) = hu(x). Then ∂xf̂(x, u) = ∂hu(x), and since gu(v) = −mδ(u, v) the
conjugacy formula hu(x) = supv

{
〈v, x〉 − gu(x)

}
converts to

f̂(x, u) = supv

{
〈v, x〉+mδ(u, v)

}
, (5.27)

while from (5.26) we get

inf
|x−x̄|≤δ

{
f̂(x, u)− 〈v, x〉

}
= mδ(u, v),

argmin
|x−x̄|≤δ

{
f̂(x, u)− 〈v, x〉

}
=

{
x

∣∣ v ∈ ∂xf̂(x, u)
}
.

(5.28)
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For the problems P̂(u, v), the expressions on the left of (5.28) are m̂δ(u, v) and M̂δ(u, v).
On the other hand, according to (5.22), the right side of the second equation in (5.28) gives
Mδ(u, v) when (u, v) lies in a certain neighborhood U0 × V0 of (ū, v̄). Therefore, m̂δ(u, v)
and M̂δ(u, v) agree with mδ(u, v) and Mδ(u, v) around (ū, v̄); thus, f̂ is equivalent to f in
the sense described in Theorem 2.7.

Furthermore, f̂ is lsc on IRn× IRd by (5.27) because mδ is lsc on IRd× IRn, that being
true since mδ is a special case of the function ϕ defined in (5.3) through (5.2) (namely for
s = 0), and ϕ was shown to be lsc in the argument leading up to (5.4). In addition we
have, for (x, u, v) ∈ gph ∂xf̂ with (u, v) ∈ U0 × V0, that

f̂(x, u)− 〈v, x〉 = mδ(u, v) = f(x, u)− 〈v, x〉

and consequently f̂(x, u) = f(x, u) = mδ(u, v) + 〈v, x〉, an expression that is continuous
with respect to the elements (x, u, v) in question. The convexity of f̂(x, u) in x combined
with that continuity makes f̂ be continuously prox-regular at (x̄, ū) for v̄. (Convexity
allows the constant r in the definition of prox-regularity to be taken to be 0.)
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