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Abstract. In classical models of exchange under smoothness and strict concavity assumptions
that in particular only support positive quantities of goods, every equilibrium is shift-stable.
This property, referring to good behavior in response to local perturbations, can be established
by elementary means without resorting to techniques of differential topology. Utilization of
Lagrange multipliers for the budget constraints furthermore brings to light additional features
not recorded in the past.
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1 Statement of the Results

In economic models of the exchange of goods, the set of equilibrium price vectors for a given
instance of initial holdings among the agents can sometimes be very strange, even under the
strongest classical assumptions on utility. However, when the initial holdings are close enough
to the equilibrium holdings, the price vector is unique. This was proved by Balasko [1] (1975)
using differential topology. Through an underlying connection with regularity in that framework,
his argument implies more than he brought out explicitly at the time, namely that equilibrium
holdings and prices are sure to depend smoothly on nearby initial holdings. Here we formalize
that property as shift stability and, in the case of concave utility functions, confirm it along with
the price uniqueness while relying only on the implicit function theorem.

Let agent i for i = 1, . . . ,m have a C2 utility function ui on the positive orthant IRn
++ with its

upper level sets {xi |ui(xi) ≥ c } all closed, and let ui(xi) be nondecreasing in xi with Hessian
matrices ∇2ui(xi) that are negative definite. Then ui is concave, locally strongly, and strictly
increasing in every component of xi. Suppose also that the gradient ∇ui(xi) grows unboundedly
as xi approaches any boundary point of IRn

+, which is a property also expressible in terms of
marginal utility. Then, as known in convex analysis [2, Section 26], the range of ∇ui is an open
convex set Di, and ∇ui is globally invertible with (∇ui)−1 being C1 from Di onto IRn

++.
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Definition 1. An equilibrium for initial holdings x0i ∈ IRn
++ is a combination (p, x1, . . . , xm) in

S × IRn
+ × · · · × IRn

+, where S is the n-dimensional price simplex, such that

xi maximizes ui subject to p·xi = p·x0i for all i, and
∑m

i=1
xi =

∑m

i=1
x0i . (1)

On the other hand, (p, x1, . . . , xm) is an equilibrium, in itself, if this holds with x0i = xi, i.e.,, if
at the holdings xi the agents have no incentive to change to other holdings under the prices in p.

Note that if (p, x1, . . . , xm) is an equilibrium for some initial holdings (x01, . . . , x
0
m), then it is

also an equilibrium in itself. Standard theory ensures under our assumptions that, for any initial
holdings x0i ∈ IRn

++, at least one equilibrium (p, x1, . . . , xm) will exist, necessarily with xi ∈ IRn
++

and p ∈ IRn
++. Let

E(x01, . . . , x
0
m) = the nonempty set of all equilibria (p, x1, . . . , xm) for (x01, . . . , x

0
m). (2)

Definition 2. An equilibrium (p̄, x̄1, . . . , x̄m) is smoothly shift-stable if there are neighborhoods
N0 of (x̄1, . . . , x̄m) and N of (p̄, x̄1, . . . , x̄m) such that

for (x01, . . . , x
0
m) ∈ N0 there is one and only one (p, x1, . . . , xm) ∈ E(x01, . . . , x

0
m) ∩N , (3)

and this single-valued localization (x01, . . . , x
0
m) → (p, x1, . . . , xm) of the equilibrium mapping E

is continuously differentiable.

Theorem 1. Under the given assumptions on utility, every equilibrium is smoothly shift-stable.

Shift stability does not preclude having additional equilibria (p, x1, . . . , xm) in E(x01, . . . , x
0
m)

outside of N . However, it turns out here that N can be dropped from (3) when N0 is small
enough. To formulate this insightfully, let X be the set of all equilibrium holdings (x1, . . . , xm),

X = { (x1, . . . , xm) | ∃ p ∈ S with (p, x1, . . . , xm) ∈ E(x1, . . . , xm) }. (4)

Theorem 2. Under the given assumptions on utility, the price vector p for any (x1, . . . , xm) ∈ X
is uniquely determined. In fact X is a connected differentiable manifold of dimension m+n− 1,
and there is an open set X0 ⊃ X of initial holdings (x01, . . . , x

0
m) in (IRn

++)m on which the
equilibrium mapping E is single-valued and continuously differentiable.

These results, in the format of relative prices and under utility assumptions that force holdings
to the interior of the goods orthant, complement our much more comprehensive analysis in [3],
where numéraire prices are the focus, utility functions need not be strongly concave locally
in all goods, and the boundary of the orthant is realistically allowed to come into play. In
that setting, the equilibrium mapping is semidifferentiable and Lipschitz continuous instead of
continuously differentiable in a neighborhood of the equilibrium holdings. However, this requires
a methodology not yet familiar to most economists. Here, although the statements are special
and much more limited in scope, the proofs are readily accessible.

An advantage of the utility functions being concave is that optimality conditions both nec-
essary and sufficient for the maximization problem of agent i can be expressed with a Lagrange
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multiplier λi for the budget constraint, which must be positive because ui inceases (strictly).
The conditions take the form

λip−∇ui(xi) = 0, p·(xi − x0i ) = 0. (5)

The multiplier λi, if uniquely determined, gives marginal utility with respect to changes in
the budget of agent i, and thus has some economic significance in itself. Our multiplier-based
approach to Theorems 1 and 2 not only provides information about them but also leads to the
following enhancement.

Theorem 3. For (x01, . . . , x
0
m) in the open set X0 of Theorem 2, the Lagrange multipliers

λ1, . . . , λm, are uniquely determined along with the equilibrium (p, x1, . . . , xm = E(x01, . . . , x
0
m),

and the extended equilibrium mapping

E : (x01, . . . , x
0
m)→ (p, x1, . . . , xm, λ1, . . . , λm), (6)

like E, is continuously differentiable. continuously differentiable. Moreover at an extended
equilibrium

(p̄, x̄1, . . . , x̄m, λ̄1, . . . , λ̄m) = E(x01, . . . , x
0
m)

the derivatives with respect to shifts of (x01, . . . , x
0
m) in the direction of a vector (x0 ′1 , . . . , x

0 ′
m),

namely

(p′, x′1, . . . , x
′
m, λ

′
1, . . . , λ

′
m) = DE(x01, . . . , x

0
m;x0 ′1 , . . . , x

0 ′
m)

= lim
h→0

1
h

[
E(x01 + hx0 ′1 , . . . , x

0
m + hx0 ′m)− E(x01, . . . , x

0
m)

] (7)

are given by

(p′, x′1, . . . , x
′
m, λ

′
1, . . . , λ

′
m) = the unique solution to the linear equations:

λ′ip̄+ λ̄ip
′ −∇2ui(x̄i)x

′
i = 0, p̄·(x′i − x0 ′i ) = 0,

∑m
i=1(x

′
i − x0 ′i ) = 0, e·p′ = 0.

(8)

In particular, Theorem 3 furnishes the directional derivatives of the (unextended) equilbrium
mapping E. But it should be noticed that the multipliers λ̄i are nonetheless involved in expressing
the derivatives of E. Those multipliers are implicit functions of (x01, . . . , x

0
m), but getting direct

functional expressions could be tedious in comparison to just employing specific multipliers in
(8).

2 Proofs of the Results

For an equilibrium with p in the unit simplex S, the optimality conditions (5) on xi with multiplier
λi > 0 must be combined with∑m

i=1
(xi − x0i ) = 0, e·p = 1, where e = (1, . . . , 1). (9)
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It can immediately be seen that

(p, x1, . . . , xm) ∈ E(x01, . . . , x
0
m) =⇒ λi = e·∇ui(xi), p = [e·∇ui(xi)]−1∇ui(xi). (10)

Proof of Theorem 1. Let (x̄01, . . . , x̄
0
m) and (p̄, x̄1, . . . , x̄m) along with (λ̄1, . . . , λ̄m) solve (5)–

(6) with x̄0i = x̄i; in other words, let (p̄, x̄1, . . . , x̄m) an equilibrium with associated multipliers
λ̄i. It will suffice to show that, locally around these elements, we can solve (5)+(9) for xi, p, λi,
as continuously differentiable functions of (x01, . . . , x

0
m). This can be confirmed by applying the

usual implicit function theorem, but instead of dealing directly with matrices, we can carry it
out by linearizing (5)+(9) at the reference elements. In terms of auxiliary variables x′i, p

′, λ′i,
and x0 ′i , the linearized equations at the elements x̄i, p̄, λ̄i and x̄0i = x̄i, are

λ′ip̄+ λ̄ip
′ −∇2ui(x̄i)x

′
i = 0, p̄·(x′i − x0 ′i ) = 0,

∑m

i=1
(x′i − x0 ′i ) = 0, e·p′ = 0. (11)

Checking the matrix rank condition in the implicit function theorem amounts to demonstrating
for these linearized equations that, in the case of x0 ′i = 0 for all i, which reduces (8) to

λ′ip̄+ λ̄ip
′ −∇2ui(x̄i)x

′
i = 0, p̄·x′i = 0,

∑m
i=1 x

′
i = 0, e·p′ = 0, (12)

the only possible solution is p′ = 0, x′i = 0, and λ′i = 0.
First we take the dot product of the initial equation in (12) by x′i and divide by λ̄i (known

to be positive), getting λ̄−1i λ′ip̄·x′i + p′·x′i − λ̄−1i [x′i·∇2ui(x̄i)x
′
i] = 0. Converting p̄·x′i to 0 through

the second relation in (12), and adding over i while invoking the final equation in (12), yields
−∑m

i=1 λ̄
−1
i [x′i·∇2ui(x̄i)x

′
i] = 0. The negative definiteness of ∇2ui(x̄i) tells us then that x′i = 0 for

all i. Back in the first equation of (12) we now have λ′ip̄ + λ̄ip
′ = 0. Taking the dot product of

this with e = (1, . . . , 1) and applying the final equation in (12), we get λ′i = 0. Returning once
more to (9) with the knowledge that x′i = 0 and λ′i = 0, we see that p′ = 0, too, as needed.

Proof of Theorem 2. We begin by demonstrating that, for (x̄1, . . . , x̄m) ∈ X with associated
price vector p̄, there cannot be a different (x̃1, . . . , x̃m) ∈ X with associated price vector p̃ such
that (p̃, x̃1, . . . , x̃m) ∈ E(x̄1, . . . , x̄m). In those circumstances we would have (5)–(6) holding for
p = p̄ with x0i = xi = x̄i and multipliers λ̄i and also holding for p = p̃ with x0i = xi = x̃i and
multipliers λ̃i, but likewise holding for p = p̃ with x0i = x̄i and xi = x̃i. Then

(λ̄ip̄− λ̃ip̃)·(x̄i − x̃i) = (∇ui(x̄i)−∇ui(x̃i)·(x̄i − x̃i) for all i,

where on the one hand p̃·(x̃i − x̄i) = 0, and on the other hand, because ui is strictly concave,
(∇ui(x̄i)−∇ui(x̃i)·(x̄i−x̃i) ≤ 0 for all i, with this inequality being strict when x̄i 6= x̃i. Therefore
p̄·(x̄i − x̃i) ≤ 0 for all i with < 0 for at least one i. But that contradicts

∑m
i=1(x̄i − x̃i) = 0. The

initial uniqueness assertion in Theorem 2 in confirmed in this way as the case where x̃i = x̄i.
To get the broader uniqueness, we consider a sequence { (x0k1 , . . . , x

0k
m }

∞
k=1 converging to an

(x̄1, . . . , x̄m) ∈ X with price vector p̄, and a sequence { (pk, xk1, . . . , x
k
m) }∞k=1 with (pk, xk1, . . . , x

k
m) ∈

E(x0k1 , . . . , x
0k
m ) as characterized by (5)+(9). These sequences are bounded, because total supplies

are bounded and the price vectors belong to S, so by passing to subsequences if necessary we
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can suppose that (pk, xk1, . . . , x
k
m) converges to some (p̃, x̃1, . . . , x̃m). The associated sequences of

multipliers λki in (5) must be bounded as well, for the following reason. For any ε > 0 we have,
through the concavity of ui in combination with (5)+(9)+(10), that

0 ≥ (∇ui(xki )−∇ui(εe))·(xki − εe) = λki (pk·xki − ε)−∇ui(εe)·(xii − εe),

where pk·xki = pk·xk0i → p̄·x̄i > 0. By taking ε < p̄·x̄i we obtain the bound

λki ≤
∇ui(εe)·(xki − εe)

pk·x0ki − ε
→ ∇ui(εe)·(x̄− εe)

p̄·x̄i − ε
.

Since the multipliers stay bounded, we can assume λki → λ̃i. The conditions (5)+(9) persist
as xki → x̃i and pk → p̃ along with x0ki → x̄i, and therefore (p̃, x̃1, . . . , x̃m) ∈ E(x̄1, . . . , x̄m).
But that necessitates (p̃, x̃1, . . . , x̃m) = (p̄, x̄1, . . . , x̄m), as just seen. This reveals, in terms of
neighborhoods N0 and N in the shift stability of the equilibrium (p̄, x̄1, . . . , x̄m) in Theorem 1
that, once (x0k1 , . . . , x

0k
m ) is near enough to (x̄1, . . . , x̄m), the entire set E(x0k1 , . . . , x

0k
m ) must lie

in N and therefore reduce to a singleton. Thus, E must be single-valued in a neighborhood of
(x̄1, . . . , x̄m). Taking such an open neighborhood of each point of X we get the set X0.

The fact that X is a differentiable manifold comes from recalling that p and (λi, . . . , λm) are
continuously differentiable functions of (x1, . . . , xm) in X, while on the hand, from the invert-
ibility of the gradient mappings ∇ui, noted in the introduction, with xi = (∇ui)−1(λip), we also
have (x1, . . . , xk) in X being a continuously differentiable function of p and (λ1, . . . , λm). More
specifically, we have a diffeomorphism between X and the elements p and (λ1, . . . , λm) satisfying
λip ∈ Di for the open convex ranges Di of the mappings ∇ui. Because p ∈ S, this furnishes a
global m+ n− 1-dimensional parameterization of X over a connected set of parameters.

Proof of Theorem 3. The linear equations in (8) are just the ones in (11). Their unique
solvability and interpretation as giving derivatives were addressed in the proof of Theorem 1.
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