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Abstract

A procedure called the progressive decoupling algorithm is introduced for solving variational
inequality problems with monotonicity in which the iterative relaxation of linkages can simplify
computations. It derives from the proximal point algorithm in a manner similar to Spingarn’s
method of partial inverses but deals differently with parameters and is able thereby to fit the
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1 Introduction

Generalized equation problems in the form of variational inequalities offer a versatile way of modeling
optimality and equilibrium in complex situations. Many large-scale applications in that mode involve
a linkage structure which, if it could be decoupled, would enable computation of a solution to proceed
more easily. This is addressed here on a fundamental level where the linkage can progressively be de-
coupled through “multipliers” which get updated in a manner reminiscent of augmented Lagrangian
techniques in optimization. The procedure is motivated in form and spirit by the progressive hedging
algorithm in convex stochastic optimization [14] and its recent extension to the decomposition of mul-
tistage stochastic variational inequality problems [13]. It is intimately related to Spingarn’s method of
partial inverses [17] for maximal monotone mappings, which in turn came out of the proximal point
algorithm [9], but differs in a crucial change of variables in the derivation, which adds flexibility. It
specializes to applications in problem decomposition and splitting and, in the setting of convex opti-
mization, can be articulated with minimization subproblems. Extensions to nonconvex optimization
and nonmonotone variational inequalites will be offered in [12].

Let H be a (real) Hilbert space with inner product ⟨x, y⟩. In particular H could be IRn with
⟨x, y⟩ = x·y, but there are finite-dimensional situations where a different inner product would be
advantageous, such as in a stochastic framework. The variational inequality problem in H for a
nonempty closed convex set K ⊂ H and a mapping F : K → H aims to

find x̄ such that − F (x̄) ∈ NK(x̄), (1.1)

where NK(x) is the normal cone to K at x:

v ∈ NK(x) ⇐⇒ x ∈ K and ⟨v, x′ − x⟩ ≤ 0 ∀x′ ∈ K. (1.2)

Our focus is on exploiting special structure in problem (1.1) that may lead to “decoupling.” To
that end we take K to be an intersection C ∩ S ̸= 0 in which C captures “basic” requirements while
C embodies “linkages.” (Examples of linkages will be provided shortly.) We assume throughout that

C is a nonempty closed convex subset of H and S is a (closed) linear subspace of H. (1.3)

In support of the workability of this structure, we suppose that the projection mapping P onto S,

P : H → H with P (x) = [the point in S nearest to x], (1.4)

is relatively convenient to execute numerically. The same executability then holds for the projection
mapping P⊥ onto the orthogonal complement S⊥ of S,

P⊥ : H → H with P⊥(x) = [the point in S⊥ nearest to x] = [I − P ](x). (1.5)

We assume further that, instead of just a mapping F on K = C ∩ S, we have a continuous mapping
F : C → H that is monotone relative to C, which means

⟨F (x′)− F (x), x′ − x⟩ ≥ 0 for all x, x′ ∈ C. (1.6)

Linkage variational inequality problems: coupled and decoupled. The linkage problem in
coupled form with respect to S, C and F : C → H is to

find x̄ such that − F (x̄) ∈ NC∩S(x̄), (1.7)
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whereas the associated linkage problem in decoupled form is to

find x̄ ∈ S such that −F (x̄) ∈ NC(x̄) for F (x) = F (x)− ȳ in the case of some ȳ ∈ S⊥. (1.8)

The tight connection between these two problem formulations, amounting to a virtual equivalence,
is described by a decoupling principle:

any solution x̄ to (1.8) solves (1.7), and conversely under a constraint qualification. (1.9)

This relationship is based on the calculus of normal cones to convex sets through the general rule that
NC∩S(x) ⊃ NC(x) + NS(x) = { v + y | v ∈ NC(x), y ∈ NS(x)}, with equality holding under various
conditions (known as constraint qualifications),2 along with a fact about subspaces:

y ∈ NS(x) ⇐⇒ x ∈ S, y ∈ S⊥ ⇐⇒ x ∈ NS⊥(y). (1.10)

For the existence of a solution to (1.7) an easy criterion is the compactness of C. If F is strongly
monotone relative to C, meaning that

∃µ > 0 with ⟨F (x′)− F (x), x′ − x⟩ ≥ µ||x′ − x||2 for all x, x′ ∈ C, (1.11)

existence and uniqueness of a solution to (1.7) are assured and likewise for −F̄ (x̄) ∈ NC(x̄) in (1.8),
even for unbounded C.

According to the decoupling principle (1.9), any means we might come up with for solving the
decoupled problem (1.8) will serve also for solving the coupled problem (1.7). That may offer advan-
tages because the decoupled problem, although tacitly requiring ȳ to be determined in tandem with
x̄, has a variational inequality that is much simpler in being just over C instead of C ∩ S. An even
bigger attraction is the path it offers to avoid having to deal head-on with the condition x̄ ∈ S. How
so? Suppose we had ȳ such that a solution to (1.8) is sure to exist, and suppose F is such that there
can only be one x̄ satisfying −F (x̄) ∈ NC(x̄), as under strong monotonicity of F . Then that x̄ would
have to belong to S. The condition x̄ ∈ S would have been taken care of automatically!

This leaves a lot of ifs, but in fact we will be occupied here with presenting a procedure in which
in iteration ν = 1, 2, . . . , there are elements xν ∈ S, yν ∈ S⊥, and an associated modification F ν of F
such that the variational inequality −F ν(x) ∈ NC(x) has a unique solution due to strong monotonicity;
calculating that solution leads to updates from xν and yν to xν+1 ∈ S and yν+1 ∈ S⊥ which guarantee
convergence to some x̄ and ȳ satisfying (1.8) (as long as at least one such pair does exist). This
method, which we call the progressive decoupling algorithm, will be laid out in Section 2.

For now, to help with a better understanding of what decoupling can mean in practice, we examine
two kinds of problem structure.

Decoupling to exploit decomposable structure. Let H = H1 × · · · ×Hq for Hilbert spaces
Hj and likewise C = C1×· · ·×Cq with Cj ⊂ Hj . Let the mapping F take (x1, . . . , xq) ∈ C1×· · ·×Cq

to (F1(x1), . . . , Fq(xq)) for mappings Fj : Cj → Hj . Then in problem (1.7) with respect to a subspace
S ⊂ H, the components of the vector x̄ = (x̄1, . . . , x̄q) are linked by the requirement that x̄ ∈ S, but
in problem (1.8), which incorporates a vector ȳ = (ȳ1, . . . , ȳq) ∈ S⊥, the overall variational inequality
decomposes into separate variational inequalities in the components:

for each j, find x̄j such that −F̄j(x̄j) ∈ NCj
(x̄j), where F̄j(xj) = Fj(xj)− ȳj . (1.12)

2It suffices for instance to have S ∩ intC ̸= or just 0 ∈ int[C + S]. When H is finite-dimensional, interiors can be
replaced by relative interiors. Moreover the relative interiority criterion can be dropped in the case of C being polyhedral.
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Multistage stochastic variational inequalities in the form developed recently in [16] exhibit this
structure and motivate for our efforts. In that setting each index j corresponds to a “scenario” in the
evolution of information on which decisions can be based. The scenarios in a multistage discrete setting
can be represented by a “scenario tree” that branches in response to the resolution of uncertainties
as time goes on. If the scenario eventually to be followed could be known at the outset, the decisions
could be optimized deterministically, which would be relatively easy. In reality, though, any decision
associated with stage k can only be based on information already available in stage k and not on
any information yet to come. In other words, decisions associated with two different scenarios have to
coincide until those scenarios branch away from each other. That constraint, known as nonantipativity ,
constitutes a linkage structure expressible by a subspace S. In (1.12) the modification by vectors ȳj
allows the decisions to be determined by solving deterministic problems for the individual scenarios
after all.

Decoupling to exploit splitting structure. The term “splitting” is typically applied to ap-
proaches to solving a generalized equation like 0 ∈ T1(w) + · · · + Tq(w) in a space H0 by iteratively
working with the mappings Tj individually. With our focus on variational inequalities, we pose it as
trying to

find w̄ such that − [F1(w̄) + · · ·+ Fq(w̄)] ∈ NC1∩···∩Cq
(w̄) (1.13)

for closed convex subsets Cj ⊂ H0 and continuous monotone mappings Fj : Cj → H0. We then rely
on the fact that 3

NC1∩···∩Cq
(w) ⊂ NC1

(w) + · · ·+NCq
(w) always, and

equality holds ∀w under a constraint qualification.
(1.14)

Equality in this relationship allows the problem in (1.13) to be translated into the framework of
decomposable structure by taking H1 = · · · = Hq = H0 and selecting the complementary pair of
subspaces to be

S = {x = (x1, . . . , xq) | ∃w ∈ H0 such that x1 = · · · = xq = w},
S⊥ = { (y = (y1, . . . , yq) | yj ∈ H0, y1 + · · ·+ yq = 0}. (1.15)

Then the problem in (1.13) can be identified with the coupled variational inequality (1.7), whereas
the corresponding decoupled variational inequality (1.8) comes out as

find w̄ such that ∃ȳj with ȳ1 + · · · ȳq = 0 yielding
−F j(w̄) ∈ NCj

(w̄) for j = 1, . . . , q with F j(w) = Fj(w)− ȳj .
(1.16)

The attractive idea again, by way of the decoupling principle, is the existence of vectors ȳj such
that the variational inequalities

find x̄j such that − F̄ (x̄j) ∈ NCj (x̄j) for j = 1, . . . , q (1.17)

in (1.16) are able to have a common solution x̄1 = · · · = x̄q. When each Fj is strongly monotone, so that
uniqueness of solutions in (1.17) is assured, these variational inequalities can be solved independently
and yet all give the same unique answer, which is the desired w̄.

3In finite dimensions a useful constraint qualification is the nonemptiness of the intersection of the relative interiors
of the sets Cj . A constraint qualification that works in infinite as well as finite dimensions is the existence of a point in
one of the sets that belongs to the interior of every one of the other sets.
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2 Algorithm derivation and validation

An approach due to Spingarn [17], his method of partial inverses, is already known for solving problems
of the kind

find x̄ ∈ S such that there exists ȳ ∈ S⊥ with ȳ ∈ T (x̄) (2.1)

for a maximal monotone mapping T : H →→ H. Our problem (1.8) is the case of this in which
T = F + NC , which is indeed maximal monotone under our assumptions on C and F . Spingarn’s
method, like the algorithm we are about to describe, involves a single “tuning” parameter, which
enters however in a manner that prevents the iterations from following the pattern in the progressive
hedging algorithm for solving stochastic variational inequality problems [13]. The iterations described
next do follow that motivating pattern.

Progressive Decoupling Algorithm (with parameter r > 0). In iteration ν, having xν ∈ S and
yν ∈ S⊥, determine x̂ν ∈ H as the unique solution to the variational inequality

−F ν(x̂ν) ∈ NC(x̂
ν), where F ν(x) = F (x)− yν + r[x− xν ]. (2.2)

Then get xν+1 ∈ S and yν+1 ∈ S⊥ from

xν+1 = P (x̂ν), yν+1 = yν − rP⊥(x̂ν) = yν − r[x̂ν − xν+1]. (2.3)

Recall here that P and P⊥ are the projection mappings onto the subspaces S and S⊥. The
existence and uniqueness of the solution to the variational inequality in (2.2) is a consequence of F ν

being strongly monotone — because of the monotonicity of F in (1.6) and the strong monotonicity
with respect to x of the proximal term r[x− xν ].

Observe that although the iterates xν belong to the subspace S, they do not necessarily lie in the
set C. On the other hand, the iterates x̂ν are in C but not necessarily in S. Thus, there is a jockeying
back and forth between the two kinds of feasibility on the way to ultimately identifying a solution
x̄ ∈ C ∩ S.

Convergence Theorem. Suppose that the linkage problem (1.8) is solvable.4 Then the iterations
(2.2)–(2.3) generate pairs (xν , yν) that converge (in the weak topology of H) to a pair (x̄, ȳ) solving
(1.8), with x̄ then solving (1.7). Moreover, this will happen with the values

||xν − x̄||2 + 1

r2
||yν − ȳ||2 (2.4)

decreasing from one interation to the next unless they have reached 0.

Since convergence of (xν , yν) to some solution (x̄, ȳ) is only guaranteed in the weak topology of
H, the values in (2.4) might not necessarily tend to 0, since that would correspond to convergence of
(xν , yν) to (x̄, ȳ) in the strong topology ofH. Of course whenH is finite-dimensional, weak convergence
and strong convergence coincide. Note from (2.3) that in the case of strong convergence one also has
x̂ν converging to x̄. Thus the difference between the iterates xν ∈ S and x̂ν ∈ C vanishes in the limit.

Spingarn derived his method of partial inverses from the proximal point algorithm [9] for solving a
generalized equation 0 ∈ T (x̄) for a maximal monotone mapping T : H →→ H. The derivation in [13] of
the progressive hedging algorithm for stochastic variational inequalities, likewise proceeded right from
the proximal point algorithm, although by a different argument. The progressive decoupling algorithm,

4As noted in the decomposition principle (1.7), this follows under indicated conditions from the solvability of the
linkage problem (1.5), for which criteria have also been mentioned.
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its generalization beyond stochastics, could be established similarly by that argument. However, our
strategy here will instead be to derive the progressive decoupling algorithm by showing that, for fixed
r, it can be identified with the execution of Spingarn’s algorithm on an r-dependent modification of
T that is still maximal monotone. This shortcut has the benefit of indicating how details about the
manner of convergence, going beyond even the claims in the theorem above, can be carried over from
Spingarn’s results, gleaned in turn from the proximal point algorithm, without having to be developed
independently.

Because changes of variables will have a role in our demonstration, it will help to begin by stating
Spingarn’s algorithm in alternative notation with ξ and η in place of x and y, and a maximal monotone
mapping T ′ : H →→ H different from our targeted T . In this notation the problem to be solved,
replacing (2.1), is

find ξ̄ ∈ S, η̄ ∈ S⊥, such that η̄ ∈ T ′(ξ̄). (2.5)

Utilizing the projection mappings P and P⊥, we can formulate the steps in Spingarn’s algorithm in
the following manner (with his parameter c > 0 taken to be 1/r).

Method of Partial Inverses [17]. In iteration ν, having ξν ∈ S and ην ∈ S⊥, determine ξ̂ν ∈ H
and η̂ν ∈ H as the unique solutions to

[rP + P⊥](η̂ν) ∈ T ′
(
[P + rP⊥](ξ̂ν)

)
, ξ̂ν + η̂ν = ξν + ην . (2.6)

Then update by
ξν+1 = P (ξ̂ν), ην+1 = P⊥(η̂ν). (2.7)

Spingarn proved about this procedure that, if problem (2.5) is solvable, the sequence of pairs
(ξν , ην) will converge in the weak topology of H to some solution pair (ξ̄, η̄) and do so with

||ξν+1 − ξ̄||2 + ||ην+1 − η̄||2 = ||ξν − ξ̄||2 + ||ην − η̄||2 − ||P⊥(ξ̂ν)||2 − ||P (η̂ν)||2− 2⟨ξ̂ν − ξ̄, η̂ν − η̄⟩
≤ ||ξν − ξ̄||2 + ||ην − η̄||2

(2.8)
On the other hand, if problem (2.5) is not solvable, then ||ξν || + ||ην)|| → ∞. Observe here that
⟨ξ̂ν − ξ̄, η̂ν − η̄⟩ ≥ 0 by the monotonicity of T ′, so the amount of decrease in (2.8) is positive unless
P⊥(ξ̂

ν) = 0 and P (η̂ν) = 0, which would mean that (ξ̂ν , η̂ν) is already itself a solution pair.
Although Spingarn’s method of partial inverses may seem very different from our progressive

decoupling algorithm, a close connection emerges from applying it to the maximal monotone mapping
T ′ obtained from T = F +NC by

T ′ = [P + r−1P⊥] ◦ T ◦ [P + r−1P⊥].

In (2.6), the condition to be solved for ξ̂ν then takes the form

[rP + P⊥](ην + ξν − ξ̂ν) ∈
(
[P + r−1P⊥] ◦ T

)(
[P + r−1P⊥][P + rP⊥](ξ̂ν)

)
= [P + r−1P⊥]

(
T (ξ̂ν)

)
.

On applying P + rP⊥ to both sides, this becomes

r(ην + ξν − ξ̂ν) ∈ T (ξ̂ν) = F (ξ̂ν) +NC(ξ̂
ν),

or in other words

−F ν(ξ̂ν) ∈ NC(ξ̂
ν) for F ν(ξ̂ν) = F (ξ̂ν)− rην + r[ξ̂ν − ξν ]. (2.9)
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The update according to (2.7) is then

ξν+1 = P (ξ̂ν), ην+1 = P⊥(η̂ν) = P⊥(ην + ξν − ξ̂ν) = ην − P⊥(ξ̂ν), (2.10)

inasmuch as ξν ∈ S and ην ∈ S⊥.
The steps in (2.2) and (2.3) can be identified with our steps in (2.9) and (2.10) by taking xν = ξν

and x̂ν = ξ̂ν but yν = rην . Spingarn’s convergence properties for ξν and ην translate then into those
that we have claimed for xν and yν . The progressive decoupling algorithm is thereby validated along
with its convergence theorem.

Note from this derivation that the progressive decoupling algorithm and the method of partial
inverses coincide for T = F +NC for the parameter value r = 1, but not otherwise.

Convergence rates and stopping criteria. Conditions for linear-type convergence of the
method of partial inverses were developed by Spingarn in [17] from the corresponding conditions
for such convergence of the proximal point algorithm in [9] and [6]. They could now be translated to
the progressive decoupling algorithm by way of the changes of variables in the preceding derivation.
Criteria for inexact solutions of the subproblems (1.16) could be transported down the same path.

A topic for future work could be to replace the proximal point algorithm, as the hidden engine
in the procedure, by its extension due to Eckstein and Bersekas [2]; see also Pennanen [8] for more
possibilities in that direction. The connection between Spingarn’s algorithm and other methodology,
such as the Douglas-Rachford algorithm, is fully explained in [2].

Applications to problem decomposition and splitting. The progressive decoupling algo-
rithm can be specialized to the decomposable structure in Section 1, where

C = C1 × · · · × Cq ⊂ H1 × · · · ×Hq, F (x1, . . . , xq) = (F1(x1), . . . , Fq(xq)). (2.11)

The decoupled variational inequality for x̄ = (x̄1, . . . , x̄q) ∈ S with respect to ȳ = (ȳ1, . . . , ȳq) ∈ S⊥

is decomposable in that case into the separate conditions in (1.12). The iterations of the progressive
decoupling algorithm maintain that decomposability and therefore furnish a decomposition procedure.

Progressive Decomposition Algorithm (with parameter r > 0). Let C and F have the decom-
posable structure in (2.11). In iteration ν, having xν = (xν1 , . . . , x

ν
1) ∈ S and yν = (yν1 , . . . , y

ν
1 ) ∈ S⊥,

determine the components x̂j of x̂ν = (x̂ν1 , . . . , x̂
ν
1) by

x̂νj = unique solution to − F ν
j (x̂

ν
j ) ∈ NC(x̂

ν
j ), where F ν

j (xj) = Fj(xj)− yνj + r[x̂νj − xνj ]. (2.12)

Then get xν+1 = (xν+1
1 , . . . , xν+1

q ) ∈ S and yν+1 = (yν+1
1 , . . . , yν+1

q ) ∈ S⊥ from

xν+1 = P (x̂ν), yν+1
j = yνj − r[x̂νj − xν+1

j ] for j = 1, . . . , q. (2.13)

This covers as a special case the progressive hedging algorithm for stochastic variational inequalities
in [13], which iteratively decomposes into subproblems involving individual scenarios. Our desire to
generalize that procedure beyond its stochastic setting is thereby fulfilled

The progressive decoupling algorithm can specialized also to the splitting structure in Section 1 in
order to solve problem (1.13) by way of the rule in (1.14). This corresponds to taking S and S⊥ to
be the subspaces in (1.15) when applying the decomposition procedure just obtained.
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Progressive Splitting Algorithm (with parameter value r > 0). Let C and F have the structure
(2.11) with the spaces H1, . . . ,Hq, all being the same space H0. In iteration ν, having wν ∈ H0 and
yνj ∈ H0 with yν1 + · · ·+ yνq = 0, determine the components x̂j of x̂ν = (x̂ν1 , . . . , x̂

ν
q ) by

x̂νj = unique solution to − F ν
j (x̂

ν
j ) ∈ NCj (x̂

ν
j ), where F ν

j (xj) = Fj(xj)− yνj + r[xj − xνj ]. (2.14)

Then update by

wν+1 =
1

q
[x̂ν1 + · · ·+ x̂νq ], yν+1

j = yνj − r[x̂νj − wν+1] for j = 1, . . . , q. (2.15)

3 Connections with optimization

Although our focus up to now has on variational inequality conditions, those conditions can well arise
from problems of optimization. The iterations of the progressive decoupling algorithm then can be
executed in minimization mode.

Linkage variational inequality problems from minimization. Suppose that F = ∇f for a
continuously differentiable function f : H → IR which is convex relative to C, that being equivalent
to the monotonicity property in (1.6) for ∇f . Then the basic variational inequality problem in (1.7)
poses the first-order condition that is both necessary and sufficient for minimizing f(x) over C ∩ S,
and it can therefore be expressed by

find x̄ ∈ argmin
x∈C∩S

f(x). (3.1)

The corresponding problem (1.8) in decoupled form incorporates a multiplier vector ȳ for the constraint
x̄ ∈ S (equivalently, P (x) = 0) and takes the form

find x̄ ∈ S such that x̄ ∈ argmin
x∈C

f̄(x), where f̄(x) = f(x)− ⟨ȳ, x⟩ for some ȳ ∈ S⊥. (3.2)

In this situation strong mononicity of F = ∇f relative to C would be equivalent to strong convexity
of f relative to C and would ensure that the minimum over C is attained at a unique point. Even if
not available for f , strong convexity will assist in the steps of the algorithm.

Progressive Decoupling Algorithm in Optimization Mode (with parameter r > 0). In it-
eration ν with xν ∈ S and yν ∈ S⊥, determine x̂ν ∈ H by solving a strongly convex problem of
minimization,

x̂ν = argmin
x∈C

fν(x), where fν(x) = f(x)− ⟨yν , x⟩+ r

2
||x− xν ||2. (3.3)

Then get xν+1 ∈ S and yν+1 ∈ S⊥ by

xν+1 = P (x̂ν), yν+1 = yν − rP⊥(x̂ν) = yν − r[x̂ν − xν+1]. (3.4)

The convergence theorem for progressive decoupling applies to this. The proximal term at the
end of (3.4), for which the gradient is the term r[x − xν ] in the variational inequality expression of
progressive decoupling, adds strong convexity that makes sure the minimum in the subproblem is
attained and uniquely.
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Minimization problems with decomposable structure. Let H = H1 × · · · ×Hq for Hilbert
spaces Hj and consider closed convex sets Cj ⊂ Hj along with continuously differentiable convex
functions fj : Cj → IR. The problem

minimize f1(x1) + · · ·+ f1(xq) subject to xj ∈ Cj , (x1, . . . , xq) ∈ S, (3.5)

specializes (3.1) as a coupled problem of optimization for which the decoupled version parallel to (3.2)
seeks to

find (x̄1, . . . , x̄q) ∈ S such that x̄j ∈ argmin
xj∈Cj

f̄j(xj) for j = 1, . . . , q,

where f̄j(xj) = fj(xj)− ⟨ȳj , xj⟩ with respect to some (ȳ1, . . . , ȳq) ∈ S⊥.
(3.6)

The facts in Section 1 relating the coupled and decoupled problems (1.7) and (1.8) hold for problems
(3.5) and (3.6) as a special case and tell us that by solving (3.6) we can get a solution x̄ to (3.5). The
progressive decoupling algorithm in this setting provides a way of doing that.

Progressive Decomposition Algorithm in Optimization Mode (with parameter r > 0). Assume
that the minimization problem in (3.1) has the structure in (3.5). In iteration ν, having xν =
(xν1 , . . . , x

ν
1) ∈ S and yν = (yν1 , . . . , y

ν
1 ) ∈ S⊥, determine the components x̂j of x̂ν = (x̂ν1 , . . . , x̂

ν
1)

by solving strongly convex minimization subproblems in parallel for j = 1, . . . , q:

x̂νj = argmin
xj∈Cj

fν
j (xj), where fν

j (xj) = fj(xj)− ⟨yνj , xj⟩+
r

2
||xj − xνj ||2. (3.7)

Then update to

xν+1 = P (x̂ν), yν+1
j = yνj − r[x̂νj − xν+1

j ] for j = 1, . . . , q. (3.8)

Once again we can contemplate as a particular application the stochastic linkage structure of
nonanticipativity which was explained in Section 2 after (1.12). There, the progressive hedging algo-
rithm for solving stochastic variational inequality problems was the featured special case, but now it
is the original progressive hedging algorithm in stochastic programming [14]. That procedure, which
reduces the solution of a given problem iteratively into solving deterministic optimization subprob-
lems for individual scenarios, was the source of the pattern we wanted to emulate in developing the
progressive decoupling algorithm.

Minimization problems with splitting structure. We turn finally to the case of splitting
structure in variational inequalities as applied with Fj = ∇fj . This corresponds in optimization to
the problem

minimize f1(w) + · · · fq(w) over w ∈ C1 ∩ · · · ∩ Cq (3.9)

and reconstituting it as the problem

minimize f1(x1) + · · · fq(xq) subject to xj ∈ Cj and x1 = · · · = xq, (3.10)

with the common value of the xj ’s in (3.10) being identified in the end as the w in (3.9). In effect we
adopt the structure for decomposition in optimization that we have just been dealing with, but in the
case where the spaces Hj are all the same H0, and with the linkage specialized to the subpace pair S
and S⊥ in (1.15).

The computations afforded by applying the progressive decoupling algorithm in optimization mode
take the following pattern in this situation.
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Progressive Splitting Algorithm in Optimization Mode (with parameter r > 0). In iteration
ν, having wν ∈ H0 and yνj ∈ H0 with yν1+· · ·+yνq = 0, calculate the components x̂j of x̂

ν = (x̂ν1 , . . . , x̂
ν
1)

by

x̂νj = argmin
xj∈Cj

fν(xj), where fν(xj) = fj(xj)− ⟨yνj , xj⟩+
r

2
||xj − xνj ||2. (3.11)

Then update by

wν+1 =
1

q
[x̂ν1 + · · ·+ x̂νq ], yν+1

j = yνj − r[x̂νj − wν+1] for j = 1, . . . , q. (3.12)

The case of this algorithm with r = 1 matches a splitting method that Spingarn in [17] derived
from his method of partial inverses. The extra flexibility provided by admitting parameter values
r ̸= 1 illustrates an advantage of the proximal decompling algorithm over Spingarn’s approach.

A splitting algorithm having a minimization step like (3.11) with general r but a different way of
updating was proposed by Mahey et al. [7] in the two-component case, i.e., q = 2. It can be extended
also to q > 2. The survey of Lenoir and Mahey [5] gives many insights into this and other connections
with Spingarn’s work.

4 Extensions to augmented Lagrangian methodology

Beyond direct applications to problems of minimization, progressive decoupling provides ways of deal-
ing broadly with Lagrange multipliers. Although that topic can be pursued for general variational
inequalities, for which the role of Lagrange multipliers was explained in [11], the ideas are easier to
understand when viewed in an optimzation context. That is what we will concentrate on here.

For background, we pose a problem in a Hilbert space H0 of the type

minimize f(x) subject to x ∈ X, G(x) ∈ K, (4.1)

where f : H0 → IR is continuously differentiable, X ⊂ H0 is nonempty, closed, convex, K is a closed
convex cone in another Hilbert space H ′

0, and G : H0 → H ′
0 is continuously differential. First-order

optimality conditions for such a problem can be expressed in terms of the Lagrangian function

l(x, y) = f(x) + ⟨y,G(x)⟩ for x ∈ X, y ∈ Y, where Y = K∗ (polar cone), (4.2)

in the form
−∇xl(x̄, ȳ) ∈ NX(x̄), ∇yl(x̄, ȳ) ∈ NY (ȳ), (4.3)

in which ȳ is a Lagrange multiplier associated with x̄ with respect to the constraint G(x) ∈ K. The
interesting aspect for our purposes here is that the conditions (4.3) can be written as a variational
inequality:

−F (x̄, ȳ) ∈ NX×Y (x̄, ȳ) with F (x, y) = (∇xl(x, y),−∇yl(x, y)). (4.4)

Our focus will be on the convex case of problem (4.1), by which we mean the case in which the
Lagrangian l(x, y) is convex in x ∈ X for each y ∈ Y . Since l(x, y) is concave (actually affine) in y ∈ Y
for each x ∈ X, this corresponds to l being a convex-concave saddle function on X × Y . Then (4.2)
is equivalent to the saddle point condition

x̄ ∈ argmin
x∈X

l(x, ȳ), ȳ ∈ argmax
y∈Y

l(x̄, y), (4.5)
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which is always sufficient for the global optimality of x̄ as a solution to problem (4.1) and is necessary,
with respect to some ȳ, under a constraint qualification. Most important here is that F is monotone
in the convex case, which we assume we are in henceforth. We then have a monotone variational
inequality to which the approaches we have been developing might be invoked.

Along with the Lagrangian l in (4.2) we will also be able to appeal to the associated augmented
Lagrangian function, which depends on a parameter value ρ > 0 and is given by

lρ(x, y) = max
y′∈Y

{
l(x, y′)− 1

2ρ ||y
′ − y||2

}
= f(x) + ⟨y,G(x)⟩+ ρ

2 ||G(x)||2 − 1
2ρdist

2
Y (y + ρG(x)) over X ×H ′

0,
(4.6)

where
distY (u) = distance of u from Y = min

y∈Y
||u− y||. (4.7)

Note that when Y = H ′
0, which corresponds to K = {0} and an equation constraint G(x) = 0, the

distance term drops off. This is the most familiar version on an augmented Lagrangian, but the theory
goes far beyond that.5 The conditions in (4.3) can be expressed equivalently through the augmented
Lagrangian as

−∇xlρ(x̄, ȳ) ∈ NX(x̄), ∇ylρ(x̄, ȳ) = 0. (4.8)

From the definition (4.6), lρ not only retains the convexity-concavity of l but also the continuous
differentiability, in fact with

∇ylρ(x, y) = argmax
y′∈Y

{
l(x, y′)− 1

2ρ
||y′ − y||2

}
. (4.9)

The augmented Lagrangian will be important in progressive decoupling for the following reason.
Suppose the variational inequality (4.4) is modified by the addition of a proximal term, that is, by
passing from F (x, y) to F (x, y)+r[(x, y)− (x∗, y∗)] for some choice of (x∗, y∗). That would correspond
to replacing (4.5) by the saddle point condition for

l(x, y) +
r

2
||x− x∗||2 − r

2
||y − y∗||2 for x ∈ X, y ∈ Y. (4.10)

Due to the strong convexity-concavity in this expression we can calculate the saddle point by first
maximizing over y ∈ Y and then minimizing the “residual” over x ∈ X. But the residual from
maximizing in y is the augmented Lagrangian lρ(x, y

∗) for ρ = r−1. After the minimization of that
has been carried out to get x̄, the ȳ component of the saddle point can be obtained from maximizing
over y ∈ Y in (4.10) with x fixed at x̄. Thus, the unique saddle point in (4.10) can be determined by

x̄ = argmin
x∈X

{
lρ(x, y

∗) + 1
2ρ ||x− x∗||2

}
for ρ = r−1, then

ȳ = argmax
y∈Y

{
l(x̄, y)− 1

2ρ ||y − y∗||2
}
= projY (y

∗ + ρG(x̄)),
(4.11)

where
projY (u) = nearest point of Y to u. (4.12)

With these facts in hand we can proceed with further applications of progressive decoupling.
For monotone variational inequalities of Lagrangian type arising from the constraint model in (4.1),

we can contemplate decomposable structure or splitting structure which might be open to progressive

5See for example Chapter 11 of the book [15].
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decoupling. Interestingly, those two types of structure can enter simultaneously, one in the primal
variables and the other in the dual variables.

Lagrangian variational inequalities with decomposable structure. Decomposable struc-
ture in the primal variables in (4.1) is introduced in the primal variables by taking the space H0 with
which we began this section to be H1 × · · · ×Hq and letting x = (x1, . . . , xq) with xj ∈ Hj :

minimize
∑q

j=1
fj(xj) subject to xj ∈ Xj ,

∑q

j=1
Gj(xj) ∈ K (4.13)

with fj : Hj → IR and Gj : Hj → H ′
0 continuously differentiable, and Xj ⊂ Hj nonempty, closed,

convex. The Lagrangian over the product of X = X1 × · · ·Xq and Y is then

l(x, y) =
∑q

j=1
lj(xj , y), where lj(xj , y) = fj(xj) + ⟨y,Gj(xj)⟩. (4.14)

As we know, the corresponding variational inequality gives the conditions for a saddle point with
respect to minimizing in the primal variables in X and maximizing in the dual variables Y . If there
were a separate multiplier element in Y for each j, this would break down into a separate saddle point
problem for each j. This suggests applying the ideas about “splitting” to y. For that we can pass to
saddle points of∑q

j=1
lj(xj , zj) =

∑q

j=1

[
fj(xj) + ⟨zj , Gj(xj)⟩

]
for xj ∈ Xj , zj ∈ Y, z1 = · · · = zq. (4.15)

To exploit that idea by way of a linkage model, we can take H = H1 × · · · ×Hq ×Πq
j=1H

′
0 and let

S = { (x1, . . . , xq, z1, . . . , zq) | ∃ y ∈ H ′
0 such that z1 = · · · = zq = y},

S⊥ = { (0, . . . , 0, w1, . . . , wq) |wj ∈ H ′
0, w1 + · · ·+ w1 = 0}. (4.16)

Then, while the variational inequality problem in basic form can be identified with determing a saddle
point in (4.15), the corresponding problem in decoupled form corresponds to determining instead a
saddle point of∑q

j=1

[
lj(xj , zj)− ⟨w̄j , zj⟩

]
=

∑q

j=1

[
fj(xj) + ⟨zj , Gj(xj)− w̄j⟩

]
for xj ∈ Xj , zj ∈ Y. (4.17)

How does the progressive decoupling algorithm play out in this situation?
In iteration ν with (xν1 , . . . , x

ν
q , z

ν
1 , . . . , z

ν
q ) ∈ S, i.e., the zνj ’s all equaling some yν , we subtract

from the Lagrangian in (4.17) the term
∑q

j=1⟨wν
j , z

ν
j ⟩ in the dual variables while adding the proximal

terms r
2 ||xj −xνj ||2 in the primal variables and subtracting the proximal terms r

2 ||zj − yν ||2 in the dual
variables, getting an expression that can be written as∑q

j=1

[
lνj (xj , zj) +

r
2 ||xj − xνj ||2 − r

2 ||zj − yν ||2
]
for xj ∈ Xj , zj ∈ Y,

where lνj (xj , zj) = fj(xj) + ⟨zj , Gj(xj)− wν
j ⟩.

(4.18)

Note that lνj (xj , zj) is the Lagrangian function for the problem:

minimize fj(xj) subject to xj ∈ Xj , Gj(xj)− wν
j ∈ K. (4.19)

We calculate (x̂ν1 , . . . , x̂
ν
1 , ẑ

ν
1 , . . . , ẑ

ν
q ) as the unique saddle point in (4.18), which decomposes into

(x̂νj , ẑ
ν
j ) = argminimax

xj∈Xj , zj∈Y

{
lνj (xj , zj) +

r

2
||xj − xνj ||2 −

r

2
||zj − yν ||2

}
. (4.20)
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We then update by

xν+1
j = x̂νj , yν+1 =

1

q
[ẑν1 + · · ·+ ẑνq ], wν+1

j = wν
j − r[zνj − yν+1]. (4.21)

An important simplification now enters through the observations made earlier in the context of
(4.10) and (4.11) about saddle points when proximal terms are present. The saddle point subproblems
in (4.19) can be solved in terms of the augmented Lagrangians

lνj,r−1(xj , y
ν) = lj(xj , y

ν) +
1

2r
||Gj(xj)− wν

j ||2 −
r

2
dist2Y (y

ν + r−1[Gj(xj)− wν
j ]) (4.22)

for the problems in (4.19) by

x̂νj = argmin
xj∈Xj

{
lνj,r−1(xj , y

ν) +
r

2
||xj − xνj ||2

}
, ẑνj = projY (y

ν + r−1[Gj(xj)− wν
j ]). (4.23)

By converting from r to ρ = r−1, we arrive at the procedure laid out next.

Progressive Decomposition Algorithm in Lagrangian Mode (with parameter r > 0. For the
purpose of solving problem (4.13) by way of its Lagrangian conditions for optimality, proceed as
follows. In iteration ν, having xνj ∈ Xj , y

ν ∈ Y = K∗ and wν
j with wν

1 + · · · + wν
q = 0, determine x̂νj

and ẑνj for j = 1, . . . , q from the augmented sub-Lagrangians

lνj,ρ(xj , y
ν) = fj(xj) + ⟨yν , Gj(xj)− wν

j ⟩+
ρ

2
||Gj(xj)− wν

j ||2 −
ρ

2
dist2Y (y

ν + ρGj(xj)) (4.23)

by calculating

x̂νj = argmin
xj∈Xj

{
lνj,ρ(xj , y

ν) +
1

2ρ
||xj − xνj ||2

}
, ẑνj = PY (y

ν + ρ[Gj(x̂
ν
j )− wν

j ] ). (4.25)

Then update by

xν+1
j = x̂νj , yν+1 =

1

q
[ẑν1 + · · ·+ ẑνq ], wν+1

j = wν
j − 1

ρ
[ẑνj − yν+1]. (4.27)

This is very similar to an algorithm developed by Spingarn in [18], but there the proximal term
in the primal variables has ρ/2 instead of 1/2ρ. Also, he only treated classical inequality constraints,
namely the case of K = IRm

− . It differs from the SALA approach to the same situation described by
Lenoir and Mahey in [5], which has no proximal term in the primal variables and focuses on affine
equation constraints. Proximal terms in the primal variables in augmented Lagrangian methods go
back to [10].

Example of linear equation constraints. As a special case of the decomposable structure in
the optimization problem (4.13), suppose that K = {0} and Gj(xj) = Ajxj for a (continuous) linear
mapping Aj . The task then is to

minimize
∑q

j=1
fj(xj) subject to

∑q

j=1
Ajxj = 0 with xj ∈ Xj . (4.27)

The augmented Lagrangian decomposition method then has6

lνj,ρ(xj , y
ν) = fj(xj) + ⟨yν , Ajxj − wν

j ⟩+
ρ

2
||Ajxj − wν

j ||2 (4.28)

6The quadratic term in this formula was missing in the published version of the paper.
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and proceeds by calculating

x̂νj = argmin
xj∈Xj

{
lνj,ρ(xj , y

ν) +
1

2ρ
||xj − xνj ||2

}
, ẑνj = yν + ρ[Aj(x̂

ν
j )− wν

j ] ) (4.29)

and updating by

xν+1
j = x̂νj , yν+1 =

1

q
[ẑν1 + · · ·+ ẑνq ] = yν +

ρ

q

∑q

j=1
Aj x̂

ν
j , wν+1

j = wν
j − 1

ρ
[ẑνj − yν+1]. (4.30)

This example covers in particular a problem formulation in convex optimization which has received
very wide attention. By stating it as

minimize f1(u) + f2(Au) with u ∈ X1, Au ∈ X2, (4.31)

we can identify it in the pattern of (4.27) as

minimize f1(x1) + f2(x2) subject to x1 ∈ X1, x2 ∈ X2, Ax1 − x2 = 0, (4.32)

which corresponds to A1 = A and A2 = −I. The iteration (4.28)–(4.29) can be executed then with
q = 2 and the simplification that wν

2 = −wν
1 .

Problem (4.31) is typically considered without the differentiability assumptions we have imposed
on the functions fi, through our choice of variational inequalities in traditional formulation as the basis
for exposition, but this is a minor point. The derivation of our algorithm from Spingarn’s method of
partial inversed didn’t depend on it.

The best-known approaches to solving (4.31) in a decomposable manner are variants of the alter-
nating direction method of multipliers (ADMM) as derived from the Douglas-Rachford algorithm. A
history of this method has recently been provided by Glowinski [4]. The literature on it is huge. The
article of Lenoir and Mahey [5] can be helpful and also the survey of Bertsekas [1]. Another method
proposed for solving (4.30) is due to Chen and Teboulle [3]. The procedure suggested here is simpler,
but its comparative efficacy must await testing.

Lagrangian variational inequalities with splitting structure. Consider now an optimization
problem of the form

minimize f1(w) + · · ·+ fq(w) over w ∈ C1 ∩ · · · ∩ Cq

where Cj = {w ∈ Xj |Gj(w) ∈ Kj} for j = 1, . . . , q,
(4.33)

which builds on the problem in (3.13) by adding constraint details. The trick once more is to expand
into the form in (3.14) but then to pass to the Lagrangian. Multiplier vectors yj for the Gj constraints
must belong to the closed convex cones Yj that are polar to the closed convex conesKj . The Lagrangian
function is therefore ∑q

j=1
lj(xj , yj) for xj ∈ Xj , yj ∈ Yj , with x1 = · · · = xq. (4.34)

The linkage variational inequality in coupled form in this setting is the Lagrangian variational
inequality coming from (4.34) with

F (x, y) = (∇x1 l1(x1, y1), . . . ,∇xq lq(x1, yq),−∇y1 l1(x1, y1), · · · ,−∇yq lq(xq, yq))

and the set

[X1 × · · · ×Xq × Y1 × · · · × Yq] ∩ S for S = { (x, y) | ∃w with x1 = · · · = xq = w}. (4.35)
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For the indicated linkage subspace S the complementary subspace is

S⊥ = { (z1, . . . , zq, 0, . . . , 0) | z1 + · · ·+ zq = 0}. (4.36)

The associated linkage variational inequality in decoupled form thus seeks to

find (x̄j , ȳj) with (−∇xj lj(x̄j , ȳj),∇yj lj(x̄j , ȳj)) + (z̄j , 0) ∈ NXj×Yj
(x̄j , ȳj), j = 1, . . . , q,

for some choices of z̄j having z̄1 + · · ·+ z̄q = 0 allowing that actually x̄1 = · · · = x̄q.
(4.37)

The jth variational inequality in (4.37) is the saddle point optimality condition for the problem of
minimizing the “tilted” function f̄j(xj) = fj(xj)− ⟨z̄j , xj⟩ subject to xj ∈ Xj and Gj(xj) ∈ Kj . The
tilt vectors are aimed at allowing the solutions x̄j to be the same w̄, which then solves (4.33).

The progressive decoupling algorithm introduces proximal terms as in its optimization version in
(3.16) but additional proximal terms now also in the dual variables. The tilted Lagrangian lj(xj , yj)−
⟨zj , xj⟩ behind the variational inequality in (4.36) is replaced in iteration ν by

lj(xj , yj)− ⟨zνj , xj⟩+
r

2
||xj − xνj ||2 −

r

2
||yj − yνj ||2, where xν1 = · · · = xνq = some wν , (4.38)

for which the unique saddle point (x̂νj , ŷ
ν
j ) is sought over Xj × Yj for each j. The update then is

yν+1
j = ŷνj , wν+1 =

1

q

∑q

j=1
x̂νj , zν+1

j = zνj − r[x̂νj − wν+1]. (4.39)

The methodology of augmented Lagrangians can come into play now as a simplification. In maximizing
over yj in the saddle point problem for (4.38) the residual expression is

lj,r−1(xj , y
ν
j )− ⟨zνj , xj⟩+

r

2
||xj − wν ||2 (4.40)

which then has to be minimized in xj to get x̂νj . The ŷνj component of the saddle point is then the
projection of yνj + r−1Gj(x̂

ν
j ) on Yj . With these simplifications the resulting procedure takes the

following form with ρ replacing r−1.

Progressive Splitting Algorithm in Lagrangian Mode (with parameter ρ > 0). For the purpose
of solving problem (4.32) by way of its Lagrangian conditions for optimality, proceed as follows. In
iteration ν, having wν along with yνj ∈ Yj and zνj such that zν1 + · · ·+ zνq = 0, determine (x̂νj , ŷ

ν) by

x̂νj = argmin
xj∈Xj

{
lj,ρ(xj , y

ν
j )− ⟨zνj , xj⟩+

1

2ρ
||xj − wν ||2

}
, ŷνj = projYj

(yνj + ρGj(x̂
ν
j )). (4.41)

Then update by

yν+1
j = ŷνj , wν+1 =

1

q

∑q

j=1
x̂νj , zν+1

j = zνj − ρ−1[x̂νj − wν+1]. (4.42)
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