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Abstract

Random variables that stand for cost, loss or damage must be confronted in numerous situations.
Dealing with them systematically for purposes in risk management, optimization and statistics is
the theme of this presentation, which brings together ideas coming from many different areas.

Measures of risk can be used to quantify the hazard in a random variable by a single value which
can substitute for the otherwise uncertain outcomes in a formulation of constraints and objectives.
Such quantifications of risk can be portrayed on a higher level as generated from penalty-type
expressions of “regret” about the mix of potential outcomes. A trade-off between an up-front level
of hazard and the uncertain residual hazard underlies that derivation. Regret is the mirror image
of utility, a familiar concept for dealing with gains instead of losses, but regret concerns hazards
relative to a benchmark. It bridges between risk measures and expected utility, thereby reconciling
those two approaches to optimization under uncertainty

Statistical estimation is inevitably a partner with risk management in handling hazards, which
may be known only partially through a data base. However, a much deeper connection has come
to light with statistical theory itself, in particular regression. Very general measures of error can
associate with any hazard variable a “statistic” along with a “deviation” which quantifies the vari-
able’s nonconstancy. Measures of deviation, on the other hand, are paired closely with measures of
risk exhibiting “aversity.” A direct correspondence can furthermore be identified between measures
of error and measures of regret. The fundamental quadrangle of risk developed here puts all of this
together in a unified scheme.

Keywords: risk quadrangle, risk measures, deviation measures, error measures, regret
measures, relative utility, quantiles, superquantiles, value-at-risk, conditional value-at-risk,
coherency, convexity, duality, stochastic optimization, generalized statistical regression.

Publication version of 16 March 2013 for

Surveys in Operations Research and Management Science

1This research has been supported by the AFOSR grant FA9550-11-1-0258, “New Developments in Uncertainty:
Linking Risk Management, Reliability, Statistics and Stochastic Optimization

2University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195-4350;
E-mail: rtr@uw.edu.
3University of Florida, ISE Department, P.O. Box 116595, 303 Weil Hall, Gainesville, FL 32611-6595;

E-mail: uryasev@ufl.edu

1



1 Introduction

The challenges of dealing with risk pervade many areas of management and engineering. The decisions
that have to be made in risky situations must nonetheless confront constraints on their consequences,
no matter how uncertain those consequences may be. Furthermore, the decisions need to be open to
comparisons which enable some kind of optimization to take place.

When uncertainty is modeled probabilistically with random variables, practical challenges arise
about estimating properties of those random variables and their interrelationships. Information may
come from empirical distributions generated by sampling, or there may only be databases representing
information accumulated somehow or other in the past. Standard approaches to statistical analysis
and regression in terms of expectation, variance and covariance may then be brought in. But the
prospect is now emerging of a vastly expanded array of tools which can be finely tuned to reflect the
various ways that risk may be assessed and, at least to some extent, controlled.

risk R ←→ D deviation
optimization ↑↓ S ↓↑ estimation

regret V ←→ E error

Diagram 1: The Fundamental Risk Quadrangle

This paper is aimed at promoting and developing such tools in a new paradigm we call the risk
quadrangle, which is shown in Diagram 1. It brings together several lines of research and methodology
which, until now, been pursued separately in different professional areas with little inkling of their
fertile interplay. The ideas in these areas form such a vast subject that a broad survey with full
references is beyond feasibility. Our contribution here must, in part, be seen therefore as providing
an overview of the connections, supplemented by instructive examples and the identification of issues
in need of more attention. However, many new facts are brought to light along with new results and
broad extensions of earlier results.

R(X) provides a numerical surrogate for the overall hazard in X,
D(X) measures the “nonconstancy” in X as its uncertainty,
E(X) measures the “nonzeroness” in X,
V(X) measures the “regret” in facing the mix of outcomes of X,
S(X) is the “statistic” associated with X through E and V.

Diagram 2: The Quantifications in the Quadrangle.

The context is that of random variables that can be thought of as standing for uncertain “costs”
or “losses” in the broadest sense, not necessarily monetary (with a negative “cost” corresponding
perhaps to a “reward”). The language of cost gives the orientation that we would like the outcomes
of these random variables to be lower rather than higher, or to be held below some threshold. All
sorts of indicators that may provide signals about hazards can be viewed from this perspective. The
quadrangle elements provide numerical “quantifications” of them (not only finite numbers but in some
cases ∞) which can be employed for various purposes.
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It will help, in understanding the quadrangle, to begin at the upper left corner, where R is a so-
called measure of risk . The specific sense of this needs clarification, since there are conflicting angles
to the meaning of “risk.” In denoting a random cost by X and a constant by C, a key question is
how to give meaning to a statement that X is “adequately” ≤ C with respect to the preferences of
a decision maker who realizes that uncertainty might inescapably generate some outcomes of X that
are > C. The role of a risk measure R, in the sense intended here, is to answer this question by
aggregating the overall uncertain cost in X into a single numerical value R(X) in order to

model “X adequately ≤ C ” by the inequality R(X) ≤ C.

There are familiar ways of doing this. One version could be that X is ≤ C on average, as
symbolized by µ(X) ≤ C with µ(X) the mean value, or in equivalent notation (both are convenient
to maintain), EX ≤ C with EX the expected value. Then R(X) = µ(X) = EX. A tighter version
could be µ(X) + λσ(X) ≤ C with λ giving a positive multiple of the standard deviation σ(X) so as
to provide a safety margin reminiscent of a confidence level in statistics; then R(X) = µ(X) +λσ(X).
The alternative idea that the inequality should hold at least with a certain probability α ∈ (0, 1)
corresponds to qα(X) ≤ C with qα(X) denoting the α-quantile of X, whereas insisting that X ≤ C
almost surely can be written as supX ≤ C with supX standing for the essential supremum of X. Then
R(X) = qα(X) or R(X) = supX, respectively.4 However, these examples are just initial possibilities
among many for which pros and cons need to be appreciated.

A typical situation in optimization that illustrates the compelling need for measures of risk revolves
around a family of random “costs” that depend on a decision vector x belonging to a subset S ⊂ IRn,

Xi(x) for i = 0, 1, . . . ,m, where x = (x1, . . . , xn). (1.1)

The handicap is that x can usually do no more than influence the probability distribution of each
of the “costs.” A potential aim in choosing x from S would be to keep the random variable Xi(x)
adequately ≤ ci for i = 1, . . . ,m, while achieving the lowest c0 such that X0(x) is adequately ≤ c0. The
way “adequately” is modeled could be different for each i, and the notion of a risk measure provides
the perfect tool. A selection of risk measures Ri that pins down the intended sense of “adequately”
in each case leads a optimization problem having the form

choose x ∈ S to minimize R0(X0(x)) subject to Ri(Xi(x)) ≤ ci for i = 1, . . . ,m. (1.2)

Besides pointing the way toward risk-oriented problem formulations to which optimization technology
can successfully be applied, this illustration brings another issue to the foreground. In selecting a
measure of risk Ri, it may not be enough just to rely on Ri having an appealing interpretation. An
important consideration may be whether Ri produces expressions Ri(Xi(x)) that behave reasonably
as functions of x = (x1, . . . , xn). Axioms laying out sensible standards for a measure of risk, such the
coherency introduced in Artzner et al. [1999], are vital for that.5

Another idea in dealing with uncertainty in a random variable X is to quantify its nonconstancy
through a measure of deviation D, with D(X) then being a generalization of σ(X). Again, axioms
have to be articulated. The distinction between D and R at the top of the quadrangle is essential,
despite a very close connection, because of differences in axioms and roles played in applications.

Motivation for nonstandard measures of deviation is apparent in particular in finance because of the
heavy concentration there on variance—or equivalently standard deviation—despite shortcomings in

4Note that R(X) = supX gives examples where R(X) might be ∞.
5The axioms will be developed in Section 3 and their consequences for optimization problems like (1.2) fully pinned

down in Section 5.

3



capturing dangerous “tail behavior” in probability distributions. In portfolio theory, the rate of return
of the portfolio is a random variable X(x) depending on the vector x that gives the proportions of
various securities included in the portfolio. Bounds are placed on σ(X(x)) or this quantity is minimized
subject to side conditions on x. Such an approach can be justified when the random variables have
normal distributions, but when the heavy tail behavior of nonnormal distributions enters the scene,
doubts arise. It may be better then to replace standard deviation by a different deviation measure,
which perhaps could even act on X(x) asymmetrically.6

The introduction of nonstandard deviation measures D in place of σ brings up the question of
whether this might entail some kind of generalization in statistical theory itself. That is indeed one
of the questions our quadrangle scheme is aimed at answering, as will be explained shortly.7

We turn now to the lower left corner of the quadrangle. In a measure of regret V, the value V(X)
stands for the net displeasure perceived in the potential mix of outcomes of a random “cost” X which
may sometimes be > 0 (bad) and sometimes ≤ 0 (OK or better).89 Regret comes up in penalty
approaches to constraints in stochastic optimization and, in mirror image, corresponds to measures of
“utility” U in a context of gains Y instead of losses X, which is typical in economics: V(X) = −U(−X),
U(Y ) = −V(−Y ). Regret obeys V(0) = 0, so in this pairing we have to focus on utility measures
that have U(0) = 0; we say then that U is a measure of relative utility. The interpretation is that, in
applying U to Y , we are thinking of Y not as absolute gain but gain relative to some threshold, e.g.,
Y = Y0 −B where Y0 is absolute gain and B is a benchmark.

Focusing on relative utility in this sense is a positive feature of the quadrangle scheme because
it can help to capture the sharp difference in attitude toward outcomes above or below a benchmark
that is increasingly acknowledged as influencing the preferences of decision makers.10

Measures of regret V, like measures of deviation D, are profoundly related to measures of risk R,
and one of our tasks will to bring this all out. Especially important will be a one-to-one correspondence
between measures of deviation and measures of risk under “aversity,” regardless of coherency. A
powerful property of measures of regret, which soon will be discussed, is their ability to generate
measures of risk through trade-off formulas. By means of such formulas, an optimization problem in
the form of (1.2) may be recast in terms of regret instead of risk, and this can be a great simplification.11

Furthermore, by revealing a deep connection between risk measures and utilty, regret reconciles
the seemingly different approaches to optimization based on those concepts.

The interesting question already raised, of whether measures of deviation beyond standard devia-
tion might fit into some larger development in statistical theory, is our next topic. It brings us to the
lower right corner of the quadrangle, where we speak of a measure of error E as assigning to a random
variable X a value E(X) that quantifies the nonzeroness in X. Classical examples are the Lp-norms

||X||1 = E|X|, ||X||p = [E(|X|p)]1/p for p ∈ (1,∞), ||X||∞ = sup |X|, (1.3)

but there is much more to think of besides norms.

6The “two fund theorem” and other celebrated results of portfolio theory that revolve around standard deviation can
be extended in this direction with CAPM equations replaced by other equations derived from alternative measures of
deviation; cf. Rockafellar et al. [2006b] and Rockafellar et al. [2006c].

7Nonstandard deviation measures are also connected to statistics through entropy analysis, cf. Grechuk et al. [2008].
8Regret in this sense is distinct from the notion of regret as “opportunity loss” in some versions of decision theory.
9In financial terms, if X and V(X) have units of money, V(X) can be the compensation deemed appropriate for taking

on the burden of the uncertain loss X.
10This will be discussed in more detail in Section 4 in the case of utility expressions U(Y ) = E[u(Y )] for an underlying

function u. Having U(0) = 0 corresponds to having u(0) = 0, which can be achieved by selecting a benchmark and
shifting the graph of a given “absolute” utility so that benchmark point is at the origin of IR2.

11This is mission of the Regret Theorem in Section 5.
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Given an error measure E and a random variable X, one can look for a constant C nearest to X
in the sense of minimizing E(X − C). The resulting minimum “E-distance,” denoted by D(X), turns
out to be a deviation measure (under assumptions explained later). The C value in the minimum,
denoted by S(X), can be called the “statistic” associated with X by E . The case of E(X) = ||X||2
produces S(X) = EX and D(X) = σ(X), but many other examples will soon be seen.

The emergence of a particular deviation measure D and statistic S from the choice of an error
measure E has intriguing implications for statistical estimation in the sense of generalized regres-
sion. There is furthermore a deep connection between regression and an optimization problem like
(1.2). The x-dependent random variables Xi(x) there might be replaced by convenient approxima-
tions X̂i(x) developed through regression, and the particular mode of regression might have significant
consequences. We will get back to this shortly.

The optimization and estimation sides of the quadrangle are bound together not only through such
considerations, but also in a more direct manner. The rule that projects from E onto D is echoed
by a certainty-uncertainty trade-off formula which projects a regret measure V onto a risk measure
R. This formula, in which C + V(X − C) is minimized over C, generalizes a rule in Rockafellar and
Uryasev [2000], Rockafellar and Uryasev [2002], for VaR-CVaR computations. It extends the insights
gained beyond that by Ben-Tal and Teboulle [2007] in a context of expected utility, and lines up with
still broader expressions for risk in Krokhmal [2007]. Under a simple relationship between V and E ,
the optimal C value in the trade-off is the same statistic S(X) as earlier, but that conceptual bond
has been missed. Nothing has hitherto suggested that “error” in its context of approximation might
be inherently related to the very different concept of “regret” and, through that, to “utility.”

Altogether, we arrive in this way at a “quadrangle” of quantifications having the descriptions in
Diagram 2 and the interconnections in Diagram 3.12 More details will be furnished in Section 3, after
the assumptions needed to justify the relationships have been explained.

R(X) = EX +D(X), D(X) = R(X)− EX

V(X) = EX + E(X), E(X) = V(X)− EX

R(X) = min
C
{C + V(X − C) }, D(X) = min

C
{ E(X − C) }

argmin
C
{C + V(X − C) } = S(X) = argmin

C
{ E(X − C) }

Diagram 3: The General Relationships

The paired arrows on the sides of Diagram 1, in contrast to the two-way arrows on the top and
bottom, correspond to the fact that the simple formulas in Diagram 3 for getting R and D from V and
E are not uniquely invertible. Antecedents V and E for R and D always exist, even in multiplicity,13

so the real issue for inversion is the identification of natural, nontrivial antecedents. That is a large
topic with many good answers in the examples in Section 2 and broader principles in Section 3.

More must be said now about how the quadrangle relates to statistical estimation in the form
of regression, and the motivation coming from that. Broader approaches to regression than classical
“least-squares” are not new, but the description to be given here is unprecedently broad.

12The “argmin” notation refers to the C values that achieve the “min.”
13For instance V(X) = R(X) + α|EX| and E(X) = D(X) + α|EX| with α > 0.
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Regression is a way of approximating a random variable Y by a function f(X1, . . . , Xn) of one or
more other random variables Xj for purposes of anticipating outcome properties or trends. It requires
a way of measuring how far the random difference Zf = Y − f(X1, . . . , Xn) is from 0. That, clearly,
is where error measures E can come in. The norms (1.3) offer choices, but there may be incentive
for using asymmetric error measures E that look at more than just |Zf |. When Y has cost or hazard
orientation, underestimations Y − f(X1, . . . , Xn) > 0 may be more dangerous than overestimations
Y − f(X1, . . . , Xn) < 0.

For an error measure E and a collection C of regression functions f , the basic problem of regression
for Y with respect to X1, . . . , Xn is to

minimize E(Zf ) over f ∈ C, where Zf = Y − f(X1, . . . , Xn). (1.4)

An immediate question that comes to mind is how one such version of regression might differ from
another and perhaps be better for some purpose. We provide a simple but revealing answer. As long
as C has the property that it includes with each f all the translates f + C for constants C, problem
(1.4) has the following interpretation:

minimize D(Zf ) over all f ∈ C such that S(Zf ) = 0, (1.5)

where D and S are the deviation measure and statistic associated with the error measure E . In such
generality, and with additional features as well,14 this is a new result, but it builds in part on our
earlier theorem in Rockafellar et al. [2008] for the case of linear regression functions f .

Factor models for simplifying work with random variables ordinarily rely on standard least-squares
regression, which corresponds here to E being the L2 norm in (1.3), so that D(Zf ) is σ(Zf ) and S(Zf )
is µ(Zf ). Suppose, for instance, that the “costs” in (1.1) have the form

Xi(x) = gi(x, V1, . . . , Vr) with respect to random variables Vk. (1.6)

The random variables Vk may have various interdependences which can be treated by thinking of them
as reflecting the outcomes of certain other, more “primitive,” random variables W1, . . . ,Ws. This can
suggest approximating them through regression as

Vk ≈ V̂k = fk(W1, . . . ,Ws) for fk ∈ Ck and an error measure Ek, (1.7)

which leads to approximating Xi(x) by

X̂i(x) = gi(x, V̂1, · · · , V̂r) for i = 0, 1, . . . ,m. (1.8)

In the optimization problem (1.2), this replaces the objective and constraint functions Ri(Xi(x)) by
different functions Ri(X̂i(x)). How will that change the solution? What guarantee is there that a
solution to the altered problem will be close to a solution to the original problem?

That question has received very little attention so far, although we raised it in Rockafellar et al.
[2008] as suggesting that the error measures Ek in (1.7) should be “tuned” somehow to the quantifica-
tion of risk by Ri. We did show there, at least, that if gi(x, V1, . . . , Vm) = x1V1 + · · ·xmVm, the Ek’s
should be the error measure Ei in the same quadrangle as the risk measure Ri. Then the expressions
Ri(Xi(x)) and Ri(X̂i(x)) will be closer to each other as functions of x than otherwise. Although we

14See the Regression Theorem in Section 5. In general, S can assign an interval of values, so the constraint in (1.5)
would better be written as 0 ∈ S(Zf ).
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do not pursue that further in this survey, we hope that the quadrangle framework we furnish will help
to stimulate more research on the matter.

In the plan of the paper after this introduction, we will first pass in Section 2 to examples of
quadrangles that help to underscore our intentions and provide guidance for theory and applications.
This is a compromise in which we, and the reader, are held back to some extent by the postponement
of precise definitions and assumptions that only come in Section 3. It is an unusual way of proceeding,
but we take this path from the conviction that providing motivation in advance of technical details is
essential for conveying the attractions of this wide-ranging subject.

Section 3 showcases the Quadrangle Theorem which supports the formulas and relationships in
Diagrams 1, 2, and 3 and specifies the key properties of the quantifiers R, D, V and E that propagate
through the scheme. Although some connections have already been indicated elsewhere, this result is
new in its generality and creation of the entire quadrangle with V and its associated utility U . Also
new in Section 3 in similar degree are the Scaling Theorem, the Mixing Theorem and the Reverting
Theorem, which furnish means of constructing additional instances of quadrangles from known ones.

Interpretations and results beyond the basics in Section 3 are provided in Section 4 as an aid to
more specialized applications. The main contribution there is the Expectation Theorem, concerned
with the “expectation quadrangles” we are about to describe. In particular, it enables us to justify
a number of the examples in Section 2 and show how they can be extended. Section 5 presents
in more detail the role of the risk quadrangle in applications to optimization, as in problem (1.2),
and generalized regression as in problem (1.4).15 The Convexity Theorem indicates how “convex
dependence” of the random variables Xi(x) in (1.1) with respect to x passes over to convexity of the
expressions Ri(Xi(x)) in (1.2) under natural assumptions on Ri. The Regret Theorem provides a far-
reaching new generalization of a well known device from Rockafellar and Uryasev [2002] for facilitating
the solution of optimization problems (1.2) when Ri is a CVaR risk measure. The Regression Theorem
in Section 5 handles problem (1.4) on level beyond anything previously attempted.

Duality will occupy our attention in Section 6. Each of the quantifiers R, D, E , V, has a dual
expression in the presence of “closed convexity,” a property we will build into them in Section 3. This is
presented in the Envelope Theorem. Such dualizations shed additional light on modeling motivations.
Although the dualization of a risk measure R has already been closely investigated, its advantageous
coordination with the dualization of V is new here together with its echoes in D and E .

Expectation Quadrangles. Many examples, but by no means all, will fall into the category that
we call the expectation case of the risk quadrangle. The special feature in this case is that

E(X) = E[e(X)], V(X) = E[v(X)], U(Y ) = E[u(Y )], (1.9)

for functions e and v on (−∞,∞) related to each other by

e(x) = v(x)− x, v(x) = e(x) + x, (1.10)

and on the other hand, v corresponding to relative utility u through

v(x) = −u(−x), u(y) = −v(−y). (1.11)

The V ↔ E correspondence in Diagram 3 holds under (1.9), while (1.10) ensures that V(X) = −U(−X)
and U(Y ) = −V(−Y ). The consequences for the S, R and D components of the quadrangle, as
generated by the other formulas in Diagram 3, will be discussed in Section 4.

15Other issues in statistical “estimation,” such as the convergence of approximations based on sampling are not taken
up here despite their great importance in the long run. This is due to the lack of space and, in some cases, the imperfect
state of current knowledge. Interesting research challenges abound.
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Expected utility is a central notion in decision analysis in economics and likewise in finance, cf.
Föllmer and Schied [2004]. Expected error expressions similarly dominate much of statistics, cf.
Gneiting [2011]. Expectation quadrangles provide the connection to those bodies of theory in the
development undertaken here. However, the quadrangle scheme also reveals serious limitations of the
expectation case. Many attractive examples do not fit into it, as will be clear in the sampling of
Section 2. Even expressions U(Y ) = E[u0(Y −Y0)], giving expected u0-utility relative to a benchmark
gain Y0, can fail to be directly representable as U(Y ) = E[u(Y )] for a utility function u. Departure
from expected utility and expected error is therefore inevitable, if the quadrangle relationships we are
exploring are to reach their full potential for application. This widening of perspective is another of
the contributions we are aiming at here.

2 Some Examples Showing the Breadth of the Scheme

Before going into technical details, we will look at an array of examples aimed at illustrating the scope
and richness of the quadrangle scheme and the interrelationships it reveals. In each case the elements
correspond to each other in the manner of Diagram 3. Some of the connections are already known
but have not all been placed in a single, comprehensive picture.

The first example ties classical safety margins in the risk measure format in optimization and
reliability engineering to the standard tools of least-squares regression. It centers on the mean value
of X as the statistic. The scaling factor λ > 0 allows the safety margin to come into full play: having
X adequately ≤ C is interpreted as having µ(X) at least λ standard deviation units ≤ C. Through
“regret” a link is made to an associated “utility.” However, as will be seen in Section 3, this quadrangle
lacks an important property of “coherency.”

Example 1: A Mean-Based Quadrangle (with λ > 0 as a scaling parameter)

S(X) = EX = µ(X) = mean

R(X) = µ(X) + λσ(X) = safety margin tail risk

D(X) = λσ(X) = standard deviation, scaled

V(X) = µ(X) + λ||X||2 = L2-regret, scaled

E(X) = λ||X||2 = L2-error, scaled

Regression with this E corresponds through (1.5) to minimizing the standard deviation of the error
Zf = Y − f(X1, . . . , Xn) subject to the mean of the error being 0.

Already here we have an example that is not an expectation quadrangle. Perhaps that may seem
a bit artificial, because the L2-norm could be replaced by its square. That would produce a modified
quadrangle giving the same statistic:

Example 1′: Variance Version of Example 1

S(X) = EX = µ(X)

R(X) = µ(X) + λσ2(X)

D(X) = λσ2(X)

V(X) = µ(X) + λ||X||22 = E[v(X)] for v(x) = x+ λx2

E(X) = λ||X||22 = E[e(x)] for e(x) = λx2
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However, some properties would definitely change. The first version has R(X+X ′) ≤ R(X) +R(X ′),
which is a rule often promoted for measures of risk as part of “coherency” (as explained in Section 3),
but this fails for the second version (although “convexity” persists). A new quadrangle variant of
Examples 1 and 1′ with potentially important advantages will be introduced in Example 7.

The next example combines quantile statistics with concepts coming from risk management in
finance and engineering. By tying “conditional value-at-risk,” on the optimization side, to quantile
regression (in contrast to least-squares regression) as pioneered in statistics by Koenker and Bassett
[1978], it underscores a unity that might go unrecognized without the risk quadrangle scheme.

The key in this case is provided by the (cumulative) distribution function FX(x) = prob{X ≤ x }
of a random variable X and the quantile values associated with it. If, for a probability level α ∈ (0, 1),
there is a unique x such that FX(x) = α, that x is the α-quantile qα(X). In general, however, there
are two values to consider as extremes:

q+α(X) = inf {x |FX(x) > α }, q−α(X) = sup {x |FX(x) < α }. (2.1)

It is customary, when these differ, to take the lower value as “the” α-quantile, noting that, because
FX is right-continuous, this is the lowest x such that FX(x) = α. Here, instead, we will consider the
entire interval between the two competing values as the quantile,

qα(X) = [q−α(X), q+α(X)], (2.2)

bearing in mind that this interval usually collapses to a single value. That approach will fit better
with our way of defining a “statistic” by the argmin notation. Also important to understand, in
our context of interpreting X as a “cost” or “loss,” is that the notion of value-at-risk in finance
coincides with quantile. There is an upper value-at-risk VaR+

α(X) = q+α(X) along with a lower value-
at-risk VaR−α(X) = q−α(X), and, in general, a value-at-risk interval VaRα(X) = [VaR+

α(X),VaR−α(X)]
identical to the quantile interval qα(X).

Besides value-at-risk, the example coming under consideration involves the conditional value-at-risk
of X at level α ∈ (0, 1) as defined by

CVaRα(X) = expectation of X in its α-tail, (2.3)

which is also expressible by

CVaRα(X) =
1

1− α

∫ 1

α
VaRτ (X)dτ. (2.4)

The second formula is due to Acerbi [2002] in different terminology, while the first follows the pattern
in Rockafellar and Uryasev [2000], where “conditional value-at-risk” was coined.16 Due to applications
of risk theory in areas outside of finance, such as reliability engineering, we believe it is advantageous
to maintain, parallel to value-at-risk and quantile, the ability to refer to the conditional value-at-risk
CVaRα(X) equally as the superquantile qα(X). We will be helped here and later by the notation

X = X+ −X− with X+ = max{0, X}, X− = max{0,−X}.

16The α-tail distribution of X corresponds to the upper part of the distribution of X having probability 1 − α. The
interpretation of this for the case when FX has a jump at the α quantile is worked out in Rockafellar and Uryasev [2002].
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Example 2: A Quantile-Based Quadrangle (at any confidence level α ∈ (0, 1))

S(X) = VaRα(X) = qα(X) = quantile

R(X) = CVaRα(X) = qα(X) = superquantile

D(X) = CVaRα(X − EX) = qα(X − EX) = superquantile-deviation

V(X) = 1
1−αEX+ = average absolute loss, scaled17

E(X) = E[ α
1−αX+ +X−] = normalized Koenker-Bassett error

This is an expectation quadrangle with

e(x) =
α

1− α
max{0, x}+ max{0,−x}, v(x) =

1

1− α
max{0, x}, u(y) =

1

1− α
min{0, y}.

The original Koenker-Bassett error expression differs from the one here by a positive factor. Adjust-
ment is needed to make it project to the desired D. With respect to this measure of error, regression
has the interpretation in (1.5) that the α-superquantile (or α-CVaR) deviation of Zf is minimized
subject to the α-quantile of Zf being 0.

The targeting of average loss as the source of “regret” in Example 2 is interesting because of the
role that average loss has long had in stochastic optimization, but also through the scaling feature. In
the past, such scaling might have been thought immaterial, but this quadrangle shows that it identifies
a particular loss quantile having a special role.

Example 2 confirms the motivations in Section 1 for looking at entire quadrangles. Consider a
stochastic optimization problem in the form of (1.2). It is tempting, and common in many applications,
to contemplate taking Ri to be a quantile qαi . The constraint Ri(Xi(x)) ≤ ci would require then
that x be chosen so that the random “cost” Xi(x) is ≤ ci with probability at least αi. However,
this apparently natural approach suffers from the fact that qαi(Xi(x)) may be poorly behaved as a
function of x as well as subject to the indeterminacy, or discontinuity, associated with (2.2). That
could hamper computation and lead to instability of solutions.

An alternative to a quantile would be to take Ri to be a superquantile q̄αi . The constraint
Ri(Xi(x)) ≤ ci, as an expression of Xi(x) being “adequately” ≤ ci, is then more conservative and
has an interpretation in terms of “buffered probability of failure,” cf. Rockafellar and Royset [2010].
Moreover it is better behaved and able to preserve convexity of Xi(x) with respect to x, if present. A
further advantage in optimization from such an approach is seen from the projection from V to R on
the left side of the quadrangle:

q̄αi(Xi(x)) ≤ ci ⇐⇒ Ci +
1

1− αi
E[max{0, Xi(x)− Ci}] ≤ ci for a choice of Ci ∈ IR.

Thus, a superquantile (or CVaR) constraint can be reformulated as something simpler through the
introduction of another decision variable Ci alongside of x.18 In some situations the expectation
term in the reformulation can even be handled through linear programming. This first came out in
Rockafellar and Uryasev [2000], but the point to be emphasized here is that such a device is not limited
to superquantiles. The same effect can be achieved with a risk measure Ri and regret measure Vi pair
from any quadrangle (with “regularity”), replacing Ri(Xi(x)) ≤ ci by Ci + Vi(Xi(x)− Ci) ≤ ci, and
the variable Ci ends up then in optimality as Si(Xi(x)); see the Regret Theorem in Section 5.

17Average absolute loss as “regret,” and as inspiration for the terminology we are introducing here more broadly, goes
back to Dembo and King [1992] in stochastic programming.

18Minimizing qα0(X0(x)) in x converts likewise to minimizing C0 + 1
1−α0

E[max{0, X0(x)− C0}] in x and C0.
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The fact that the D-E side of the quadrangle in Example 2 corresponds to quantile regression has
important implications as well. It was explained in Section 1 that factor models might be employed
to replace Xi(x) by some X̂i(x) through regression, and that evidence suggests selecting for this
regression the error measure Ei in the same quadrangle as the risk measure Ri. It follows that, in
an optimization problem (1.2) with objective and constraints of superquantile/CVaR type, quantile
regression is perhaps most appropriate, at least in some linear models,19 and should even be carried
out at the αi threshold chosen for each i.20 Another observation is that quantile regression at level
αi turns into minimization of the superquantile/CVaR deviation measure Dαi(X) = q̄αi(X − EX)
for X = Zf in (1.4). This is laid out in general by the Regression Theorem of Section 5. Only the
quadrangle scheme is capable of bringing all this together.

The special case of Example 2 in which the quantile is the median is worth looking at directly.
It corresponds to the error measure being the L1-norm in contrast to Example 1, where the error
measure was the L2-norm. This furnishes a statistical alternative to least-squares regression in which
the mean is replaced by the median, which may in some situations be a better way of centering a
random cost.21 Regression comes out then in (1.5) as minimizing the mean absolute deviation of the
error random variable Zf subject to it having 0 as its median.

Example 3: A Median-Based Quadrangle (the quantile case for α = 1
2 )

S(X) = VaR1/2(X) = q1/2(X) = median

R(X) = CVaR1/2(X) = q1/2(X) = “supermedian” (average in median-tail)

D(X) = E|X − q1/2(X)| = mean absolute deviation

V(X) = 2EX+ = L1-regret

E(X) = E|X| = L1-error

For the sake of comparison, it is instructive to ask what happens if the error measure E on the
estimation side, and in potential application to generalized regression, is the L∞-norm. This leads to
our fourth example, which emphasizes the case where X is (essentially) bounded.

Example 4: A Range-Based Quadrangle (with λ > 0 as a scaling parameter)

S(X) = 1
2 [ supX + inf X] = center of range of X (if bounded)

R(X) = EX + λ
2 [ supX − inf X] = range-buffered risk, scaled

D(X) = λ
2 [ supX − inf X] = radius of the range of X (maybe ∞), scaled

V(X) = EX + λ sup |X| = L∞-regret, scaled

E(X) = λ sup |X| = L∞-error, scaled

This is not an expectation quadrangle. Having X adequately ≤ C means here that X is kept below C
by a margin equal to λ times the radius of the range of X. The interpretation of regression provided
by (1.5) is that the radius of the range of Zf is minimized subject to its center being at 0.

The example offered next identifies both as the statistic and as the risk the “worst cost” associated
with X. It can be regarded as the limit of the quantile-based quadrangle in Example 2 as α→ 1.

19This is a fertile topic for more research.
20Again, this is an insight applicable not only to Example 2, but to any of the other quadrangles that will come up.
21Furthermore, this quadrangle and the other quantile quadrangles in Example 2 will be seen to exhibit the “coherency”

that was lacking in Example 1, and for that matter, Example 1′.
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Example 5: A Worst-Case-Based Quadrangle

S(X) = supX = top of the range of X (maybe ∞)

R(X) = supX = yes, the same as S(X)

D(X) = supX − EX = span of the upper range of X (maybe ∞)

V(X) =

{
0 if X ≤ 0
∞ if X 6≤ 0

= worst-case-regret

E(X) =

{
E|X| if X ≤ 0
∞ if X 6≤ 0

= worst-case-error

This is another expectation quadrangle but with functions of unusual appearance:

e(x) =

{
−x if x ≤ 0
∞ if x > 0

, v(x) =

{
0 if x ≤ 0
∞ if x > 0

, u(y) =

{
−∞ if y < 0
0 if y ≥ 0

.

The “range” of X here is its essential range, i.e., the smallest closed interval in which outcomes must
lie with probability 1. Thus, in Example 5, the inequality R(X) ≤ C gives the risk-measure code for
insisting that X ≤ C with probability 1. The regret measure V(X) assigns infinite penalty when this
is violated, but no disincentive otherwise. The regression associated with the quadrangle in Example
5 is one-sided. It corresponds in (1.5) to minimizing |EZf | subject to supZf = 0.

A major attraction of the risk measure in Example 5 is that, on the surface at least, it apparently
bypasses having to think about probabilities. This is the central theme of so-called “robust optimiza-
tion.”22 However, a generalization can be made in which some additional probabilistic insights are
available, and the appraisal of “worst” is distributed over different visions of the future tied to a coarse
level of probability modeling. The details will not be fully understandable until we begin posing risk
in the rigorous framework of a probability space in Section 3 (and all the more in Section 6), but we
proceed anyway here to a suggestive preliminary formulation. It depends on partitioning the underly-
ing uncertainty about the future into several different “sets of circumstances” k = 1, . . . , r having no
overlap23 and letting

pk = probability of the kth set of circumstances, with pk > 0, p1 + · · ·+ pr = 1,
supkX = worst of X under circumstances k, for k = 1, . . . , r,
EkX = conditional expectation of X under circumstances k.

(2.5)

The last implies, of course, that p1E1X + · · ·+ prErX = EX.

Example 6: A Distributed-Worst-Case-Based Quadrangle (with respect to (2.5))

S(X) = p1 sup1X + · · ·+ pr suprX

R(X) = p1 sup1X + · · ·+ pr suprX = yes, the same as S(X)

D(X) = p1[sup1X − E1X] + · · ·+ pr[suprX − ErX]

22In that subject, probabilistic assessments typically enter nevertheless through construction of an “uncertainty set”
consisting of the future states or scenarios deemed worthy of consideration in the worst-case analysis. That uncertainty
set can be identified as the Ω set in the probability-space underpinnings of risk theory explained in Section 3.

23Technically this refers to “events” as measurable subsets Ωk of the probability space Ω introduced in the next section.
For more, see also (6.10) and what precedes it. In the context of “robust optimization,” one can think of the chosen
“uncertainty set” Ω being partitioned into a number of smaller uncertainty sets Ωk to which relative probabilities can be
assigned. By admitting various degrees of fineness in the partitioning (fields of sets providing “filters of information”),
a bridge is provided between different layers of probability knowledge.
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V(X) =

{
0 if p1 sup1X + · · ·+ pr suprX ≤ 0,
∞ if p1 sup1X + · · ·+ pr suprX > 0

E(X) =

{
E|p1 sup1X + · · ·+ pr suprX| if p1 sup1X + · · ·+ pr suprX ≤ 0,
∞ if p1 sup1X + · · ·+ pr suprX > 0

This novel example is again not an expectation quadrangle. Moreover, unlike the previous cases, the
quantifiers in Example 6 are not “law-invariant,” i.e., their effects on X depend on more than just the
distribution function FX . It should be noted that expectations only enter the elements on the right
side of this quadrangle. As far as optimization is concerned, by itself, there are no assumptions about
probability structure other than the first line of (2.5). This can be regarded as a compromise between
the starkness of Example 5 and a full-scale probability model.

We turn now to an example motivated especially from the estimation side. It concerns an expecta-
tion quadrangle which interpolates between Examples 1′ and 3 by looking at an error expression like
the one in Huber’s modification of least-squares regression in order to mollify the influence of outliers.
We introduce a scaling parameter β > 0 and make use of the β-truncation function

Tβ(x) =


β when x ≥ β,
x when −β ≤ x ≤ β,
−β when x ≤ −β.

Example 7: A Truncated-Mean-Based Quadrangle (with scaling parameter β > 0)

S(X) = µβ(X) = value of C such that E[Tβ(X − C)] = 0

R(X) = µβ(X) + E[v(X − µβ(X))] for v as below

D(X) = E[e(X − µβ(X))] for e as below

V(X) = E[v(X)] with v(x) =


−β

2 when x ≤ −β
x+ 1

2βx
2 when |x| ≤ β

2x− β
2 when x ≥ β

E(X) = E[e(X)] with e(x) =

{
|x| − β

2 when |x| ≥ β
1

2βx
2 when |x| ≤ β = Huber-type error

In the limit of µβ(X) as β → ∞, we end up with just EX, as in Examples 1 and 1′. For the
deviation measure D in Example 7, one can think of 2βD(X) as the β-truncation σ2

β(X) of σ2(X).
It approaches that variance as β → ∞. In the corresponding regression, interpreted through (1.5),
σ2
β(Zf ) is minimized subject to µβ(Zf ) = 0 for the error random variable Zf . This contrasts with

minimizing σ2(Zf ) subject to µ(Zf ) = 0 in Examples 1 and 1′.
As a quadrangle, Example 7 is brand new. Its noteworthy feature, as contrasted with the limiting

case in Example 1′, is that its v(x) is a nondecreasing convex function of x.24 In consequence, V and
R will be “monotonic” (as defined in Section 3) and their dualizations (in Section 6) will fit into a
framework of probability which the dualizations coming out of Example 1′ cannot attain.

The next quadrangle, again in the expectation case, looks very different. The log-exponential risk
measure at the heart of it is a recognized tool in risk theory in finance,25 but its connection with a
form of generalized regression, by way of the the D-E side of the quadrangle, has not previously been
contemplated. As in Examples 5 and 6, the risk R(X) equals the statistic S(X).

24And the associated utility u(y) will be a nondecreasing concave function of y.
25This is called entropic risk in Föllmer and Schied [2004].
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Example 8: A Log-Exponential-Based Quadrangle

S(X) = logE[expX] = expression dual to Boltzmann-Shannon entropy 26

R(X) = logE[expX] = yes, the same as S(X)

D(X) = logE[exp(X − EX)] = log-exponential deviation

V(X) = E[expX − 1] = exponential regret ←→ U(Y ) = E[1− exp(−Y )]

E(X) = E[expX −X − 1] = (unsymmetric) exponential error

Regression here can be interpreted by (1.5) as minimizing logE[exp(Zf−EZf )] = logE[expZf ]−EZf
subject to logE[expZf ] = 0, or equivalently minimizing |EZf | subject to E[expZf ] = 1 (since the
latter implies expEZf ≤ 1, hence EZf < 0).

The regret V in Example 8 is paired with an expected utility expression that is commonly employed
in finance: we are in the expectation case with

e(x) = expx− x− 1, v(x) = expx− 1, u(y) = 1− exp(−y).

Such utility pairing is seen also in the coming Example 9, which fits the expectation case with

e(x) =

{
log 1

1−x − x if x < 1
∞ if x ≥ 1,

v(x) =

{
log 1

1−x if x < 1
∞ if x ≥ 1,

u(y) =

{
log(1 + y) if y > −1
−∞ if y ≤ −1.

Example 9: A Rate-Based Quadrangle

S(X) = r(X) = unique C ≥ supX − 1 such that E
[

1
1−X+C

]
= 1

R(X) = r(X) + E
[

log 1
1−X+r(X)

]
D(X) = r(X) + E

[
log 1

1−X+r(X) −X
]

V(X) = E
[

log 1
1−X

]
←→ U(Y ) = E[log(1 + Y )]

E(X) = E
[

log 1
1−X −X

]
We have dubbed this quadrangle “rate-based” because, in the utility connection, log(1 + y) is an

expression applied to a rate of gain y (which of necessity is > −1); cf. Luenberger [1998], Chap. 15,
for the role of this in finance. Correspondingly in log 1

1−x , we are dealing with a rate of loss.
The next two examples in this section lie again outside the expectation case and present a more

complicated picture where error and regret are defined by an auxiliary operation of minimization. The
first concerns “mixed” quantiles/VaR and superquantiles/CVaR. The idea, from the risk measure
perspective, is to study expressions of the type

R(X) =

∫ 1

0
CVaRα(X)dλ(α) (2.6)

for any weighting measure λ on (0, 1) (nonnegative with total measure 1). In particular, if λ is
comprised of atoms with weights λk > 0 at points αk for k = 1, . . . , r, with λ1 + · · ·+λr = 1, one gets

R(X) = λ1CVaRα1(X) + · · ·+ λrCVaRαr(X). (2.7)

26The “exp” notation is adopted so as not to conflict with the convenient use of “e” for error integrands in (1.9).
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The question is whether this can be placed in a full quadrangle in the format of Diagrams 1, 2 and 3.
Incentive comes from the fact that such risk measures have a representation as “spectral measures”

in the sense of Acerbi [2002], which capture preferences in terms of “risk profiles.”27 We proved in
[Rockafellar et al., 2006a, Proposition 5] (echoing our working paper Rockafellar et al. [2002]) that,
as long as the weighting measure λ satisfies

∫ 1
0 (1 − α)−1dλ(α) < ∞, the risk measure in (2.7) can

equivalently be expressed in the form

R(X) =

∫ 1

0
VaRτ (X)φ(τ)dτ with φ(τ) =

∫
(0,τ ]

(1− α)−1dλ(α), (2.8)

where the function φ, defined on (0, 1), gives the risk profile.28

The risk profile for a single “unmixed” risk measure CVaRα is the function φα that has the value
1/(1− α) on [α,∞) but 0 on (0, α); this corresponds to formula (2.4). Moreover the risk profile for a
weighted CVaR sum as in (2.7) would be the step function φ = λ1φα1 + · · ·+ λrφαr .

Although the quadrangle that would serve for a general weighting measure in (2.6) is still a topic
of research, the special case in (2.7) is accessible from the platform of Rockafellar et al. [2008], which
will be widened in Section 4 (in the Mixing Theorem).

Example 10: A Mixed-Quantile-Based Quadrangle
(for any confidence levels αi ∈ (0, 1) and weights λk > 0,

∑r
k=1 λk = 1)

S(X) =
∑r
k=1 λkqαk(X) =

∑r
k=1 λkVaRαk

(X) = a mixed quantile29

R(X) =
∑r
k=1 λkqαk(X) =

∑r
k=1 λkCVaRαk

(X) = a mixed superquantile

D(X) =
∑r
k=1 λkqαk(X − EX) =

∑r
k=1 λkCVaRαk

(X − EX)
= the corresponding mixture of superquantile deviations

V(X) = min
B1,...,Br

{ ∑r
k=1 λkVαk(X −Bk)

∣∣∣ ∑r
k=1 λkBk = 0

}
= a derived balance of the regrets Vαk(X) = 1

1−αkEX+

E(X) = min
B1,...,Br

{ ∑r
k=1 λkEαk(X −Bk)

∣∣∣ ∑r
k=1 λkBk = 0

}
= a derived balance of the errors Eαk(X) = E[ αk

1−αkX+ +X− ]

The case of a general weighting measure may be approximated this way arbitrarily closely, as can
very well be seen through the corresponding risk profiles. When the measure is concentrated in finitely
many points, the corresponding profile function φ in (2.8) is a step function, and vice versa, as already
noted. An arbitrary profile function φ (fulfilling the conditions indicated above in a footnote) can be
approximated by a profile function that is a step function.

A highly interesting use for the quadrangle of Example 10 is the mixed quantile approximation of
a superquantile. According to (2.4), the value q̄α(X) = CVaRα(X) can be obtained by calculating
the integral of qτ (X) = VaRτ (X) over τ ∈ [α, 1]. Classical numerical approaches introduce a finite

27Such profiles occur in “dual utility theory,” a subject addressed by Yaari [1987] and Roell [1987] and recently revisited
with greater rigor by Dentcheva and Ruszczyński [2013]. Their integrals are the “concave distortion” functions seen in
finance and insurance theory, cf. Föllmer and Schied [2004], Pflug [2009].

28This function φ is right-continuous and nondecreasing with φ(0+) = 0, φ(1−) < ∞ and
∫ 1

0
φ(τ)dτ = 1. Conversely,

any function φ with those properties arises from a unique choice of λ as described. The cited sources have a reversed
formula due to X being gain-oriented instead of loss-oriented, as here.

29This kind of sum, in which some of the terms could be intervals, is to be interpreted in general as referring to all
results obtained by selecting particular values within those intervals.
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subdivision of the interval [α, 1] and replace the integrand by a nearby step function or piecewise
linear function based on the quantiles marking that subdivision. It is easy to see that the value of the
integral for that approximated integrand is actually a mixed quantile expression. The conclusion is
that versions of the quadrangle of Example 10 can serve as approximations to a superquantile-based
quadrangle parallel to the quantile-based quadrangle of Example 2.30 In this manner, superquantile
regression, in which the statistic is a superquantile instead of a quantile, can be carried out.

Although the mixed superquantile/CVaR risk measures R in Example 10 have a well recognized
importance in expressing preferences toward risk, through the profiles explained above,31 the iden-
tification in this quadrangle of a corresponding “optimally mixed” regret measure V for such R is
new. The associated error measure E is the one thereby indicated for use in regression approximations
where this kind of risk measure is involved.

It is worth emphasizing that the min expressions for V and E in Example 10 are no impediment
at all in practice when applied to optimization or regression. For instance, the trick explained after
Example 2 for simplifying a superquantile/CVaR constraint through the introduction of an addi-
tional decision variable works here as well. The only difference is that still more decision variables
corresponding to the B’s in the quadrangle are introduced, too.

The following example likewise offers something new as far as risk measures and potential applica-
tions in regression are concerned, although the “statistic” in question has already come up in mortgage
pipeline hedging; see AORDA [2010].

Example 11: A Quantile-Radius-Based Quadrangle (for any α ∈ (1/2, 1) and λ > 0)

S(X) = 1
2 [qα(X)− q1−α(X)] = 1

2 [VaRα(X)−VaR1−α(X)]
= the α-quantile radius of X, or 1

2 -two-tail-VaRα of X

R(X) = EX + λ
2 [qα(X) + qα(−X)] = EX + λ

2 [CVaRα(X) + CVaRα(−X)]
= reverted CVaRα, scaled

D(X) = λ
2 [qα(X) + qα(−X)] = λ

2 [CVaRα(X) + CVaRα(−X)]
= the α-superquantile radius of X, scaled

V(X) = EX + min
B

{
λ

2(1−α)E
[

[B +X]+ + [B −X]+
]
−B

}
= α-quantile-radius regret in X, scaled

E(X) = λ
2(1−α) min

B
E
[
[B +X]+ + [B −X]+

]
= α-quantile-radius error in X, scaled

This example will be justified and extended in Section 3 (through the Reverting Theorem).
As the final example in this section, we offer a generalization of Example 2 to the “higher-order

moment risk measures” introduced in Krokhmal [2007] and further analyzed recently in Dentcheva,
Penev and Ruszczyński [2013]. The “quantile” terminology does not come from those works and is
only imposed here in suggestion of the strong parallels with the earlier quantile-based quadrangle,
which would be the case where p = 1.

Example 12: A Higher-Order Quantile-Based Quadrangle (for α ∈ (0, 1), p ∈ (1,∞))

S(X) = q
(p)
α (X) = p-moment quantile

R(X) = q
(p)
α (X) = p-moment superquantile

30In Rockafellar and Royset [2013], direct expressions for the elements of this quadrangle are produced‘¡F4¿.
31See also the theoretical developments in [Föllmer and Schied, 2004, Chapter 4.5].
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D(X) = q
(p)
α (X − EX) = p-moment superquantile-deviation

V(X) = 1
1−α ||X+||p = p-normed absolute loss, scaled

E(X) = 1
1−α ||X+||p − EX = p-moment quantile error

The p-moment quantile q
(p)
α (X) is known to be characterized by the equation

(1− α)p−1 = ||(X − q(p)
α (X))+||p−1

/
||(X − q(p)

α (X))+||p.

For this and other properties, see Krokhmal [2007].

What considerations have to be faced in constructing further quadrangle examples? For instance,
is there a full quadrangle with R(X) = EX, or with R(X) = VaRα(X) = qα(X)? The answer is yes
in both cases, provided that VaRα(X) and qα(X) (which can be intervals in our setting) are replaced
by VaR−α(X) and q−α(X), say, but the resulting quadrangles are “not interesting.” For R(X) = EX,
we must have D(X) ≡ 0 in accordance with Diagram 3. An associated measure of error would be
E(X) = |EX|, which is paired with V(X) = EX + |EX| = 2 max{0, EX}. Then S(X) = EX and
offers us nothing new.

For R(X) = VaR−α(X), on the other hand, we have D(X) = VaR−α(X − EX) and could take
E(X) = VaR−α(X − EX) + |EX| and correspondingly V(X) = VaR−α(X) + 2 max{0, EX}. However,
then we merely have S(X) = EX. Some different and more interesting V(X) might project onto
R(X) = VaR−α(X) through the formula in Diagram 3, but this remains to be seen.32

In a similar vein, it might be wondered whether the expression VaRα(X)−VaR1−α(X) appearing
as the statistic of Example 10 could serve as the deviation measure D(X) in some quadrangle, since
it is nonnegative and vanishes for constant X. Again the answer is yes, but perhaps only trivially.

Anyway, the most important guideline for additional quadrangle examples is that the quantifiers
must fit with the descriptions in Diagram 2, which have yet to be fleshed out with appeals to specific
mathematical properties. That is our task in the coming section. Those properties have to make
sense in applications and lead to a sturdy methodology, and the real trouble with R(X) = EX
and R(X) = VaR−α(X) as measures of risk is that they fall short of meeting such a standard. The
Quadrangle Theorem of the coming Section 3, our central result, will therefore not apply to them.

3 The Main Properties and Relationships

This section is devoted to laying a rigorous foundation for the elements of the risk quadrangle and
their interconnections. It also furnishes tools for generating additional quadrangles from given ones.

In working with random variables we adopt the standard model in probability theory, which
interprets them as functions on a probability space. Specifically, we suppose there is an underlying
space Ω with elements ω standing for future states, or scenarios, along with a measure which assigns
probabilities to various subsets of Ω. There is no loss of generality in this, but technicalities come in
which we wish to avoid getting too occupied with at present.33 Random variables from now on are

32No claim is made about there being a unique E projecting onto some D, or a unique V projecting onto some R, and
indeed that must not be hoped for. The real issue instead is that of determining an “natural” antecedent with valuable
characteristics. For instance, any risk measure R can be projected from V(X) = R(X) + λ|EX| and any deviation
measure from E(X) = D(X) + λ|EX| for arbitrary λ > 0, with the pointless consequence that S(X) = EX.

33More explanation is provided in Section 6, which also offers motivation and examples for readers who might not be
so familiar with this way of thinking.
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functions X : Ω → IR, but we restrict attention to those for which E[X2] < ∞, indicating this by
X ∈ L2(Ω). Here E is the expectation with respect to the background probability measure on Ω.34

Any X ∈ L2(Ω) also has E|X| < ∞, so that EX is well defined and finite. Furthermore, the
variance σ2(X) = E[X−EX]2 and its square root, the standard deviation σ(X), are well defined and
finite.35 These expressions characterize the natural (“strong”) convergence in L2(Ω) of a sequence of
random variables Xk to a random variable X:

L2- lim
k→∞

Xk = X ⇐⇒ lim
k→∞

||Xk −X||2 = 0

⇐⇒ lim
k→∞

E[Xk −X] = 0 and lim
k→∞

σ(Xk −X) = 0.
(3.1)

In many applications Ω may consist of finitely many elements ω, each having a positive probability
weight. The choice of norm makes no difference then, because L2(Ω) is finite-dimensional.36

The quantifiers R, D, V and E , all of which assign numerical values, possibly including +∞,37 to
random variables X, are said to be “functionals” on L2(Ω). Some of the properties that come up may
be shared, so it is expedient to state them in terms of a general functional F : L2(Ω)→ (−∞,∞]:

• F is convex if F((1− τ)X + τX ′) ≤ (1− τ)F(X) + τF(X ′) for all X,X ′, and τ ∈ (0, 1).38

• F is positively homogeneous if F(0) = 0 and F(λX) = λF(X) for all λ ∈ (0,∞).

• F is subadditive if F(X +X ′) ≤ F(X) + F(X ′) for all X,X ′.

• F is monotonic (nondecreasing, here) if F(X) ≤ F(X ′) when X ≤ X ′.39

• F is closed if, for all C ∈ IR, the set {X | F(X) ≤ C } is closed.40

Convexity will be valuable for much of what we undertake. Positive homogeneity is a more special
property which, in the study of risk, was emphasized more in the past than now. An elementary fact
of convex analysis is that

F convex + positively homogeneous ⇐⇒ F subadditive + positively homogeneous. (3.2)

The combinations in (3.2) are equivalent to sublinearity : F(
∑
k λkXk) ≤

∑
k λkF(Xk) for λk ≥ 0.41

Other important consequences of convexity emerge only in combination with closedness. One that
will be applied in several ways is the following rule coming out of convex analysis.42

If F is closed convex, and if X0, Y , c, make the function f(t) = F(X0 + tY )− tc be
bounded above for t ∈ [0,∞), then F(X + tY )− tc ≤ F(X) for all X and t ∈ [0,∞).

(3.3)

34The inner product between two elements X and Y of L2(Ω) is 〈X,Y 〉 = E[XY ].
35It might be wondered why we insist on boundedness of second moments when requiring only E|X| <∞ would cover

a larger class of random variables. The main reason is that this leads to a simpler exposition in Section 6, when we come
to the dualization of risk in terms of sets of probability densities Q (having Q ≥ 0, EQ = 1). With the finiteness of
E|X| as the only requirement we would be limited there to bounded densities Q. It would be better really if we could
draw on all possible densities Q, but that would force us to go to the opposite extreme of requiring X to be essentially
bounded. The choice made here is a workable compromise.

36In finite dimensions, all norms give the same convergence.
37This feature helps to make our choice of L2(Ω) as the underlying space much less restrictive than might be imagined.
38In expressions like this, a sum of values in (−∞,∞] is ∞ if any of them is ∞. Also, λ∞ =∞ for λ > 0.
39This inequality is to be interpreted in the “almost sure” sense, meaning that the set of ω ∈ Ω for which X(ω) ≤ X ′(ω)

has probability 1.
40This property is also called lower semicontinuity. A subset of L2(Ω) is closed when it contains all limits of its

sequences in the sense of (3.1). For convex sets, weak limits give the same closedness as those strong limits.
41Under the convention, if necessary, that 0∞ = 0.
42Apply Theorem 8.6 of Rockafellar [1970] to the function f(s, t) = F((1− s)X0 + sX + tY ).
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An immediate consequence, for instance, is that43

for F closed convex: if F(X) ≤ 0 whenever X ≤ 0, then F is monotonic. (3.4)

To assist with closedness, it may help to note that this property of F holds when F is continuous,44 and
moreover, as long as F does not take on∞, that stronger property is automatic in broad circumstances
of interest to us. Namely,45

F is continuous on L2(Ω) when


F is finite, convex, and closed, or
F is finite, convex, and monotonic, or
F is finite, convex, and Ω is finite.

(3.5)

Closedness can also approached through so-called “weak” convergence in place of the “strong” con-
vergence described by (3.1), since the closedness of convex sets is known to be the same either way.
Weak convergence of Xk to X means that E[XkQ]→ E[XQ] for all Q ∈ L2. In fact it suffices in this
to restrict attention to Q ≥ 0 with EQ = 1, inasmuch as linear combinations of such Q fill up all of
L2. That will be especially meaningful in Section 6, where Q of this type will be interpreted as the
density with respect to P0 of an alternative probability measure P .

Measures of risk. The role of a measure of risk, R, is to assign to a random variable X, standing
for an uncertain “cost” or “loss,” a numerical value R(X) that can serve as a surrogate for overall
(net) cost or loss. However, the assignment must meet reasonable standards in order to make sense.

The class of coherent measures of risk has attracted wide attention in finance in this regard. A
functional R belongs to this class, as introduced in Artzner et al. [1999], if it is convex and positively
homogeneous (or equivalently by (3.2) subadditive and positively homogeneous), as well as monotonic,
and, in addition, satisfies46

R(X + C) = R(X) + C for all X and constants C. (3.6)

Closedness of R was not mentioned in Artzner et al. [1999], but the context there supposed R to
be finite (and actually Ω finite, too), so that closedness and even continuity of R were implied by
coherency through (3.5).47 Subsequent researchers considered dropping the positive homogeneity, and
with it the term “coherent,” speaking then of a “convex measure of risk” or a “convex risk function,”
cf. Föllmer and Schied [2004], Ruszczyński and Shapiro [2006a].48 However, without denying the
importance of these ideas, we will organize assumptions and terminology a bit differently here. The
crucial role that EX has in the fundamental risk quadrangle is our guide, along with the importance
of “closedness” in dealing with functionals that might take on ∞.49

43Consider the case of (3.3) with X0 = 0, Y ≤ 0, and c = 0.
44Continuity of F means that F(Xk)→ F(X) whenever Xk → X as in (3.1).
45For the first: [Rockafellar, 1974, Corollary 8B]. For the second: [Ruszczyński and Shapiro, 2006a, Proposition 3.1].

For the third: [Rockafellar, 1970, Theorem 10.1], recalling that L2(Ω) is finite-dimensional when Ω is finite.
46A slightly different, but ultimately equivalent property was originally formulated in Artzner et al. [1999]. Note that

positive homogeneity enables the units of measurement of X to be the same as those of R(X).
47Coherency was extended to general Ω in Delbaen [2002] with X restricted to L∞(Ω) and R still finite-valued, in

which case R is likewise continuous by [Ruszczyński and Shapiro, 2006a, Proposition 3.1]. That framework was also
maintained in Föllmer and Schied [2004].

48In our view, the idea behind “coherency” is oriented to monotonicity plus convexity. In Rockafellar [2007], risk
measures satisfying the axioms of coherency except for positive homogeneity were called coherent in the extended sense.

49Another reason is that the “convex risk measure” terminology insists on monotonicity, but we want a framework
that, for the sake of broad understanding, encompasses some risk measures without monotonicity, such as R(X) =
µ(X) + λσ(X).
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By a regular measure of risk we will mean a functional R with values in (−∞,∞] that is closed
convex with

R(C) = C for constants C (3.7)

and furthermore
R(X) > EX for nonconstant X. (3.8)

Property (3.8) is aversity to risk.50 Observe that (3.7) implies the seemingly stronger property (3.6)
of Artzner et al. [1999] by the rule in (3.3)51 and therefore entails

R(X − EX) = R(X)− EX for all X (3.9)

in particular. An advantage of stipulating (3.7) in place of (3.6) lies in motivation. The surrogate cost
value that a measure of risk should assign to a random variable that always comes out with the value
C ought to be C itself.

In all of the Examples 1–12 above, R is a regular measure of risk, and in Examples 1–3, 5–6, 10–12,
R is also positively homogeneous. In Examples 2–3, 5–10 and 12, R is monotonic, but in Examples
1, 4 and 11 it is not. Only the risk measures in Examples 2–3, 5–6, 10 and 12 are coherent in the
sense of Artzner et al. [1999]. For R = q̄α = CVaRα in Example 2, this was perceived from several
angles that eventually came together; see Pflug [2000], Acerbi and Tasche [2002] and Rockafellar and

Uryasev [2002]. For R = q̄
(p)
α in Example 12, the coherency was established by Krokhmal [2007].

An example of a coherent measure of risk that is not regular is R(X) = EX, which lacks aversity.
On the other hand, R(X) = VaR−α(X) fails to be a regular measure of risk by lacking closedness,
convexity and the aversity in (3.8), in general, although it does have positive homogeneity, satisfies
(3.6) and is monotonic. It fails to be a coherent measure of risk through the absence of convexity.

Measures of deviation. The role of a measure of deviation, D, is to quantify the nonconstancy
(as the uncertainty) in a random variable X.52 By a regular measure of deviation we will mean a
functional D with values in [0,∞] that is closed convex with

D(C) = 0 for constants C, but D(X) > 0 for nonconstant X. (3.10)

The measures of deviation in Examples 1–12 all fit this prescription. Note that symmetry is not
required: perhaps D(−X) 6= D(X).

Measures of error. The role of a measure of error, E , is to quantify the nonzeroness in a random
variable X.53 By a regular measure of error we will mean a functional E with values in [0,∞] that is
closed convex with

E(0) = 0 but E(X) > 0 when X 6≡ 0 (3.11)

and satisfies for sequences of random variables {Xk}∞k=1 the condition that

lim
k→∞

E(Xk) = 0 =⇒ lim
k→∞

EXk = 0. (3.12)

50Risk measures satisfying this condition were introduced as averse measures of risk in Rockafellar et al. [2006a]. A
constant random variable X ≡ C has R(X) = EX by (3.7).

51In (3.3) with F = R and X0 = 0, first take Y ≡ C and c = C for any C. Since (3.7) gives R(0 + tC) − tC = 0, it
follows that R(X + C) − C ≤ R(X) for all X and C. Applying this next to X + C and −C in place of X and C, get
R(X) + C ≤ R(X + C), hence an equation.

52Deviation measures as a special class of functionals were introduced in Rockafellar et al. [2002] with follow-up in
Rockafellar et al. [2006a].

53Measures of error in such general terms were introduced in Rockafellar et al. [2008].

20



The latter requirement, meaning that random variables X with |EX| bounded away from 0 cannot be
arbitrarily close to 0 as measured by E(X), will enter into the projection from E to D that is featured
on the right side of the quadrangle. It is equivalent actually to the seemingly stronger property that
E(X) ≥ ψ(EX) for a convex function ψ on (−∞,∞) having ψ(0) = 0 but ψ(t) > 0 for t 6= 0.54 In
common situations it holds automatically, as for instance when Ω is finite,55 or in the expectation case
with E(X) = E[e(X)] for a convex function e on (−∞,∞) having e(0) = 0 but e(x) > 0 for x 6= 0.56

In Examples 1–12 every measure of error is regular, but some cases can have E(−X) 6= E(X).

Measures of regret and relative utility. The role of a measure of regret, V, is to quantify
the displeasure associated with the mixture of potential positive, zero and negative outcomes of a
random variable X that stands for an uncertain cost or loss. Regret in this sense is close to the notion
of an overall penalty, but it might sometimes come out negative and therefore act as a reward. As
mentioned in the introduction, regret is the flip side of relative utility. Measures of regret V correspond
to measures of relative utility U through

V(X) = −U(−X), U(Y ) = −V(−Y ), (3.13)

where Y denotes a random variable oriented toward uncertain gain instead of loss. Everything said
about regret could be conveyed instead in the language of utility, but that would trigger switches of
orientation between loss and gain together with tedious minus signs coming from (3.13).

By a regular measure of regret we will mean a functional V with values in (−∞,∞] that is closed
convex , has the aversity property that

V(0) = 0 but V(X) > EX when X 6≡ 0, (3.14)

and satisfies for sequences of random variables {Xk}∞k=1 the condition that

lim
k→∞

[V(Xk)− EXk] = 0 =⇒ lim
k→∞

EXk = 0. (3.15)

The limit condition parallels the one in (3.12) and likewise is automatic when Ω is finite, or in the
expectation case where V(X) = E[v(X)] for a convex function v on (−∞,∞) having v(0) = 0 but
v(x) > x for x 6= 0. All the measures of regret in Examples 1–12 are regular.

As with measures of risk R, there is strong incentive for asking V also to be monotonic. That
additional property holds for the measures of regret in Examples 2–3, 5–10 and 12, but not in Examples
1, 4 and 11.57

By a regular measure of relative utility we will mean a functional U having the “flipped” properties
that correspond to those of a regular measure of regret V through (3.13).58

Quadrangle Theorem.
(a) The relations D(X) = R(X)−EX and R(X) = EX +D(X) give a one-to-one correspondence

between regular measures of risk R and regular measures of deviation D. In this correspondence, R
is positively homogeneous if and only if D is positively homogeneous. On the other hand,

R is monotonic if and only if D(X) ≤ supX − EX for all X. (3.16)

54From (3.12) the function ψ(t) = inf
{
E(X)

∣∣EX = t
}

has these properties.
55The finite-dimensionality of L2(Ω) and the closed convexity E in combination with (3.11) ensure then that the lower

level sets of E are compact.
56Then E[e(X)] ≥ e(EX) by Jensen’s Inequality.
57There is potential motivation sometimes for working without such monotonicity, as will be explained in Section 5.
58More details on this will be provided in Section 4.
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(b) The relations E(X) = V(X)− EX and V(X) = EX + E(X) give a one-to-one correspondence
between regular measures of regret V and regular measures of error E . In this correspondence, V is
positively homogeneous if and only if E is positively homogeneous. On the other hand,

V is monotonic if and only if E(X) ≤ |EX| for X ≤ 0. (3.17)

(c) For any regular measure of regret V, a regular measure of risk R is obtained by

R(X) = min
C

{
C + V(X − C)

}
. (3.18)

If V is positively homogeneous, R is positively homogeneous. If V is monotonic, R is monotonic.
(d) For any regular measure of error E , a regular measure of deviation D is obtained by

D(X) = min
C

{
E(X − C)

}
. (3.19)

If E is positively homogeneous, D is positively homogeneous. If E satisfies the condition in (3.17),
then D satisfies the condition in (3.16).

(e) In both (c) and (d), as long as the expression being minimized is finite for some C, the set of C
values for which the minimum is attained is a nonempty, closed, bounded interval.59 Moreover when
V and E are paired as in (b), the interval comes out the same and gives the associated statistic:

argmin
C
{C + V(X − C) } = S(X) = argmin

C
{ E(X − C) }, with S(X + C) = S(X) + C. (3.20)

This theorem integrates, in a new and revealing way, various results or partial results that were
separately developed elsewhere, and in many instances only for positively homogeneous quantifiers.
The correspondence between R and D in part (a) was officially presented in Rockafellar et al. [2006a]
after being laid out much earlier in the unpublished report Rockafellar et al. [2002].60 The results
in parts (d) and (e) about projecting from E to D come from Rockafellar et al. [2008], where they
were employed in generalized linear regression.61 The observation in part (b) immediately translates
them to the results in parts (c) and (e) about projecting from V to R. However, a general version of
(c) in the positively homogeneous case was separately developed earlier, without that connection, by
Krokhmal [2007].

Although the parallel between E → D and V → R, which ties the two sides of the quadrangle
fully together, is mathematically elementary, it has not come into focus easily despite its conceptual

59Typically this interval reduces to a single point.
60As in those works, even though they only looked at the positively homogeneous case, the justification of (3.17) follows

by applying (3.4) to F = R. The justification of (3.13) works the same way with F = V in (3.4).
61The only real effort in the proof of the projection claims is in showing that, when D comes from (3.19), the minimum

over C is attained and D inherits the closedness of E . This draws on (3.12). The argument in Rockafellar et al. [2008]
utilized positive homogeneity, but it is readily generalized as follows through the existence under (3.12) of a convex
function ψ with ψ(0) = 0, ψ(t) > 0 for t 6= 0, such that E(X) ≥ ψ(EX). The level sets

{
t
∣∣ψ(t) ≤ c

}
are then bounded.

Observe first that if a sequence of finite error values E(X − Ck) approaches the minimum with respect to C, it is a
bounded sequence and therefore, since E(X−Ck) ≥ ψ(EX−Ck), the sequence of expected values E[X−Ck] is bounded.
Then the sequence {Ck }∞k=1 is bounded, so a subsequence will converge to some C. That C gives the minimum, due to
the closedness of E .

Next fix a value c ∈ IR and suppose that Xk → X with D(Xk) ≤ c for k = 1, 2, . . .. The issue is whether D(X) ≤ c.
For each k there is a Ck with D(Xk) = E(Xk −Ck), and those error values are bounded then by c. In consequence, the
sequence of values E[Xk−Ck] is bounded. Since Xk → X, hence EXk → EX, it follows that a subsequence of {Ck }∞k=1

has to converge to some C, in which case the corresponding subsequence of {Xk − Ck }∞k=1 converges to X − C. The
closedness of E ensures that E(X − C) ≤ c and hence D(X) ≤ c, as required.
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significance. That, especially, is where the theorem innovates. What was absent in the past was
the broad concept of a measure of regret, not limited to an expectation, and the realization it could
anchor a fourth corner in the relationships, thereby serving as a conduit for bringing in “utility”
beyond expected utility.

Risk measure formulas of type (3.18) with accompaniment in (3.20) have gradually emerged without
any thought that they might be connected somehow with generalized regression. The first such formula
was presented in Rockafellar and Uryasev [2000] and its follow-up Rockafellar and Uryasev [2002],62

CVaRα(X) = min
C

{
C +

1

1− α
E[X − C]+

}
,

VaRα(X) = argmin
C

{
C +

1

1− α
E[X − C]+

}
.

(3.21)

We later learned that the “argmin” part of this was already known in the statistics of quantile regres-
sion, cf. Koenker and Bassett [1978], Koenker [2005], but with the minimization expression differing
from ours by a positive factor; the associated “min” quantity got no attention in that subject. In those
days we were mainly occupied with the numerical usefulness of (3.21) in solving problems of stochastic
optimization involving VaR and CVaR and were looking no further in the direction of statistics.

Earlier, on a different frontier, the concept of “optimized certainty equivalent” was defined in Ben-
Tal and Teboulle [1991] by a trade-off formula very much like the one for getting S from V but focused
on expected utility (“normalized”) and maximization, instead of general regret and minimization. It
was applied to problems of optimization in Ben-Tal and Ben-Israel [1991] and subsequently Ben-Tal
and Ben-Israel [1997]. Much later in Ben-Tal and Teboulle [2007], once the theory of risk measures
had come into development, the “min” quantity in the trade-off received attention alongside of the
“argmin,” and (3.21) could be cast as a special case of their previous work with expected utility. An
important feature of that work, brought out further in Ben-Tal and Teboulle [2007], was duality with
notions of information and entropy.63

In Krokhmal [2007] a much wider class of trade-off formulas for risk measures was studied with the
aim of generalizing (3.21) through V-type expressions not restricted to the expectation case. In that
research, as in Ben-Tal and Teboulle [2007], no connections with statistical theory were contemplated.
In other words, the bottom line of the quadrangle was still out of sight.

It is convenient to speak of the quantifiers at the corners of the fundamental quadrangle, under
the relations in Diagram 3, as constituting a quadrangle quartet (R,D,V, E) with statistic S. In the
regular case portrayed in the Quadrangle Theorem, it is a regular quadrangle quartet. The most
attractive case adds monotonicity to R and V along with the corresponding properties of D and E in
(3.16) and (3.17); we will then call the quartet monotonic. On the other hand, in the case where the
four quantifiers are positively homogeneous we will speak of a quartet with positive homogeneity.

Although good examples of regular quadrangle quartets with and without monotonicity have been
provided in Section 2, the question arises of how additional examples might be constructed. We round
out this section with three results which can assist in that direction.

The first one is elementary but puts into the proper perspective of an entire quadrangle the
operation of blending risk with expectation that is seen in the formula it gives for R(X). Such
blending, for instance with R0(X) = CVaRα(X), has gained some attention in finance.

62In some papers in this area the random variables X were taken as representing uncertain “gains” instead of “losses.”
The resulting formulas are of course equivalent in that case, but minus signs have to be juggled in the translation.

63Here, see the end of Section 6.
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Scaling Theorem. Let (R0,D0,V0, E0) be a regular quadrangle quartet with statistic S0 and consider
any λ ∈ (0,∞). Then a regular quadrangle quartet (R,D,V, E) with statistic S is given by

S(X) = S0(X),
R(X) = (1− λ)EX + λR0(X), D(X) = λD0(X),
V(X) = (1− λ)EX + λV0(X), E(X) = λE0(X),

(3.22)

or differently by
S(X) = λS0(λ−1X),
R(X) = λR0(λ−1X), D(X) = λD0(λ−1X),
V(X) = λV0(λ−1X), E(X) = λE0(λ−1X).

(3.23)

Monotonicity and positive homogeneity are preserved in these constructions, except that monotonicity
requires λ ≥ 1 in (3.22).

Scaling as in (3.22) is present in Examples 1, 1′, and could very well be added to Examples 2 and 3.
The alternative form in (3.23) provides an enrichment to Examples 8 and 9.

Mixing Theorem. For k = 1, . . . , r let (Rk,Dk,Vk, Ek) be a regular quadrangle quartet with statistic
Sk, and consider any weights λk > 0 with λ1 + · · ·+λr = 1. A regular quadrangle quartet (R,D,V, E)
with statistic S is given then by

S(X) = λ1S1(X) + · · ·+ λrSr(X),
R(X) = λ1R1(X) + · · ·+ λrRr(X),
D(X) = λ1D1(X) + · · ·+ λrDr(X),

V(X) = min
B1,...,Br

{ ∑r

k=1
λkVk(X −Bk)

∣∣∣ ∑r

k=1
λkBk = 0

}
,

E(X) = min
B1,...,Br

{ ∑r

k=1
λkEk(X −Bk)

∣∣∣ ∑r

k=1
λkBk = 0

}
.

(3.24)

Moreover (R,D,V, E) is monotonic if every (Rk,Dk,Vk, Ek) is monotonic, and (R,D,V, E) is positively
homogeneous if every (Rk,Dk,Vk, Ek) is positively homogeneous.

This generalizes a result in Rockafellar et al. [2008] which dealt only with positively homogeneous
quantifiers.64 The quadrangle in Example 10 illustrates it for a particular case.

Reverting Theorem. For i = 1, 2, let (Ri,Di,Vi, Ei) be a regular quadrangle quartet with statistic
Si. Then a regular quadrangle quartet (R,D,V, E) with statistic S is given by

S(X) = 1
2 [S1(X)− S2(−X)],

R(X) = EX + 1
2 [R1(X) +R2(−X)],

D(X) = 1
2 [D1(X) +D2(−X)] = 1

2 [R1(X) +R2(−X)],

V(X) = EX + min
B

{
1
2 [V1(B +X) + V2(B −X)]−B

}
,

E(X) = min
B

{
1
2 [E1(B +X) + E2(B −X)]

}
.

(3.25)

Positive homogeneity is preserved in this construction, but not monotonicity.

Example 11 illustrates a case where (R1,D1,V1, E1) and (R2,D2,V2, E2) coincide. The proof of the
Reverting Theorem takes advantage of bounds Ei(X) ≥ ψi(EX) produced from (3.12).65

64The proof is essentially the same as in that case, the main task being to demonstrate that R and D are closed and
the minimum over B1, . . . , Br is attained. The argument follows the pattern we have indicated above for the projection
part of the Quadrangle Theorem, making use of inequalities Ek(X) ≥ ψk(EX) coming from (3.12).

65It starts with a direct calculation of the minimum of E(X − C) over C with the minB expression for E inserted. A
change of variables C1 = C −B, C2 = −C −B, shows that this yields the claimed S, and D. The corresponding R and
V are confirmed then from the quadrangle formulas.
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A further operation that can be performed on risk measures is “inf-convolution,” cf. Barrieu and
El Karoui [2005]. This could likewise be articulated in a theorem along these lines.

4 Further Model-Promoting Results and Interpretations

The general facts in Section 3 will be supplemented in this section by more detail in the expectation
case. Claims made about the examples of expectation quadrangles in Section 2 will in that way be
confirmed. Insight will be provided also into the pattern of regret versus utility, even outside the
expectation case, and how it can affect the D-E side of the quadrangle.

In relying on (3.13) for a one-to-one correspondence between regular measures of regret V and
regular measures of relative utility U , we are in particular replacing the convexity of V with the
concavity of U and requiring, for a random variable Y oriented toward gain, that

U(0) = 0 but U(Y ) < EY when Y 6≡ 0. (4.1)

This is where the term “relative” comes in. The gain in Y needs to be viewed as gain relative to
some benchmark. That contrasts with the way utility theory is ordinarily articulated in terms of the
“absolute” utility of an outcome. But practitioners appreciate nowadays that investors, for instance,
are highly influenced by benchmarks in their attitudes toward gain or loss.

The case of expected utility, focused on E[u(Y )] for a one-dimensional utility function u giving
u(y) for a sure gain y, serves well in explaining this. A large body of traditional theory in finance,
laid out authoritatively in Föllmer and Schied [2004], looks toward maximizing such an expression
under various side conditions in putting together a good portfolio. The utility function u captures the
preferences of an investor, and the expectation deals with the uncertainty when the gain y turns into
a random variable Y . Standard functions u have logarithmic forms and the like, and there is often
nothing “relative” about them.

In order to have a functional U(Y ) = E[u(Y )] satisfy (4.1) and be closed concave,66 the natural
specialization is to require u to be a function of y with

u closed concave and u(0) = 0 but u(y) < y when y 6= 0. (4.2)

Again, the sense in that would come from a benchmark interpretation, namely that y no longer stands
for an amount of money received in the future but rather an increment (positive or negative) to some
reference amount. A utility function satisfying (4.2), but with “<” weakened to “≤,” is a normalized
utility in the terminology of Ben-Tal and Teboulle [2007]. Normalization to create these properties is
always possible in the expectation case because, in theory, as far as generating a preference ordering
for y values is concerned, a utility u is only determined up to translations and an arbitrary scaling
factor.67 For our quadrangle scheme, however, such normalization is not merely a convenience but
essential. Expected utility depends not only on the ordering induced by u on (−∞,∞), but also on
the “curvature” aspects of u, and the choice of a benchmark can have a large impact on that, apart
from some special cases.

A utility function u satisfying (4.2) is paired with a regret function v satisfying

v closed convex and v(0) = 0 but v(x) > x when x 6= 0. (4.3)

66Closed concavity requires the “upper” level sets of type ≥ c to be closed for all c ∈ IR, in contrast to closed convexity,
which requires all “lower” level sets of type ≤ c to be closed.

67Outside of the expectation case, it is still possible to shift to U(0) = 0 as a “normalization,” but rescaling is insufficient
to get to U(Y ) ≤ EY .
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under the correspondence68

v(x) = −u(−x), u(y) = −v(−y). (4.4)

The properties in (4.3) are needed for V(X) = E[v(X)] to be a regular measure of regret. They are
crucial moreover in the correspondence between V and E at the bottom of the quadrangle in making
E(X) = E[e(X)] be a regular measure of error paired with V(X) = E[v(X)] under the relations

e(x) = v(x)− x, v(x) = x+ e(x), (4.5)

which entail having

e closed convex and e(0) = 0 but e(x) > 0 when x 6= 0. (4.6)

The condition on the utility function u in (4.2) implies that u′(0) = 1 when u is differentiable at 0,
but it is important to realize that u might not be differentiable at 0, and this could even be desirable.
From concavity, u is sure at least to have right derivatives u′+(y) and left derivatives u′−(y) satisfying
u′−(y) ≥ u′+(y), usually with equality, but still maybe with u′−(0) > u′+(0). This would mean that, in
terms of relative utility, the pain of a marginal loss relative to the benchmark is greater than pleasure
of a marginal gain relative to the benchmark. Just such a disparity in reactions to gains and losses is
seen in practice and reflects, at least in part, the observations in Kahneman and Tversky [1979].

In translating this from a concave utility function u to a convex regret function v as in (4.3), we
have, of course, right derivatives v′+(x) and v′−(x) satisfying v′−(x) ≤ v′+(x), usually with equality, but
perhaps with v′−(0) < v′+(0). However, something more needs to be understood in connection with the
ability of v to take on ∞ and how that affects the way derivatives are treated in the formulas of the
theorem below.

The convexity of v implies that the effective domain dom v = {x | v(x) < ∞} is an interval in
(−∞,∞) (not necessarily closed or bounded). If x is the right endpoint of dom v, the definition of the
right derivative naturally gives v′+(x) =∞; but just in case of doubt in some formula, this is also the
interpretation to give of v′+(x) when x is off to the right of dom v.69 Likewise, if x is the left endpoint
of dom v, or further to the left, then v′−(x) = −∞.

These are the patterns also for an error function e as in (4.6).
For the fundamental quadrangle of risk, the consequences of these facts in the expectation case

are summarized as follows.

Expectation Theorem. For functions v and e on (−∞,∞) related by (4.5), the properties in (4.3)
amount to those in (4.6) and ensure that the functionals

V(X) = E[v(X)], E(X) = E[e(X)], (4.7)

form a corresponding pair consisting of a regular measure of regret and a regular measure of error.70

For X ∈ V = domV = dom E let C+(X) = sup {C |X −C ∈ V } and C−(X) = inf {C |X −C ∈ V }.
The associated statistic S in the quadrangle generated from V and E is characterized then by

S(X) =
{
C
∣∣∣E[e′−(X−C)] ≤ 0 ≤ E[e′+(X−C)]

}
=
{
C
∣∣∣E[v′−(X−C)] ≤ 1 ≤ E[v′+(X−C)]

}
(4.8)

68In this correspondence the graphs of v and u reflect to each other through the origin of IR2.
69The issue is that a random X might produce such an outcome with probability 0, and yet one still needs to know

how to think of the formula.
70Also, V corresponds then to a regular measure of relative utility U given by U(Y ) = E[u(Y )] under (4.4) via (4.2).
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subject to the modification that, in both cases, the right side is replaced by ∞ if C ≤ C−(X) and the
left side is replaced by −∞ if C ≥ C+(X). The quadrangle is completed then by setting

D(X) = E[e(X − C)] and R(X) = C + E[v(X − C)] for any/all C ∈ S(X). (4.9)

Having V and R be monotonic corresponds (in tandem with convexity) to having v(x) ≤ 0 when
x < 0, or equivalently e(x) ≤ |x| when x < 0. Positive homogeneity holds in the quadrangle if and
only if v and e have graphs composed of two linear pieces kinked at 0.

Beyond the aspects of this theorem that are already evident, the key ingredient is establishing
(4.8). This is carried out by calculating that the right and left derivatives of the convex function
φ(C) = E[e(X − C)] from their definitions and noting that C belongs to argminφ if and only if
φ′−(C) ≤ 0 ≤ φ′+(C). In situations where v and e are differentiable, the double inequalities in (4.8)
can be replaced simply by the equations E[e′(X − C)] = 0 and E[v′(X − C)] = 1.

We proceed now to illustrate the Expectation Theorem by applying it to justify the details of the
examples in Section 2 that belong to the expectation case.

Quantile-based quadrangle, Example 2 (including Example 3):

e(x) =
α

1− α
max{0, x}+ max{0,−x}, v(x) =

1

1− α
max{0, x}, u(y) =

1

1− α
min{0, y}.

We have V = L2(Ω), C+(X) =∞, C−(X) = −∞, and

v′+(x) =

{
1

1−α if x ≥ 0,
0 if x < 0,

v′−(x) =

{
1

1−α if x > 0,
0 if x ≤ 0,

with a gap between left and right derivatives occurring only at x = 0. Then with F−X(C) denoting the
left limit of FX at C (the right limit F+

X(C) being just FX(C)), we get

E[v′−(X − C)] = 1
1−αprob {X > C} = 1− FX(C),

E[v′+(X − C)] = 1
1−αprob {X ≥ C} = 1− F−X(C).

It follows thereby from (4.8) that S(X) = {C |F−X(C) ≤ α ≤ FX(C) } and therefore S(X) = qα(X).
Applying (4.10) yields R(X) = C + 1

1−αEmax{0, X −C} = C + 1
1−α

∫
(C,∞)(x−C)dFX(x). Since the

probability of (C,∞) is 1 − FX(C), this equals 1
1−α [(FX(C) − α)]C +

∫
[C,∞) xdFX(x), which is the

expectation of X with respect to its “α-tail distribution” as defined in Rockafellar and Uryasev [2002]
and used there to properly define qα(X) even under the possibility that FX(C) > α.

Worst-case-based quadrangle, Example 5:

e(x) =

{
|x| if x ≤ 0
∞ if x > 0,

v(x) =

{
0 if x ≤ 0
∞ if x > 0,

u(y) =

{
−∞ if y < 0
0 if y ≥ 0.

We have V = L2
−(Ω), C+(X) = ∞, C−(X) = supX. In the v part of (4.8) the left side equals 0

always and the right side equals 0 if C < supX but (through the prescribed modification) equals ∞
if C = supX. Therefore, C = supX is the unique element of S(X) (when that is finite).

Truncated-mean-based quadrangle, Example 7:

e(x) =

{
|x| − β

2 if |x| ≥ β,
1

2βx
2 if |x| ≤ β,

v(x) =


−β

2 if x ≤ −β,
x+ 1

2βx
2 if |x| ≤ β,

2x− β
2 if x ≥ β,

u(y) =


2y + β

2 if y ≤ −β,
y − 1

2βy
2 if |y| ≤ β,

β
2 if y ≥ β.

27



This time, V = L2(X), so C+(X) = ∞ and C−(X) = −∞. The statistic is determined by solving
E[e′(X − C)] = 0 for C, and this gives the result described because

βe′(x) = Tβ(x) =


β if x ≥ β,
x if −β ≤ x ≤ β,
−β if x ≤ −β.

Log-exponential-based quadrangle, Example 8:

e(x) = expx− x− 1, v(x) = expx− 1, u(y) = 1− exp(−y).

Here V = {X |E[expX] < ∞}. Because E[exp(X − C)] = exp(−C)E[expX], we have C+(X) = ∞
and C−(X) = −∞ for any X ∈ V , so the need for a modification of the bounds in (4.8) is avoided.
Indeed, since v′(x) = expx, we just have an equation to solve for C, namely E[exp(X −C)] = 1. This
equation can be rewritten as E[expX] = expC, which yields C = logE[expX] as S(X). Substituting
that into C + V(X − C), we get R(X) = logE[expX] and the quadrangle is confirmed.

Rate-Based Quadrangle, Example 9:

e(x) =

{
log 1

1−x − x if x < 1,
∞ if x ≥ 1,

v(x) =

{
log 1

1−x if x < 1,
∞ if x ≥ 1,

u(y) =

{
log(1 + y) if y > −1,
−∞ if y ≤ −1.

Here V = {X < 1 |E[log 1
1−X ] < ∞}, so C+(X) = 1 − supX and C−(X) = −∞. Because v is

differentiable (where finite), we have an equation to solve in (4.8): E[ 1
1−(X−C) ] = 1. The solution is

the statistic S(X).

Quadrangles from kinked utility and regret. More examples beyond the differentiable case of
the Expectation Theorem can be produced by starting from an “absolute” utility function u0(y0)
that is differentiable, increasing and strictly concave, introducing a benchmark value B, and a “kink”
parameter δ > 0, and defining

u(y) =
u0(y +B)− u0(B)

u′0(B)
+ δmin{0, y}. (4.10)

This will satisfy u(0) = 0 and u(y) < y when y 6= 0, and it will be differentiable when y 6= 0, but have

u′+(0) = 1 but u′−(0) = 1 + δ. (4.11)

The kink parameter δ models the extra pain experienced in falling short of the benchmark, in contrast
to the milder pleasure experienced in exceeding it. From this u it is straightforward to pass to the
corresponding v, e, and the full quadrangle associated with them by the theorem. In general, that
quadrangle will depend on both B and δ, but in special situations like CARA or HARA utilities71 the
B dependence can drop out or reduce to simple rescaling.

The surprising fact is that all such manipulations are propagated by the quadrangle scheme into
applications not just to risk management and optimization but also to statistical estimation. Those
applications will be discussed further in Section 5.

71See [Föllmer and Schied, 2004, pages 68–69].
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General interpretations of the quadrangle “statistic.” Returning finally to the general
level of the correspondence U ↔ V between relative utility and regret in (3.13) we look at ways of
interpreting the trade-off formula R(X) = minC {C + V(X − C) }. Through a change of variables
Y = −X, W = −C, switching loss to gain, this corresponds to

−R(−Y ) = max
W
{W + U(Y −W ) }. (4.12)

Considerations were focused in Ben-Tal and Teboulle [2007] on the expectation case, but an inter-
pretation suggested there works well for (4.12) in general. To begin with, note that in adding W to
U(Y −W ) it is essential that W be measured in the same units as U(Y −W ), and moreover they have
to be the same units as those of Y . A simple case where this makes perfect sense is the one in which
the units are money units, like dollars. Then W represents an income that is certain, whereas Y −W
is residual income that is uncertain; U assigns to that uncertain income an equally desirable amount
of certain income in something akin to a discount. This leads, in Ben-Tal and Teboulle [2007], a W
giving the max in (4.12) being called an optimized certainty equivalent for Y .

Much the same can be said about the regret version of trade-off, R(X) = minC {C + V(X −C) }.
There, C is a loss that is certain, X − C is a residual loss that is uncertain. The regret measure V
assigns to X − C an amount of money that could be deemed adequate as immediate compensation
for taking on the burden of X − C. It is possible to elaborate this with ideas of insurance, insurance
premium, “deductibles,” and so forth. For some insurance interpretations in the utility context of
(4.12), see Ben-Tal and Teboulle [2007].

Although these “min” formulas and interpretations are natural in their own right, the special
insight from the risk quadrangle, namely that they have a parallel life in theoretical statistics, is new.

5 Quadrangle Roles in Optimization and Regression

Applications involving the quantifiers on both sides of the risk quadrangle have provided key motivation
and guidance for the theory that has been laid out. The purpose of this section is to explain that
background and indicate advances that the theory now brings.

Optimization. Risk in the sense quantified by a risk measure R is central in the management
and control of cost or loss. For a hazard variable X, the crucial issue there is how to model a “soft”
upper bound, i.e., a condition that the outcomes of X be “adequately” ≤ C for some C. As already
explained in Section 1, the broad prescription for handling this is to pass to a numerical inequality
R(X) ≤ C through some choice of a risk measure R, and many possibilities for R have been offered.
Of course C can be taken to be 0 without any real loss of generality.

A choice of R corresponds to an expression of preferences toward risk, but it might not yet be
clear why some measures of risk are better motivated or computationally more tractable than others.
The key challenge is that most applications require more than just looking at R(X) for a single X,
as far as optimization is concerned. Usually instead, there is a random variable that depends on
parameters x1, . . . , xn. We have X(x1, . . . , xn) and it becomes important to know how the numerical
surrogate R(X(x1, . . . , xn)) depends on x1, . . . , xn. This is where favorable conditions imposed on R,
like convexity and monotonicity, are indispensable.

Motivations in optimization modeling are important in particular. For insight, consider first a
standard type of deterministic optimization problem, without uncertainty, in which x = (x1, . . . , xn)
is the decision vector, namely

(P) minimize f0(x) over all x ∈ S ⊂ IRn subject to fi(x) ≤ 0 for i = 1, . . . ,m.
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A decision x selected from the set S results in numerical values f0(x), f1(x), . . . , fm(x), which can
be subjected to the usual techniques of optimization methodology. Suppose next, though, that these
cost-like expressions are uncertain through dependence on additional variables — random variables —
whose realizations will not be known until later. A decision x merely results then in random variables72

X0(x) = f 0(x), X1(x) = f 1(x), . . . , Xm(x) = f m(x), (5.1)

which can only be shaped in their distributions through the choice of x, not pinned down to specific
values. Now there is no longer a single, evident answer to how optimization should be viewed, but
risk measures can come to the rescue.

As proposed in Rockafellar [2007], one can systematically pass to a stochastic optimization problem
in the format73

(P ) minimize f0(x) = R0(f 0(x)) over x ∈ S subject to f i(x) = Ri(f i(x)) ≤ 0, i = 1, . . . ,m,

in which an individually selected “measure of risk” Ri has been combined with each f i(x) to arrive
at a numerical (nonrandom) function f i of the decision vector x.74

An issue that must then be addressed is how the properties of f i(x) with respect to x relate to those
of f i(x) through the choice of Ri, and whether those properties are conducive to good optimization
modeling and solvability. This is not to be taken for granted, because seemingly attractive examples
like Ri(X) = EX + λiσ(X) with λi > 0 or Ri(X) = qαi(X) = VaRαi(X) with 0 < αi < 1 are known
to suffer from troubles with “coherency” in the sense of Artzner et al. [1999].

Convexity Theorem75. In problem (P ), the convexity of f i(x) with respect to x is assured if f i(x)
is linear in x and Ri is a regular measure of risk, or if f i(x) is convex in x and Ri is, in addition, a
monotonic measure of risk.76

The huge advantage of having the functions f i be convex is that then, with the set S also convex,
(P ) is an optimization problem of convex type. Such problems are vastly easier to solve in computation.

The use of Ri(X) = qαi(X) = VaRαi(X) in this setting could destroy whatever underlying con-
vexity with respect to x = (x1, . . . , xn) might be available in the problem data, because this measure
of risk lacks convexity; it is not regular and not coherent. The shortcoming of Ri(X) = EX +λiσ(X)
is different: it fails in general to be monotonic. The absence of monotonicity threatens the transmittal
of convexity of f i(x) to f i(x). However, f i(x) can still be convex in x, on the basis of the Convexity
Theorem, as long as f i(x) is linear in x. This could be useful in applications to financial optimization,
because linearity with respect to x, as a vector of “portfolio weights,” is often encountered there.

72We employ underbars in this discussion to indicate uncertainty. The overbars appearing later emphasize that the
random variable depending on x has been converted to a nonrandom numerical function of x.

73If taken too literally, this prescription could be simplistic. When uncertainty is present, much closer attention must
be paid to whether the objective and constraint structure in the deterministic formulation itself was well chosen. The
effects of possible recourse actions when constraints are violated may need to be brought in. Whether risk measures
should be applied to the fi’s individually or to a combination passed through some joint expression must be considered
as well.

74The constraint modeling in (P ) follows the prescription that Ri(f i(x)) ≤ 0 provides a rigorous interpretation to
the desire of having f i(x) “adequately” ≤ 0, but the motivation for the treatment of the objective in (P ) may be less
clear. Actually, it follows the same prescription. Choosing x to minimize R0(f 0(x)) can be identified with choosing a
pair (x,C0) subject to R0(f 0(x)) ≤ C0 so as to get C0 as low as possible, and the inequality R0(f 0(x)) ≤ C0 models
having f 0(x) “adequately” ≤ C0. This is valuable in handling the dangers of “cost overruns.”

75This extends, in an elementary way, a principle in Rockafellar [2007].
76Convexity of the random variable f i(x) with respect to x refers to having f i((1−λ)x0+λx1) ≤ (1−λ)f i(x0)+λf i(x1)

as a relation among random variables, i.e., with “almost surely” coming in.
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Another example of a measure of risk that is regular without being monotonic is the reverted
CVaR in Example 11: Ri(X) = EX + λ

2 [CVaRαi(X) + CVaRαi(−X)]. Once more, although this
choice would not preserve convexity in general, it would do so when f i(x) is linear in x.

A question of modeling motivation must be confronted here. Why would one ever wish to use in a
stochastic optimization problem (P ) a regular risk measure that is not monotonic, even in applications
with linearity in x, when so many choices do have that property? An interesting justification can
actually be given, which could sometimes make sense in finance, at least. The rationale has to do
with skepticism about the data in the model and especially a wish to not rely too much on data in
the extreme lower tail of a cost distribution. Optimization with today’s data will be succeeded by
optimization with tomorrow’s data, all data being imperfect. It would be wrong to swing very far in
response to ephemeral changes, at least in formulating the objective function f0(x) = R0(f 0(x)).

The following idea comes up: replace this objective, in the case of a regular monotonic measure of
risk R0, by a measure of risk having the form

R̃0(X) = R0(X) +D(X) for some regular measure of deviation D. (5.2)

This would be another regular measure of risk, even if not monotonic. The deviation term would be
designed to have a “stabilizing” effect.

If a choice like Ri(X) = qαi(X) = VaRαi(X) ought to be shunned when convexity in (P ) is to be
promoted, what might be the alternative? This is a serious issue because risk constraints involving
this choice are very common, especially in reliability engineering,77 because

qαi(f i(x)) ≤ 0 ⇐⇒ prob{ f i(x) ≤ 0 } ≥ αi. (5.3)

A strong argument can be made for passing from quantiles/VaR to superquantiles/CVaR by instead
taking Ri(X) = qαi(X) = CVaRαi(X). This has the effect of replacing “probability of failure”
by an alternative called “buffered probability of failure,” which is safer and easier to work with
computationally; see Rockafellar and Royset [2010].

The claim that problem-solving may be easier with CVaR than with VaR could seem surprising
from the angle that CVaRα(X) is defined as a conditional expectation in a “tail” which is dependent
on VaRα(X), yet it rests on the characterization in (3.21). But we have explained in Rockafellar and
Uryasev [2002]78 how, in the case of (P ) with Ri = CVaRαi for each i, one can expand CVaRαi(f i(x))
through (3.21) into an expression involving a auxiliary parameter Ci and go on to minimize not only
with respect to x but also simultaneously with respect to the Ci’s. This has the benefit not only of
simplifying the overall minimization but also providing, along with the optimal solution x̄ to (P ),
corresponding VaRαi(f i(x)) values as the optimal C̄i’s.

Now we are in position to point out, on the basis of the risk quadrangle, that this technique has a
new and far-reaching extension.

Regret Theorem. Consider a stochastic optimization problem (P ) in which each Ri is a regu-
lar measure of risk coming from a regular measure of regret Vi with associated statistic Si by the
quadrangle formulas

Ri(X) = min
C
{C + Vi(X − C) }, Si(X) = argmin

C
{C + Vi(X − C) }. (5.4)

77The article Samson et al. [2009] furnishes illuminating background.
78See also the tutorial paper Rockafellar [2007].
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Solving (P ) can be cast then as solving the expanded problem

(P ′)
choose x = (x1, . . . , xn) and C0, C1, . . . , Cm to
minimize C0 + V0(f 0(x)− C0) over x ∈ S, Ci ∈ IR,
subject to Ci + Vi(f i(x)− Ci) ≤ 0 for i = 1, . . . ,m.

An optimal solution (x̄, C̄0, C̄1, . . . , C̄m) to problem (P ′) provides as x̄ an optimal solution to problem
(P ) and as C̄i a corresponding value of the statistic Si(f i(x̄)) for i = 0, 1, . . . ,m.

The Mixing Theorem of Section 3 can be combined with Regret Theorem. When Vi is itself
expressed by a minimization formula in extra parameters, these can be brought into (P ) as well.

The idea behind the Regret Theorem is not restricted to regret measures. It can operate just as
well for deviation measures in terms of error measures through the quadrangle principle that

D(X) ≤ c ⇐⇒ E(X − C) ≤ c for a choice of C ∈ IR.

Estimation. The topic of generalized regression is next on the agenda. As explained in Section 1,
this concerns the approximation of a given random variable Y by a function f(X1, . . . , Xn) of other
random variables X1, . . . , Xn. By the regression being “generalized” we mean that the difference
Zf = Y − f(X1, . . . , Xn) may be assessed for its nonzeroness by an error measure E different from the
one in “least-squares” as in Example 1, or for that matter even from the kind in quantile regression, as
in Example 2. The case of generalized linear regression, where the functions f in the approximation
are limited to the form

f(x1, . . . , xn) = C0 + C1x1 + · · ·+ Cnxn (the linear case), (5.5)

has already been studied in Rockafellar et al. [2008], but only for error measures E that are positively
homogeneous. Here we go beyond those limitations and investigate the problem:

minimize E(Zf ) over all f ∈ C, where Zf = Y − f(X1, . . . , Xn), (5.6)

for given random variables X1, . . . , Xn, Y , and some given class C of functions f .
Taking C to be the class in (5.5) with respect to all possible coefficients C0, C1, . . . , Cn, would

specialize to linear regression, pure and simple. Then E(Zf ) would be a function of these coefficients
and we would be minimizing over (C0, C1, . . . , Cn) ∈ IRn+1. However, even in the linear case there
could be further specialization through placing conditions on some of the coefficients, such as perhaps
nonnegativity. In fact, a broad example of the kinds of classes of regression functions that can be
brought into the picture is the following:79

C = all the functions f(x1, . . . , xn) = C0 + C1h1(x1, . . . , xn) + · · ·+ Cmhm(x1, . . . , xn)
for given h1, . . . , hm on IRn and coefficient vectors (C1, . . . , Cm) in a given set C ⊂ IRm.

(5.7)

Motivation for generalized regression comes from applications in which Y has the cost/loss orienta-
tion that we have been emphasizing in this paper. Underestimation might then be more dangerous than
overestimation, and that could suggest using an asymmetric error measure E , with E(Zf ) 6= E(−Zf ).

Further motivation comes from “factor models” and other such regression techniques in finance
and engineering, which might have unexpected consequences when utilized in stochastic optimization

79It should also be kept in mind that a possibly nonlinear change of scale in the variables, such as passing to logarithms,
could be executed prior to this depiction.
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because of interactions with parameterization by the decision vector x. For instance, if one of the
random “costs” f i(x) in problem (P ) is estimated by such a technique as g i(x), it may be hard to
determine the effects this could have on the optimal decision. We have argued in Rockafellar et al.
[2008], and demonstrated with specific results, that it might be wise to “tune” the regression to the risk
measure Ri applied to f i(x) in (P ). This would mean passing around the fundamental quadrangle
from Ri to an error measure Ei in the same quartet.

Regression Theorem. Consider problem (5.6) for random variables X1, . . . , Xn and Y in the case
of E being a regular measure of error and C being a class of functions f : IRn → IR such that

f ∈ C =⇒ f + C ∈ C for all C ∈ IR. (5.8)

Let D and S correspond to E as in the Quadrangle Theorem. Problem (5.6) is equivalent then to:

minimize D(Zf ) over all f ∈ C such that 0 ∈ S(Zf ), (5.9)

which in the case of a class C as in (5.7) and Hi = hi(X1, . . . , Xn) comes down to

minimize D(Y − [C1H1 + · · ·+ CmHm]), then take C0 ∈ S(Y − [C1H1 + · · ·+ CmHm]). (5.10)

Moreover if E is of expectation type and C includes a function f satisfying

f(x1, . . . , xn) ∈ S(Y (x1, . . . , xn)) almost surely for (x1, . . . , xn) ∈ D,
where Y (x1, . . . , xn) = YX1=x1,...,Xn=xn (conditional distribution),

(5.11)

with D being the support of the distribution in IRn induced by X1, . . . , Xn,80 then that f solves the
regression problem and tracks this conditional statistic81 in the sense that

f(X1, . . . , Xn) ∈ S(Y (X1, . . . , Xn)) almost surely. (5.12)

The first part of this result generalizes [Rockafellar et al., 2008, Theorem 3.2] on linear regression
through elementary extension of the same proof. The specialization in (5.10) relies on D(Z − C0) =
D(Z) and S(Z − C0) = S(Z) − C0. The second part is new. It comes from the observation that, in
the expectation case, if f satisfies (5.11), then for any other g ∈ C one has

E(Y (x1, . . . , xn)− f(x1, . . . , xn)) ≤ E(Y (x1, . . . , xn)− g(x1, . . . , xn))
almost surely for (x1, . . . , xn) ∈ D.

When E is of expectation type, this inequality can be “integrated” over the distribution of (X1, . . . , Xn)
to obtain E(Y (X1, . . . , Xn)− f(X1, . . . , Xn)) ≤ E(Y (X1, . . . , Xn)− g(X1, . . . , Xn)).

Apart from that special circumstance, the question of the existence of an optimal regression func-
tion f ∈ C has not been addressed in the theorem, because we are reluctant in the present context to
delve deeply into the possible structure of the class C. But existence in the case of linear regression
has been covered in [Rockafellar et al., 2008, Theorem 3.1], and similar considerations would apply to
the broader class in (5.7), with the coefficient set C taken to be closed.82

80Almost surely, in (5.11), refers to this distribution.
81It is assumed, for this part, that the distribution of Y (x1, . . . , xn) for (x1, . . . , xn) ∈ D belongs to L2(Ω), and the

same then for the random variable Y (X1, . . . , Xn) obtained from it.
82Work with the class in (5.7), which does of course satisfy (5.9), can actually be reduced to the linear case, so that

generalized linear theory can be applied. To do this we can introduce new random variables Wi = hi(X1, . . . , Xn) with
distributions inherited from the Xj ’s and carry out linear regression of Y with respect to W1, . . . ,Wm.
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There could be many applications of these ideas, and much remains to be explored and developed.
Some related research in special cases, largely concerned with quantile regression, can be seen in
Trindade and Uryasev [2006a], Trindade and Uryasev [2006b] and Golodnikov et al. [2007]; see also
Samson et al. [2009] for further motivation, and moreover Trindade et al. [2007].

The measure of error in quantile regression is indeed of expectation type, so that the second part
of our Regression Theorem can be applied if the class C of functions f is rich enough. The class of
linear functions of X1, . . . , Xn would very likely not meet that standard, but the class in (5.7) may
offer hope through judicious choice of h1, . . . , hm.

6 Probability Modeling and the Dualization of Risk

More explanation about the view of uncertainty that we take here may be helpful, especially for the
sake of those who would like to make use of the ideas without having to go too far into the technical
mathematics of probability theory. In modeling uncertain quantities as random variables, we tacitly
regard them as having probability distributions, but this does not mean we assume those distributions
are directly known. Sampling, for instance, might be required to learn more, and even then, only
approximations might be available.

The characteristics of a random variable X, by itself, are embodied in its cumulative distribution
function FX , with FX(x) = prob{X ≤ x }. This induces a probability measure on the real numbers
IR which may or may not be expressible by a density function f with respect to ordinary integration,
i.e., as dFX(x) = f(x)dx. The lack of a density function is paramount when X is a discrete random
variable with only finitely many possible outcomes. Then FX is a step function.

Sometimes the underlying uncertainty being addressed revolves around observations of several
random variables V1, . . . , Vm, and their joint distribution. The corresponding probability measure on
IRm is induced then by the multivariate distribution function

FV1,...,Vm(v1, . . . , vm) = prob
{

(V1, . . . , Vm) ≤ (v1, . . . , vm)
}
. (6.1)

Functions x = g(v1, . . . , vm) give rise to random variables X = g(V1, . . . , Vm) having FX(x) =
prob {g(V1, . . . , Vm) ≤ x}. Again, the distribution of (V1, . . . , Vm) need not be describable by a density
function f(v1, . . . , vm). We might be dealing with a discrete distribution of (V1, . . . , Vm) corresponding
to an m-dimensional “scatter plot.”

The standard framework of a probability space serves for handling all these aspects of randomness
easily and systematically. It consists of a set Ω supplied with a probability measure P0 and a field A
of its subsets.83 We think of the elements ω ∈ Ω as “future states” (of information), or “scenarios.”
Having a subset A of Ω belong to A means that the probability of ω being in A is regarded as known
in the present: prob{A} = P0(A). In that way, the field A is a model for present information about
the future. There could be multistage approaches to such information, in which A is just the first in
a chain of ever-larger collections of subsets of Ω, but we are not looking at that. A scenario ω could,
in our setting, nonetheless involve multiple time periods, but we are not going to consider, here, how
additional observations, as the scenario unfolds, might be put to use in optimization.

Random variables in this framework are functions X : Ω → IR, with future outcomes X(ω), such
that, for every x ∈ IR, the set A = {ω |X(ω) ≤ x } belongs to A.84 The expected value of a random
variable X is the integral EX =

∫
ΩX(ω)dP0(ω). As a special case, the probability space (Ω,A, P0)

83We write P0 for this underlying probability measure in order to reserve P for general purposes below.
84The sets A ∈ A are called the “measurable” sets and the functions X in question the “measurable” functions.
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could be generated by future observations of some variables V1, . . . , Vm, as above, in which case Ω would
be a subset of IRm with elements ω = (v1, . . . , vm) and P0 would be the probability measure induced by
the joint distribution function FV1,...,Vm . If P0 has a density function f(v1, . . . , vm) with respect to or-
dinary integration, then for X = g(V1, . . . , Vm) one has EX =

∫
g(v1, . . . , vm)f(v1, . . . , vm)dv1 . . . dvm,

but without such a density, it is not possible to rely this way on dv1 . . . dvm. That is why, in achieving
adequate generality, it is crucial to refer to a background probability measure P0 as the source of all
the distributions that come up.

Despite that focus, a means is provided for considering alternatives P to P0, and indeed this will
be very important in subsequent discussions of risk and its dualization. Other probability measures
P can enter the picture as long as the expected value EP (X) =

∫
X(ω)dP (ω) can be expressed by

E[XQ] =
∫
X(ω)Q(ω)dP0(ω) for some random variable Q, which is then called the density of P with

respect to P0 with notation Q = dP/dP0.85 For instance, in the case where Ω has finitely many
elements ωk, k = 1, . . . , N , if P0 gives them equal weight 1/N but P assigns probability pk to ωk, then
Q(ωk) = pkN .

Another point needing emphasis is that little is really lost in supposing the existence of an underly-
ing probability measure P0, even if prospects of knowing much about it are low. Convenience in theory
can be served nonetheless. In “robust optimization,” for example, direct probability is in principle
avoided, and yet a so-called uncertainty set has to be constructed. That set, often identified through
rough considerations of probability anyway, can be identified here with the space Ω. The worst-case
risk measure R(X) = supX, which is the prime focus of “robust optimization,” is captured anyway
as generated by considering all P alternative to P0 in the above sense, as will be explained below.
Similarly, the “distributed worst-case” risk measure of Example 6 is covered without having to know
very much about P0.

The need to deal securely with expectations of random variables and certain products of random
variables forces some restrictions. For any random variable X, the expressions ||X||p introduced earlier
are well defined but could be ∞. It is common practice to work with the spaces86

Lp(Ω) = Lp(Ω,A, P0) =
{
X
∣∣∣ ||X||p <∞}

, where L1(Ω) ⊃ · · · ⊃ Lp(Ω) ⊃ · · · ⊃ L∞(Ω). (6.2)

For any X in these spaces, EX is well defined and finite, but the situation for products of random
variables, like XQ above, is more delicate. While there are options with X in one space and Q in
another, no choice is perfect.

For our purposes here, L2(Ω) has been taken as the platform. That has the simplifying advantage
that E|XQ| < ∞ for any X ∈ L2(Ω) and Q ∈ L2(Ω). However, it does mean that, in considering
alternative probability measures P with densities Q = dP/dP0 the restriction must be made to the
cases where

∫
Ω(dP/dP0)2(ω)dP0 <∞. Actually, though, this restriction makes little difference in the

end, because other probability measures can adequately be mimicked by these (and for finite Ω is no
restriction at all).

Dualization concerns the development of “dual representations” of various functionals, also called
“envelope representations,” which can yield major insights and provide tools for characterizing opti-
mality. The functionals F may in general take on ∞ as a value (although usually −∞ is excluded),
and some notation for handling that is needed. The effective domain of F is the set

domF = {X ∈ L2(Ω) | F(X) <∞}. (6.3)

85Such measures P are said to be “absolutely continuous” with respect to P0.
86When Ω is a discrete set of N elements, these spaces coincide and can be identified with IRN .
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When F is convex, this set is convex, but F closed convex does not necessarily entail domF also
being closed. The platform for dualization is a correspondence for closed convex functionals F :87 88

F : L2 → (−∞,∞] closed convex, F 6=∞ ⇐⇒ ∃G : L2 → (−∞,∞], G 6≡ ∞, with
F(X) = sup

Q∈L2(Ω)
{E[XQ]− G(Q) } for all X.

Moreover the lowest such G is G = F∗, where F∗ is closed convex and given by
F∗(Q) = sup

X∈L2(Ω)
{E[XQ]−F(X) } for all Q.

(6.4)

The functional F∗ is said to be conjugate to F , which in turn is conjugate to F∗ through the first
formula in (6.4) in the case of G = F∗, namely

F(X) = sup
Q∈L2(Ω)

{E[XQ]−F∗(Q) } for all X. (6.5)

The nonempty convex set domF∗ = {Q | F∗(Q) < ∞} can replace L2(Ω) in this formula, and
similarly domF can replace L2(Ω) in the first formula of (6,4). Here are some cases that will be
especially important to us:89

for F closed convex 6≡ ∞


F(0) = 0⇐⇒ inf F∗ = 0,
F(X) ≥ EX ⇐⇒ F∗(1) ≤ 0,
F is monotonic ⇐⇒ Q ≥ 0 when Q ∈ domF∗,
F is pos. homog. ⇐⇒ F∗(Q) = 0 when Q ∈ domF∗,

(6.6)

(where the “1” in the second line refers to the constant r.v. with value 1). The final case, with positive
homogeneity, says that

there is a one-to-one correspondence between nonempty, closed, convex sets Q ⊂ L2(Ω)
and closed convex pos. homogeneous functionals F : L2 → (−∞,∞], given by

F(X) = sup
Q∈Q

E[XQ] for all X, Q = {Q |E[XQ] ≤ F(X) for all X }.
(6.7)

The second formula in (6.7) identifies Q with domF∗. Any Q for which the first formula holds must
moreover have domF∗ as its closed, convex hull.

Envelope Theorem90. The functionals J that are the conjugates R∗ of the regular measures of risk
R on L2(Ω) are the closed convex functionals J with effective domains Q = domJ such that

(a) EQ = 1 for all Q ∈ Q,
(b) 0 = J (1) ≤ J (Q) for all Q ∈ Q,
(c) for each nonconstant X ∈ L2(Ω) there exists Q ∈ Q such that E[XQ]− EX > J (Q).

The dual representation of R corresponding to J = R∗ is

R(X) = sup
Q∈Q

{
E[XQ]− J (Q)

}
. (6.8)

87See Theorem 5 of Rockafellar [1974]; this is the case of L2(Ω) paired with itself through 〈X,Q〉 = E[XQ]. The
operation F → F∗ is called the Legendre-Fenchel transform.

88Saying F∗ is “lowest” means here that every G with the indicated property satisfies G(Q) ≥ F∗(Q) for all Q ∈ L2

89The first is immediate from (6.5) with X = 1, while the second follows from (6.4) with Q = 1. In the third,
the sufficiency comes from (6.5), and the necessity as well, because monotonicity of F precludes the existence of a
nonmonotonic affine functional L with L(X) ≤ F(X) for all X. The necessity in the fourth is clear from (6.4) (because
positive homogeneity allows only 0 or ∞ as the supremum); the sufficiency is obvious from (6.5).

90Most of the facts in this compilation, which follow from the general properties of conjugacy as above, are already
well understood and have been covered, for instance, in Föllmer and Schied [2004]. The new aspects are the dualization
of aversity in condition (c) and the final assertion, connecting with the dualization of regret.
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Here R is positively homogeneous if and only if J (Q) = 0 for all Q ∈ Q, whereas R is monotonic if
and only if Q ≥ 0 for all Q ∈ Q.

If V is a regular measure of regret that projects to R, then Q = {Q ∈ domV∗ |EQ = 1 } and the
conjugate J = R∗ has J (Q) = V∗(Q) for Q ∈ Q, but J (Q) =∞ for Q /∈ Q.

The error measure E paired with the regret measure V has E∗(X) = V∗(X + 1). Likewise, the
deviation measure D paired with the risk measure R has D∗(X) = R∗(X + 1).

Risk envelopes and identifiers. The convex set Q in this theorem is called the risk envelope
associated with R, and a Q furnishing the maximum in (6.8) is a risk identifier for X.

The monotonic case in the theorem combines EQ = 1 with Q ≥ 0 and thereby allows us to
interpret each Q ∈ Q as a probability density dP/dP0 describing an alternative probability measure
P on Ω. For positively homogeneous R, the J (Q) term drops out of the representation in (6.8) (by
being 0). The formula then characterizes R(X) as giving the worst “cost” that might result from
considering the expected values E[XQ] = EP [X] over all those alternative probability measures P
having densities Q in the risk envelope Q.

The nonhomogeneous case has a similar interpretation, but distinguishes within Q a subset Q0

consisting of the densities Q for which J (Q) = 0, which always includes Q ≡ 1 (the density of P0 with
respect to itself). Densities Q that belong to Q but not Q0 have J (Q) ∈ (0,∞). In (6.8) that term
then drags the expectation down. In a sense, J (Q) downgrades the importance of such densities.

The conjugates V∗ of regular measures of regret V have virtually the same characterization as the
conjugates R∗ in the theorem. Property (a) is omitted, but on the other hand there is a provision to
enforce the property in (3.15) (in the cases when it is not guaranteed to hold automatically). This
provision is that V∗(C) <∞ for C near enough to 1.

Some examples of risk envelopes in the positively homogeneous case, where (6.8) holds with J(Q)
omitted, are the following:91

R(X) = EX + λσ(X) ←→ Q =
{
Q = 1 + λY

∣∣∣ ||Y ||2 ≤ 1, EY = 0
}

R(X) = CVaRα(X) ←→ Q =
{
Q
∣∣∣ 0 ≤ Q ≤ 1

1−α , EQ = 1
}

R(X) = supX ←→ Q =
{
Q |Q ≥ 0, EQ = 1 }

R(X) =
∑r
k=1 λkRk(X) ←→ Q =

{
Q =

∑r
k=1 λkQk

∣∣∣Qk ∈ Qk }, where Rk ←→ Qk.

(6.9)

Another illustration comes out of Example 6, which can now be formalized via (2.5) in terms of a
partition of Ω into disjoint subsets Ωk of probability pk > 0 with supkX being the essential supremum
of X on Ωk and EkX being the conditional expectation E[X|Ωk]:

R(X) =
∑r

k=1
pk supkX ←→ Q =

{
Q ≥ 0

∣∣∣ pk = E[Q|Ωk] =

∫
Ωk

Q(ω)dP0(ω)
}
. (6.10)

The risk envelope Q for the p-order superquantile risk measure of Example 12 has not specifically been
worked out, but strong clues have been furnished by Dentcheva, Penev and Ruszczyński [2013]. The
dual expression derived there indicates that the risk envelope in this case is a union of risk envelopes
for mixed quantile risk measures like (2.7) (which are covered by the second and fourth cases of (6.9),
except that finite sums need to be replaced by general “continuous” sums as in (2.8)).

91These envelopes were worked out in Rockafellar et al. [2002]; see also Rockafellar et al. [2006a].
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Examples beyond positive homogeneity, where nonzero values of J may enter, are simple to work
out in the expectation case:

For quadrangles in the Expectation Theorem, with regret V(X) = E[v(X)],
the conjugate J = R∗ of the risk measure R projected from V is given by

J (Q) =

{
E[v∗(Q)] if EQ = 1
∞ if EQ 6= 1

for the function v∗ conjugate to v,

given by v∗(q) = supx {xq − v(x) }. The properties of v∗ corresponding to
those of v in (4.3) are that v∗ is closed convex with v∗(1) = 0, v∗ ′(1) = 0.

(6.11)

This holds from the description in Envelope Theorem of the J in projection from V because the
functional conjugate to V(X) = E[v(X)] is V∗(Q) = E[v∗(Q)].92 The dualization of the properties of
v to those of v∗ comes from one-dimensional convex analysis; see Rockafellar [1970].

An especially interesting illustration is furnished by Example 8, where one has

v(x) = expx− 1, v∗(q) =

{
q log q − q if q ≥ 0,
∞ if q < 0,

(6.12)

with 0 log 0 = 0, the usual convention. Through (6.11) this yields

R(X) = logE[expX] ←→ J (Q) =

{
E[Q logQ] if Q ≥ 0, EQ = 1,
∞ otherwise.

(6.13)

Here −J (Q) is a well known expression for the relative entropy with respect to the probability measure
P0 of the probability measure P having Q = dP/dP0.93

Results in Rockafellar [1974] can exploit the general dualization of R to J through Lagrangian
formats for optimization involving R which generate dual problems. Even more powerful develop-
ments of optimization duality, tailored to the fine points of financial mathematics, have recently been
contributed by Pennanen [2011]. For more insights on entropic modeling versus risk, see Grechuk et
al. [2008], which emphasizes the role of deviation measures D in place of risk measures R.

Also coming out of the Envelope Theorem is further insight into the degree of nonuniqueness of
the error measures E that project to a specified deviation measure D, or the regret measures V that
project to a specified risk measure R. In the positively homogeneous case of V, for instance, the
conjugate V∗ has by (6.6), (6.7), the simple form that it is 0 on a certain closed, convex set K but ∞
outside of K; then domV∗ = K. The theorem says the risk envelope Q determining the risk measure
R projected from V has Q equal to the intersection of K with the hyperplane {Q |EQ = 1 }. That
intersection only uses one “slice” of K. Different K’s that agree for this “slice” will give different V’s
yielding the same R. Discovering a “natural” antecedent V for R therefore amounts geometrically to
discovering a “natural” extension K of Q beyond the hyperplane {Q |EQ = 1 }.

The Envelope Theorem, as presented here, is based on duality theory in convex analysis, but the
idea of expressing preferences through functionals defined by a max or min over a set of probability
measures, as a representation of distrust or ambiguity, is far from new. In finance, the concept is often
attributed to Artzner et al. [1999], but in statistics it can be traced to Huber [1981] and his sublinear
expectation functionals. There is a strong echo also in the theory of preferences in economics, where a
minimum of expected utility over a set of probability measures has been explored from various angles.
For that literature, see Maccheroni et al. [2006], Strzalecki [2011], and their references.

92This follows a general rule of convex analysis in [Rockafellar, 1974, Theorem 21]. The “inner product” in the function
space L2(Ω) is 〈X,Q〉 = E[XQ].

93See Ben-Tal and Teboulle [2007] for more background. Another name for this is Kullbach-Leibler distance.
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