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GRAPHICAL CONVERGENCE OF SUMS
OF MONOTONE MAPPINGS

T. PENNANEN, R. T. ROCKAFELLAR, AND M. THÉRA

(Communicated by Jonathan M. Borwein)

Abstract. This paper gives sufficient conditions for graphical convergence
of sums of maximal monotone mappings. The main result concerns finite-
dimensional spaces and it generalizes known convergence results for sums. The
proof is based on a duality argument and a new boundedness result for se-
quences of monotone mappings which is of interest on its own. An application
to the epi-convergence theory of convex functions is given. Counterexamples
are used to show that the results cannot be directly extended to infinite di-
mensions.

1. Introduction

Throughout this paper, X will stand for a reflexive Banach space and X∗ for its
dual, unless otherwise specified. Recall that a set-valued mapping T : X ⇒ X∗ is
called monotone if

x∗1 ∈ T (x1), x∗2 ∈ T (x2) =⇒ 〈x1 − x2, x
∗
1 − x∗2〉 ≥ 0,

where 〈·, ·〉 denotes the pairing between X and X∗. If a monotone mapping cannot
be properly extended to another monotone mapping it is called maximal monotone.
Such mappings are very important in variational analysis and optimization. For
example, the subdifferential of a closed convex function is maximal monotone; see
Rockafellar [21]. The graph of a set-valued mapping T : X ⇒ X∗ is the set gphT =
{(x, x∗) ∈ X ×X∗ | x∗ ∈ T (x)} and the domain domT and the range rgeT of T
are defined as the projections of gphT to X and X∗, respectively.

A sequence {Cn}n∈N of sets is said to converge to a set C, denoted by Cn → C,
if:

(i) for every x ∈ C there is a sequence {xn}n∈N with limxn = x and xn ∈ Cn for
n sufficiently large;

(ii) the cluster points of every sequence {xn}n∈N with xn ∈ Cn for n sufficiently
large belong to C.

Above and in what follows, the convergence of points is taken in the strong topology,
although other choices can also be important. For instance, if in (ii) the conver-
gence is taken with respect to the weak topology on X , we say that the sequence

Received by the editors June 17, 2000.
2000 Mathematics Subject Classification. Primary 47H05, 78M99.
Key words and phrases. Maximal monotone operators, set-valued mappings, graphical conver-

gence, epiconvergence, subdifferential.
The first author was supported by the Academy of Finland under grant No. 70468.

c©2002 American Mathematical Society

2261

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2262 T. PENNANEN, R. T. ROCKAFELLAR, AND M. THÉRA

converges in the Mosco sense [16]. Graphical convergence of a sequence {Sn}n∈N
of set-valued mappings is defined as the convergence of their graphs and it is de-
noted by Sn

g→ S. In approximating variational problems, graphical convergence
is recognized as the natural kind of convergence for set-valued mappings. It is
the key in the study of consistency properties of various approximation schemes as
judged by the convergence of solutions. For references on the convergence theory
of sets and set-valued mappings see Attouch [1], Attouch and Théra [5], Aubin and
Frankowska [9], Beer [12] or Rockafellar and Wets [23].

In this paper we will focus on the following question: given two sequences of
maximal monotone mappings Sn

g→ S and Tn
g→ T , when can we conclude that

Sn + Tn
g→ S + T ? Such questions are important in practice where one is often

faced with sums of mappings. This is the case, for example, when one mapping in
the sum represents some kind of penalty or barrier approximation to a constraint
(see Attouch [2]), or when an infinite-dimensional problem of the form T (x) 3 0
is approximated by problems T (x) + NXn(x) 3 0 where NXn is the normal cone
mapping of a finite-dimensional subspace Xn of X .

A set-valued mapping T : X ⇒ X∗ is said to be locally bounded at a point
x ∈ domT if there is a neighborhood V 3 x and a bounded set B such that
T (V ) ⊂ B. The following was obtained in Rockafellar [19].

Theorem 1.1 (Rockafellar). A maximal monotone mapping T is locally bounded
at a point x ∈ domT if and only if x ∈ int domT .

In studying graphical convergence of monotone mappings, the following concept
turns out to be crucial.

Definition 1.2. A sequence {Tn} of set-valued mappings is uniformly locally bound-
ed at a point x ∈

⋂
n domTn if there is a neighborhood V 3 x and a bounded set

B such that

Tn(V ) ⊂ B for all n ∈ N.

It is not hard to see that Sn + Tn
g→ S + T whenever Sn

g→ S, Tn
g→ T and

{Sn}n∈N (or {Tn}n∈N) is equicontinuous. In [4], Attouch, Riahi and Théra obtained
a convergence result for general maximal monotone mappings.

Theorem 1.3 (Attouch, Riahi and Théra). Let X and X∗ be locally uniformly
convex and let Sn, S, Tn, T : X ⇒ X∗ be maximal monotone such that Sn

g→ S

and Tn
g→ T . If there is a point x ∈ domS ∩ domT at which {Sn}n∈N is uniformly

locally bounded, then

Sn + Tn
g→ S + T.

Our main result is the following.

Theorem 1.4. Assume that dimX <∞ and let Sn, S, Tn, T : X ⇒ X∗ be maximal
monotone such that Sn

g→ S, Tn
g→ T , and 0 ∈ int(domS − domT ). Then for n

large enough 0 ∈ int(domSn − domTn) and

Sn + Tn
g→ S + T.

Moreover, for any (x, x∗) ∈ gph(S + T ) there is a sequence xn → x along with
u∗n ∈ Sn(xn) and v∗n ∈ Tn(xn) such that {u∗n}n∈N and {v∗n}n∈N are bounded and
u∗n + v∗n → x∗.
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To show that Theorem 1.4 can fail in infinite dimensions, consider the follow-
ing situation which comes up in Galerkin approximation schemes of functional
problems; see for example Mosco [16], Glowinski, Lions and Trémolières [14] or
Zeidler [25]. Let X be a separable reflexive Banach space and let Xn ⊂ X be the
subspace spanned by the first n basis vectors in some enumerated basis. The sets
Xn converge to X in the sense of Mosco (see [16]), which implies that NXn

g→ NX ,
the zero mapping (see [1]). If we define Sn = NXn and Tn = N{x̄}, where x̄ ∈ X
is such that x̄ /∈ Xn for all n, we have gph(Sn + Tn) = ∅ for all n, so that Sn + Tn
cannot converge to NX + N{x̄} = N{x̄} even though Sn

g→ NX , Tn
g→ N{x̄} and

domNX − domN{x̄} = X .
The main advantage of Theorem 1.4 over Theorem 1.3 is that the condition for

convergence is given in terms of the limit mappings S and T only. The condition
in Theorem 1.3 concerns the sequence {Sn}n∈N in addition to the limit mappings.
Also, the condition 0 ∈ int(domS − domT ) is symmetric in S and T and it can be
satisfied even if both int(domS) and int(domT ) are empty.

Since domS∩ int domT 6= ∅ implies 0 ∈ int(domS−domT ), Theorem 1.4 yields
the following.

Corollary 1.5. Assume that dimX < ∞ and let Sn, S, Tn, T : X ⇒ X∗ be maxi-
mal monotone operators such that Sn

g→ S and Tn
g→ T . If domS ∩ int domT 6= ∅,

then

Sn + Tn
g→ S + T.

In addition to being simpler, the condition domS ∩ int domT 6= ∅ in Corol-
lary 1.5 is weaker than the uniform boundedness condition in Theorem 1.3 (see
Theorem 1.1). However, the results of Section 2 will show that in finite dimensions
the two conditions are in fact equivalent.

Theorem 1.4 generalizes [15, Theorem 9] of McLinden and Bergstrom which
deals with the case where Sn and Tn are subdifferentials of convex functions; see
Section 4. The main topic in [15] was epi-convergence of convex functions which
is closely related to graphical convergence of subdifferentials. In Section 4, we will
show how Theorem 1.4 gives a simple proof of one of the main results in [15].

The proof of Theorem 1.4 itself will be given in Section 3. It is based on a
dualization trick and on the analysis of uniform local boundedness in Section 2.
Connections with epi-convergence of closed convex functions will be studied in
Section 4.

2. Uniform local boundedness

The purpose of this section is to derive a condition for the uniform local bound-
edness of a sequence of monotone mappings. The key to this is the estimate in
Lemma 2.1 below. The unit ball will be denoted by B and the ball with center x
and radius r will be denoted by B(x, r). The convex hull of any set C ⊂ X will be
denoted by coC.

Lemma 2.1. Let T : X ⇒ X∗ be monotone and let C ⊂ X, ρ0, ρ1 > 0 be such
that C ⊂ ρ0B and T (x)∩ ρ1B 6= ∅ for every x ∈ C. Then for any V ⊂ X and ε > 0
such that V + εB ⊂ coC, one has T (V ) ⊂ ρB for ρ = ρ1(2ρ0 − ε)/ε.

Proof. Here V + εB ⊂ ρ0B, so that V ⊂ (ρ0 − ε)B. Consider any x ∈ V and
v ∈ T (x). For each x′ ∈ C there is a v′ ∈ T (x′) with |v′| ≤ ρ1. By the monotonicity
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of T we have

〈v, x′ − x〉 ≤ 〈v′, x′ − x〉 ≤ |v′|(|x′|+ |x|) ≤ ρ1(ρ0 + (ρ0 − ε)).
Since v was an arbitrary element of T (x), the support function σT (x) of the set
T (x) has

σT (x)(w) ≤ ρ1(2ρ0 − ε) ∀w ∈ C − x.
The same inequality must then hold for all w ∈ co(C − x) = coC − x by the
convexity of the support function. Because V + εB ⊂ coC we have εB ⊂ coC − x.
Therefore

σT (x)(w) ≤ ρ1(2ρ0 − ε) ∀w ∈ εB,
from which it follows by the positive homogeneity of the support function that

σT (x)(w) ≤ (ρ1(2ρ0 − ε)/ε)|w| = ρ|w| ∀w,
or in other words σT (x) ≤ σρB. This means by duality that T (x) ⊂ ρB.

Lemma 2.1 can be used to derive the bound B in Theorem 1.1; see [19]. (The
maximality of T is only needed to show that T cannot be bounded at the boundary
of its domain.) In finite dimensions, Lemma 2.1 yields the following result on
uniform local boundedness.

Theorem 2.2. Assume that dimX < ∞, let Tn, T : X ⇒ X∗ be monotone map-
pings such that Tn

g→ T , and let x̄ ∈ int domT . Then there is an n̄ such that
{Tn}n≥n̄ is uniformly locally bounded at x̄.

Proof. Take ε > 0 with B(x̄, 4ε) ⊂ domT and let V = B(x̄, ε), so that (V + 2εB) +
εB ⊂ domT . Since dimX <∞ it is possible then to find δ > 0 and a1, . . . , am ∈ X
such that V + 2εB ⊂ co{a1, . . . , am} ⊂ domT and

|xk − ak| ≤ δ ∀k =⇒ V + εB ⊂ coC for C = {x1, . . . , xm}.(2.1)

Any set C such as in (2.1) has C ⊂ ρ0B, where ρ0 = δ + max{|a1|, . . . , |am|}.
Choose ρ1 large enough that T (ak) ∩ int ρ1B 6= ∅ for all k. Since Tn

g→ T we have

Tn(B(ak, δ)) ∩ ρ1B 6= ∅
for all n large enough (see for example [23, Section 5E]). This means that for
each large enough n there are xk ∈ B(ak, δ) with Tn(xk) ∩ ρ1B 6= ∅. Then by
letting C = {x1, . . . , xm} we get from (2.1) and Lemma 2.1 that Tn(V ) ⊂ ρB for
ρ = ρ1(2ρ0 − ε)/ε.

Remark 2.3. Theorem 2.2 shows that, in the finite-dimensional case, the conditions
in Theorem 1.3 and Corollary 1.5 are equivalent. In particular, Theorems 1.3 and
2.2 combine to give an alternative proof of Corollary 1.5.

To show that the above result can fail in infinite dimensions, consider again the
situation described after Theorem 1.4. The mappings NXn converge graphically to
NX whose domain is the whole space X . Thus, the condition x̄ ∈ int domNX is
satisfied for any x̄ ∈ X , but since int domNXn = ∅ for all n, Theorem 1.1 says that
the mappings NXn cannot be bounded anywhere.

It would be interesting to see whether Theorem 2.2 would hold in infinite-
dimensional spaces if graphical convergence was replaced by the “graph-distance
convergence” introduced in Attouch, Moudafi and Riahi [3]; see also Attouch and
Wets [8] and Tossings [24].
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3. Graphical convergence of sums

The idea of our proof of Theorem 1.4 comes from the recently developed duality
theory for generalized equations; see [17] and the references therein. The following
framework was introduced by Attouch and Théra [6].

Theorem 3.1 (Attouch and Théra). Let X and X∗ be any linear spaces and let
S, T : X ⇒ X∗ be set-valued mappings. Then the inclusion

S(x) + T (x) 3 0(P)

has a solution if and only if

T−1(x∗)− S−1(−x∗) 3 0(D)

has one. Furthermore, the solutions x̄ of (P) satisfy x̄ ∈ T−1(x̄∗), where x̄∗ is a
solution of (D).

Recall that the resolvant (J + λT )−1 of a maximal monotone mapping T is
everywhere defined and single-valued for every λ > 0; see [22]. Here J stands
for the duality mapping; see for example [25]. In Hilbert spaces J = I and the
resolvants are Lipschitz continuous with Lipschitz constant 1. We will use the
following characterization due to Attouch [1] of graphical convergence.

Theorem 3.2 (Attouch). Let Tn, T : X ⇒ X∗ be maximal monotone and let λ > 0
be arbitrary. Then Tn

g→ T if and only if (Tn + λJ)−1 p→ (T + λJ)−1 (pointwise
convergence).

We will also need a result concerning ranges of sums of monotone mappings.
We will say that a monotone mapping T is star-monotone if for any (x, x∗) ∈
domT × rgeT

inf
(y,y∗)∈gphT

〈y − x, y∗ − x∗〉 > −∞.

The following result was obtained in the Hilbert space setting by Brézis and Ha-
raux [13] and extended to reflexive Banach spaces by Reich [18].

Theorem 3.3. Let S, T : X ⇒ X∗ be star-monotone mappings such that S + T is
maximal monotone. Then

int rge(S + T ) = int(rgeS + rgeT ).

Several examples of star-monotone mappings were given in [13] but for our pur-
poses it suffices to know that this class contains the resolvants of monotone map-
pings.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Assume first that Sn+Tn are maximal monotone for n large
enough. Let y ∈ X be arbitrary. To prove the graphical convergence it suffices by
Theorem 3.2 to show that the sequence {xn}n∈N of solutions to

2x+ Sn(x) + Tn(x) 3 y
converges to the solution x of

2x+ S(x) + T (x) 3 y.
Defining Syn(x) = Sn(x)− y and Sy(x) = S(x)− y, we can write these inclusions as

(I + Syn)(x) + (I + Tn)(x) 3 0(Pn)
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and

(I + Sy)(x) + (I + T )(x) 3 0.(P)

By Theorem 3.1 the unique solutions to (Pn) and (P) can be expressed as xn =
(I + Tn)−1(x∗n) and x = (I + T )−1(x∗), respectively, where x∗n and x∗ are (not
necessarily unique) solutions to the dual problems

Cn(x∗) 3 0(Dn)

and

C(x∗) 3 0,(D)

respectively, where

Cn(x∗) = (I + Tn)−1(x∗)− (I + Syn)−1(−x∗)

and

C(x∗) = (I + T )−1(x∗)− (I + Sy)−1(−x∗).

By Theorem 3.2 Cn
p→ C, which implies Cn

g→ C, since for a sequence of equi-
continuous mappings, pointwise convergence is equivalent to graphical convergence;
see for example [23, Section 5F].

To prove that xn → x, it is enough to show that every subsequence of {xn}n∈N
has a subsequence converging to x. For notational simplicity, we denote by {xn}n∈N
such an arbitrary subsequence. By Theorem 3.3 we have

int rgeC = int(rge(T + I)−1 − rge(Sy + I)−1) = int(domT − domS).

Being sums of continuous maximal monotone mappings, Cn and C are maximal
monotone. Thus, if 0 ∈ int(domS − domT ), then by Theorem 2.2 there is an n̄
such that {(Cn)−1}n≥n̄ is uniformly locally bounded at 0. Since x∗n ∈ (Cn)−1(0),
the sequence {x∗n} is bounded, so we can find a subsequence {nk}n∈N such that
limk x

∗
nk exists, and then Cn

g→ C implies C(limk x
∗
nk) 3 0. Since the sequence of

mappings (I + Tnk)−1 is equi-continuous and pointwise convergent to (I + T )−1,
we have that

lim
k
xnk = lim

k
(I + Tnk)−1(x∗nk) = (I + T )−1(lim

k
x∗nk) = x.

To finish the proof of the first statement it suffices to note that since Cn are
maximal monotone, the uniform local boundedness of {(Cn)−1}n≥n̄ at 0 implies by
Theorem 1.1 that

0 ∈ int rgeCn = int(domTn − domSn) ∀n ≥ n̄,

which in turn guarantees the maximal monotonicity of Sn + Tn for n ≥ n̄; see [4].
To prove the last statement we let (x, x∗) ∈ gph(S +T ) be arbitrary and choose

y = 2x + x∗. Then 2x + S(x) + T (x) 3 y and the sequence {xn}n∈N constructed
above converges to x. From (Dn) we get

y − x∗n − xn ∈ Sn(xn), x∗n − xn ∈ Tn(xn),

where {x∗n}n∈N is bounded. Thus, u∗n = y − x∗n − xn and v∗n = x∗n − xn will have
the desired properties.
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4. Connections with epi-convergence

Recall that the epigraph of a function f : X → R ∪ {+∞} on X is the set

epi f = {(x, α) ∈ X × R | f(x) ≤ α} .

A function f is said to be closed if epi f is a closed set, and proper if epi f 6= ∅. A
sequence {fn}n∈N of functions is said to epi-converge to f , denoted by fn

e→ f , if
epi fn → epi f , or equivalently (see for example [23, 7.2]), if for every x ∈ X

(i) lim inf
n

fn(xn) ≥ f(x) for every sequence xn → x;

(ii) lim sup
n

fn(zn) ≤ f(x) for some sequence zn → x.

If fn are convex and fn
e→ f , then f is closed and convex [23, 7.4, 4.15]. The

subdifferential ∂f : X ⇒ X∗ of a convex function f is defined by

∂f(x) = {x∗ ∈ X∗ | f(y) ≥ f(x) + 〈x∗, y − x〉 ∀y ∈ X } .

It is well known that the subdifferential of a closed proper convex function is max-
imal monotone [21].

The following result of Attouch (see for example [1]) provides a close connection
between epi-convergence of convex functions and graphical convergence of their
subdifferentials.

Theorem 4.1 (Attouch). Let fn, f be closed proper convex functions. Then fn
e→

f if and only if ∂fn
g→ ∂f and the normalization condition holds: there are

(xn, x∗n) ∈ ∂fn and (x, x∗) ∈ ∂f such that xn → x, x∗n → x∗ and fn(xn)→ f(x).

Combining Theorems 1.4 and 4.1 we get a simple proof of the following epi-
convergence result of McLinden and Bergstrom [15, Theorem 5]. For related results
see also Aze and Penot [11].

Theorem 4.2 (McLinden and Bergstrom). Assume that dimX < ∞ and let fn
and gn be closed convex functions on X such that fn

e→ f and gn
e→ g. If 0 ∈

int(dom f − dom g), then fn + gn
e→ f + g.

New argument. By [6, Theorem 4.9], the condition 0 ∈ int(dom f − dom g) implies

0 ∈ int(dom ∂f − dom∂g).

Therefore, by virtue of Theorem 1.4 we have for n large enough

∂(fn + gn) = ∂fn + ∂gn
g→ ∂f + ∂g = ∂(f + g),

where the equalities follow from the classical sum rule of subdifferentiation [20,
Theorem 23.8]. So by Theorem 4.1, it suffices to find (xn, x∗n) ∈ gph ∂(fn+ gn) and
(x, x∗) ∈ gph∂(f + g) such that (xn, x∗n)→ (x, x∗) and (fn+ gn)(xn)→ (f + g)(x).
The sequence {(xn, u∗n + v∗n)}n∈N given at the end of Theorem 1.4 will do the job.
Indeed, the epi-convergence of fn to f implies

lim inf
n

fn(xn) ≥ f(x)(4.1)

as well as the existence of a sequence zn → x such that lim sup
n

fn(zn) ≤ f(x). From

u∗n ∈ ∂fn(xn) we get

fn(zn) ≥ fn(xn) + 〈u∗n, zn − xn〉 .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2268 T. PENNANEN, R. T. ROCKAFELLAR, AND M. THÉRA

Since the sequence {u∗n}n∈N is bounded and zn − xn → 0, the last term tends to
zero, and thus

f(x) ≥ lim sup
n

fn(zn) ≥ lim sup
n

fn(xn)

which together with (4.1) implies fn(xn) → f(x). By a similar argument we can
prove that gn(xn)→ g(x), so that (fn + gn)(xn)→ (f + g)(x).

One could also use Theorem 1.4 in studying epi-hypo-convergence of saddle-
functions as defined by Attouch and Wets [7]; see also Azé, Attouch and Wets [10].
However, this is more complicated than the study of epi-convergence and it is not
clear whether Theorem 4.2 has a direct generalization to the saddle-function case.
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[6] H. Attouch and M. Théra, A general duality principle for the sum of two operators, J. Convex
Analysis, 3(1996), pp. 1–44. MR 98k:47103

[7] H. Attouch and R. Wets, A convergence theory for saddle functions, Trans. Amer. Math.
Soc. 280(1983), pp. 1–41. MR 85f:49024

[8] H. Attouch and R. J.-B. Wets, Qualitative stability of variational systems, I. The epigraphical
distance, Trans. Amer. Math. Soc., 328(1991), pp. 692–729. MR 92c:90111

[9] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, 1990. MR 91d:49001
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