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Abstract

The proximal method of multipliers, originally introduced as a way of solving convex program-
ming problems with inequality constraints, is a proximally stabilized alternative to the augmented
Lagrangian method that is sometimes called the proximal augmented Lagrangian method. It has
gained attention as a vehicle for deriving decomposition algorithms for wider formulations of prob-
lems in convex optimization than just convex programming. Here those themes are developed fur-
ther. The basic algorithm is articulated in several seemingly different formats that are equivalent
under exact computations, but diverge when minimization steps are executed only approximately.
Stopping criteria are demonstrated to maintain convergence to a particular solution despite such
approximations. Q-linear convergence is obtained from a metric regularity property of the La-
grangian mapping at the solution that acts as a mildly enhanced condition for local optimality on
top of convexity and is generically available, in a sense.

Moreover, all this is brought about with the proximal terms allowed to vary in their underlying
metric from one iteration to the next. That generalization enables the results to be translated to the
theory of the progressive decoupling algorithm, significantly adding to its versatility and providing
linear convergence guarantees in its broad applicability to techniques for problem decomposition.
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1 Introduction

Solution techniques in optimization often utilize dual variables along with primal variables. In the
presence of convexity, the proximal point algorithm (PPA) for finding a zero of a monotone mapping
[9] can have a role in that. For convex programming with inequality constraints, application of the
PPA to solving the dual problem was revealed in [10] to produce a method of multipliers for solving
the primal problem that extends the so-named procedure of Hestenes [3] and Powell [6] for solving
nonlinear programming with equation constraints. Application of the PPA to finding a saddle point
of the Lagrangian function produced instead in [10] a proximal method of multipliers.

Since then, terminology has shifted, and the method of multipliers has commonly come to be called
the augmented Lagrangian method (ALM). Its uses in many areas of convex optimization are well
known, but advances have also been made in understanding its potential in nonconvex optimization,
recently for example in [16]. In contrast, the proximal method of multipliers (PMM), also now called
the proximal augmented Lagrangian method, has received less attention. However, Shefi and Teboulle
in [20] (2014) showed it can provide a unifying basis for deriving the decomposition algorithms in
convex optimization that have gained prominence over the years. Further work on it has the potential
to yield even more of interest in that direction.

This paper is devoted to broadening the scope of the proximal method of multipliers in applica-
tions to general finite-dimensional problems of convex optimization, while at the same time improving
knowledge about its convergence properties. New features are introduced, such as variable-metric prox
terms which add flexibility to the handling of primal and dual variables. Guarantees for global conver-
gence despite inexact minimization are devised that propagate the original ones for classical convex
programming in [10] into this much wider territory. The local condition that was utilized in [10] to
establish linear convergence is replaced in this by a distinctly weaker condition of metric subregularity.
Alternative algorithmic formats are developed that bypass explicit handling of augmented Lagrangian
functions when convenient formulas for them aren’t at hand. That has the benefit of leading here,
through a connection with Spingarn’s method of partial inverses [21], to first-time results on linear
convergence of the progressive decoupling algorithm in [12], [13]. These results have major import for
the schemes of problem decomposition in convex optimization that have been based on progressive
decompling, such as elaborations of Spingarn’s augmented Lagrangian decomposition scheme in [22],
although such applications will not be taken up already in this paper.

Duality framework. Our general approach to augmented Lagrangians and the PMM differs
from that of Shefi and Teboulle [20] and allied literature, at least on the surface. We adopt the
fundamental framework for duality in convex optimization in which a minimization problem in a
vector x is imbedded in a family of such problems parameterized by a vector u having reference value
u = 0. Thus, for a closed proper convex function φ on IRn × IRm, we seek to

minimize φ(x, u) subject to u = 0. (P )

The dual problem in terms of the conjugate convex function φ∗ is to

maximize − φ∗(v, y) subject to v = 0. (D)

The Lagrangian function, defined by

l(x, y) := infu {φ(x, u)− y·u}, (1.1)

is convex in x and concave in y. It connects primal and dual by

φ(x, u) = supy{ l(x, y) + y·u}, −φ∗(v, y) = infx{ l(x, y)− v·x}. (1.2)
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Here y·u is the inner product associated with the canonical Euclidean norm, which will be denoted ty
| · |, in distinction to other inner products ⟨·, ·⟩ and norms || · || that will have a role later.

This parameterized duality framework has a long history in convex analysis going back to [7] and
[8]; see also [19, Section 11H]. Classical convex programming has

φ(x, u) =

 f0(x) if x ∈ X and fi(x) + ui

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

∞ otherwise,

(1.3)

where X is a nonempty closed convex set and fi is a differentiable function on IRn that is convex for
i = 0, 1, . . . , s and affine for i = s+ 1, . . . ,m. The case of Fenchel duality has

φ(x, u) = f(x) + g(Ax+ u), φ∗(v, y) = f∗(v −A∗y) + g∗(y),
l(x, y) = f(x)− g∗(y) + y·Ax, (1.4)

for closed proper convex functions f , g, and a linear mapping A with adjoint A∗.2

Shefi and Teboulle in [20], along with many other contributors to the theory of decomposition
techniques in convex optimization, start from the Fenchel-type model of minimizing f(x)+ g(Ax) but
recast it as minimizing f(x) + g(z) subject to Ax− z = 0. They then bring in a Lagrange multiplier
vector y for that equation. This amounts, in the framework here, to amplifying the primal variable x to
x̃ = (x, z) and shifting to a secondary formulation in the pattern of (1.4) with φ̃(x̃, u) = f̃(x̃)+g̃(Ãx̃+u)
and g̃ = δ0, the indicator of the origin. The augmented Lagrangian coming from that has x and z
coupled in a quadratic expression,

f(x) + g(z) + y·[Ax− z] +
r

2
|Ax− z|2,

and the challenge is seen as inventing procedures that interatively perform alternate minimizations of
some approximating sort in the x and z variables. The PMM is demonstrated in [20] to provide an
engine for that. In contrast, our approach to decomposition techniques heads down a different path
toward the progressive decompling algorithm in [12], [13]. The PMM developments we undertake here
will be able to help with that.

Optimality in our setting of convexity is naturally always global, of course, and can be characterized
either by subgradients of φ or by those of l by way of the Lagrangian mapping

Tl(x, y) := { (v, u) | v ∈ ∂xl(x, y), u ∈ ∂y[−l](x, y)} (1.5)

on which the PMM will rely. The subgradients are related to each other in general by

(v, y) ∈ ∂φ(x, u) ⇐⇒ (v, u) ∈ Tl(x, y) ⇐⇒ (x, u) ∈ ∂φ∗(v, y). (1.6)

Under a constraint qualification, such as asking ri domφ to contain an element of form (x, 0), a vector
x̄ furnishes a (globally) optimal solution (x̄, 0) to (P ) if and only if there is a vector ȳ that fulfills with
x̄ the equivalent conditions

(0, ȳ) ∈ ∂φ(x̄, 0) ⇐⇒ (0, 0) ∈ Tl(x̄, ȳ) ⇐⇒ (x̄, 0) ∈ ∂φ∗(0, ȳ) (1.7)

[19, 11.48]. Even without a constraint qualification, these conditions guarantee not only the optimality
of x̄ in (P ) but also the optimality of ȳ in (D). The Tl version in (1.7) signifies that (x̄, ȳ) is a saddle

2The ambiguity in the Lagrangian formula when f(x) = ∞ and g∗(y) = ∞ is resolved by (1.1) as l(x, y) = ∞.
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point of l(x, y) with respect to minimizing in x and maximizing in y. It implies that the minimum in
(P ) equals the maximum in (D), and that the closed convex set

Z := { (x̄, ȳ) satisfying the conditions (1.7) }, (1.8)

when nonempty, is the product of the set of solutions to (P ) and the set of solutions to (D);

Z ̸= ∅ is assumed here throughout.

For more on this duality, see [8] and [19, Sections 11H, 11I].

Algorithm framework. The Lagrangian mapping Tl is maximal monotone [19, 12.27], and the
PPA can therefore be applied to it to determine a pair (x̄, ȳ) ∈ Z [9, Section 5]. That procedure, in
its simplest implementation with parameter values ck > 0, generates a sequence of pairs (xk, yk) from
an initial pair (x0, y0) by

(xk+1, yk+1) = (I + ckTl)
−1(xk, yk), (1.9)

and that sequence is sure to converge to some (x̄, ȳ) ∈ Z. This is the PMM in its basic mapping
format, which reflects the original source of the “proximal method of multipliers” in [10] in the convex
programming case in (1.3), ahead of a restatement there that employed augmented Lagrangians.
Here we will want to work with not only that kind of restatement but also others where augmented
Lagrangians are not in the spotlight. On the one hand, the iterations (1.9) mean that

(xk+1, yk+1) = argminmax
x,y

{
l(x, y) +

1

2ck
|x− xk|2 − 1

2ck
|y − yk|2

}
, (1.10)

the unique saddle point with respect to minimizing in x and maximizing in y. This is the PMM in its
saddle point format. On the other hand, the iterations can be recast with the introduction of auxiliary
vectors uk+1 as a doubled primal minimization followed by a dual update:

(xk+1, uk+1) = argmin
x,u

{
φ(x, u)− yk·u+

1

2ck
|x− xk|2 + ck

2
|u|2

}
, yk+1 = yk − cku

k+1. (1.11)

This is the PMM in its doubled minimization format. The augmented Lagrangians associated with
problem (P ), which enter the picture next, are defined in general by

lc(x, y) = min
u

{
φ(x, u)− y·u+

c

2
|u|2

}
, (1.12)

but through Fenchel duality they can also be expressed by

lc(x, y) = max
y′

{
l(x, y′)− 1

2c
|y′ − y|2

}
. (1.13)

These functions are convex in x, concave in y, and differentiable in y for any x in the IRn-projection
of the convex set domφ ⊂ IRn × IRm. The PMM in augmented Lagrangian format takes

xk+1 = argmin
x

{
lck(x, y

k) +
1

2ck
|x− xk|2

}
, yk+1 = yk + ck∇ylck(x

k+1, yk), (1.14)

with gradient vectors ∇ylc(x, y) being the unique u minimizers in (1.12).
The equivalence of the four PMM formats holds if the steps are executed exactly but slips when

stopping criteria for inexactness are brought in. The degree of inexactness must be controlled so as
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not to discrupt the convergence of the iterates (xk, yk) to some (x̄, ȳ) ∈ Z, but different approaches to
execution raise different demands. The basic theory of the PPA in [9] and its extensions in [15] offer
criteria that replace the equation in (1.9) by bounds on the distance between the vectors on the left
and right sides. Practicality depends, however, on having an estimate of that distance in terms of some
readily computable quantity. Conditions that allow for approximate minimization in the versions of
the algorithm in (1.11) and (1.14) can serve for this. Originally in [10], such conditions were provided
for (1.14), but not for (1.11) — that being unnecessary because the augmented Lagrangians associated
with the convex programming case in (1.3) have simple expressions. Sometimes, though, the definition
in (1.12) doesn’t yield a convenient expression, because the minimization can’t be carried out in closed
form. The minimization there may then need to be handled inexactly, too. The doubled minimization
PMM format in (1.11) can then be helpful as a recourse to the augmented Lagrangian format.

Developing effective stopping criteria within our general framework is tops on our agenda, but it
will be important to carry this out with added flexibility in the proximal terms in the minimization.
More will be said about this shortly. Another key task is improving the understanding of when linear
convergence is exhibited and what the rate of that may depend on.

Metric regularity role. For the original PMM in [10], Q-linear convergence of (xk, yk) to (x̄, ȳ)
was established through a condition that entailed (x̄, ȳ) having to be the sole element of Z in particular,
because that was the state of knowledge then for linear convergence of the underlying PPA algorithm.
A subsequent PPA innovation of Luque [4] at least got Q-linear convergence to the solution set when
it wasn’t a singleton. Luque’s condition had a handicap that curtailed applicability, but in [15] we
came up with a relaxation of it that works just as well. That relaxed condition, translated to the
situation here, asks the Lagrangian mapping Tl to have the following property at (x̄, ȳ) ∈ Z:

∃ a ∈ (0,∞) such that, for (x, y) and (v, u) near to (x̄, ȳ) and (0, 0),

(x, y) ∈ T−1
l (v, u) =⇒ dist

(
(x, y), T−1

l (0, 0)
)
≤ a

∣∣∣(v, u)∣∣∣, (1.15)

where by “near to” we mean of course “in some sufficiently small neighborhoods of.” This is the metric
subregularity of Tl relative to having (0, 0) ∈ Tl(x̄, ȳ). The corresponding modulus of subregularity ,

subreg
(
Tl; (x̄, ȳ) | (0, 0)

)
:= lim inf of the a values in (1.15) as neighborhoods dwindle, (1.16)

will be seen to keenly affect the rate of Q-linear convergence that the procedure is able to realize. But
without the limit pair (x̄, ȳ) being the sole element of Z, the Q-linear convergence will not quite be
that of (xk, yk) → (x̄, ȳ), but that of dist((xk, yk), Z) → 0.

Subregularity is a key condition in the theory of metric regularity properties of set-valued mappings
laid out in the book [1]. Its manifestation for Tl relative to having (x̄, ȳ) ∈ T−1

l (0, 0) is a subform of
metric regularity , which itself requires

∃ a ∈ (0,∞) such that, for (x, y) and (v′, u′) near to (x̄, ȳ) and (0, 0),

(v, u) ∈ Tl(x, y) =⇒ dist
(
(x, y), T−1

l (v′, u′)
)
≤ a

∣∣∣(v.u)− (v′, u′)
∣∣∣. (1.17)

That metric regularity of Tl is equivalent in turn to something called the Aubin property of T−1
l relative

to having (x̄, ȳ) ∈ T−1
l (0, 0), which describes a Lipshitz-like behavior of the set-valued mapping T−1

l

that entails it being nonempty-valued near (0, 0). The strong metric regularity of Tl relative to having
(0, 0) ∈ Tl(x̄, ȳ) adds to this the single-valuedness of T−1

l around (0, 0), thereby making that inverse
mapping be Lipschitz continuous. For the convex programming case of Tl in (1.3), such strong metric
regularity holds when (1) the gradients ∇fi(x̄) of the active constraints are linearly independent and
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(2) the Hessian ∇2
xxl(x̄, ȳ) is positive-definite relative to the subspace orthogonal to those vectors [1,

2G.9]. For nonlinear programming even without the convexity, these are the powerful conditions that
guarantee local optimality along with primal-dual solution stability and are familiar in the convergence
analysis of solution algorithms. Indeed, metric regularity properties on all levels are increasingly
being realized as furnishing a range of stability-oriented enhancements of sufficient conditions for local
optimality that can serve in the justification of numerical methodology.

The observation that the metric subregularity of T−1
l in (1.15) fits neatly into this spectrum as the

least demanding of properties is important to appreciating that our identification of it as key support
for linear convergence of the PMM is a fitting development in this larger picture.

Variable-metric motivations. Reasons will now be given for why we want to extend the PMM
and its convergence guarantees to implementations that deploy proximal terms less rigidly than in
the past. A simple move toward such flexibility would be allowing the ck in the proximal term for
the x argument to be replaced in the iterations (1.10), (1.11) and (1.14) by a different value bk > 0,
so that the procedure would depend on two different sequences of parameters. An incentive for that
comes from comparing the iterations (1.14) with those of the corresponding “nonproximal” method
of multipliers that arises applying the PPA to maximizing −ψ(0, y) in the dual problem (D). The
iterations of that come out as

xk+1 ∈ argmin
x

lck(x, y
k), yk+1 = yk − ck∇ylck(x

k+1, yk), (1.18)

and give the corresponding ALM to compare with the PMM. The version of (1.14) in which the ck for
the proximal term in x is replaced by a possibly much higher value bk would bridge between the two
procedures. It could be interpreted as introducing just a bit of strong convexity in order to stabilize
the minimum and make it be uniquely attained.

An incentive to variability from another direction comes from contemplating the replacement of
the ck in the proximal term in x in (1.11) by bk = c−1

k , which would transform 1
2ck

|x−xk|2+ ck
2 |u|

2 into
ck
2 |(x, u)− (xk, 0)|2. The desirability of this may seem obscure, but it is the key maneuver behind the
progressive decoupling algorithm in [12], [13]. That scheme, with numerous specializations, concerns a
problem in a space viewed as the product of two complementary subspaces which in principle could be
coordinatized into vector pairs (x, u), as here, but may already be presented in a different application-
oriented coordinate system. Progressive decoupling has, so far, only been justified for ck always
having the same value c and moreover only with exact minimization in every iteration. Establishing
convergence with stopping criteria for inexact minimization and adjustable ck, which is one of our
goals in this paper, will improve it greatly.

The replacement of the ck attached to the x variable in (1.11) by a different bk severs the bond
between the iterations in (1.10), (1.11) and (1.14), and the ones in (1.9), thereby undermining the
convergence support provided by the theory behind (1.9). Fortunately, a connection can be restored by
passing to a version of (1.9) in which the canonical Euclidean norm is replaced by different Euclidean
norms that can vary with the iterations. The variable-metric version of the PPA developed recently in
[15] and improved in [18] will be shown here to facilitate that.3 Proximal terms based on alternative
norms are anyway known to be useful in computation and, in particular, are prominent in the work
of Shefi and Teboulle [20] on using the PMM as a tool for deriving decomposition algorithms. The
norms there are fixed, and the proximal parameters as well, but the advances in this paper should
enable those elements to vary without disrupting convergence.

3An earlier variable-metric PPA of Parente, Lotito and Solodov [5], despite its notable innovations, treats approxi-
mation in a completely different manner that rules out the possibility of deriving implementable stopping criteria in our
context. This is explained in [18].
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In admitting general proximal terms, provision is made in particular for preconditioning of one
form or another. Perhaps the right preconditioning might be guessed from the start, and there would
be no need then for metrics to vary. Beyond preconditioning, however, there are more basic issues
of contrasted scaling that might be helpful between primal and dual components or various primal
subcomponents. It seems good from that angle to allow changes from one iteration to the next as a
foundation perhaps to future algorithmic developments in which adjustments can be imposed from
the information being produced in ongoing computations.

Other prospectives. For practicality, we have chosen to focus here entirely on convex optimiza-
tion, but applications to nonconvex optimization can be glimpsed on the horizon. The proximal point
algorithm itself is capable of operating in a local sense, without requiring global maximal monotonicity
of a mapping. We have shown in [16] that this enables the ordinary method of multipliers (ALM)
to solve nonconvex problems of “generalized nonlinear programming” when initiated near enough to
a point satisfying a new variationally sufficient condition for local optimality. That direction of de-
velopment is also in the offing for the PMM as applied to generalized nonlinear programming, which
would extend and complement the 2022 results of Ismailov and Solodov in [2] for standard nonlinear
programming. Equally, there is the prospect of tackling nonconvex linkage problems by the progressive
decoupling algorithm through such localization in building on the patterns developed here.

Plan of the paper. The central PMM results will be formulated in Section 2 and proved in
Section 3. They will be applied then in Section 4 to obtain linear convergence of the progressive
decoupling algorithm in a broader context than just the minimization problem (P ). Section 5 will
identify a situation where both PMM and progressive decoupling are sure to converge Q-linearly and
it will establish that they can be expected to exhibit that convergence generically.

2 Extended algorithmic platform and statement of central results

Motivations for replacing the algorithm’s proximal terms in the x-argument have already been ex-
plained, but those terms in the u argument can benefit from that as well. Accordingly we look at
alternative norms and inner products induced by symmetric positive-definite matrices C through

⟨u′, u⟩C = u′·Cu ||u||C =
√
⟨u, u⟩C , so that ||u||2C = u·Cu, ∇||u||2C = 2Cu. (2.1)

The canonical Euclidean norm | · | corresponds, of course, to C = I. Distances with respect to | · |,
|| · ||C and || · ||C−1 are related in terms of the maximum and minimum eigenvalues of C by

||C−1||−1·|u|2 ≤ ||u||2C ≤ ||C||·|u|2, ||C||−1·||u||2C ≤ |u|2 ≤ ||C−1||·||u||2C ,
where ||C|| = maxeig(C), ||C−1||−1 = mineig(C), and
[1/maxeig(C)] ||u||C ≤ ||u||C−1 ≤ [1/mineig(C)] ||u||C .

(2.2)

(The validity of these useful relationships is elementary in the case of C being a diagonal matrix, but
they hold then in general for symmetric positive-definite C through diagnalization under a change to
a different orthonormal basis.) We expand the notion of augmented Lagrangian by associating with
choices of C the functions

lC(x, y) = infu
{
φ(x, u)− y·u+ 1

2 ||u||2C
}

with

∇ylC(x, y) = − argminu

{
φ(x, u)− y·u+ 1

2 ||u||2C
}
.

(2.3)

These reduce to the previous augmented Lagrangians in the notation lc when C = cI.
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This generalization of augmented Lagrangian allows the diagonal matrix C = cI to be replaced, for
instance, by an arbitrary diagonal matrix with positive entries. That would let different components
of u be guided in computations by different proximal parameters, in an elaboration of the idea already
suggested of allowing different parameters for x and u, as a sort of progressive rescaling feature. The
advantage of accommodating nondiagonal C will be made clear later, in Section 4.

The augmented Lagrangian formula in (2.2) translates through Fenchel duality to an equivalent
formula involving the Lagrangian l itself that generalizes (1.13),

lC(x, y) = supy′
{
l(x, y′)− 1

2 ||y′ − y||2
C−1

}
, (2.4)

because the quadratic functions u 7→ 1
2u·Cu and y 7→ 1

2y·C−1y are conjugate to each other, as are the
functions φ(x, ·) and −l(x, ·).

With this in hand, we are ready to formulate the extension of the proximal method from its formats
in the introduction to ones that not only permit proximal terms of greater generality, but also let them
vary from one iteration to the next. The parametric elements of the algorithm in their dependence on
the iteration k will be a choice of

ck ≥ 1 such that ck → c∞ ≤ ∞, (2.5)

along with symmetric, positive-definite matrices Bk ∈ IRn×n and Ck ∈ IRm×m satisfying with respect
to the relations

β−1
k ||x||Bk−1

≤ ||x||Bk
≤ βk||x||Bk−1

and β−1
0 |x| ≤ ||x||B0 ≤ β0|x|,

γ−1
k ||y||−1

Ck−1
≤ ||y||C−1

k
≤ γk||y||C−1

k−1
and γ−1

0 |x| ≤ ||x||C−1
0

≤ γ0|x|,
where βk ≥ 1, γk ≥ 1, with Π∞

k=0βk =: β <∞, Π∞
k=0γk =: γ <∞.

(2.6)

The matrix sequences in question could in particular, of course, just be constant, and then (2.6) would
be satisfied with βk ≡ 1 and γk ≡ 1. But in any case, only the existence of βk and γk will be needed,
not their particular values. Or, from the opposite angle, one can interpret βk and γk as given in
advance for the sake of controlling the generation of Bk and Ck from Bk−1 and Ck−1 as the algorithm
proceeds. Either way, the relations in (2.6) have the advantage of implying

lim
k→∞

Bk = B∞, lim
k→∞

Ck = C∞, again symmetric and positive-definite (2.7)

as proven in [18, Section 2]. This keeps the shifts in metric from getting out of hand.
The iterations will generate from an initial pair (x0, y0) a sequence of pairs (xk, yk) by rules that

not only broaden those in the different formats presented in Section 1, but also permit inexactness
in the calculations, as signaled below by “≈.” More about controlling these approximations will be
brought in shortly. For reasons of exposition, the order of the format types will now be the opposite
of that in Section 1.

Algorithm 1: extended PMM in augmented Lagrangian format.

xk+1 ≈ argmin
x

{
lckCk

(x, yk) +
1

2ck
||x− xk||2

Bk

}

yk+1 = yk + ckCk∇ylckCk
(xk+1, yk),

(2.8)

Having ckCk determine the augmented Lagrangian here might seem odd. Couldn’t ck be subsumed
into Ck? There are two answers. The first is that possibly ck → ∞ in (2.5), whereas the Ck sequence
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is bounded through (2.7). The second is that ck enters also in the proximal term in the x-argument.
The effect of these features will be seen later in the statement of convergence results.

For connecting with the motivations in Section 1, note for example that the choices Ck = I,
Bk = bkckI, would not only replace lckCk

by the earlier lck , but also turn the x-proximal term in
(2.8) into (bk/2)|x− xk|2. The limit of bkck must be positive and finite, to be consistent with having
Bk → B∞ in (2.7).

Algorithm 2: extended PMM in doubled minimization format.

(xk+1, uk+1) ≈ argmin
x,u

{
φ(x, u)− u·yk + 1

2ck
||x− xk||2

Bk
+
ck
2
||u− uk||2

Ck

}
yk+1 = yk − ckCku

k+1,
(2.9)

Here, for instance, by taking Ck = I but Bk = c2kI, the augmented Lagrangian would be just
lck while the x-proximal term would be (ck/2)|x − xk|2, which was indicated in Section 1 as tying in
with schemes of problem decomposition in [12], [13]. The extension introduced here will furnish more
potential in that direction.

Although Algorithms 1 and 2 are central for the applications we envision, the other two formats
in Section 1 have variable-metric counterparts which primarily will serve in the theoretical picture.

Algorithm 3: extended PMM in saddle point format.

(xk+1, yk+1) ≈ argminmax
x,y

{
l(x, y) +

1

2ck
||x− xk||2

Bk
− 1

2ck
||y − yk||2

C−1
k

}
. (2.10)

Algorithm 4: extended PMM in basic mapping format.

(xk+1, yk+1) ≈ (I + ckD
−1
k Tl)

−1(xk, yk) for Dk :=

[
Bk 0
0 C−1

k

]
. (2.11)

The fourth version is “basic” because the others will be derived from it by way of the variable-
metric proximal point algorithm in [15], as improved in [18], and the following fact, the proof of which
will be given in Section 3 along with those of the other theorems stated in this section.

Theorem 2.1 (equivalence with exact computations). Algorithms 1, 2, 3 and 4 with “≈” replaced
by “=” produce the same sequence of pairs (xk, yk) from the initial (x0, y0).

The aim, of course, is to get the whichever-way-generated sequence of pairs (xk, yk) to eventually
approach the primal-dual solution set Z in (1.8), and even better, to converge to a particular solution
pair in Z.

With computations only approximate, the sequences produced in the four PMM formats can be
different, because the style of approximation has to be tailored to the the type of optimization being
carried out in the iterations. The appoximation in Algorithm 4 will be the key to applying the
convergence theory in [18]. As a practical matter, the approximations in Algorithms 1 and 2 are of
keenest interest, but rules articulated for them have to support the requirements of Algorithms 4 and
the approximations in Algorithm 3. Those rules, in the form of stopping criteria for the optimization
steps, will appeal to the distance between the origin and the subgradient set for the expression being
optimized. Exact optimization would correspond to that distance being 0. Convenient upper bounds
for the distances in question can serve in place of the distances themselves.

It will best, for the sake of theory, to express the subgradient distances as measured in the norms
associated with Bk and Ck along with Dk in (2.11) and

Ek =

[
Bk 0
0 Ck

]
, (2.12)
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and with their inverses, which are related by

||(x, y)||2
Dk

= ||x||2
Bk

+ ||y||2
C−1

k

, ||(v, u)||2
D−1

k

= ||v||2
B−1

k

+ ||u||2
Ck
,

||(x, u)||2
Ek

= ||x||2
Bk

+ ||u||2
Ck
, ||(v, y)||2

E−1
k

= ||x||2
B−1

k

+ ||u||2
C−1

k

.
(2.13)

Such variable-metric distances can in turn be estimated by distances under the norm | · | through the
classical bounds in (2.2):√

mineig(Ck)·dist ≤ distCk
≤

√
maxeig(Ck)·dist,

1√
mineig(Ck)

·dist ≤ distC−1
k

≤ 1√
maxeig(Ck)

·dist . (2.14)

and likewise for the other metrics. In that way, workable stopping criteria in ordinary distances can
be made available as alternatives, but these are generally stricter in the sense of requiring tighter
accuracy. The stopping criteria will all draw on a choice of error parameters

εk ∈ (0, 1) such that
∑∞

k=0
εk <∞. (2.15)

Theorem 2.2 (global convergence with inexact computations). Regardless of the initial (x0, y0), the
sequence of pairs (xk, yk) generated by Algorithms 1, 2 and 3 will converge to some particular solution
pair (x̄, ȳ) ∈ Z in (1.8) as long as the stopping criteria for the approximations are taken to be the
following.

(a) For Algorithm 1, where an approximate minimizer must be calculated for the strongly convex
function

λk(x) := lckCk
(x, yk) +

1

2ck
||x− xk||2

Bk
(2.16)

and exact computation would require 0 ∈ ∂λk(xk+1), the stopping criterion is

ck distB−1
k

(
0, ∂λk(xk+1)

)
≤ εk (2.17a)

or the stricter alternative
ck√

mineig(Bk)
·dist

(
0, ∂λk(x)

)
≤ εk. (2.17b)

(b) For Algorithm 2, where an approximate minimizer must be calculated for the strongly convex
function

φk(x, u) := φ(x, u)− ⟨yk, u⟩+ 1

2ck
||x− xk||2

Bk
+
ck
2
||u||2

Ck
(2.18)

and exact computation would require (0, 0) ∈ ∂φk(xk+1, uk+1), the stopping criterion is

2ck distE−1
k

(
(0, 0), ∂φk(xk+1, uk+1)

)
≤ εk (2.19a)

or the stricter alternative

2ck√
mineig(Ek)

·dist
(
(0, 0), ∂φk(xk+1, uk+1)

)
≤ εk. (2.19b)

(c) For Algorithm 3, where an approximate saddle point must be calculated for the strongly
convex-concave function

lk(x, y) := l(x, y) +
1

2ck
||x− xk||2

Bk
− 1

2ck
||y − yk||2

C−1
k

(2.20)
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and exact computations would require (0, 0) ∈ Tlk(x
k+1, yk+1) for the mapping Tlk associated with lk

as Tl with l in (1.5), the stopping criterion is

ck distD−1
k

(
(0, 0), Tlk(x

k+1, yk+1)
)
≤ εk (2.21a)

or the stricter alternative

ck√
mineig(Dk)

·dist
(
(0, 0), Tlk(x

k+1, yk+1)
)
≤ εk. (2.21b)

The next question to answer is whether linear convergence will be obtained. A sequence of positive
values αk is said to converge Q-linearly to 0 at a rate r if lim supk→∞(αk+1/αk) ≤ r < 1, and this
is said to be superlinear convergence if r = 0.4 Here we’ll be concerned with whether the distance of
(xk, yk) from the solution set Z converges Q-linearly to 0. The rate of that convergence will depend
on the norm in which that distance is measured. The norm associated with the limit matrix D∞ will
be the best.

The metric subregularity property in (1.15) now comes on stage, but adapted to a changed standard
for distances associated with D∞. The new version requires that

∃ a ∈ (0,∞) such that, for (x, y) and (v, u) near to (x̄, ȳ) and (0, 0),

(v, u) ∈ Tl(x, y) =⇒ distD∞

(
(x, y), T−1

l (0, 0)
)

≤ a||(v, u)||D−1
∞
.

(2.22)

This is equivalent to the original condition in (1.15) through the various bounds relating the norms,
but the range of values of a can be different. Instead of the modulus in (1.16), we will want to appeal
to the D∞ version of that modulus, namely

subregD∞

(
Tl; (x̄, ȳ) | (0, 0)

)
:= lim inf of the a values in (2.22) as neighborhoods dwindle. (2.23)

Theorem 2.3 (linear convergence). Tighten the stopping criteria (2.17ab), (2.19ab) and (2.21ab),
by having

εk replaced on the right sides by: εk min
{
1, ||(xk+1, yk+1)− (xk, yk)||Dk

}
or by its lower estimate: εk min

{
1,

|(xk+1, yk+1)− (xk, yk)|√
mineig(Dk)

}
.

(2.24)

For the iterates (xk, yk) generated thereby as Dk → D∞, suppose the limit (x̄, ȳ) guaranteed by
Theorem 2.2 is such that the metric subregularity in (1.15) or equivalently (2.22) holds there, and let
a∞ denote the associated modulus in (2.23). Then

distD∞ ((xk, yk), Z) converges Q-linearly to 0 at the rate r =
1√

1 + (c∞/a∞)2
, (2.25)

this being superlinear convergence when c∞ = ∞ or a∞ = 0.5

Of course, Q-linear convergence to 0 of the distance of (xk, yk) from (x̄, ȳ) is also of interest as
a slightly stronger property, when Z is not just the singleton {(x̄, ȳ)}. Advanced results about the

4The possibility of αk = 0 can be covered through a work-around that for every r′ > r requires αk+1 ≤ r′αk when k
is sufficiently large.

5For the sake of these extremes, the expression for r would better be taken in the form a∞/
√
a2
∞ + c2∞, but the form

in (2.25) is superior otherwise for emphasizing that the rate only depends on the ratio between c∞ and a∞ when they
are finite.
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proximal point algorithm in [15] provide a supplementary condition which, with further tightening of
the stopping criteria, leads to such direct linear convergence in the fixed-metric setting. That feature
was not replicated in the variable-metric setting in [15] or its improved version in [18], because it seems
unable to cope with the additional uncertainties of repeatedly shifting geometry.

3 Derivation from theory of the proximal point algorithm

The convergence results in Section 2 for the PMM will be derived next from results about the proximal
point algorithm (PPA), including recent developments in [15] and [18]. To facilitate this and at the
same time open the door to applications outside of optimization, we begin with a translation of current
framework of functions and their subgradients into one of mappings and their partial inverses.

In place of the set-valued mappings ∂φ and Tl in (1.5) and (1.6), which are maximal monotone
and in a partial inverse relationship to each other, we consider a general pair of maximal monotone
mappings in that relationship: M : IRn × IRm →→ IRn × IRm and T : IRn × IRm →→ IRn × IRm such that

(v, u) ∈ T (x, y) ⇐⇒ (v, y) ∈M(x, u). (3.1)

In a generalization of the problem of trying to find x̄ and ȳ that satisfy the optimality condition in
(1.7), we seek to

determine (x̄, ȳ) with (0, ȳ) ∈M(x̄, 0),
or equivalently, (x̄, ȳ) ∈ T−1(0, 0) =: Z.

(3.2)

We aim to solve this by applying the PPA to T . In our variable-metric framework, with its proximal
matrices Dk and parameters ck, that procedure means starting from a choice of (x0, y0) and iterating
with

(xk+1, yk+1) ≈ Pk(x
k, yk) := (I + ckD

−1
k T )−1(xk, yk) (3.3)

with the approximation being governed by error parameters εk as in (2.20) through

||(xk+1, yk+1)− Pk(x
k, yk)||Dk

≤
{
(a) εk, or

(b) εk min
{
1, ||(xk+1, yk+1)− (xk, yk)||Dk

}
.

(3.4)

The mapping Pk is single-valued and nonexpansive with respect to the Dk metric, because D−1
k T

is maximal monotone with respect to the inner product associated with that metric — as was noted
in [15, (4.3)]. Moreover, its set of fixed points is the solution set Z in (3.2), and therefore

distDk
(Pk(x

k, yk), T−1(0, 0)) ≤ distDk
((xk, yk), T−1(0, 0)),

in fact with strict inequality6 unless (xk, yk) is already in T−1(0, 0). If the matrices Dk were all the
same, and (xk+1, yk+1) = Pk(x

k, yk) exactly in (3.3), the sequence of iterates would get ever closer to
the solution set right from the start. But with Dk varying and approximations permitted, things are
more complicated.

We nonetheless have at our disposal, in support of this solution approach, the following picture of
global convergence and potential linear convergence, with the latter relying on the metric subregularity
property we have been looking at. Now, though, that is a property of our general mapping T , not just
the Lagrangian mapping Tl:

∃ a ∈ (0,∞) such that, for (x, y) and (v, u) near to (x̄, ȳ) and (0, 0),

(v, u) ∈ T (x, y) =⇒ distD∞

(
(x, y), T−1(0, 0)

)
≤ a||(v, u)||D−1

∞

(3.5)

6Because the nonexpansivity is actually “firm nonexpansvity.”
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with its modulus

subregD∞

(
T ; (x̄, ȳ) | (0, 0)

)
:= lim inf of a values in (3.5) as neighborhoods dwindle. (3.6)

Theorem 3.1 (convergence in the PPA format). Under the stopping criterion (3.4a), the sequence
of iterates (xk, yk) generated from any initial (x0, y0) will converge to some particular (x̄, ȳ) in the
primal-dual solution set Z := T−1(0, 0). If the stricter stopping criterion (3.4b) is used and the
property in (3.5) holds for (x̄, ȳ), then with a∞ denoting the subregularity modulus (3.6),

distD∞ ((xk, yk), Z) converges Q-linearly to 0 at the rate r =
1√

1 + (c∞/a∞)2
, (3.7)

this being superlinear convergence when c∞ = ∞.

Proof. This specializes [18, Theorems 2.1 and 2.2] (improving on [15, Theorems 4.1 and 4.2]) to
our product-space setting with T being maximal monotone globally, instead of just locally. Our
assumption (2.2) about the Bk and Ck matrices enters into this, since the result being specialized
requires here that

α−1
k ||(x, y)||Dk−1

≤ ||(x, y)||Dk
≤ αk||(x, y)||Dk−1

and α−1
0 |x| ≤ ||(x, y)||D0 ≤ α0|x|,

with αk ≥ 1 such that Π∞
k=0αk <∞.

That holds via (2.6) with αk = βkγk, because αk ≥ max{βk, γk} ≥ 1 when βk ≥ 1, γk ≥ 1, so that

||(x, y)||2
Dk

= ||x||2
Bk

+ ||y||C−1
k

≤ β2k||x||2Bk−1
+ γ2k ||y||2C−1

k−1

≤ α2
k

(
||x||2

Bk−1
+ ||y||2

C−1
k−1

)
= α2

k||(x, y)||2Dk−1
,

and in parallel

||(x, y)||2
Dk

= ||x||2
Bk

+ ||y||C−1
k

≥ β−2
k ||x||2

Bk−1
+ γ−2

k ||y||2
C−1

k−1

≥ α−2
k

(
||x||2

Bk−1
+ ||y||2

C−1
k−1

)
= α−2

k ||(x, y)||2
Dk−1

.

Furthermore Π∞
k=0αk = lim

j→∞
(Πj

k=0βk)(Π
j
k=0γk) = (Π∞

k=0βk)(Π
∞
k=0γk) <∞.

The iterations in (3.3) can be expressed equivalently in other ways, which will be important later
in relating them to the algorithmic formats in Section 2. Working first with the exact versions, we
observe that

(xk+1, yk+1) = (I + ckD
−1
k T )−1(xk, yk)

⇐⇒ (xk, yk) ∈ (I + ckD
−1
k T )(xk+1, yk+1)

⇐⇒ (xk, yk)− (xk+1, yk+1) ∈ ckD
−1
k T (xk+1, yk+1)

⇐⇒ c−1
k Dk(x

k − xk+1, yk − yk+1) ∈ T (xk+1, yk+1)

⇐⇒ (c−1
k Bk(x

k − xk+1), c−1
k C−1

k (yk − yk+1)) ∈ T (xk+1, yk+1)

(3.8)

and therefore

⇐⇒ (0, 0) ∈ T (xk+1, yk+1) + (c−1
k Bk(x

k+1 − xk), c−1
k C−1

k (yk+1 − yk)). (3.9)

Through (3.1) that can be converted to

(c−1
k Bk(x

k − xk+1), yk+1) ∈M(xk+1, c−1
k C−1

k (yk − yk+1)) (3.10)
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and identified with

(0, 0) ∈M(xk+1, c−1
k C−1

k (yk − yk+1)) + (c−1
k Bk(x

k+1 − xk),−yk+1). (3.11)

This brings us to two different versions that allow for inexact computations in generating a sequence
of pairs (xk, yk) from some initial (x0, y0).

Algorithm A: partial-inverse PPA in primal-dual format.

(0, 0) ≈∈ T k(xk+1, yk+1), where

T k(x, y) := T (xk+1, yk+1) + (c−1
k Bk(x

k+1 − xk), c−1
k C−1

k (yk+1 − yk)).
(3.12)

Algorithm B: partial-inverse PPA in fully primal format.

yk+1 = yk − ckCku
k+1 with (0, 0) ≈∈Mk(xk+1, uk+1), where

Mk(x, u) :=M(x, u) + (c−1
k Bk(x− xk), ckCku− yk).

(3.13)

The approximate membership in each case must be refined into a variable-metric distance condition,
and we do that next.

Theorem 3.2 (stopping criteria for the partial-inverse PPA). For Algorithm A, the left side in (3.4)
can be replaced by the right side in the upper estimate that

||(xk+1, yk+1)− Pk(x
k, yk)||Dk

≤ ck distD−1
k

(
0, T k(xk+1, yk+1)

)
. (3.14)

For Algorithm B, the left side in (3.4) can be replaced by the right side in the upper estimate that

||(xk+1, yk+1)− Pk(x
k, yk)||Dk

≤ ck||v||B−1
k

+ 2||z||C−1
k

for some (v, z) ∈Mk(xk+1, uk+1),
(3.15)

or instead the upper estimate that

||(xk+1, yk+1)− Pk(x
k, yk)||Dk

≤ 2ck distE−1
k

(
0,Mk(xk+1, uk+1)

)
. (3.16)

Proof. To establish (3.14), it’s enough to show that the left side is bounded from above by
ck||(v, u)||D−1

k
when (v, u) ∈ T k(xk+1, yk+1), or in other words, when (0, 0) is replaced by (v, u) on the

left side (3.9). From the formula for Dk, we can elaborate this as

(v, u) ∈ T (xk+1, yk+1) + c−1
k Dk(x

k+1 − xk, yk+1 − yk)]

⇐⇒ ckD
−1
k (v, u) ∈ ckD

−1
k T (xk+1, yk+1) + [(xk+1, yk+1)− (xk, yk)]

⇐⇒ (xk, yk) + ckD
−1
k (v, u) ∈ [I + ckD

−1
k T ](xk+1, yk+1)

⇐⇒ (xk+1, yk+1) = Pk

(
(xk, yk) + ckD

−1
k (v, u)

)
.

(3.17)

Drawing on the nonexpansivity of Pk in the Dk metric, we obtain from the equation at the end of
(3.17) that

||(xk+1, yk+1)− Pk(x
k, yk)||Dk

= ||Pk((x
k, yk) + ckD

−1
k (v, u))− Pk(x

k, yk)||Dk

≤ ||[(xk, yk) + ckD
−1
k (v, u)]− (xk, yk)||Dk

= ||ckD−1
k (v, u)||Dk

= ck⟨D−1
k (v, u), DkD

−1
k (v, u)⟩

1
2 = ck||(v, u)||D−1

k
,
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as needed for (3.14).
Following a similar path toward establishing (3.15), in which uk+1 = c−1

k C−1
k (yk − yk+1), we put

(v, z) in place of (0, 0) on the left side of (3.11) and proceed with this as

(v − c−1
k Bk(x

k+1 − xk), z + yk+1) ∈M(xk+1, c−1
k C−1

k (yk − yk+1))

⇐⇒ (v − c−1
k Bk(x

k+1 − xk), c−1
k C−1

k (yk − yk+1)) ∈ T (xk+1, yk+1 + z)

⇐⇒ (v, 0) + c−1
k Dk((x

k, yk + z)− (xk+1, yk+1 + z)) ∈ T (xk+1, yk+1 + z)

⇐⇒ ckD
−1
k (v, 0) + (xk, yk + z) ∈ (I + ckD

−1
k T )(xk+1, yk+1 + z)

⇐⇒ (xk+1, yk+1 + z) = Pk

(
(xk, yk + z) + ckD

−1
k (v, 0))

)
= Pk

(
(xk, yk) + (ckB

−1
k v, z)

)
.

With this expression for (xk+1, yk+1 + z), the nonexpansivity of Pk in the Dk metric can be invoked
again to see that

||(xk+1, yk+1 + z)− Pk(x
k, yk)||Dk

= ||Pk

(
(xk, yk) + (ckB

−1
k v, z)

)
− Pk(x

k, yk)||Dk

≤ ||(ckB−1
k v, z)||Dk

.

Since ||(xk+1, yk+1 + z)− Pk(x
k, yk)||Dk

≥ ||(xk+1, yk+1)− Pk(x
k, yk)||Dk

− ||(0, z)||Dk
, this gives us

||(xk+1, yk+1)− Pk(x
k, yk)||Dk

≤ ||(ckB−1
k v, z)||Dk

+ ||(0, z)||Dk
. (3.18)

There are two ways to go now. One way is to use ||(ckB−1
k v, z)||Dk

≤ ||(ckB−1
k v, 0)||Dk

+ ||(0, z)||Dk

and observe that the formula for Dk makes the first term on the right reduce to ck||v||B−1
k

and the

second term reduce to ||z||C−1
k

. That leads to the upper bound in (3.15). The other way is to recall

that ck ≥ 1 was assumed in (2.5) and combine that with the fact that ||(0, z)||Dk
≤ ||(w, z)||Dk

for

any w to see that the right side of (3.18) is bounded above by 2ck||(B−1
k v, z)||Dk

, which the formula
for Dk turns into 2ck||(v, z)||E−1

k
. That produces the alternative upper bound in (3.16).

Our attention turns now to verifying the theorems of Section 2 as the application of these general
results to the case of T being the mapping Tl defined in (1.5).

Proof of Theorem 2.1. The PPA iterations (3.3) for Tl are those of Algorithm 4 in (2.11). In
their translation through (3.7) and (3.8) to the form (3.12) in Algorithm A with T k

l , they turn into
the iterations of Algorithm 3 in (2.10), because

Tl(x
k+1, yk+1) + (c−1

k Bk(x
k+1 − xk), c−1

k C−1
k (yk+1 − yk))

= (∂xl
k(xk+1, yk+1), ∂y[−lk](xk+1, yk+1))

= Tlk(x
k+1, yk+1) for lk(x, y) = l(x, y) + 1

2ck
||x− xk||2

Bk
− 1

2ck
||y − yk||2

C−1
k

(3.19)

by way of the rules of subgradient calculus and the gradient formula in (2.1). Moreover the condition
(0, 0) ∈ Tlk(x

k+1, yk+1) corresponds to (xk+1, yk+1) being a saddle point of lk(x, y) with respect to
minimizing in x and maximizing in y.

The mapping that replaces the general M in (3.1) when T = Tl is ∂φ, according to (1.6). The
corresponding iterations of Algorithm B in (3.13) then have as Mk(xk+1, uk+1) the subgradient set
∂φk(xk+1, uk+1) for the convex function

φk(x, u) = φ(x, u)− ⟨u, yk⟩+ 1

2ck
||x− xk||2

Bk
+
ck
2
||u− uk||2

Ck
. (3.20)

Since the condition (0, 0) ∈ ∂φk(xk+1, uk+1) characterizes (xk+1, yk+1) as giving the minimum of φk,
we conclude that the iterations of Algorithm B align with those of Algorithm 2 in (2.9).
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Those iterations in exact form also correspond to those of Algorithm 1 in (2.8) for the reason that

min
u
φk(x, u) = λk(x) := lckCk

(x, yk) +
1

2ck
||x− xk||2

Bk
, (3.21)

with strong convexity guaranteeing that the minimum is attained. Getting (xk+1, uk+1) to minimize
φk comes down to getting xk+1 to minimize λk(x) (which is equivalent to solving 0 ∈ ∂λk(xk+1) and
then partnering it with a minimizer uk+1 of φk(xk+1, u). This can be identified again with exact
iterations of Algorithm B in (3.13) through the rule of convex analysis that

v ∈ ∂λk(x) ⇐⇒ (v, 0) ∈ ∂φk(x, u) for some u that minimizes φk(x, ·) (3.22)

under the strong convexity of φk. Thus, the iterations in all four algorithmic formats in Section 2
coincide when executed exactly.

Proof of Theorems 2.2 and 2.3. When iterations are inexact, the equivalence of the algorithms
in the proof just given no longer holds. The issue to be confronted then is how the inexact versions
of Algorithms 1, 2, and 3 with their different approaches to stopping criteria fit with the inexact
versions of Algorithms A and B. Obviously Algorithm 3 specializes Algorithm A through (3.19).
Likewise, Algorithm 2 specializes Algorithm B with Mk being ∂φk when estimate in (3.15) is invoked.
Algorithm 1 comes in as the version of this in which the minimization in x and u is exact in u for each
x, so that z in the estimate (3.14) can be taken to be 0. Then the subgradient formula in (3.22) takes
over and turns Algorithm B with that stopping criterion into Algorithm 1.

4 Application to progressive decoupling

The partial-inverse PPA developed in Section 3 for solving the mapping problem (3.2) greatly extends
the original partial-inverse method of Spingarn [21] and its enhancement in the decoupling framework
of [12] and [13], which was undertaken to advance the theory of decomposition techniques that included
Spingarn’s way of decomposing augmented Lagrangians in [22]. It may be hard to see this at first
glance, however, because changing coordinates may be essential in making the connection.

The problem addressed by the progressive decoupling algorithm needs, first of all, to be posed
in the more abstract setting of a finite-dimensional Hilbert space with norm || · || and inner product
⟨·, ·⟩. The ingredients are a maximal monotone mapping M : H →→ H and a subspace S ⊂ H with
orthogonal complement S⊥. It seeks to

determine z̄ ∈ S and w̄ ∈ S⊥ such that w̄ ∈M(z̄). (4.1)

The background idea is that the elements of S are “linked” by linear relationships that specify S
within H, but a solution might be computed through steps in which the linkages somehow get decou-
pled “progressively.” (This terminology goes back to the progressive hedging algorithm in stochastic
programming [11], which is a motivational special case for this PPA application.)

This linkage problem for M and S can be identified with the problem in (3.2) by expressing H as
the direct product S × S⊥, so that

any z ∈ H can be identified uniquely with a pair (x, u) ∈ S × S⊥, and
any w ∈ H can be identified uniquely with a pair (v, y) ∈ S × S⊥.

(4.2)

Then w ∈ M(z) comes out as (v, y) ∈ M(x, u), while vectors z̄ ∈ S and w̄ ∈ S⊥ come out in the
form of (x̄, 0) and (0, ȳ), making (4.1) turn into (3.2). And this can go further. Supposing that
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S is n-dimensional and S⊥ is m-dimensional, the dimension of H thus being N = n + m, we can
introduce an n-vector orthonormal basis for S and an m-vector orthonormal basis for S⊥ under which
x and u are coordinatized as (x1, . . . , xn) and (u1, . . . , um). The combined orthonormal basis for H
coordinatizes its elements z that way as (x1, . . . , xn, u1, . . . , um), and in those coordinates the norm
and inner product of H turn into the canonical norm and inner product of IRN . From that angle it’s
obvious that that algorithm in Section 3 can be applied to solve the problem in (4.1), with the results
in Theorems 3.1 and 3.2 then describing its capabilities.

But here’s the very important thing to have in mind. In the developments of decomposition tech-
nology based on (4.1), H may already have a form like IRN = IRN1 × · · · × IRNq with its vectors z
coordinatized as (z1, . . . , zN ) or the like. The subspaces S and S⊥ may, however, not fit easily with
that portrayal of H. Passage from the given representation of z ∈ H as (z1, . . . , zN ) to a representation
as (x1, . . . , xn, u1, . . . , um) in the manner above would then require a wholesale change of coordinates,
which could well be inconvenient and trouble-making. This suggests trying to pose the partial-inverse
PPA in Section 3 as a procedure that can operate directly in the framework of (4.1), without having
to pass through such a switch.

An advanced form of the progressive decoupling algorithm in [12] and [13] emerges here from that
effort. It supposes only about the subspace S, for practicality, that the projection mappings

PS = projection onto S, P⊥
S = I − PS = projection onto S⊥, (4.3)

are readily computable.7 In terms of them, problem (4.1) seeks to

determine z̄# ∈ H such that w̄ ∈M(z̄) for z̄ = PS(z̄
#) and w̄ = P⊥

S (z̄#). (4.4)

The solution set in the linkage problem is, from that angle, best seen not as a set of pairs (z̄, w̄) ∈
S × S⊥, but rather as

Z# := { set of all z̄# = z̄ + w̄ such that z̄ and w̄ solve (4.1) }. (4.5)

In place of the matrix sequences in Section 2, the solution algorithm in this context makes use of
self-adjoint, positive-definite linear mappings Jk → J∞ from H onto H that preserve S and S⊥,

Jk(S) ⊂ S, Jk(S
⊥) ⊂ S⊥, (4.6)

and satisfy for z ∈ S and w ∈ S⊥ the norm bounds8

β−1
k ||z||Jk−1

≤ ||z||Jk ≤ βk||z||Jk−1
and β−1

0 ||z|| ≤ ||z||J0 ≤ β0||z||
γ−1
k ||w||J−1

k−1
≤ ||w||J−1

k
≤ γk||w||J−1

k−1
and γ−1

0 ||w|| ≤ ||w||J−1
0

≤ γ0||w||,
with βk ≥ 1, Π∞

k=0βk <∞, and γk ≥ 1, Π∞
k=0γk <∞.

(4.7)

It eventually utilizes as well a sequence of error parameters εk as in (2.15).

Progressive decoupling algorithm. From any initial z0 ∈ S and w0 ∈ S⊥, generate sequences of
vectors zk ∈ S and wk ∈ S⊥ along with auxiliary vectors ẑk ∈ H as follows:

determine ẑk+1 ≈ (Mk)−1(0) for Mk(z) =M(z) + Jk[z − zk]− wk,
then update with zk+1 = PS(ẑ

k+1), wk+1 = wk − JkP
⊥
S (ẑk+1).

(4.8)

7If either the projection on S or the projection on S⊥ is readily computable, then so too is the other, according to
the complementarity in (4.3).

8Of course, it could be assumed for simplicity that these bounds hold for all z and w in H, but only this much is
needed in our analysis.
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Observe that wk+1 inherits membership in S⊥ from wk because P⊥
S (ẑk+1) lies in S⊥, hence

Jk(P
⊥
S (ẑk+1) ∈ S⊥ by (4.6). Also, since M is maximal monotone, and Jk is self-adjoint and positive-

definite, thus maximal strongly monotone, the mapping Mk in (4.8) is maximal strongly monotone
and therefore has a single-valued, Lipschitz continuous inverse [19, 12.55]. Thus, (Mk)−1(0) in (4.8)
stands for a single vector that is being approximated by ẑk+1. It can be described also as the unique
z such that wk ∈M(z) + Jk[z − zk].

The method of partial inverses of Spingarn in [21] is the case of this algorithm in which Jk ≡ I.
It started the thinking on these lines that led to the version of progressive decoupling in [12] and
[13]. That extension allowed Jk ≡ rI for a fixed r > 0 and provided insights into how the choice of r
might quantitatively affect the way zk and wk converge to z̄ and w̄ solving (4.1). But the steps had
to be computed exactly, without the approximation indicated in (4.8). Relaxed computations and the
introduction of varying Jk are the new features here. Even Jk = rkI for a sequence of values rk was
previously out of grasp.

Partial inverses of mappings from H to H via the choice of the subspace S can be defined with
respect to the representations (4.2), which we can better think of now in the notation

z = zS + zS⊥ , where zS = PS(z) and zS⊥ = P⊥
S (z). (4.9)

The partial inverse of the mapping M in this context is the mapping we’ll denote here by M#. It is
defined graphically by

(z′, w′) ∈ gphM# ⇐⇒
{

∃ (z, w) ∈ gphM such that
z′ = zS + wS⊥ and w′ = wS + zS⊥

(4.10)

in an echo of the relationship between M and T in (3.1) as interpreted via (4.2), with M# once more
maximal monotone. Note that z# ∈ Z# corresponds then to 0 ∈ M#(z#); thus, the solution set Z#

in (4.5) is the closed convex set M#−1(0). In these terms,

solving (4.1) as interpreted in (4.4) means finding z̄# such that
0 ∈M#(z̄#), and then setting z̄ = PS(z̄

#) and w̄ = P⊥
S (z̄#).

(4.11)

Such z̄# = z̄ + w̄ is to be approximated by iterates z#k = zk + wk with zk ∈ S and wk ∈ S⊥.
The partial inverses J#

k of the mappings Jk, defined likewise the mode of (4.10), will be needed
as well. In fact, the targeted procedure in (4.8), when viewed in the light of (4.11), takes the form of
generating a sequence of iterates z#k by

z# k+1 ≈ (I + J#−1
k M#)−1(z#k), with zk = PS(z

#k), wk = P⊥
S (z#k). (4.12)

Like Jk, the linear mappings J#
k are self-adjoint and positive-definite, and so too are the mappings

J−1
k and J#−1

k . The inner products and norms associated with all of them in the pattern of

⟨z′, z⟩Jk := ⟨z′, Jkz⟩, ||z||Jk =
√
⟨z, z⟩Jk , (4.13)

can serve, through the interpretation of (4.8) as (4.12), in translating the variable-metric results of
Section 3 to the framework of progressive decoupling. For these norms the many avenues for estimation
in (2.2) are equally available. Working with them is helped by the relationship between Jk and S in
(4.3), which they all inherit. Only the restrictions of Jk to the subspaces S and S⊥, and the inverses
of those restrictions, really matter. Thus, in the notation (4.9),

||z||2Jk = ||zS ||2Jk + ||zS⊥ ||2Jk , ||z||2
J−1
k

= ||zS ||2J−1
k

+ ||zS⊥ ||2
J−1
k

, (4.14)
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and in consequence

||z||2
J#
k

= ||zS ||2Jk + ||zS⊥ ||2
J−1
k

, ||z||2
J#−1
k

= ||zS ||2J−1
k

+ ||zS⊥ ||2
Jk
. (4.15)

This is especially welcome because, with J#
k doing the job in (4.12) that was assigned before to the

matrix Dk, the norm associated with it will be a critical ingredient in the stopping criteria we come
up with. Particularly important in that respect is that, in the alternative view of the progressive
decoupling algorithm (4.8) in (4.12), we have

||z# k+1 − z# k||
J#
k
=

√
||zk+1 − zk||2

Jk
+ ||wk+1 − wk||2

J−1
k

. (4.16)

The criteria for getting convergence of zk + wk for some x̄ + w̄ ∈ Z#, despite inexactness in (4.12),
will benefit from this.

In support of linear convergence, we will need to appeal to the metric subregularity of the mapping
M# at the solution element z̄# = z̄ + w̄ reached in the limit. The presence or absence of that metric
subregularity is independent of the norm used in describing it, but the modulus of property does
depend on it. Our focus will be on || · ||

J#
∞
, because that modulus will enter the achieved rate of linear

convergence. The formulation of metric subregularity in this case is that

∃ a ∈ (0,∞) such that, for z# and w# near to z̄# and 0,

w# ∈M#(z#) =⇒ dist
J#
∞

(
z#,M#−1(0)

)
≤ a||w#||

J#−1
∞

,
(4.17)

with its modulus being

subreg
J#
∞

(
M#; z̄# |0

)
:= lim inf of the a values in (3.5) as neighborhoods dwindle. (4.18)

Theorem 4.1 (global convergence in progressive decoupling). The vectors zk and wk generated from
any initial z0 ∈ S and w0 ∈ S⊥ by the steps in (4.8) will converge to some particular z̄ and w̄ solving
problem (4.1) if the stopping criterion on ẑk+1 is

2 distJ−1
k

(0,Mk(ẑk+1)) ≤ εk. (4.19)

If the stopping criterion is tightened by also requiring

2 distJ−1
k

(0,Mk(ẑk+1)) ≤ εk

√
||zk+1 − zk||2

Jk
+ ||wk+1 − wk||2

J−1
k

, (4.20)

and the metric subregularity property in (4.17) holds for z̄# = z̄ + w̄, then the distances

dk = min

{√
||zk − z̄′||2

Jk
+ ||wk − w̄′||2

J−1
k

∣∣∣∣∣ z̄′ + w̄′ ∈ Z#

}
(4.21)

converge Q-linearly to 0 at the rate

r =
1√

1 + a−2
∞

=
a∞√
1 + a2∞

with a∞ = subregD∞

(
M#; z̄#

∣∣∣ 0). (4.22)

Proof. This just translates the results in Theorem 3.2 about Algorithm B in the case of ck ≡ 1
into the notation of the algorithm in (4.8) through the notational shifts based on (4.2) that we have
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already been utilizing. In this translation, Jk corresponds to the matrix Ek. Its restrictions to S and
S⊥ corresponds to Bk and Ck, for which our assumption (4.7) with respect to z ∈ S and w ∈ S⊥ turns

into the conditions imposed in (2.6). At the same time, J#
k corresponds to Dk, and all justification

for all the claims falls into place from Theorem 3.2 with no need for additional arguments.

Note that the factor 2 on the left side of (4.19) and (4.20) could simply be absorbed into the choice
of εk, but we have retained it for transparency in the translation.

The presence of both Jk and J−1
k in the distances (4.21) reveals something important about the

character of linear convergence in progressive decoupling. This is especially clear when the solution
set is a singleton, so that

dk =
√
||zk − z̄||2

Jk
+ ||wk − w̄||2

J−1
k

, (4.23)

and even more so when simply Jk = rkI with rk → r∞ as Jk → J∞ (which excludes having r∞ = ∞),
making

dk =
√
r2∞|zk − z̄|2 + r−2

∞ |wk − w̄|2. (4.24)

There is an inevitable trade-off between the primal convergence of zk to z̄ and the dual convergence
of wk to w̄. A higher value of r∞ places emphasis on the zk convergence while a lower value places
it on the wk convergence. Such a tradoff was already perceived in [12, (2.4)] when the rk sequence
was constant, but until now only convergence properties falling short of the one in Theorem 4.1 were
pinned down.

5 Subregularity assurances

The results on linear convergence in Theorems 2.2 and 4.1 rely on the property of metric subregularity
holding at a solution point reached in the limit but unknown in advance. How realistic is that
supposition? We provide now a special but important case where it is automatically satisfied. We go
on to explain why it can anyway be regarded, at least from one reasonable perspective, as typically
satisfied.

A convex function is called piecewise linear-quadratic if its effective domain is the union of a finite
collection of polyhedral convex sets on which the function is linear-quadratic, i.e., can be expressed by
a polynomial of degree no more than 2 [19, 10.20]. A set-valued mapping is called piecewise polyhedral
if its graph is the union of a finite collection of polyhedral convex sets [19, 9.57].

Theorem 5.1 (guaranteed linear convergence to the solution set).
(a) If the convex function φ in problem (P ) is piecewise linear-quadratic, then the metric subreg-

ularity property supporting linear convergence in Theorem 2.2 is sure to be fulfilled.
(b) If the mapping M in the linkage problem (4.1) is piecewise polyhedral, then the metric sub-

regularity property supporting linear convergence in Theorem 4.1 is sure to be fulfilled.

Proof. Starting with (b), we note that in passing from M to its partial inverse M# in (4.10),
piecewise polyhedrality is maintained, since only a sort of graphical reflection is involved. Theorem
4.1 rests on applying the proximal point algorithm to M# to solve the reformulated problem in (4.11)
and requires the metric subregularity of M# at z̄# for 0 ∈M#(z̄#). That is univeral for a piecewise
polyhedral mapping, since it is equivalent to calmness properties of the inverse ofM# by [1, 3H.3], that
likewise being piecewise polyhedral, and such calmness is universal for such a mapping by [19, 9.57].
But the linkage problem (4.10) subsumes the optimization problem (P ) as the case where M = ∂φ,
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as explained in Section 4. Furthermore, φ is piecewise linear-quadratic if and only if its subgradient
mapping is piecewise polyhedral [19, 12.30]. That way, (b) establishes (a).

The case of problem (P ) being piecewise linear-quadratic covers, in particular, problems of piece-
wise linear-quadratic programming as formulated in [19, p. 506].

Although the needed subregularity is not always assured, it is anyway generic from a perspective
in which the given problem is embedded in a parameterized family of problems. In the optimization
framework, these problems have the form

(P (v̄, ū)) for given (v̄, ū), minimize φ(x, u)− v̄·x subject to u = ū,

with the original (P ) corresponding to (v̄, ū) = (0, 0). Obviously the PMM algorithm in its different
forms in Section 2 can be applied to solve (P (v̄, ū)) with only some changes of notation. We can ask
then about typical behavior for the family, instead of just behavior in the single instance giving (P ).

To get a better picture of this, consider along with the problems (P (v̄, ū)) the similar-looking dual
problems

(D(v̄, ū)) for given (v̄, ū), maximize − φ∗(v, y) + ū·y subject to v = v̄,

and the equivalent of optimality conditions for them that generalizes (1.7):

(v̄, ȳ) ∈ ∂φ(x̄, ū) ⇐⇒ (v̄, ū) ∈ Tl(x̄, ȳ) ⇐⇒ (x̄, ū) ∈ ∂φ∗(v̄, ȳ). (5.1)

The set Z in (1.8) is accordingly replaced by

Z(v̄, ū) := { (x̄, ȳ) satisfying (5.1) } = T−1
l (v̄, ū), (5.2)

which, if nonempty, is the product of the set of solutions x̄ to (P (v̄, ū)) and the set of solutions ȳ to
(D(v̄, ū)). In terms of the nonempty convex sets

U = {u ∈ IRm | ∃x, φ(x, u) <∞}, V = { v ∈ IRn | ∃ y, φ∗(v, y) <∞}, (5.3)

it is known from [19, 11.40] that

Z(v̄, ū) is nonempty and bounded ⇐⇒ (v̄, ū) ∈ (intV )× (intU). (5.4)

Theorem 5.2 (generic linear convergence in optimization). Suppose that the convex sets U and V
in (5.3) are full-dimensional, or equivalently that, for at least one pair (v̄, ū), the solution set Z(v̄, ū)
in (5.2) is nonempty and bounded.

Then for almost all (v̄, ū) ∈ V × U , the solution set Z(v̄, ū) will consist of a single pair (x̄, ȳ),
and Tl will be metrically subregular there with respect to (v̄, ū) as demanded by Theorem 2.3. The
sequence of pairs (xk, yk) generated by the proximal method of multipliers in solving (P (v̄, ū)) and
(D(v̄, ū)) will therefore converge Q-linearly to that solution (x̄, ȳ) at the rate

r =
1√

1 + (c∞/a∞)2
with a∞ = subregD∞

(
Tl; (x̄, ȳ) | (v̄, ū)

)
. (5.6)

Proof. The effective range set rgeTl for the mapping Tl, which is the same as the set of (v̄, ū) such
that T−1

l (v̄, ū) ̸= ∅, satisfies
int(V × U) ⊂ rgeTl ⊂ V × U (5.7)

21



[19, 12.41]. But according to a recently demonstrated property of maximal monotone mappings,
for almost every (v̄, ū) belonging to int(rgeTl) in the sense of Lebesgue measure, there is a unique
(x̄, ȳ) ∈ T−1

l (v̄, ū), and Tl is metrically subregular at (x̄, ȳ) for (v̄, ū). That’s all we need to justify the
claim.

A parallel result holds for the linkage problem (4.1), which can likewise be viewed with such a
(v̄, ū) parameterization in the pattern of

given v̄ ∈ S and ū ∈ S⊥, determine z̄ ∈ S and w̄ ∈ S⊥

such that w̄ ∈Mv̄,ū(z̄), where Mv̄,ū(z) =M(z + ū)− v̄
(5.8)

with associated solution sets
Zv̄,ū = { (z̄, w̄) solving(5.8) }. (5.9)

In this case we are looking at a parameterized family of maximal monotone mappings and can ask about
generic behavior of the progressive decoupling algorithm in solving the linkage problems associated
with them for the fixed subspace S. Interest centers on the set

Ω = { (v̄, ū) ∈ S × S⊥ |Zv̄,ū ̸= ∅}. (5.10)

Theorem 5.3 (generic linear convergence in progressive decoupling). Suppose the set Ω in (5.10) has
nonempty interior; this corresponds to its full-dimensionality and holds if and only if Zv̄,ū in (5.9) is
nonempty and bounded for at least one pair (v̄, ū), in which case the set of those pairs constitutes
that interior.

Then for almost all (v̄, ū) ∈ Ω, the solution set Zv̄,ū will consist of a single pair (z̄, w̄), and M#
v̄,ū

will have the metric subregularity property in (4.17) with modulus in (4.18) as demanded by Theorem
4.1. The sequence of pairs (zk, wk) generated by the proximal method of multipliers in solving the
corresponding problem in (5.8) will therefore converge Q-linearly to that solution (z̄, w̄) at the rate

r =
1√

1 + a−2
∞

=
a∞√
1 + a2∞

. with a∞ = subreg
J#
∞

(
M#; z̄ + w̄ | v̄ + ū

)
. (5.11)

Proof. By definition, (z̄, w̄) ∈ Zv̄,ū if and only if v̄ + w̄ ∈ M(z̄ + ū), which is equivalent to
v̄+ū ∈M#(z̄+w̄) in (4.10). Thus, (v̄, ū) ∈ Ω corresponds toM#−1(v̄+ū) ̸= ∅, i.e., v̄+ū ∈ domM#−1,
that being a nearly convex set by maximal monotonicity [19, 12.41]. The interior of domM#−1 consists
of v̄ + ū such that M#−1(v̄ + ū) is both nonempty and bounded. It corresponds to the interior of Ω
(since v̄ ∈ S and ū ∈ S⊥). The existence of at least one such pair (v̄, ū), or the full dimensionality of
Ω iand hence that of domM#−1, makes that interior be nonempty. Then, as in the proof of Theorem
5.2, we know from [17, Theorem 1] that for almost all elements of intΩ, which by near convexity is the
same as saying for almost all pairs (v̄, ū) in Ω itself, Zv̄,ū is a singleton {(z̄, w̄)} and M# is metrically
subregular at z̄ + w̄ with respect to having v̄ + ū ∈M#(z̄ + w̄), as claimed.
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