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Abstract

Generalized measures of deviation are considered as substitutes for standard deviation in a
framework like that of classical portfolio theory for coping with the uncertainty inherent in achieving
rates of return beyond the risk-free rate. Such measures, derived for example from conditional
value-at-risk and its variants, can reflect the different attitudes of different classes of investors.
They lead nonetheless to generalized one-fund theorems in which a more customized version of
portfolio optimization is the aim, rather than the idea that a single “master fund” might arise from
market equilibrium and serve the interests of all investors.

The results that are obtained cover discrete distributions along with continuous distributions.
They are applicable therefore to portfolios involving derivatives, which create jumps in distribution
functions at specific gain or loss values, well as to financial models involving finitely many scenarios.
Furthermore, they deal rigorously with issues that come up at that level of generality, but have not
received adequate attention, including possible lack of differentiability of the deviation expression
with respect to the portfolio weights, and the potential nonuniqueness of optimal weights.

The results also address in detail the phenomenon that if the risk-free rate lies above a cer-
tain threshold, the usually envisioned master fund must be replaced by one of alternative type,
representing a “net short position” instead of a “net long position” in the risky instruments. For
nonsymmetric deviation measures, the second type need not just be the reverse of the first type,
and there can sometimes even be an interval for the risk-free rate in which no master fund of
either type exists. A notion of basic fund, in place of master fund, is brought in to get around this
difficulty and serve as a single guide to optimality regardless of such circumstances.
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1 Introduction

In classical portfolio theory, investors respond to the uncertainty of profits by selecting portfolios
that minimize variance, or equivalently standard deviation, subject to achieving a specified level in
expected gain [16, 10, 15]. The well known “one-fund theorem” [29, 27] stipulates that this can be
accomplished in terms of a single “master fund” portfolio by means of a formula which balances the
amount invested in that portfolio with the amount invested at the current risk-free rate. Nowadays,
other approaches to uncertainty have gained in popularity. Portfolios are being selected on the basis
of percentile characteristics such as value-at-risk (VaR), conditional value-at-risk (CVaR), or other
properties proposed for use in risk assessment; cf. [2, 11, 13] and earlier alternatives such as in [6].
These measures have no pretension to being universal, however; VaR and CVaR depend, for instance,
on the specification of a confidence level parameter, which could vary among investors. Instead,
what is apparent in the alternative approaches currently being touted is a move toward a kind of
partial customization of responses to risk, while still avoiding, as impractical, a reliance on specifying
individual utility functions.

A question in this evolving environment is the extent to which classical facts persist when the
minimization of standard deviation is replaced by the minimization of some “nonstandard deviation.”
Researchers have already looked into the possibilities in special cases under various limiting assump-
tions (recognized explicitly or imbedded implicitly). Our goal, in contrast, is to demonstrate that
important parallels with classical results exist much more broadly, despite technical hurdles, and in
this way to bring out features that have not completely been analyzed, or even perceived, in the past.

We focus on the general deviation measures we developed axiomatically in [23]. Our idea is to
substitute such a deviation measure for standard deviation in the setting of classical theory and
investigate the consequences rigorously in detail. Furthermore, we aim at doing so, for the first
time, in cases where the rates of return may have discrete distributions, or mixed discrete-continuous
distributions (which can arise from derivatives, such as options), as well as cases where they have
continuous distributions.

The deviation measures we work with are paired one-to-one, through [23], with risk measures in
the sense of Artzner, Delbaen, Eber and Heath [5], but differ in partly relaxing their requirements
while insisting on an additional property beyond theirs. A similar additional property was invoked
by Ogryczak and Ruszczynski in [17, 18] for safety measures, which may be viewed as negatives
of risk measures. Minimizing a deviation measure subject to a constraint on expected returns can
anyway be different from minimizing the corresponding risk measure, since, as shown in [23], the first
problem always has a solution but the second problem can sometimes fail to have a solution, due to a
phenomenon of “acceptably free lunches.” We are not, however, suggesting that deviation measures
are better than risk measures. Both have their place, but deviation measures fit closer to the classical
picture and therefore serve better the particular purposes of this paper.

The axioms for deviation measures that we adopt from [23] entail convexity. They cover numerous
choices from classical type to CVaR type, but exclude the analogous expressions of VaR type, since
those lack convexity. Convexity is essential for answering most of the harder questions that confront
us. Its importance for sound applications in finance has already been recognized as well in connection
with the coherency concept in [5]. We do, however, try to indicate along the way the troubles that
VaR type expressions would bring up.

The first of our main results says that a one-fund theorem holds regardless of the particular choice
of the deviation measure, but with certain modifications. The optimal risky portfolio need not always
be unique, and it might not always be expressible by a “master fund” as traditionally conceived, even
when only standard deviation is involved. An alternative concept of “basic fund” is introduced to
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fill the gap. The rest of our main results pin down precisely the degree to which basic funds can,
or cannot, be rescaled into master funds. This turns out to require an understanding not only of
an efficient frontier for risky portfolios at price 1, associated with “master funds of positive type,”
but also of such a frontier for risky portfolios at price −1, associated with “master funds of negative
type.” The magnitude of the risk-free rate of return plays a key role here. We prove that when it
is below a certain threshold, the positive type prevails, but when it is above a certain threshold, the
negative type has to be brought in. Moreover in special situations those thresholds can differ, leaving
a gap filled by an interval of magnitudes of the risk-free rate for which neither type of master fund
can replace a basic fund. We also explain how thresholds can be calculated by solving an auxiliary
optimization problem.

It deserves emphasis that, in contrast to much of the previous work in this area, our results are
obtained without relying on the existence of densities for the statistical distributions that arise, or even
on the continuity of the distribution functions, which would preclude applications to discrete random
variables or effects tied to derivatives. We do not take for granted, or require, the differentiability of
the deviation with respect to the parameters specifying the relative weights of the instruments in the
portfolio. This is not merely for the sake of technical generality. An example provided in the final
section of the paper illustrates how put and call options in portfolios can lead to nondifferentiability
as well as to a threshold gap for the risk-free rate. Therefore no theory, unless it faces up to such
troubles, can be regarded as fully applicable to portfolios involving derivative instruments.

With standard calculus being inadequate for the problems at hand, we have had to rely instead
on techniques of convex analysis [19] while adhering strictly to the principles of optimization theory.3

The need for a “negative” efficient frontier referring to “net short positions,” along with the usual
“positive” one for “net long positions,” is not surprising, in view of the diversity of measures that
investors may be using. In line with their different opinions about risk, some investors may find the
risk-free rate high enough to warrant borrowing from the market and investing that money risk-free,
while others will prefer a fund in which the “longs” outweigh the “shorts.” An interesting analogy can
be found in [26, p. 507] in terms of a stock index futures contract which might even consist entirely
of short positions.

The emergence of a variety of different master funds, optimal for different deviation measures, is
an inescapable outcome of any theory which, like ours, attempts to cope with the current tendency
toward customization in portfolio optimization. A master fund identified with respect to the wishes
of one class of investors can no longer be proposed as obviously furnishing input for factor analysis
of the market as a whole, because the financial markets react to the wishes of all investors. A
master fund, in our general sense, can no longer be interpreted as associated with a sort of universal
equilibrium. Whether some such master funds, individually or collectively, might nonetheless turn out
to be valuable in factor analysis, is an issue outside the scope of this paper. CAPM-like covariance
relations do indeed come out of the optimality conditions that characterize our master funds (as can be

3Lack of familiarity with the mathematics of optimization has been a handicap in some of the finance literature in
this area, going all the way back to Markowitz. In his pioneering work [16], for example, he excluded short positions
by constraining the portfolio weights to be nonnegative. He neglected, however, to take into account that Lagrange
multipliers for those inequality constraints could come into play, in which case a closed-form solution to the optimality
conditions for a master fund would be impossible. Supposing that the multipliers can be taken to be zero is equivalent
(because of convexity) to supposing that, if shorting were allowed, there would anyway be no short positions at optimality.
There is no support for that conviction, however, and indeed, numerical calculations are known to produce quite different
answers when shorting is allowed and when it is not. Similar looseness about whether solutions to optimization problems
even exist must be the reason why the magnitude of the risk-free rate was not perceived to have an effect, and the need
for master funds representing net short positions went undetected. The need for allowing at least some short positions
as possibilities in a master fund was emphasized by [26, pp. 500, 505].
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gleaned from the optimality prescriptions in [23]), but we reserve this development, requiring further
elaboration of underpinnings in convex analysis, to a follow-up paper [25].

2 Deviation and Risk

We start by reviewing what we mean by “deviation measures” and explaining how they are related to
“risk measures” in the terminology of Artzner et al. [5]. Roughly speaking, deviation measures evaluate
the degree of nonconstancy in a random variable (i.e., the extent to which outcomes may deviate from
expectations), whereas risk measures evaluate overall prospective loss (from the benchmark of zero
loss). Deviation measures correspond, under a basic pairing, with risk measures that have an additional
“expectation boundedness” property not contemplated in [5]. This pairing is valuable for transforming
known examples of risk measures into examples of deviation measures, as well as for illuminating how
the valuable notion of coherency introduced in [5] translates to the context of deviations.

We consider a space Ω, the elements ω of which can represent future states or scenarios (perhaps just
finitely many), and suppose it to be supplied with a probability measure P and the other technicalities
that make it a legitimate probability space. We treat as random variables (r.v.’s) the (measurable)
functions X on Ω for which E[X2] < ∞; the space of such functions will be denoted, for short, by
L2(Ω). For X in L2(Ω), the mean µ(X) and variance σ2(X) are well defined in particular:4

µ(X) = EX =
∫

ΩX(ω)dP (ω),
σ2(X) = E[X − EX]2 =

∫
Ω[X(ω)− µ(X)]2dP (ω).

(1)

To assist in working with constant r.v.’s, X(ω) ≡ C, the letter C will always denote a constant in the
real numbers IR.

By a deviation measure will be meant any functional D that assigns to each random variable X
(understood to be in L2(Ω) always) a value D(X) in accordance with the following axioms:

(D1) D(X + C) = D(X); equivalently, D(X) = D(X − EX) for all X,
(D2) D(0) = 0, and D(λX) = λD(X) for all X and λ ≥ 0,
(D3) D(X +X ′) ≤ D(X) +D(X ′) for all X and X ′,
(D4) D(X) > 0 for nonconstant X, whereas D(X) = 0 for constant X.

A deviation measure D will be called coherent if, in addition to these four axioms, it satisfies

(D5) D(X) ≤ EX − inf X for all X.

These axioms come from our paper [23], where the notion of a general deviation measure was first
formulated at this level.5 The equivalence in D1 is evident from taking C equal to −EX, and on the
other hand, noting that [X+C]−E[X+C] = X−EX for any constant C. Clearly D4 puts the focus
of D on the uncertain part of an r.v. X and insists on this part not going undetected. The combination
of D2 and D3 implies the convexity of D, which is a key property in all contexts of optimization and
makes the tools of convex analysis available to our endeavor.6 We speak of the additional property in
D5 as the lower-range boundedness of D.

4Our choice of L2(Ω) is dictated by the need for a framework in which the magnitude of X − EX can be measured
by general deviations, with standard deviation as a particular case. In [5] and [7], the expectation of random variable
had no required role, and the focus instead was on L∞(Ω).

5In [13], a class of measures was described axiomatically in terms of D1, D2 (effectively), and the version of D4
requiring only weak inequality, but no D3. Such measures lack convexity and other crucial properties.

6In the presence of that convexity, D1 is actually implied by the seemingly much weaker condition that D(C) = 0 for
all constants C.
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Coherency will be discussed later in this section. Its chief effect mathematically is to make available,
through duality, certain probabilistic interpretations of deviation that can be very helpful in analysis
and in modeling as well. Such considerations also lie behind our focus on properties of D with respect
to all L2(Ω), instead of just a subspace X of L2(Ω) that generated by some particular collection of
random variables.

The example of standard deviation, D(X) = σ(X), dominates classical portfolio theory and is
symmetric in the sense that D(−X) = D(X). Related examples of nonsymmetric deviation measures
that satisfy our axioms include the standard semideviations D(X) = σ+(X) and D(X) = σ−(X),
where

σ2
−(X) = E[ max{EX −X, 0}2], σ2

+(X) = E[ max{X − EX, 0}2]. (2)

The first of these emphasizes the downside of X, while the second emphasizes the upside. A very
different pair of examples, likewise oriented to downside or upside, is furnished by the lower range and
the upper range,

D(X) = EX − inf X, D(X) = supX − EX, (3)

where inf X and supX denote the “essential” infimum and supremum of X(ω) over ω ∈ Ω (obtained
by disregarding subsets of Ω having probability 0). For either of these, it is possible for some r.v.’s X
that D(X) = ∞, which is allowed by the axioms. Of course, both are sure to be finite in the case of
a finite, discrete probability space Ω.

Another class of deviation measures, of increasing interest now in applications, arises from condi-
tional value-at-risk, CVaR. A brief discussion of risk measures, in contrast to deviation measures, will
lay the platform for introducing this class properly.

By a strictly expectation bounded risk measure will be meant any functional R that assigns values
R(X) to random variables X in such a way that

(R1) R(X + C) = R(X)− C for all X and constants C,
(R2) R(0) = 0, and R(λX) = λR(X) for all X and all λ > 0,
(R3) R(X +X ′) ≤ R(X) +R(X ′) for all X and X ′,
(R4) R(X) > E[−X] for all nonconstant X, whereas R(X) = E[−X] for constant X.

A strictly expectation bounded risk measure R will be called coherent if, in addition to these four
axioms, it satisfies

(R5) R(X) ≤ R(X ′) when X ≥ X ′.
Axiom R4 is the property we explicitly mean by “strict expectation boundedness.” The equation part
of R4 is already a consequence of R1, so the strict inequality for nonconstant X is the chief assertion.
(In [23], we spoke of this simply as expectation boundedness, but now add “strict” as a safeguard
against misunderstandings.)7

Artzner, Delbaen, Eber and Heath in their landmark contribution to risk theory in [5] were the first
to consider risk measures from a broad perspective, but they concentrated instead on functionals R
satisfying R1, R2, R3 and, instead of R4, the monotonicity axiom R5. They called them coherent risk
measures. (Actually, they posed R5 in a seemingly weaker form, namelyR(X) ≤ 0 when X ≥ 0, which
is equivalent to the present R5 under the other axioms. Also, they had a somewhat different version
of R1, tailored to the use of an investment instrument, but the version used here was subsequently
adopted by Delbaen [7].) Property R5 is natural and even critical for many purposes, and we fully
believe in its importance. However, we forgo it in our basic definition of a strictly expectation bounded
risk measure in order to capture a fundamental pairing between risk measures and deviation measures.

7The weak-inequality version has recently been dubbed “risk relevance” in [14].
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Risk measure axiom R4, first spelled out in our own earlier work, is needed for the following result,
where it emerges as the counterpart to deviation axiom D4. As background, it should be noted that
the weak inequality R(X) ≥ E[−X], in place of the strict one in R4, is known to hold always when
R is a coherent risk measure that depends only on the distribution of an r.v. and in addition has
a certain convergence property, and furthermore X is an r.v. having no atoms in its distribution; cf.
[8, Lemma 4.45]. That comes nowhere near to furnishing R4 in our general setting, however, so this
really is a property that has to be brought in separately.

Theorem 1 [23] (deviation vs. risk). Deviation measures correspond one-to-one with strictly expec-
tation bounded risk measures under the relations

(a) D(X) = R(X − EX),
(b) R(X) = E[−X] +D(X).

Specifically, if R is an strictly expectation bounded risk measure and D is defined by (a), then D
is a deviation measure that yields back R through (b). On the other hand, if D is any deviation
measure and R is defined by (b), then R is a risk measure that yields back D through (a). In this
correspondence, R is coherent if and only if D is coherent.

The fact in the last part of Theorem 1 explains, of course, why we introduced D5 and used
it to define coherency as a concept for deviation measures. We did not require this property in
the basic definition of a deviation measure, because that would have left out standard deviation,
D(X) = σ(X), thereby making nonsense of the terminology and excluding classical portfolio theory
from our setting. The cogent arguments in favor of coherency made in [5] and elsewhere are nonetheless
a prime motivation for what we are undertaking here.

In the pairing of Theorem 1, the deviation measure D(X) = ρσ(X) for any ρ ∈ (0,∞) corresponds
toR(X) = ρσ(X)−µ(X), whereas the lower-range deviation measure D(X) = EX−inf X corresponds
to the maximum loss risk measure R(X) = sup[−X]. Coherency is present in the second example,
although absent in the first.

Even more of interest here is the utilization of Theorem 1 in deriving deviation measures of CVaR
type. Recall that for any α ∈ (0, 1) the value-at-risk of X at level α is defined by

VaRα(X) = − inf{ z |P{X ≤ z} > α}. (4)

The corresponding conditional value-at-risk is then

CVaRα(X) =−[expectation of X in its lower α-tail distribution], (5)

where the expectation is the same as the conditional expectation of X subject to X ≤ −VaRα(X) when
P{X |X = −VaRα(X)} = 0, but in general refers to the expectation of the r.v. whose cumulative
distribution function Fα is obtained from the cumulative distribution function F for X by taking
Fα(z) = F (z)/α when z < −VaRα(X) and Fα(z) = 1 when z ≥ −VaRα(X).8 The important thing is
that a coherent risk-deviation pair is obtained by taking

R(X) = CVaRα(X), D(X) = CVaRα(X − EX). (6)

The functional R(X) = VaRα(X), in contrast, fails to satisfy axioms R3, R4 and R5, so correspond-
ingly the functional D(X) = VaRα(X − EX) fails to satisfy D3, D4 and D5 and is not a deviation

8This form of the definition of CVaRα(X) corresponds to the development of the concept in [22]; earlier, in [21], we
concentrated only on the case of continuous distribution functions. Acerbi [1] independently arrived at this risk measure
by an integral formula, calling it “expected shortfall,” and that term has subsequently been used also in [3, 28]. A
alternative minimization expression for CVaRα(X) in [21, 22] provides a powerful approach to computations. Other
background on VaR and CVaR can be found in [8].
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measure in our sense, much less a coherent one. Worse, it lacks the property of convexity that is
crucial to our developments.

Beyond “pure” measures of CVaR type that come out of the correspondence in Theorem 1, there
also “mixed” CVaR measures cf. [22, 23] having a “spectral representation” as in [1].

A final example, which deserves mention because of its modeling implications and the theoretical
insights it provides, is the one in which Ω is just a finite set of future scenarios, with scenario ω having
probability P (ω) > 0. Consider any collection {Pj}j∈J of probability measures on Ω,

Pj(ω) ≥ 0,
∑
ω∈Ω

Pj(ω) = 1, (7)

for an index set J (finite or infinite). Denote the expectation with respect to Pj by Ej , so that EjX =∑
ω∈ΩX(ω)Pj(ω) in contrast to EX =

∑
ω∈ΩX(ω)P (ω). Suppose the collection has the “richness”

property that for every nonconstant X there is at least one j ∈ J such that Ej [−X] > E[−X], i.e.,
the expected loss incurred by X would be worse if the probability measure were Pj instead of the
reference probability measure P . Then a coherent risk-deviation pair is obtained by defining

R(X) = sup
j∈J

Ej [−X], D(X) = sup
j∈J

{
Ej [−X]− E[−X]

}
. (8)

In this setting, Pj might be viewed as an alternative to P that an investor has selected for prudent
comparisons, in case P just represents an educated guess about what the future will bring and may
not be completely reliable. The deviation D(X) expressed by (8) identifies the worst discrepancy that
could occur between the expected losses under the specified alternatives and the nominal expected
loss E[−X].

Besides being of interest for practical purposes in portfolio optimization, deviation measures of the
kind in (8) furnish a simple illustration of how differentiability can fail. Indeed, when the index set
J is finite, D is the pointwise maximum of a finite collection of linear functions of X and therefore is
piecewise linear on L2(Ω). It fails to be differentiable on the joins between the different “pieces,” and
its lower level sets {X | D(X) ≤ c} are polyhedral convex sets with ridges and flat sides.

Another way that differentiability can fail, apart from (8), will be demonstrated in the last section
of the paper.

3 Portfolio Framework

To proceed with our effort to extend the classical results in portfolio theory for standard deviation
to general deviation measure D, we must provide a market setting. The market will be taken, for
model purposes, to consist of instruments i = 0, 1, . . . , n having rates of return ri. The first of these
instruments, for i = 0, is risk-free; its rate of return r0 is a constant. The other instruments, for
i = 1, . . . ,m, are risky; their rates of return ri are r.v.’s in L2(Ω). A dollar invested in instrument i
brings back 1+ ri, for a gain (or profit) of ri dollars at the end of the time period under consideration.

We will be concerned with portfolios that can be put together by investing an amount xi in
each instrument i. These amounts, which we can take to be in dollars,9 can be positive, zero or
negative. (A negative investment corresponds to a short position.) Such a portfolio has the present

9More typically, these amounts are viewed as “fractions,” even if greater than 1, but this interpretation will facilitate
discussion of portfolio prices.
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price x0 + x1 + · · ·+ xn and the uncertain future value x0(1 + r0) + x1(1 + r1) + · · ·+ xn(1 + rn). The
associated gain is thus the r.v. X in L2(Ω) described by

X = x0r0 + x1r1 + · · ·+ xnrn. (9)

Here we are using “gain” in the sense that a loss is a negative gain. Costs, too, might be negative as
well as positive, or zero.

To facilitate our work with these r.v.’s X while taking into account the special role of the risk-free
instrument and keeping notation simple, we introduce

r = (r1, . . . , rn) (vector r.v.), r̄ = (r̄1, . . . , r̄n) for r̄i = Eri,

along with the vectors
x = (x1, . . . , xn), e = (1, . . . , 1).

The general r.v. X in (9) is then

X = x0r0 + x>r, with expected gain x0r0 + x>r̄ and price x0 + x>e.

We speak of x = (x1, . . . , xn) itself as giving the x-portfolio for which the gain is the r.v. x>r in L2(Ω),
the expected gain is x>r̄, and the price is x>e.

The following assumptions on instruments i = 1, . . . , n in the model will henceforth be in effect.
The rest of this section will be devoted to elucidating their immediate consequences.

Basic Assumptions.
(A1) No x-portfolio with x 6= 0 is risk-free.
(A2) The expected rates of return r̄1, . . . , r̄n are not all the same.
(A3) D(ri) <∞ and D(−ri) <∞ for all i.

Assumption A1 is harmless and merely underscores our aim of letting the i = 0 instrument do
all the risk-free service. A notion of redundancy will help in understanding why this is true. Let us
say that an instruments i is redundant in the model if the associated r.v. ri, which gives the gain
from investing one dollar in instrument i, can exactly be replicated by the gain r.v. of a portfolio
put together from the other instruments. Note that such replication, if possible at all, would have to
be achieved at price 1, or an arbitrage opportunity would exist, thereby undermining our intent of
starting from a market in which prices are in equilibrium.

Proposition 1 (elimination of redundancy). Assumption A1 is fulfilled if and only if none of the
instruments i in the model is redundant.

Proof. If some x-portfolio with x 6= 0 were risk-free, we could find a value x0 such that the r.v.
X = x0r0 + x1r1 + . . . + xnrn is identically 0. One of the coefficients x1, . . . , xn would be nonzero;
suppose for purposes of illustration that is x1. We would then have r1 = x′0r0 + x′2r2 + · · ·+ x′nrn for
x′i = −xi/x1, which would mean that the i = 1 instrument is redundant.

For the converse, suppose some instrument i is redundant. If that holds for i = 0, then by the
definition of redundancy there must be a nonzero x-portfolio that is risk-free. Otherwise, we can
suppose for simplicity of notation that i = 1 is redundant. This refers to the existence of coefficients
x0, x2, . . . , xn such that r1 = x0r0 + x2r2 + · · ·+ xnrn. Then −r1 + x2r2 + · · ·+ xnrn = −x0r0, so the
x-portfolio for x = (−1, x2, . . . , xn) would be risk-free.

Redundant instruments offer nothing new, so we could always eliminate them from the model one
by one until nothing redundant was left. Then A1 would hold.

Another insight into A1 can be obtained through consideration of distribution functions.
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Proposition 2 (continuous distributions). Assumption A1 is satisfied when the r.v. r is continu-
ously distributed (i.e., the multivariate distribution function for r1, . . . , rn is continuous on IRn), thus
guaranteeing that the gain x>r of any x-portfolio with x 6= 0 is continuously distributed as well.

Proof. The well known fact about x>r being continuously distributed in these circumstances pre-
cludes x>r from being a constant r.v., of course.

Assumption A2 is needed to sidestep special circumstances which have little interest for us here.
If it did not hold, there would be a value ρ such that r̄i = ρ for i = 1, . . . , n; then the expected gain
x>r̄ of an x-portfolio would always be ρ times its price x>e.

Both A1 and A2 seem to be taken for granted by many in finance, even though they are essential
to the validity of commonly made assertions.10 The desire to maintain mathematical rigor in our
development of portfolio theory requires us to make these assumptions, and others, explicit.

Proposition 3 (richness of price-gain combinations). For every choice of (π, ζ) ∈ IR2, there is an
x-portfolio having price x>e = π and expected gain x>r̄ = ζ.

Proof. This is the main consequence of A2. The set of pairs (π, ζ) coming from portfolios in this
way constitutes a subspace of IR2, so if it were not all of IR2, these pairs would be collinear, and we
would be in the lockstep situation excluded by A2.

Assumption A3, which will guarantee the finiteness of D(x>r) according to the next proposition,
is certainly satisfied when D is a deviation measure that is finite on all of L2(Ω), and many measures
with that property have already been indicated beyond D(X) = σ(X), a major example being D(X) =
CVaRα(X −EX). But A3 may also be satisfied for some deviation measures that are not finite on all
of L2(Ω). An example is D(X) = EX − inf X when the rates of return ri are bounded. Note that we
are obliged to require the finiteness of D(ri) and D(−ri) separately, because D need not be symmetric.

Proposition 4 (portfolio deviations). The deviation function

fD(x) = D(x>r)

is finite everywhere and convex on IRn (hence also continuous), moreover with the properties that
(a) fD(0) = 0, but fD(x) > 0 when x 6= 0,
(b) fD(λx) = λfD(x) when λ > 0,
(c) fD(x+ x′) ≤ fD(x) + fD(x′),
(d) {x | fD(x) ≤ δ} is a bounded set for every δ > 0.

Proof. In view of axiom D4 on D, the strict inequality in (a) is equivalent to A1. Properties (b)
and (c), together with the fact in (a) that fD(0) = 0, follow immediately from axioms D2 and D3 on
D. They imply in particular that fD is a convex function. The set of x for which fD(x) <∞ is then
a convex subset of IRn. Because of A3, that set includes the vectors,

(±1, 0, . . . , 0), (0,±1, . . . , 0), (0, 0, . . . ,±1),

which correspond to portfolios consisting of just one of the instruments i = 1, . . . , n, either in unit
long position or unit short position. It must also then include all positive multiples of those vectors,
through (b), as well as all sums generated from those, through (c). Thus, it has to be all of IRn.

10For instance, in the text [12, p. 159], the n + 2 linear equations in n + 2 unknowns that describe the weights for an
efficient risky portfolio in the Markowitz model are said to have a unique solution, but really that is only true when the
coefficient matrix is nonsingular. The matrix in question fails to be nonsingular if A1 and A2 do not hold.
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For the fact that finite convex functions on IRn are continuous, see [19, Theorem 10.1]. On the
principle of [19, Corollary 8.7.1] and fD being convex and continuous, if any set of form {x | fD(x) ≤ δ}
is bounded, then all sets of that form must be bounded. By (a), the set {x | fD(x) ≤ 0} is the singleton
{0}, so (d) is correct.

Readers familiar with the emphasis on VaR in much of finance nowadays should note Proposition
4 is not applicable to fD(x) = D(x>r) when D(x>r) = VaRα(x>r − x>r̄), because the expression
D(X) = VaR(X−EX) does not fit our axioms for a deviation measure (obeying only D1 and D2, not
D3, D4 or D5). Certainly (c) of Proposition 4 would be gone, and with it the convexity of this fD.
Even the strict inequality in (a) would be violated in some situations, and the boundedness of the level
sets in (d) would then be lost. Moreover, fD could no longer even be counted on to be continuous.

4 Basic Funds and Master Funds

The fundamental problem of optimization that we wish to examine closely with respect to the portfolio
r.v.’s X in (9) is

P(∆) minimize D(x0r0 + x>r) subject to x0 + x>e = 1 and x0r0 + x>r̄ ≥ r0 + ∆,

where D(x0r0 + x>r) is actually just the deviation fD(x) in Proposition 4, of course. The budget
constraint x0 +x>e = 1 signifies (in our mode of interpreting the xi’s as dollar amounts) that the price
of the portfolio nets out to exactly one dollar; that is how much is to be invested initially. The gain
constraint x0r0 + x>r̄ ≥ r0 + ∆ requires that this unit investment should result in an expected future
value of at least 1 + r0 + ∆ dollars. The parameter ∆ gives the risk premium — the extra amount
being demanded over the gain associated with investing at the risk-free rate r0. The gain constraint
has been written as an inequality instead of an equation because there should not be any objection if
some portfolio, without worsening the deviation or costing more, might have an expected gain that is
more than r0 + ∆. It will come out below, however, that any portfolio solving problem P(∆) must
satisfy this constraint with equality, when ∆ > 0.

The unit price constraint in P(∆) can be used to eliminate x0 by assigning it the value x0 = 1−x>e.
The problem statement comes down then to:

P0(∆) minimize fD(x) subject to x>[r̄ − r0e] ≥ ∆.

Adopting this framework in terms of x-portfolios alone, we let{
d0(∆) = optimal value (the infimum of the deviation) in P0(∆),
S0(∆) = optimal solution set (the minimizing vectors x) in P0(∆).

(10)

Proposition 5 (solution existence and homogeneity). An optimal solution to problem P0(∆) is sure
to exist (not necessarily uniquely), no matter what the choice of ∆. Indeed, the optimal solution set
S0(∆) is always convex, closed and bounded, in addition to being nonempty. Moreover,{

for ∆ ≤ 0 : d0(∆) = 0 and S0(∆) = {0} (put all in the risk-free instrument),
for ∆ > 0 : d0(∆) > 0, with d0(∆) = ∆·d0(1) and S0(∆) = {∆·x |x ∈ S0(1)}. (11)

Additionally, when ∆ > 0 the gain constraint is always active in P0(∆), i.e., every x ∈ S0(∆) satisfies
x>[r − r0e] = ∆.
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Proof. In view of Proposition 3, the constraint in problem P0(∆) can be satisfied regardless of the
choice of r0 and ∆. The sets of type

{x | fD(x) ≤ δ, x>[r − r0e] ≥ ∆} for δ > d0(∆) (12)

are nonempty by the definition of d0(∆) as well as compact because of the continuity of fD and the
boundedness in Proposition 4(d). Any nest of nonempty compact sets has a nonempty intersection. In
this case, moreover, the sets are convex by virtue of the convexity of fD, so the intersection is likewise
a convex set. This confirms that S0(∆) is nonempty, convex and compact.

The special assertions about P0(∆) in the case of ∆ ≤ 0 are evident from Proposition 4(a). They
rely also on the constraint having been stated as an inequality rather than an equation. In the case
where ∆ > 0, the relationships involving d0(1) and S0(1) are immediate from the positive homogeneity
of fD in Proposition 4(b), according to which anything optimal for ∆ = 1 can be rescaled to be optimal
for other ∆.

The constraint in P0(∆) has to be active when ∆ > 0, because if x has x>[r− r0e] > ∆, there is a
factor θ ∈ (0, 1) such that the vector x′ = θx satisfies the same inequality and yet yields a deviation
amount that is smaller than the one for x by the same factor. This is incompatible with x being
optimal. Note that here we are invoking Proposition 4(a) once more, since this argument would fall
through if the deviation in question were 0.

Proposition 5 sets the stage for a complete understanding of the efficient frontier for portfolios that
include the risk-free instrument, i = 0. It will lead quickly to the classical concept of a “master fund,”
with certain extensions. However, for the sake of capturing at once what it says about the best way
to invest, regardless of the technical complications that will soon come up, another “fund” concept
will be helpful.

Definition 1 (basic funds and basic deviation value). For any x̄ ∈ S0(1), providing in problem P0(1)
the minimum portfolio deviation for a gain of exactly 1 over the risk-free rate, the x̄-portfolio will be
said to furnish a basic fund. The minimum deviation amount will be called the basic deviation value
and denoted by δ̄:

δ̄ = d0(1) = fD(x̄).

Theorem 2 (generalized one-fund theorem in basic fund form). Let x̄ furnish a basic fund, achieving
the basic deviation value δ̄. Then, for any ∆ > 0, a solution to the fundamental portfolio problem
P(∆) is obtained by investing the amount ∆[x̄>e] in the x̄-portfolio and the amount 1−∆[x̄>e] in the
risk-free instrument. That solution portfolio has deviation ∆·δ̄. In further detail, this prescription for
investment comes down to the following three cases, depending on the price x̄>e of the basic fund:

(a) Positive case: price x̄>e > 0. Invest the positive amount ∆[x̄>e] in the x̄-fund while investing
the amount 1−∆[x̄>e] (possibly positive, negative or zero) in the risk-free instrument.

(b) Negative case: price x̄>e < 0. Invest the negative amount ∆[x̄>e] in the x̄-fund (i.e., take
a short position of this magnitude in it), while investing the positive amount 1 −∆[x̄>e] > 1 in the
risk-free instrument.

(c) Threshold case: price x̄>e = 0. Invest the original 1 dollar entirely in the risk-free instrument
while assuming a position in x̄ of magnitude ∆, which nets out (through longs and shorts) to price 0.

The three cases arise, in principle at least, because there is no a priori restriction in our op-
timization problems on the prices of the x-portfolios under consideration. This price is left to the
optimization outcome itself. Understanding the extent to which these different cases can truly occur,
or conceivably even overlap, will require serious effort in the rest of this paper. Some insights are
immediately available, however.
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In the positive case, one is investing in risky instruments in the classical way and making up the
difference with the original 1 dollar by buying, or borrowing, a quantity of the risk-free instrument,
as needed. In the negative case, the scheme effectively involves borrowing from the market in the
risky instruments and putting the proceeds into the risk-free instrument. Clearly, that would not be
interesting unless the risk-free return r0 is attractively high from the investor’s point of view. Much
more will be said about this circumstance as we go on, but observe that it does not imply the presence
of some sort of arbitrage which would bring the market equilibrium into question, since it depends
on the particular deviation measure D being employed and not on the market as a whole. In the
threshold case, despite the price 0 of taking on the ∆ position in the basic fund, that position does
yield an expectation of ∆ dollars above r0. Again, no arbitrage has to be entailed.

Theorem 2 already has many of the features associated with the classical one-fund theorem. A
single fund, which has been dubbed a basic fund, serves along with the risk-free instrument to provide
an optimal response to the problem of finding a deviation-minimizing portfolio, regardless of the size
of the extra expected gain ∆ that an investor might demand over the risk-free rate r0. Regardless of
the price that the basic fund x̄ turns out to have, it completely determines the efficient frontier for
portfolios including the risk-free instrument. This frontier is the upward-sloping half-line in Figure 1,
where the slope is 1/δ̄ for the basic deviation value δ̄ in Definition 1. In that way, Theorem 2 fully
answers the question of how investors should act in this idealized setting.

What is missing from Theorem 2 is a connection with the traditional notion of a master fund and
its geometric characterization through a picture of tangency. That will occupy us shortly, but anyway
we can easily come up with a definition of what master funds must be, in relation to basic funds.

Definition 2 (master funds).
(a) An x∗-portfolio furnishes a master fund of positive type if x∗>e = 1 and x∗ ∈ S0(∆∗) for some

∆∗ > 0, or equivalently, if x∗ = ∆∗·x̄ for a basic x̄-portfolio with price x̄>e > 0, and ∆∗ = 1/x̄>e.
(b) An x∗-portfolio furnishes a master fund of negative type if x∗>e = −1 and x∗ ∈ S0(∆∗) for some

∆∗ > 0, or equivalently, if x∗ = ∆∗·x̄ for a basic x̄-portfolio with price x̄>e < 0, and ∆∗ = −1/x̄>e.

A master fund of positive type thus represents a unit long position with respect to a certain
weighted collection of risky instruments, whereas a master fund of negative type represents a unit
short position with respect to some such collection, perhaps different.

Because the master funds in this definition are just positively rescaled versions of basic funds, they
fit equally well into the one-fund “algorithm” of Theorem 2 for generating the efficient frontier for
portfolios including the risk-free instrument — as long as there is a basic fund with nonzero price.
This can be summarized as follows.

Theorem 3 (one-fund theorem in master fund form).
(a) Suppose a master fund of positive type exists, furnished by an x∗-portfolio that yields an

expected return r0 + ∆∗ for some ∆∗ > 0. Then, for any ∆ > 0, a solution to the fundamental
portfolio problem P(∆) is obtained by investing the positive amount ∆/∆∗ in the master fund and
the amount 1− (∆/∆∗) (possibly positive, negative or zero) in the risk-free instrument.

(b) Suppose a master fund of negative type exists, furnished by an x∗-portfolio that yields an
expected return r0 + ∆∗ for some ∆∗ > 0. Then, for any ∆ > 0, a solution to the fundamental
portfolio problem P(∆) is obtained by investing the negative amount −∆/∆∗ in the master fund and
the amount 1 + (∆/∆∗) > 1 in the risk-free instrument.

When no basic fund with nonzero price exists, there is nothing to be done about price rescaling,
so the concept of a master fund no longer makes sense. Of course the rule for optimal investment
in Theorem 2 nevertheless survives, covering the threshold case as well as the positive and negative
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Figure 1: Efficient frontier for portfolios with the risk-free instrument.
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cases. A master fund of positive type can be seen to correspond to some point on the half-line frontier
in Figure 1, different in general from the point coming from the basic fund.

In the classical theory, based on D = σ, only master funds of the positive type are contemplated,
and they are immediately tied into the notion of “efficient set.” The familiar picture in Figure 2 is used
to indicate that, for ∆ > 0, the optimal value in the fundamental problem P(∆), which is the same as
d0(∆), can be obtained by interpolating along a tangent line to the efficient set that passes through
the point (0, r0). The point of tangency corresponds to an x∗-portfolio of price 1 having expected gain
ζ∗ = r0 + ∆∗ for some ∆∗ > 0. This x∗-portfolio then solves problem P0(∆∗) and furnishes a master
fund with positive unit price which can generate entire the half-line “frontier” in the manner already
reviewed.

In our situation of nonstandard deviation, there is a need to look much more closely at this picture
and recognize certain shortcomings as well as major challenges. In the first place, the “efficient set”
corresponding analogously to a general deviation measure D 6= σ may no longer be a quadratic curve
like the one in Figure 2 (which is actually a hyperbola). For that reason, the one-fund theorem must
contend with major complications.11 Although the region marked out by the efficient set will continue
to be convex in our generalized setting, its boundary may incorporate corners or straight segments.
For the case of a corner, the very meaning of tangency has to be pinned down carefully. In the presence
of straight segments, the tangent line could have a whole interval in common with the efficient set,
and this might in fact be an infinite interval.

Another complication, which can also come up in the classical model, is the possibility that,
because of the asymptotic behavior of the efficient set, the efficient set has no “tangent” line at all
that passes through (0, r0). Indeed, apart from any troubles with asymptotic behavior, there is an
unspoken difficulty in the classical picture over the fact that it typically takes for granted the existence
of a master fund of positive type. Clearly this existence, perceived in relation to “tangency,” depends
in particular on the rate r0. It might fail if r0 were too high.

In the traditional setting with D = σ, such a confrontation with high r0 seems mostly to have been
regarded as implausible and anyway “incompatible with market equilibrium.”12 This view appears to
originate in traditional CAPM (capital asset pricing model) considerations and the supposition that
all investors are effectively engaged in minimizing standard deviation. A master fund could not be of
negative type, for the reason that if all investors wanted to take a net short position as represented
by a certain portfolio, so as to obtain money to invest at the risk-free rate, something must be wrong
with the risk-free rate — an implicit market instability.

None of that really applies to our setting, however, because we are only exploring portfolio op-
timization for a subclass of investors, those who choose the particular deviation measure D we are
focussing on. Other investors, with different measures D, can be expected to come to different con-
clusions about their portfolio choices. Some may end up with net short positions, while others may
not. From that angle, there is no hint of conflict with market equilibrium in thinking about a master
fund of negative type possibly emerging from a particular choice of D at some level of r0.

We are compelled, therefore, in our framework of a diversity of deviation measures D, to face up
to all price possibilities for x-portfolios as potential solutions to problem P0(∆). This will lead us to
study how such solutions may depend on r0 as a parameter.

11Without the curve being quadratic, there is no hope at all, by the way, of generalizing the classical “two-fund”
theorem [29], which asserts the existence of two portfolios from which all efficient portfolios can be constructed as linear
combinations. That result is intrinsically “quadratic” in its mathematical underpinnings.

12Huang and Litzenberger in [9] do allow for it by passing to a tangent line to the lower part of the curve in Figure 2
when r0 is high and interpret it as prescribing a short position in the classical master fund. But they leave out the details,
which anyway would have to be tied to the special nature of the standard deviation measure, including its symmetry.
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Before getting into that parametric analysis, we can record a key fact about duality in P0(∆). This
problem is, after all, a convex programming problem, in which the convex function fD is minimized
subject to a single linear constraint. The Lagrangian function is

L∆(x, λ) = fD(x) + λ(∆− x>[r̄ − r0e]), for λ ≥ 0, (13)

and the problem dual to P0(∆) consists therefore of maximizing the function gD(λ) = infx L∆(x, λ)
subject to λ ≥ 0 (cf. the general theory in [19] or [20]). Because of the positive homogeneity in
Proposition 4(b), however, we have gD(λ) = λ∆ when fD(x) − λx>[r̄ − r0e] ≥ 0 for all x ∈ IRn, but
gD(λ) = −∞ otherwise. The problem dual to P0(∆) therefore takes the form:

maximize λ∆ with respect to λ satisfying fD(x) ≥ λx>[r̄ − r0e] for all x ∈ IRn. (14)

Of course, we really only need to understand the case of ∆ = 1, since everything else can be obtained
from that through rescaling. By applying known duality results about the relationship between a
convex programming problem and its dual, we get the following conclusion about that case.

Proposition 6 (duality for basic deviation value). The basic deviation value δ̄ has the dual charac-
terization of being the highest λ such that

fD(x) ≥ λx>[r̄ − r0e] for all x ∈ IRn. (15)

Proof. We are dealing with a convex programming problem in which the objective function fD
has bounded level sets, the property in Proposition 4(d), and on the other hand the Slater constraint
qualification holds (it is possible to satisfy inequality constraints, here just one, with strict inequality).
In that case the dual problem has an optimal solution, as does the primal problem, and the optimal
values in the two problems (the min value in the primal problem and the max value in the dual
problem) coincide; cf. [20].

In Proposition 6, by the way, we have another fact that would fall by the wayside if we tried to
work with D(X) = VaR(X − EX), which does not conform to our axioms. Results analogous to
Theorems 2 and 3 could still be obtained, but there could be no serious follow-up of the kind we are
about to get into, because of the absence of convexity.13

5 Efficient Sets and Frontiers

In our endeavor to understand how the classical picture in Figure 2 might have to be modified and
expanded, we cannot limit our attention to x-portfolios with price x>e > 0, for reasons already
explained. It is essential to look at price x>e ≤ 0 as well. Moreover, we have to adjust to the fact
that the deviation measure D under scrutiny might not be symmetric. If we have an x-portfolio
representing a “net long position,” in the sense that x>e > 0, and we wish to pass to the associated
x̃-portfolio with x̃ = −x, representing a “net short position” because x̃>e = −x>e < 0, we cannot
count on having D(x̃>r) = D(x>r). Switches between “long” and “short” could have significant effects
on risk perception.

13In order to proceed further with VaR, Alexander and Baptista in [4] limited themselves to the case where the returns
of the risky assets are jointly normally distributed. Under this special assumption, however, the VaR setting actually
reduces to the CVaR setting, which does fit our framework.

16



Out of these considerations, we are obliged to investigate an auxiliary optimization problem with
respect to the instruments i = 1, . . . , n. In this problem, π and ζ are parameters denoting targeted
price and expected gain, and we seek to solve:

P(π, ζ) minimize fD(x) = D(x>r) subject to x>e = π and x>r̄ = ζ.

We wish to investigate it without any preconditions on the signs of π or ζ.
The gain constraint in P(π, ζ) has been written as an equation this time because of the chiefly

technical role that the analysis will play and the simpler geometry afforded by having an equation
instead of an inequality. We let{

d(π, ζ) = optimal value (the infimum of the deviation) in P(π, ζ),
S(π, ζ) = optimal solution set (the minimizing vectors x) in P(π, ζ).

(16)

Proposition 7 (parametric framework for price and expected gain). An optimal solution to problem
P(π, ζ) is sure to exist (not necessarily uniquely), no matter what the choice of π and ζ. Indeed, the
solution set S(π, ζ) in IRn is always convex, closed and bounded, with

S(0, 0) = {0} and S(λπ, λζ) = {λx |x ∈ S(π, ζ)} when λ > 0, (17)

while the function d on IR2 giving the minimum deviation is finite everywhere and convex (hence also
continuous), moreover with the properties that

(a) d(0, 0) = 0, but d(π, ζ) > 0 when (π, ζ) 6= (0, 0),
(b) d(λπ, λζ) = λd(π, ζ) when λ > 0,
(c) d(π1 + π2, ζ1 + ζ2) ≤ d(π1, ζ1) + d(π2, ζ2),
(d) { (π, ζ) | d(π, ζ) ≤ δ} is a bounded set for every δ > 0.

Proof. Our assumption A2 guarantees through Proposition 3 that the constraints in P(π, ζ) can be
satisfied, regardless of how π and ζ are chosen. The finiteness of d(π, ζ) and nonemptiness of S(π, ζ)
follow then from the properties of fD in Proposition 4 (much as in the proof of Proposition 5). As
the set of solutions to a convex programming problem, S(π, ζ) is convex and closed. By virtue of
the boundedness of the level sets of fD in Proposition 4(d), S(π, ζ) is bounded. Properties (a), (b),
(c), and (d) of the function d follow from the corresponding properties of fD in Proposition 4. In
particular, the set in (d) is the image of the compact set in Proposition 4(d) under the (continuous)
linear transformation x 7→ (x>e, x>r̄), and that guarantees it is compact as well.

The relevance of problem P(π, ζ) for our goal of analyzing the price of a solution to problem P0(∆)
comes from the following observation.

Proposition 8 (reduced optimization perspective). When ∆ > 0, problem P0(∆) is equivalent to
the problem

P ′0(∆) minimize d(π, ζ) subject to π and ζ satisfying ζ − r0π = ∆,

in the sense that optimal values in both problems are the same, and the solutions to P0(∆) are the
vectors x in IRn such that the pair (π, ζ) = (x>e, x>r̄) solves P ′0(∆).

In particular, x̄ furnishes a basic portfolio if and only if the pair (x̄>e, x̄>r̄) minimizes d(π, ζ) along
the line ζ = r0π + 1.

Proof. This is elementary in view of the nonemptiness of the solution sets S(π, ζ) established in
Proposition 7, but notice that the single linear constraint, which was an inequality in P0(∆), has been

17



written now as an equation. Proposition 5 has made this possible by establishing that, when ∆ > 0,
the inequality must be tight at optimality.

According to Proposition 8, the pairs (x>e, x>r̄) giving the price and expected gain associated
with the solutions x (or solution, if unique) to problem P0(∆) are the pairs (π, ζ) that furnish the
minimum of the function d along the line in IR2 described by the equation ζ = r0π+∆. Due to positive
homogeneity in (11) of Proposition 5, of course, we can concentrate on the case where ∆ = 1, which
corresponds to looking for a basic portfolio. In that case, depicted in Figure 3, the line in question is
the one with slope r0 that passes through the point (0, 1).

The “curves” shown in Figure 3 are given by the equations d(π, ζ) = δ for various δ > 0 and reflect
the properties in Proposition 7. They are the boundaries of certain compact, convex sets which are
merely rescaled versions of each other, generated by expanding or contracting the one for δ = d(0, 1).
In the classical case of standard deviation, the curves would be ellipses, but in general they might
have corners and straight segments.

The issue of whether the x-portfolios for x ∈ S0(1) have price x>e > 0, x>e = 0 or x>e < 0, comes
down to whether, in minimizing d along the line in Figure 3, the points (π, ζ) that are obtained at
the minimum have π > 0, π = 0 or π < 0. (We have to speak in general of “x-portfolios” and “points
(π, ζ)” because uniqueness of optimal solutions is not assured here, in general.) It is immediately
clear that this must depend largely on the magnitude of the risk-free rate r0 and cannot be resolved
merely on the basis of any of the assumptions that have been made, so far, on the rates of return of
the instruments i = 1, . . . , n in our model.

For the r0 that is illustrated, the slanted line in Figure 3 cuts into the open set { (π, ζ) | d(π, ζ) <
d(0, 1)} toward the right, and one therefore has π > 0 at optimality. But for higher and higher
levels of r0, a stage will eventually be reached where the line henceforth cuts into this set instead
toward the left, in which case π < 0 at optimality. A formal analysis of these circumstances, aimed at
characterizing the threshold value, or values, of r0 where the line does not cut into the set at all, will
have to be undertaken.

Observe that in the case shown in Figure 3 there is not just one r0 for which line does not cut
into the set in question, but indeed a whole interval of such values. Geometrically, this corresponds
to the boundary of the set having a “corner point” at (0, 1). Although that can be regarded as an
exceptional situation, it cannot be ruled out. Our result on threshold behavior (Theorem 5 in the next
section) must therefore, in general, allow for threshold gap corresponding to an interval of r0 values
for which one has π = 0 at optimality.

For now, the essential thing to recognize is the need to study two efficient sets, if price behavior
in the one-fund theorem is to be understood over the whole range of possible r0 values. There has to
be an efficient set corresponding to x-portfolios furnishing “unit long positions” (price = 1), but also
one for x-portfolios furnishing “unit short positions” (price = −1). Because the deviation measure D
might not be symmetric, neither of these efficient sets can be expected to be derivable in a simple way
from the other.

Dictates of simplicity in dealing with the geometry of efficiency and its relationship to the one-
fund theorem and properties of the function d cause us to adopt a convention different from the one
in Figure 2, where deviation is on the horizontal axis and expected gain on the vertical axis. Instead,
we will have deviation on the vertical axis and expected gain on the horizontal axis. Of course, a flip
across the 45◦ line between the two axes can be used to convert our convention to the classical one,
when desired.

Definition 2 (efficient sets and frontiers, positive and negative). By the positive efficient set and the
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negative efficient set will be meant the boundaries G+ and G−, respectively, of the feasibility sets

F+ = { (ζ, δ) | ∃x with x>e = 1, x>r̄ = ζ, fD(x) ≤ δ},
F− = { (−ζ,−δ) | ∃x with x>e = −1, x>r̄ = ζ, fD(x) ≤ δ}. (18)

By the positive efficient frontier will be meant the part of G+ consisting of all (ζ, δ) ∈ F+ for which
there is no (ζ ′, δ) ∈ F+ with ζ ′ > ζ. Likewise, by the negative efficient frontier will be meant the part
of G− consisting of all (−ζ,−δ) ∈ F− for which there is no (ζ ′, δ) ∈ F− with ζ ′ > ζ.

The virtue of passing to (−ζ,−δ) in the definition of F− will emerge in the results below as a way
of getting the most out of a single geometric picture in which both of the efficient sets, or frontiers,
can be seen, namely the picture in Figure 4, which will be explained in due course, after Theorem 4.
Note that, through a notational switch between x and −x, one can express F− equivalently by

F− = { (ζ,−δ) | ∃x with x>e = 1, x>r̄ = ζ, fD(−x) ≤ δ}. (19)

Thus, in cases where the deviation measure D is symmetric, so that fD(−x) = fD(x), the set F− would
merely be the reflection of the set F+ across the ζ-axis, and there would be less of an imperative for
considering it separately.14

As depicted in Figure 4, the positive efficient frontier is the “right” boundary of F+, in contrast to
G+ being the whole boundary. In the same way, the negative efficient frontier is the “left” boundary
of F−, in contrast to G− being the whole boundary. Only these partial boundaries will really have a
role in what follows, but it is convenient mathematically to work with G+ and G− themselves. For
convenience of comparisons, Figure 5 poses all these sets in the reversed coordinate system that is
customary in finance. There the positive efficient frontier becomes an “upper” boundary and the
negative efficient frontier a “lower” boundary.

Proposition 9 (efficient sets as function graphs). The positive efficient set G+ is the graph of the
convex function

d+(ζ) = d(1, ζ) = min deviation for price 1 and expected gain ζ, (20)

whereas the negative efficient set G− is the graph of the concave function

d−(ζ) = −d(−1,−ζ) = −min deviation for price −1 and expected gain −ζ. (21)

Indeed, F+ is the closed, convex set consisting of the pairs (ζ, δ) for which δ ≥ d+(ζ), whereas F− is
the closed, convex set consisting of the pairs (ζ, δ) for which δ ≤ d−(ζ). Furthermore, the asymptotic
slope of G+ on the right is the same as the asymptotic slope of G− on the left,

lim
ζ→∞

d+(ζ)

ζ
= lim

ζ→−∞

d−(ζ)

ζ
= d(0, 1) > 0. (22)

Proof. The convexity of d+ and concavity of d− are evident from the convexity of d in Proposition 7.
Like d, these functions are finite and continuous, in particular. Those properties, along with the fact
in Proposition 7 that the minimum deviations in (20) and (21) are sure to be attained, immediately
yield the descriptions claimed for F+ and F−.

14It would be possible then, in the manner of [9] for the classical case of standard deviation, to identify master funds
of negative type with the reverses of master funds with positive type. But the main trend now in this subject is instead
to get away from symmetry and treat the downside differently from the upside.
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The relations in (22) specialize to d a well known property in convex analysis: the asymptotic
slope of a finite convex function along any half-line depends only on the direction of the half-line, not
on its starting point (see [19, Theorem 8.5]). Here, we are looking at such slopes along half-lines in the
π-ζ space of Figure 3 that are parallel to the ζ-axis. On the positive ζ-axis itself, d is linear because
of the positive homogeneity in Proposition 7(b): we have

d(0, ζ) = ζd(0, 1) for all ζ > 0,

so d(0, 1) is the limit of d(0, ζ)/ζ as ζ → ∞. Then d(0, 1) is also the limit of d(1, ζ)/ζ as ζ → ∞,
as well as the limit of d(−1, ζ)/ζ as ζ → ∞. By the definitions of d+ and d−, these two limits are,
respectively, the limit of d+(ζ)/ζ as ζ →∞ and the limit of d−(−ζ)/(−ζ) as −ζ → −∞.

Incidentally, the asymptotic slope of G+ on the right agrees likewise with the asymptotic slope of
G− on the left, but this fact will not play any role here. (The portions of G+ on the left and G− on the
right would drop out if we wrote the ζ constraint in P(π, ζ) as an inequality instead of an equation.)

We are in position now to answer the question of how the tangency relationship associated with
the classical one-fund theorem, as in Figure 2, can be extended to our framework of general deviation
measures, as a complement to the one-fund results in Theorem 2.

Theorem 4 (efficiency characterization of master funds). The basic deviation value δ̄ = d0(1) is the
highest of the slopes of all the lines in IR2 through (r0, 0) that lie between the curves G+ and G−

(perhaps touching them, but not crossing them). In referring to the line through (r0, 0) with slope δ̄
as the “r0-line”, the following conclusions can be drawn.

(a) If the r0-line touches G+ at a point (ζ∗, δ∗), then any x∗ ∈ S(1, ζ∗) furnishes a master fund of
positive type: it has price x∗>e = 1 and belongs to the optimal solution set S0(∆∗) for ∆∗ = ζ∗−r0 > 0.

(b) If the r0-line touches G− at a point (−ζ∗,−δ∗), then any x∗ ∈ S(1, ζ∗) furnishes a master
fund of negative type: it has price x∗>e = −1 and belongs to the optimal solution set S0(∆∗) for
∆∗ = ζ∗ + r0 > 0.

(c) The maximum value that δ̄ can have with respect to different values of r0 is the common
asymptotic slope value d(0, 1) for G+ on the right and G− on the left.

Proof. Our strategy is to derive this from the dual characterization of δ̄ in Proposition 6. That
characterization translates in terms of the definition of d into having

δ̄ = max{λ |λ[ζ − r0π] ≤ d(π, ζ) for all (π, ζ) ∈ IRn}. (23)

For the inequality condition inside this description to hold, it only has to hold when π > 0 or π < 0,
since it must then hold automatically for π = 0 by the continuity of d. Indeed, because of the positive
homogeneity of d in Proposition 7(b), it merely has to hold for π = 1 and for π = −1, in order for this
conclusion to be reached.

In the case of π = 1, the inequality λ[ζ − r0π] ≤ d(π, ζ) comes down to λ(ζ − r0) ≤ d+(ζ). Having
this hold for all ζ ∈ IR means that the line in (ζ, δ)-space through (r0, 0) with slope λ does not cross
above the graph of d+.

In the case of π = −1, the inequality λ[ζ − r0π] ≤ d(π, ζ) comes down to λ[ζ + r0] ≤ −d−(−ζ).
With a switch of notation between ζ and −ζ, this becomes λ[ζ − r0] ≥ d−(ζ). Having that hold for all
ζ ∈ IR means that the line in question does not cross below the graph of d−. Thus, the characterization
of d0 in (23) reduces to the graphical characterization claimed in the theorem.

Now (a) and (b) are obvious from the representations of G+ and G− in Proposition 9. On the other
hand, (c) follows from the monotonicity in the curvatures of G+ and G− (i.e., of the left and right
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derivatives of the functions d+ and d−, due to their convexity and concavity), as expressed through
Proposition 8 and the claim there about asymptotic slopes.

Figure 4 illustrates the general situation described in Theorem 4. Two possible values of the
risk-free rate r0 are indicated, corresponding to alternatives (a) and (b) of the theorem. Note the
possibility of more than one point of “tangency,” and on the other hand, the possibility of a range of
r0 values all yielding the same point of tangency. Alternative (c) of Theorem 4 corresponds to r0-line
having the same slope as the diagonal line shown in dashes. Typically there might be only one such
line, associated with a unique threshold rate, but sometimes there could be a family of parallel lines
corresponding to an interval of r0 rates. This will be the subject of the next section, and eventually,
Figure 6.

The same basic relationships underlie the reversed-coordinate picture in Figure 5, of course, but
there they cannot be described so simply in terms of slopes. A line having slope δ̄ in Figure 4 turns
into a line having slope 1/δ̄ in Figure 5, so for instance, the optimal value in problem P0(1) emerges
instead as the reciprocal of the lowest of the slopes of all the lines through (0, r0) that lie between the
two efficient sets. The awkwardness of this kind of statement, insisting on reciprocals, is another of
the reasons why we have chosen to give priority to the presentation in Figure 4.

6 Threshold Determination for the Risk-Free Rate

The task immediately ahead of us is the analysis of the transitional behavior between the cases in
Theorem 4. For that, we will make use of the Lagrange multipliers associated with the problem
P(π, ζ), specifically in the case of (π, ζ) = (0, 1). The Lagrangian for P(π, ζ) is the function

L(π,ζ)(x, ρ, η) = fD(x) + ρ[π − x>e] + η[ζ − x>r̄]. (24)

We say that (ρ, η) is a Lagrange multiplier vector for P(π, ζ) when

infx L(π,ζ)(x, η, ρ) = optimal value d(π, ζ) in P(π, ζ). (25)

This definition, the standard one for a convex programming problem like P(π, ζ) (cf. [19]), gets around
the fact that the objective function fD(x) might not be differentiable everywhere with respect to x.
We let

M(π, ζ) = set of Lagrange multiplier vectors (ρ, η) in P(π, ζ). (26)

Under our assumptions, the Lagrange multiplier set M(π, ζ) is always nonempty, convex and
bounded. This is true from the general theory of convex programming problems because the optimal
solution set to P(π, ζ) is always nonempty and bounded, and the optimal value d(π, ζ) is always
finite; cf. [20], [19]. Moreover, the multiplier vectors for P(π, ζ) are known from that theory to be
the “subgradients” of the (optimal-value) function d at the point (π, ζ). Accordingly, they furnish the
formula

d′(π, ζ;π′, ζ ′) = max
ρ,η
{π′ρ+ ζ ′η | (ρ, η) ∈M(π, ζ)}, (27)

where the left side denotes the one-sided directional derivative of d at (π, ζ) with respect to a vector
(π′, ζ ′) and is defined by

d′(π, ζ;π′, ζ ′) = lim
ε→0+

d(π + επ′, ζ + εζ ′)− d(π, ζ)

ε
(28)

Such derivatives exist because d is convex.
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Theorem 5 (rate thresholds and price behavior).
(a) Threshold values r̂+0 and r̂−0 exist which satisfy r̂−0 ≤ r̂

+

0 and have the following effect on basic
funds, and therefore on the existence of master funds:

every x̄ furnishing a basic fund has price x̄>e > 0 when r0 < r̂−0 ,
every x̄ furnishing a basic fund has price x̄>e < 0 when r0 > r̂+0 ,
every x̄ furnishing a basic fund has price x̄>e = 0 when r̂−0 < r0 < r̂+0 ,

where the third case falls away if actually r̂−0 = r̂+0 so as to yield a single threshold rate r̂0.
(b) In the borderline case of r0 = r̂−0 , at least one x̄ furnishing a basic fund has price x>e = 0,

but there could be other basic fund vectors x̄ having price x>e > 0. Similarly, in the case of r0 = r̂+0 ,
at least one x̄ furnishing a basic fund has price x>e = 0, but there could be other basic fund vectors
x̄ having price x>e < 0.

(c) The threshold rates r̂+0 and r̂−0 can be determined from the Lagrange multiplier set M(0, 1)
for problem P(0, 1). That set consists of the pairs (ρ, η) satisfying η = d(0, 1) and ρ− ≤ ρ ≤ ρ+ for a
certain interval [ρ−, ρ+], and in those terms one has

r̂−0 =
−ρ+

d(0, 1)
, r̂+0 =

−ρ−

d(0, 1)
.

Proof. Let ϕ(π) = d(π, r0π + 1), this being a finite, convex function on IR (by Proposition 7).
Because of the scaling relation in (11) of Proposition 5, we need only look at the case where ∆ = 1.
As seen in Proposition 9, the prices x>e of the vectors x ∈ S0(1) are the values of π that minimize
ϕ over IR. Such values form a nonempty, closed, bounded interval in IR, inasmuch as S0(1) is a
nonempty, closed, bounded, convex subset of IRn (cf. Proposition 7); this interval may well collapse
to just one π value, of course. The issue is the extent to which the values of π that minimize ϕ may
be positive, negative or zero.

As a finite, convex function on IR, ϕ has right and left derivatives ϕ′+(π) and ϕ′−(π) which are
nondecreasing as functions of π, with ϕ′−(π) ≤ ϕ′+(π). The minimum of ϕ is attained at π if and only
if ϕ′−(π) ≤ 0 ≤ ϕ′+(π).

We can test this condition at π = 0. If ϕ′+(0) < 0, the minimum of ϕ can only be attained at some
π > 0, whereas if ϕ′−(0) > 0, it can only be attained at some π < 0. If ϕ′−(0) < 0 < ϕ′+(0), it can only
be attained at π = 0. When ϕ′+(0) = 0, the minimum is attained at π = 0, but it is conceivable that
ϕ might be constant over some interval [0, ε] (with ε > 0), and the minimum would also be attained
then by the positive values of π in that interval. Likewise, when ϕ′−(0) = 0, the minimum is attained
at π = 0, but it is conceivable that ϕ might be constant over some interval [−ε, 0], and the minimum
would also be attained then by the negative values of π in that interval.

The crucial left and right derivatives ϕ′+(0) and ϕ′−(0) are obtainable from the one-sided directional
derivatives of d:

ϕ′+(0) = d′(0, 1; 1, r0), ϕ′−(0) = −d′(0, 1;−1,−r0).

The Lagrange multiplier characterization of the directional derivatives of d in (27) tells us then that

ϕ′+(0) = max
ρ,η
{ ρ+ r0η | (ρ, η) ∈M(0, 1)}, ϕ′−(0) = min

ρ,η
{ ρ+ r0η | (ρ, η) ∈M(0, 1)}.

We note next that, because d(0, λ) = λd(0, 1) when λ > 0 by the positive homogeneity in Proposition
7(b), we have d(0, 1) = d′(0, 1; 0, 1) and −d(0, 1) = d′(0, 1; 0,−1), and consequently by (27) that

d(0, 1) = max
ρ,η
{ 0·ρ+ 1·η | (ρ, η) ∈M(0, 1)} = min

ρ,η
{ 0·ρ+ 1·η | (ρ, η) ∈M(0, 1)},
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so d(0, 1) coincides with both the maximum and minimum values of the η-coordinate for points in
M(0, 1). This implies that M(0, 1) lies within the horizontal line consisting of the pairs (ρ, η) such
that η = d(0, 1). Because M(0, 1) is a compact, convex set, it must actually be a closed segment of
that line (possibly reduced to a single point): the corresponding ρ values must comprise an interval
[ρ−, ρ+]. Thus, M(0, 1) has the special form claimed in the theorem. The formulas we already have
for ϕ′+(0) and ϕ′−(0) tell us then that

ϕ′+(0) = ρ+ + r0d(0, 1), ϕ′−(0) = ρ− + r0d(0, 1).

Finally, we can put this together with the criterion already developed for the location of the values of
π that minimize ϕ. Clearly ϕ′+(0) < 0 if and only if r0 < −ρ+/d(0, 1), whereas ϕ′−(0) > 0 if and only
if r0 > −ρ−/d(0, 1), and the proof is thus finished.

Corollary (optimal portfolios at transition). The values of r0 for which the maximum in part (c) of
Theorem 4 is attained are those in the interval [r̂−0 , r̂

+

0 ]. For such r0, the optimal solution set S0(∆)
to P0(∆), for any ∆ > 0, contains an x having price x>e = 0.

Theorem 5 provides important information about master funds, in particular.

Theorem 6 (existence of master funds). The threshold values r̂+0 and r̂−0 in Theorem 5 have the
property that

when r0 < r̂−0 , there is a master fund of positive type but none of negative type,
when r0 > r̂+0 , there is a master fund of negative type but none of positive type,
when r̂−0 < r0 < r̂+0 , there is neither a master fund of positive type nor one of negative type.

In the borderline case of r0 = r̂−0 , there might be a master fund of positive type, whereas in the
borderline case of r0 = r̂+0 , there might be a master fund of negative type. (When r̂−0 = r̂+0 , it is not
excluded that master funds of both types exist simultaneously.)

Proof. When r0 < r̂−0 , there exists by Proposition 5 and Theorem 5(a) an x ∈ S0(∆) having x>e > 0.
By setting x∗ = x/x>e and ∆∗ = ∆/x>e, we get x∗>e = 1 and have x∗ ∈ S0(∆∗) (again by Proposition
5). This x∗ meets the prescription in Definition 1 for furnishing a master fund of positive type.

Similarly, when r0 > r̂+0 , there exists by Proposition 5 and Theorem 5(a) an x ∈ S0(∆) having
x>e < 0. Then, by setting x∗ = x/|x>e| and ∆∗ = ∆/x>e, we get x∗>e = −1 and have x∗ ∈ S0(∆∗).
This x∗ furnishes a master fund of negative type.

On the other hand, Theorem 5(a) makes clear that a master fund of positive type cannot exist
when r0 > r̂−0 , but might exist (by the argument just given) when r0 = r̂−0 . Likewise, a master fund
of negative type cannot exist when r0 < r̂+0 , but might exist when r0 = r̂+0 .

The interpretation coming from Theorems 5 and 6 is that when the risk-free rate r0 is high enough
(specifically, above the threshold rate r̂+0 ), it is advantageous, for investors whose attitudes toward risk
are captured by the particular deviation measure D under investigation, to take a net “short position”
in the market (an x-portfolio with negative price) and invest at the risk-free rate all the money that
is obtained that way.

The relation between threshold behavior and the efficient set geometry in Figure 4 is indicated in
Figure 6. Ordinarily, it can be expected that r̂−0 = r̂+0 , in which case the unified threshold value may
be denoted simply by r̂0. The explanation is that these values are determined in the proof of Theorem
5 from right and left derivatives of the convex function ϕ(π) = d(π, r0π + 1), and such derivatives
have to coincide almost everywhere. When r̂−0 = r̂+0 , there is only one line that fits between the two
efficient sets.
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The reason why cases with r̂−0 < r̂+0 can truly occur is seen, from this vantage point, to be tied to
the fact that the right and left derivatives of ϕ may differ in some places, due to the function d not
being differentiable. But it can also be understood from the remarks made earlier about the geometry
in Figure 3. When the curve through (0, 1) in Figure 3 has a corner there, one has a range of slopes
r0 corresponding to cases for which the minimum in the reduced format of Proposition 7 occurs with
π = 0. This range of slopes is marked by the two threshold values r̂−0 and r̂+0 , as shown in Figure 7.

Allowance for corner points really does have to be made, because of deviation measures such as
the one in (8), for instance. There fD(x) is piecewise linear and the curves in Figure 7 are polygonal.

It should be noted that, although Theorem 6 conveys the circumstances in which master funds of
one type or the other are sure to exist, it says nothing about when they might be unique. That is
an entirely separate issue. Uniqueness could fail on two grounds. The first is the possibility of more
than one point of tangency where the r0-line meets the frontier, as seen in Figure 4. The second arises
when more than one portfolio can yield the same point on the frontier.

It may be anticipated that these phenomena are “rare,” but they cannot readily be eliminated, a
priori, in the absence of a suitable strict convexity property of D. However, we have demonstrated in
[24, Example 4] that the required version of strict convexity is unavailable, in general, for coherent
deviation measures such as lower semideviation, lower range, and CVaR. The same can be seen for
mixed CVaR and mean absolute deviation.

In contrast to these observations, and the facts in Theorem 6, both the existence and uniqueness
of a master portfolio seem to be taken for granted in much of the literature on portfolio optimization.
The belief is widespread, moreover, that a master portfolio of positive type always suffices, regardless
of the magnitude of the risk-free rate r0. Our hope is that the rigorous methodology pursued in this
paper will help to dispel such misconceptions.

7 Option Example with Nondifferentiability and a Threshold Gap

We present now an example of CVaR type in which the deviation function fD fails to be differentiable
in some places and this moreover creates a threshold gap where r̂−0 < r̂+0 as in Figures 6 and 7. The
trouble will seen to arise in this case through the utilization of options, although it can also arise in
other ways and with non-CVaR deviation measures, especially when the scenario space Ω is discrete,
e.g. as in (8).

Before getting into the specific details, we explain the idea behind our example and why it works.
To keep matters at their simplest, we consider only two risky instruments, having returns r1 and r2,
so that portfolios correspond to points x = (x1, x2) in IR2 and have returns x1r1 + x2r2. We aim at
identifying circumstances in which the convex function

fD(x1, x2) = CVaRα([x1r1 + x2r2]− E[x1r1 + x2r2]) = CVaRα(x1r1 + x2r2) + x1r̄1 + x2r̄2 (29)

for a value α ∈ (0, 1) (yet to be specified) is not differentiable along the line x1 + x2 = 0 at points
where x1 > 0 and x2 < 0. In view of the positive homogeneity property in Proposition 4(b), only one
such point needs to be considered. The nondifferentiability can thus be confirmed by showing that
the partial derivative of fD(x1, x2) with respect to x1 does not exist at (1,−1), or in other words, that
the convex function of s ∈ IR defined by

f(s) = CVaRα(r[s]) for r[s] = (1 + s)r1 − r2 = r[0] + sr1 (30)

is not differentiable at s = 0. Through its convexity, f necessarily has right and left derivatives

f ′+(0) = lim
ε→0+

f(ε)− f(0)

ε
, f ′−(0) = lim

ε→0+

f(0)− f(−ε)
ε

, (31)
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which satisfy f ′−(0) ≤ f ′+(0), so our task is to set the example up to get f ′−(0) < f ′+(0).
Once this nondifferentiability has been confirmed, the existence also of a threshold gap will auto-

matically follow, for reasons explained next. The nondifferentiability of fD means geometrically that
each of the convex level sets given by an inequality of the form fD(x1, x2) ≤ c (for a constant c > 0)
has a “corner point” where its boundary meets the line x1 + x2 in the fourth quadrant of IR2. The
key then is the observation that the function d can be obtained from fD merely by a linear change
of coordinates in IR2, from (x1, x2) coordinates to (π, ζ) coordinates, in which the line x1 + x2 = 0
turns into the line π = 0. Indeed, from (16) we see that d(π, ζ) is obtained by solving the equations
x1 + x2 = π and x1r̄1 + x2r̄2 = ζ for x1 and x2 in terms of π and ζ and substituting those expressions
into fD(x1, x2). The demonstrated corner points of the convex level sets where fD(x1, x2) ≤ c along
x1 + x2 = 0 turn into corner points of the convex level sets where d(π, ζ) ≤ c that lie on the vertical
axis as in Figure 7 and thereby signal a threshold gap.

Now come the details. We start with a stock whose rate of return is governed by a cumulative
distribution function F arising from a positive density function on (−1,∞); then F is differentiable
and increasing on [−1,∞), although identically 0 on (−∞,−1]. We take Ω to be [−1,∞) supplied
with the probability measure associated with F . Instrument 1 is the stock in question, so r1(ω) = ω.
Instrument 2 is an “insured” version of this stock which always returns at least ω1 but never more
than ω2, where −1 < ω1 < 0 < ω2; then

r2(ω) =


ω1 if ω ≤ ω1,
ω if ω ∈ [ω1, ω2],
ω2 if ω ≥ ω2,

r[s](ω) =


(1 + s)ω − ω1 if ω ≤ ω1,
sω if ω ∈ [ω1, ω2],
(1 + s)ω − ω2 if ω ≥ ω2.

Instrument 2 can be interpreted as a composite formed by combining the underlying stock with a put
option at ω1 and a shorted call option at ω2 (with ω1 and ω2 being at levels where the cost of the
shorted call exactly covers the cost of the put). However, to avoid the complication of introducing the
options as separate instruments, which would increase the number of portfolio variables and mess up
the two-dimensional geometry, we prefer to think of Instrument 2 as a single entity.

Let F[s] denote the cumulative distribution function for the random variable r[s]. Observe that for
s = 0 we have F[0](γ) = F (ω1 + γ) for γ < 0 but F[0](γ) = F (ω2 + γ) for γ ≥ 0. The jump of F[0] at
γ = 0 from F (ω1) to F (ω2) is the feature we will exploit.

To do this without unnecessary trouble in the calculations, we choose α = F (0), so that α is the
probability of the interval [−1, 0] in Ω and is intermediate to the jump of F[0] at γ = 0, inasmuch as
F (ω1) < F (0) < F (ω2). In particular, then, VaRα(r[0]) = 0. The α-tail distribution for r[0], which by
definition corresponds to the truncated distribution function with values α−1F[0](γ) when F[0](γ) < α
but 1 when F[0](γ) ≥ α, has density α−1F ′(ω1 + γ) > 0 for γ in [−1 − ω1, 0] and an atom of size
1− α−1F (ω1) at γ = 0, but vanishes elsewhere. Therefore

−CVaRα(r[0]) =

∫ 0

−1−ω1

γα−1F ′(ω1 + γ)dγ =
1

α

∫ ω1

−1
(ω − ω1)F ′(ω)dω =

1

α

∫ 0

−1
r[0](ω)F ′(ω)dω. (32)

Since actually r[s] = r[0] + sr1, we have more generally even for s = ε > 0 that r[ε](ω) ≤ 0 exactly
on the interval [−1, 0] having probability α, so that

VaRα(r[ε]) = 0, CVaRα(r[ε]) = − 1

α

∫ 0

−1
[r[0](ω) + εr1(ω)]dF1(ω) = CVaRα(r[0]) + εCVaRα(r1).

It follows then in (30) and (31) that f ′+(0) = CVaRα(r1).
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Dealing with f ′−(0) is harder and requires an estimate. When s = −ε < 0, we can only be sure
that VaRα(r[−ε]) = −γ∗ for some γ∗ in the interval (−εω2,−εω1) (which contains 0). There are no
probability atoms in the distribution of r[−ε], so we have

−CVaRα(r[−ε]) = average of r[−ε] on [−1, ω′1] ∪ [ω′2, ω
′′
2 ], (33)

where the two intervals comprise the set of ω where r[−ε](ω) ≤ γ∗. Here ω′1 marks the point where the
initial segment in the graph of r[−ε] rises past γ∗, while ω′2 marks where the middle segment sinks past
γ∗, and ω′′2 marks where the final segment once more rises past γ∗; cf. Figure 8. The total probability
in these intervals is of course α, and we have −1 < ω′1 < ω1 < ω′2 < ω2 < ω′′2 .

Let α1 = prob[−1, ω1] and α2 = prob[ω1, 0]; then α1 + α2 = α with α1 > prob[−1, ω′1] and
α2 < prob[ω′2, ω

′′
2 ]. Let ω0 mark the unique point between ω1 and ω2 for which prob[ω0, ω2] = α2. Our

claim, on the basis of (33), is that

−CVaRα(r[−ε]) < average of r[−ε] on [−1, ω1] ∪ [ω0, ω2]. (34)

This holds because, in passing from [−1, ω′1] ∪ [ω′2, ω
′′
2 ] to [−1, ω1] ∪ [ω0, ω2], we preserve the total ω-

probability of the union, namely α, while replacing segments where r[−ε](ω) < γ∗ by segments where
r[−ε](ω) > γ∗. We obtain from (34) that

−CVaRα(r[−ε]) <
1

α

[∫ ω1

−1
[r[0](ω)− εr1(ω)]F ′(ω)dω +

∫ ω2

ω0

[r[0](ω)− εr1(ω)]F ′(ω)dω

]
, (35)

where the first integral equals
∫ 0
−1 r[0](ω)F ′(ω)dω − ε

∫ 0
−1 r1(ω)F ′(ω)dω + ε

∫ 0
ω1
r1(ω)F ′(ω)dω and the

second is just −ε
∫ ω2
ω0
r1(ω)F ′(ω)dω. These observations, applied in (35), give us

−CVaRα(r[−ε]) < −CVaRα(r[0]) + εCVaRα(r1)− εδ (36)

for a certain δ, which in terms α2, the common probability of the two intervals, can be expressed by

δ =
α2

α

[
1

α2

∫ ω2

ω0

r1(ω)F ′(ω)dω − 1

α2

∫ 0

ω1

r1(ω)F ′(ω)dω

]
.

Here δ > 0, because the average of r1(ω) = ω over [ω1, 0] is less than its average over [ω0, ω2], an
interval further to the right.

The estimate in (36) can be applied in (31) through the fact that −CVaRα(r[−ε]) = −f(−ε)
and CVaRα(r[0]) = f(0). This tells us that f ′−(0) ≤ CVaRα(r1) − δ. Since we already know that
f ′+(0) = CVaRα(r1), we deduce that f ′−(0) < f ′+(0), which is what was needed.

8 Conclusions

The replacement of standard deviation by other deviations, such as arise from conditional value-at-risk
and other risk notions, in accordance with current trends, by no means causes the classical approach
to optimization out-dated. Instead, it enriches that approach by making a degree of customization
available. One-fund theorems still reign as a way of simplification, even though the designated funds,
in their dependence on the deviation measure, can be different for different classes of investors. Never-
theless, mathematical complications created by instruments involving options, or models set up with
only finitely many scenarios, require techniques beyond ordinary differential calculus to formulate and
obtain results rigorously.
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