
OPTIMIZATION

UNDER UNCERTAINTY

LECTURE NOTES

2001

R. T. Rockafellar

University of Washington

CONTENTS

1. INTRODUCTION 1

2. BASIC STOCHASTIC PROGRAMMING 16

3. LINEAR PROGRAMMING MODELS 30

4. EXTENDED LINEAR-QUADRATIC MODELS 46

5. STATES AND CONTROLS 60

6. DYNAMIC PROGRAMMING 75

7. ADVANCED STOCHASTIC PROGRAMMING 96

1

1. INTRODUCTION

Problems of optimization under uncertainty are characterized by the necessity of making
decisions without knowing what their full effects will be. Such problems appear in many
areas of application and present many interesting challenges in concept and computation.
For a beginner, it’s most important at the outset to gain some appreciation of just how
optimization under uncertainty differs from other branches of optimization, and what the
basic modeling issues are. A review of terms will lay the foundation for this.

Optimization: This refers to the analysis and solution of problems in which a single
choice must be made from a range of “feasible” ones. Feasible choices are modeled
as the elements of some set—the feasible set . The goal is to find a “best” choice
(not necessarily unique), or at least a “better” one than might readily be detected.
Choices are compared according to the values they give to a certain function—the
objective function in the problem. The goal may be maximization or minimization
of such values. For simplicity, minimization is taken to be the standard.

Discrete optimization: There are only finitely many options to compare, but the num-
ber of them could be enormous. The feasible set is a finite (discrete) set, hopefully
with enough structure to support some degree of effective analysis.

Continuous optimization in finite dimensions: The choices are describable in terms
of the values of finitely many real variables. The feasible set can therefore be
modeled as a subset of a space IRn.

Continuous optimization in infinite dimensions: Not just vectors of variables, but entire
functions, scalar-valued or vector-valued, have to be chosen. These unknowns,
often interpreted as “policies” of response or control to ongoing situations, may
be regarded as elements of an infinite-dimensional vector space.

Sources of infinite dimensionality: Problems typically have infinitely many “degrees
of freedom” when the decisions need to be represented as depending on con-
tinuous time or on observations of continuous random variables.

Finite-dimensional approximations: Infinite-dimensional problems can’t ordinarily
be solved numerically without converting them somehow to problems in finite
dimensions.

Uncertainty: Decisions must often be taken in the face of the unknown. Actions decided
upon in the present will have consequences that can’t fully be determined until a
later stage. But there may be openings for corrective action later or even multiple
opportunities for recourse as more and more becomes known.

2

Potential applications of optimization under uncertainty: Here are some prime
examples. Note that time is almost inevitably involved, because exact knowledge of
the future is what most typically is lacking.

Generation of electrical power: An electrical utility has to decide each day how much
power to produce without yet knowing the demand, which may depend on weather
developments (as could affect heating, cooling, etc.) Longer range decisions may
concern the amount of coal to purchase or the kinds of buying/selling contracts
set up with other utilities.

Operation of reservoirs: Systems of water reservoirs and their connecting flows have to
be managed in a reasonable manner for drinking water, irrigation, hydropower,
flood control, recreation, and the protection of fish runs. As if these conflicting
goals didn’t already pose difficulty, there is climate uncertainty affecting both the
inflows into the system and the intensity of irrigation needs and the rest.

Inventory management: Supplies of retail goods or spare parts must reliably be main-
tained despite the vagaries of demand and the costs of restocking.

Portfolio selection: Investments must be made in stocks, bonds, foreign currencies and
the like without knowing for sure how their values will rise or fall. At the root of
the uncertainties are interest rates and political developments.

Facility planning: Where should new facilities be located, and what capacity should
they have, if they are designed to serve needs that are anticipated from guesswork?
Similar: problems of reconfiguration or expansion of existing facilities.

Pollution control: What types and sizes of treatment plants should now be built to en-
sure water quality in a basin where population growth and future manufacturing
requirements can only be estimated roughly, and where anyway a lot depends on
what will happen with rainfall over a long term?

Stabilization of mechanisms: An antenna must be kept fixed as steadily as possible on
the source of signals it’s supposed to receive, despite random wind gusts that can
push it out of line. What configuration of forces should be brought into play to
restore misalignments as rapidly as possible, without neglecting the potential of
additional wind gusts before the process is complete?

Analysis of biological systems: Are the feeding and breeding strategies of animals op-
timal in the sense of “maximizing survival” in a particular biological niche with
respect to its uncertainties of climate, food supply, predation, and so forth? Note
that here the issues are theoretical rather than numerical.

3

The modeling of uncertainty: The uncertainties in a problem have to be represented
in such a manner that their effects on present decision-making can properly be taken
into account. This is an interesting and challenging subject.

Stochastic modeling: The uncertain elements in a problem can often be modeled as
random variables to which the theory of probability can be applied. For this
purpose such elements have to have a “known” probability distribution.

Degrees of knowledge: Such a distribution may be available from statistical data
(as with weather variables), or it may be no more than an educated guess (as
with interest rates or election prospects)—“subjective” probabilities. Either
way, the mathematical treatment is the same.

Deterministic modeling: This refers to mathematical formulations in which uncertainty
plays no role. In practice, such modeling often prevails even in situations with
obviously important uncertainties, because the modelers don’t know how to cope
with those features, or don’t have adequate data to work with, or don’t yet have
good software available for getting numerical solutions.

Deterministic versus stochastic: These terms are often contrasted with each other
in the description of mathematical models.

Range modeling: Sometimes, when a deterministic model is clearly inappropriate, yet
there are few clues to the probabilities that would support a stochastic model,
it’s useful to work with ranges of uncertainty. Various quantities that would
otherwise be data parameters are neither given specific values nor probability
distributions but merely viewed as restricted to particular intervals. One tries
to guard against whatever might happen by thinking of the actual values to be
faced as chosen from these intervals by an adversary, as in a game setting.

Uncertain probabilities: This notion can be combined with stochastic modeling
by supposing that a probability distribution is present but is incompletely
known. The actual distribution to be faced will be chosen by an adversary—
like Mother Nature—from some limited set of distributions, described perhaps
by ranges on statistical parameters.

The role of scenarios: A common tool in planning for the future is to work with scenar-
ios, which are particular representations of how the future might unfold. Some kind
of probabilistic model or simulation is used to generate a batch of such scenarios.
The challenge then, though, is how to make good use of the scenarios in coming up
with an effective decision.

4

A common but faulty approach: Often, planners just solve, for each scenario that is
generated, an optimization problem which arises from taking that scenario to be
the path the future truly will follow. These problems are themselves deterministic
in character. Although each yields a prescription of what should be done here
and now, there’s no theoretical guidance about the compromise between those
prescriptions that should actually be adopted, even when probabilities can be
assigned to the individual scenarios. Indeed, the separate prescriptions obtained
for the individual scenario problems may be inconsistent with each other and very
fragile—not adequately hedged . They’re optimal only in a context where one can
act with perfect foresight.

The need for modeling the evolution of information: The crucial feature demanded for
serious applications is the effective modeling of how observations at various future
stages increase the store of knowledge on which decisions can properly be based,
not only in the present, but in subsequent stages as well. In the setting of discrete
probability, we’ll formalize this later in terms of a “scenario tree.”

Problem data in an elementary framework: It will help in understanding the main
issues if we first look at an uncluttered formulation. A basic problem of optimization
in IRn takes the form:

minimize f0(u) over all u ∈ C

for a function f0 : IRn → IR and a set C ⊂ IRn. This set might be specified
as consisting of the points u in an underlying subset U ⊂ IRn that satisfy some
constraints on the values of additional expressions fi(u), say

fi(u)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

but for now it will be better not to focus on such a representation and to think
instead of the condition u ∈ C as expressing feasibility more abstractly.

Essential objective function: Even simpler notation, very convenient in theoretical dis-
cussions, results from the device of enforcing constraints by infinite penalties. For
the basic problem just described, the essential objective function is

f(u) :=
{
f0(u) if u ∈ C,
∞ if u /∈ C.

Regardless of the representation eventually given to C, the problem can be written
equivalently in terms of this function as

minimize f(u) over all u ∈ IRn.

5

Cost interpretation: For the most part it works well to think of f0(u)—and f(u)
too—as the “cost” associated with choosing u. An infinite cost for a choice u
means that it is infinitely undesirable and must be avoided. A negative cost
corresponds to a reward.

Uncertain constraints and costs: Imagine now a situation in which we have a feasible
set C(ω) ⊂ IRn along with a cost expression f0(u, ω), in which ω stands for
something uncertain—an element ranging over a space Ω representing the “states
of the world” that might be faced. (For instance, Ω might be a probability space
generated by certain random variables; more about this later.) By the device of
infinite penalties, it’s equally good to think of the given data as embodied in a
single function f , given by

f(u, ω) :=
{
f0(u, ω) if u ∈ C(ω),
∞ if u /∈ C(ω).

Indeed, there’s no need even to speak of f0; we could proceed directly from the
idea that we are given an extended-real-valued cost function f : IRn×Ω→ IR, in
which case we could regard C(ω) as consisting by definition of the points u ∈ IRn

with f(u, ω) <∞.

But where is the optimization? Here we have “problem data” involving uncertainty,
but we don’t yet actually have a “problem,” not to speak of an “optimization prob-
lem.” For that, we still have to come up with a prescription of exactly what should
be minimized over what. Above all, we have to clarify the interplay between the
decision process and the uncertainty. How are we supposed to think of one of these
as possibly affecting the other?

Reversion to a deterministic formulation: Most frequently by far in these circum-
stances, the uncertainty is pushed out of sight through the replacement of the random
element ω by some particular estimate ω̂. The problem solved is:

minimize f(u, ω̂) over all u ∈ IRn.

What happens for other choices of ω ∈ Ω is disregarded.

Reason: The justification usually given for such a move is that problems are hard
enough to solve as it is, without getting entangled in difficult matters like uncer-
tainty, and that anyway this step is in the tradition of “approximation” which
most applications of mathematics anyway have to follow sooner or later.

6

Criticism: Sympathy is well earned for the first part of this assertion, but not for the
second. Approximation only makes sense when there is, to begin with, a clear
idea of the underlying situation that’s being approximated.

Hedging: To be effective in dealing with uncertainty, an optimization model ought to
somehow involve hedging of decisions, i.e., balancing risks by “not putting all the
eggs in one basket.” But hedging is impossible when only a single element ω̂ is
made the focus, no matter how well selected it might be. A decision based on
condensing the uncertainty just to ω̂ can’t do a good job of reflecting the realities.

Decision versus observation: The question of which comes first, the fixing of the deci-
sion or the making of an observation that dissipates the uncertainty, is all-important.
Both cases can very well arise, and in fact we’ll soon be exploring situations in which
partial decisions and partial observations are made in stages and are interspersed
with one another. For now, however, we’ll keep to the simplest picture, where it’s
just one or the other.

Observation first: If the decision can be put off until after the value of ω becomes
known, what we have really is an optimization problem in u that depends on ω as a
parameter:

minimize f(u, ω) over all u ∈ IRn.

We could either regard this as a single problem, to be solved only for the ω value
eventually realized, or as a family of problems yielding an optimal value

ψ(ω) := infu f(u, ω)

and an optimal solution set

Ψ(ω) := argminu f(u, ω),

both of which need to be analyzed in their dependence on ω. We might want to treat
this optimal value and optimal solution set as random elements whose probabilistic
behavior is induced by that of ω.

Modeling of future actions: The parametric version is basic to evaluating responses that
might be made to future events. It will tie in with the notion of “recourse” that
we’ll eventually be making much of. A function ω 7→ u(ω) ∈ Ψ(ω) will in that
case play a major role. We’ll go into this in considerable detail later, especially
when we come to numerical methods.

7

Decision first: If the decision has to be taken in advance of any information about ω
other than its probability distribution, we know what space we must be minimizing
over—namely IRn (or one of its subsets)—but what should be minimized? For each
choice of u we have not just a single cost, but an uncertain value f(u, ω); in other
words, we have a function ω 7→ f(u, ω) on Ω. To get any further, we have to pass
somehow from a function depending on u to a number depending on u. Only then
will we be in position to minimize with respect to u.

Worst-case approach: In line with range modeling, we can take the problem to be that
of minimizing

f̃(u) := maxω f(u, ω).

We look only at the worst outcome that might result from choosing u and make
no attempt to distinguish between outcomes according to their likelihood.

Notation: Of course, it’s not correct here to write “max” unless we have some
assurance that the maximum of f(u, ω) with respect to ω ∈ Ω for fixed u is
attained, as for instance when Ω is finite. Otherwise we ought to write “sup”
for the least upper bound.

Stochastic approach: When Ω is a probability space, we can interpret f(u, ω) for fixed
u as a random variable that inherits its distribution from ω. This random vari-
able, dependent on u, can be converted in various ways to a numerical quantity
dependent on u, but we’ll concentrate on the easiest scheme, where the random
variable is replaced by its “expected value,” as signaled by IE. The problem then
is that of minimizing

f̂(u) := IEω

{
f(u, ω)

}
.

For the time being, we’ll keep to the case where the probability distribution of ω is
the same regardless of the choice of u, but the more complex case, where decisions
might influence underlying probabilities, can come up in some applications as well.

Our focus in these notes: Faced with limited time, we’ll put our energies into the
stochastic approach. The worst-case approach is also interesting and valuable,
and it’s good for many applications as well.

Probability and expectation: Although we aren’t going to go into probability theory
to the extent needed to make everything mathematically rigorous in the context of
Ω being a really general probability space, a brief discussion of the different levels of
the subject will be beneficial.

8

Discrete probability: Imagine that Ω is just a finite set, and that for each ω ∈ Ω the
probability of ω occurring is known. Denote this probability by π(ω); we have
π(ω) ≥ 0 and

∑
ω∈Ω π(ω) = 1. Consider now a quantity a(ω) ∈ IR that depends

on ω ∈ Ω; this is what is meant by a (real) random variable over Ω. The expected
value of this random variable a(ω) is the weighted sum

IEω

{
a(ω)

}
:=

∑
ω∈Ω

a(ω)π(ω).

This can be thought of as the average outcome experienced in the limit when
the random variable is sampled over and over again according to its distribution.
The expected value is often called the mean and denoted by µ.

Another basic quantity is the variance of the random variable a(ω), which is
denoted by σ2 and defined as the expected value of |a(ω)− µ|2:

σ2 =
∑
ω∈Ω

|a(ω)− µ|2π(ω).

The variance quantifies the spread of the random variable around its mean. The
same formulas apply for vector-valued random variables, i.e., when a(ω) is a
vector in IRm, say, instead of just a real number. (The absolute value is then the
Euclidean norm.)

Note: Probability theorists also speak of “discrete probability” when Ω isn’t neces-
sarily being comprised of finitely many points, but could consist of an infinite
sequence of points. A sum giving an expectation is then an infinite series. For
us in these notes, however, the term will always refer to finite Ω, for short.

Continuous probability: Alternatively, Ω could be IRd or some region in such a space.
The probability distribution might then be represented by a density function
ρ(ω) over Ω, in which case the expected value of a(ω) would come out as a
d-dimensional integral:

IEω

{
a(ω)

}
=

∫
Ω

a(ω)ρ(ω)dω.

General probability: More broadly, Ω can be taken to be a probability space in the
general mathematical sense—a set supplied with an algebra of subsets (“events”)
on which there’s a probability measure π (nonnegative, with π(Ω) = 1). The
expected value expression is then

IEω

{
a(ω)

}
=

∫
Ω

a(ω)dπ(ω).

9

We’ll hold back from this level of sophistication because it would require too much
background. Ultimately, though, it’s the way to go with the full theory.

Random variables with infinite values: The usefulness of allowing costs to be infinite
requires us to deal with random variables a(ω) having values in IR rather than
just IR. Are the expectation sums or integrals then well defined? There’s no
difficulty—as long as there’s no conflict between opposite infinities.

Rules: Whenever a finite value is added to∞ the result is taken to be∞. Similarly
whenever a finite value is added to −∞, the result is taken to be −∞. The
product of 0 with either ∞ or −∞ is taken to be 0.

In handling an integral, this means that the values of a(ω) on a subset of
Ω having probability 0 can be disregarded, and that for the rest we can form
separately the integrals of max{0, a(ω)} and min{0, a(ω)}. If one or both of
these integrals is finite, we simply add the two values together to get the full
integral of a(ω). In the remote event that the two separate integrals turn out
to be ∞ and −∞, respectively, we follow the convention that the full integral
of a(ω) is ∞. (This convention comes from minimization being dominant in
our framework.)

A technical issue: Also important for rigor in integration are the “measurability” prop-
erties that are required for an expectation to make sense. In many areas of applied
mathematics there’s no serious reason to worry about such things because the
functions involved are continuous, say, but don’t forget that here we are obliged
to work with expressions f(u, ω) that aren’t continuous and may well be defined
in terms of operations like maximization and minimization, which don’t behave
well by classical standards.

Daunting questions come up, as they do also incidentally in probability the-
ory itself for related reasons. Fortunately, mathematicians have found satisfying
answers in most cases. We won’t go into details in this introductory exposition of
the subject, except to point out where the difficulties lie. But this doesn’t mean
that sound technical underpinnings aren’t important, just that the understanding
of them doesn’t have to be the top priority here.

Blanket assumption henceforth about probabilities: As far as these notes are con-
cerned, our underlying assumption for the sake of mathematical rigor will always
be that Ω is a (finite) discrete probability space. But we’ll employ language and
notation that could operate more generally, and we’ll comment from time to time on
where the complications lie in moving to a broader framework.

10

Discretization: If a given problem naturally involves “continuous” random variables, it
can be discretized in various ways. One possibility is simulation: one can sample
the random variables in accordance with their known distribution and thus replace
the given probability space with a finite space consisting of the samples (equally
weighted, say). Another possibility is to partition the given space into finitely
many disjoint subsets, each of which becomes a single element in a new probability
space (its probability being the probability of that element). It will be important
in multistage problems, however, to discretize properly in a multistage manner.
That will be discussed later.

Expected costs: In stochastic modeling, which will be our chief preoccupation, the op-
timization problem in our simplified setting is to

minimize f̂(u) := IEω

{
f(u, ω)

}
over all u ∈ IRn,

where the expectation could be given by a sum or an integral according to the nature
of the underlying probability space, as explained above.

Alternatives: The emphasis here is on “average outcome” and, from some perspectives,
makes the most sense in situations where the same problem might be faced over
and over again (although probabilists may disagree with this). Sometimes people
like to bring in variance along with mean. In writing the mean of the random
variable f(u, ω) as f̂(u) and denoting its variance similarly by ̂̂f(u), one can
envision instead a problem of the form

minimize ϕ(u) := Φ
(
f̂(u), ̂̂f(u)

)
,

where Φ furnishes a way of balancing these two quantities.

Risk: Such is often seen for instance in financial applications, where higher variance
is associated with higher volatility. In maximizing returns, some investors are
risk-averse and happy to settle for a lower expected value if it comes with
lower variance. Other investors are gamblers who enjoy the prospect of big
gains even if accompanied by a risk of big losses. These different attitudes
could be served by different choices of Φ in formulating the objective. We
won’t follow up on this here, however.

Constraints in expected costs: In the minimization of f̂(u) = IEω

{
f(u, ω)

}
over all

u ∈ IRn, the set of feasible solutions is implicitly

Ĉ :=
{
u

∣∣ f̂(u) <∞
}
.

11

Any u outside of this set is excluded from consideration. What does that signify?

Insights are available from the motivating case where f(u, ω) agrees with a given
f0(u, ω) when u ∈ C(ω) but is ∞ otherwise. Suppose that f0 is “nice” in the sense
that the expected value f̂0(u) := IEω

{
f0(u, ω)

}
is finite for all u. We then have

f̂(u) =
{
f̂0(u) if u ∈ C(ω) almost surely,
∞ otherwise,

where the term almost surely refers to the possible exception of a set of ω values whose
total probability is 0. (Students of measure theory will recognize the probabilistic
equivalent of “almost everywhere.”) Put another way, our scheme assigns an infinite
penalty to choosing u if that choice opens up even the slightest (positive) chance of
an outcome ω for which u /∈ C(ω). We have

Ĉ =
{
u

∣∣u ∈ C(ω) almost surely
}
.

The general case of f(u, ω) might be more subtle, but the idea is much the same.
Any u ∈ Ĉ must in particular be such that f(u, ω) <∞ almost surely.

Implications for constraint modeling: Suppose, for purposes of discussion, that C(ω)
is specified by a system of constraints of the conventional form

u ∈ U and fi(u, ω)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m.

To sharpen the focus, let’s assume that the expressions fi(u, ω) really do depend
on ω. (Constraints in which ω doesn’t actually enter could be absorbed into the
specification of U .) How then would we get Ĉ? Obviously Ĉ ⊂ U , but to the
extent that Ĉ may be smaller than U the situation could be troublesome and
may suggest poor modeling.

Inequality constraints: For i = 1, . . . , s we must have fi(u, ω) ≤ 0 almost surely, or
u won’t be in Ĉ. That is very close to requiring

f̃i(u) ≤ 0, where f̃i(u) := sup
ω∈Ω

fi(u, ω),

and indeed it’s generally the same as that (aside from odd circumstances in
which there’s a subset Ω0 ⊂ Ω of probability 0 such that the supremum of
f(u, ω) over ω in the complementary set Ω \ Ω0 is less than the supremum
over all ω ∈ Ω). From this perspective, a requirement that fi(u, ω) ≤ 0 almost

12

surely is seen to have a “worst-case” aspect. In imposing it, we are taking a
conservative approach and introducing a hurdle that could be costly.

Equality constraints: For i = s + 1, . . . ,m we are demanding that fi(u, ω) = 0
almost surely. The more you think about it, the more you wonder whether
this even makes sense. The requirement on u is that it has to make the
random variable ω 7→ fi(u, ω) be not random at all but merely have the
constant value 0 (almost surely). That seems to conflict with there being
much real dependence of fi(u, ω) on ω.

Note that the trouble comes from u having to be chosen before ω is ob-
served. Later, when we consider constraints on recourse actions taken after ω
is observed, equations won’t be so questionable.

Conclusion to be drawn: Conventional constraint formulations may be inappropriate
in dealing with randomness. Uncertain equality constraints should be avoided,
and uncertain inequality constraints should be used only in situations where a
worst-case condition is truly intended.

The elimination of uncertain constraints is often possible through closer at-
tention to the underlying problem. A condition fi(u, ω) ≤ 0 has the character
of imposing an infinite penalty if, after u has been chosen, there is even a slight
chance of an ω coming up that would render fi(u, ω) > 0, and so it treats such a
situation as if “the world comes to an end.” Usually, though, the situation isn’t
so severe and just hasn’t been thought out fully.

Penalty substitutes for constraints: A better approach for many applications is to
work with finite penalty expressions instead of hard constraints with their infinite
penalty aspect. Those expressions can be incorporated into the objective.

For example, in place of a constraint fi(u, ω) ≤ 0 it might make more sense to
invoke, whenever this inequality is violated, an additional cost that’s proportional
to the amount of violation, say at a rate λi > 0. An interpretation might be that
when the existing resources in a problem’s environment are inadequate it’s possible
to acquire, at the price λi per unit, any supplement that’s needed. In this case we
would drop the constraint fi(u, ω) ≤ 0 from the problem’s formulation and instead
add a term θi

(
fi(u, ω)

)
to the cost, where

θi(αi) =
{

0 when αi ≤ 0,
λiαi when αi > 0.

Of course, θi needn’t be a so-called linear penalty function like this; it could have all
sorts of other forms.

13

The upshot is that, instead of defining f(u, ω) in terms of f0(u, ω) and a feasible
set C(ω) given by u ∈ U and uncertain constraints fi(u, ω) ≤ 0 and fi(u, ω) = 0 as
above, one could have

f(u, ω) =
{
f0(u, ω) +

∑m
i=1 θi

(
fi(u, ω)

)
when u ∈ U ,

∞ when u /∈ U ,

for some choice of penalty functions θi tailored to the case at hand. The function
f̂(u) = IEω

{
f(u, ω)

}
would then be different, and most notably the feasible set

implicit in the minimization of f̂(u) would simply be

Ĉ = U.

Unproblematical constraints: This picture was sketched under the continuing assump-
tion that fi(u, ω) depends on ω. But it’s apparent now that one could also proceed
by passing to penalties only for the “uncertain constraints” and retaining in the
conventional format any constraints where ω doesn’t really enter.

Uncertain penalties: There’s no difficulty here in generalizing to penalties that aren’t
fully known at the time when u must be chosen, as for instance when the λi

coefficient in the linear penalty expression above has to be viewed as a random
variable λi(ω). Then θi(αi) becomes θi(αi, ω), and terms θi

(
fi(u, ω)

)
extend to

the form θi

(
fi(u, ω), ω

)
.

Chance constraints: Another way of getting around the severe consequences of modeling
with uncertain hard constraints is to relax them probabilistically. Suppose that,
along with u ∈ U , we would like to have fi(u, ω) ≤ 0 for i = 1, . . . ,m but know that
requiring these inequalities to hold almost surely is too much. We might consider
just asking them to hold “most of the time.” This can be quantified in terms of

prob
{
fi(u, ω) ≤ 0

}
:= probability that this inequality holds (for a given u).

Requiring this probability to equal 1 is the same as requiring fi(u, ω) ≤ 0 almost
surely. Instead we could require it to be at least some level pi, for instance pi = .99.
The problem could thereby be formulated as one in the conventional format:

minimize F0(u) := IEω

{
f0(u, ω)

}
over all u ∈ U satisfying

0 ≥ Fi(u) := pi − prob
{
fi(u, ω) ≤ 0

}
for i = 1, . . . ,m.

Drawbacks: Many people find this approach very appealing, but in most applications
(although not all) it’s questionable both from the modeling angle and because of
its technical ramifications.

14

In modeling, the trouble is that there’s little guidance for what probability
levels pi ought to be insisted on. It seems that pi should be higher when the conse-
quences of the inequality fi(u, ω) ≤ 0 are more serious, but how much higher? No
quantitative assessment is being made of the consequences of having fi(u, ω) > 0.
The penalty approach is based on a closer inspection of such consequences, but
here we still regard fi(u, ω) > 0 as signifying that “the world comes to an end.”
We merely don’t want it to end with a probability greater than 1− pi.

That also raises the issue of constraint interactions. Does it make sense to
require prob

{
f1(u, ω) ≤ 0

}
≥ .99 while requiring prob

{
f2(u, ω) ≤ 0

}
≥ .95, for

example, when a violation of either inequality would mean the end of things?
What would be the resulting probability of avoiding either calamity? Shouldn’t
we at least be working with a joint condition of the type

prob
{
fi(u, ω) ≤ 0 for i = 1, . . . ,m

}
≥ p?

But how then are we to distinguish between the levels of seriousness with which
the constraints should be enforced?

Then too there are the technical hurdles of dealing with the functions Fi(u) =
pi − prob

{
fi(u, ω) ≤ 0

}
numerically. Just what is the nature of Fi, and to what

extent can its properties be derived from those of fi? A common difficulty, for
instance, is that convexity of fi(u, ω) with respect to u need not carry over to
convexity of Fi(u) with respect to u.

Reasonable situations: Chance constraints do make good sense in some cases. An
example is the design of a system that necessarily will exhibit some randomness
in its behavior, but where one is trying to place an upper bound on one or more
variance aspects of this behavior in order to enhance stability of performance.

Properties of expected cost functions: In minimizing f̂(u) = IEω

{
f(u, ω)

}
, the

mathematical properties of the function f̂ are bound to be crucial.

Continuity? Something like continuity is needed in ascertaining the existence of optimal
solutions and the convergence of sequences that might be generated by a numerical
method, but ordinary continuity itself could be too strong a property. The reason
is that we are relying on∞ to signal infeasibility, and a sudden jump of f̂(u) from
a finite value to ∞ could well occur. A substitute property for many purposes is
the closedness of the epigraph of f̂ ; more about such matters later.

Differentiability? To the extent that continuity of f̂ could fail, differentiability could fail
all the more. But as a seed for future developments, suppose that f(u, ω) happens

15

to be differentiable with respect to u (there being no constraints represented by
having f(u, ω) take the value ∞). Then f̂(u) ought to be differentiable with
respect to u as well, in fact with the gradient formula

∇f̂(u) = IEω

{
∇uf(u, ω)

}
.

Why? In the case of discrete probability, where the expectation is a finite sum,
this simply follows from differentiating term by term. More generally, where an
integral is involved, it ought to follow similarly under minor assumptions.

This is more than just a formula, however; it’s a fertile idea. It suggests
that in cases where the probability space Ω is big and complicated we might
be able to bypass a full computation of IEω

{
∇uf(u, ω)

}
and obtain a working

approximation to ∇f̂(u) by sampling a relatively small number of elements ω and
taking the average of the corresponding gradients ∇uf(u, ω).

Subgradients: When f̂ isn’t differentiable, we may be able to use “subgradient”
notions as a substitute for gradient. The same idea of simulation through
sampling might then be brought into play.

Convexity? Fortunately, convexity does carry through well and provide solid support.
If f(u, ω) is convex in u for each ω, then f̂(u) is convex in u. When Ω is finite,
this comes from the definition of f̂(u) as a weighted sum. More generally it
follows from elementary properties of integration. Convexity of extended-real-
valued functions will be discussed in the next chapter.

Probabilities affected by decisions: Tacit in our discussion of the probability space
Ω has been the assumption that the probabilities are fixed and independent of the
choice of u. What if this were not true? In the setting of discrete probability we
could think of the probability associated with ω as having the form π(u, ω). From a
cost f(u, ω) we would then get an expected cost

f̂(u) =
∑
ω∈Ω

f(u, ω)π(u, ω).

Much the same would hold for continuous probability. This kind of generalization
makes sense mathematically but greatly escalates the difficulty of working with f̂ .

Failure of convexity: In particular, the expected cost function f̂ is highly unlikely to
be convex in such circumstances, despite f(u, ω) being convex in u for each ω.
This can be a very serious impediment to solving problems numerically.

16

2. BASIC STOCHASTIC PROGRAMMING

Two of the main contenders in the methodology of optimization under uncertainty are
“stochastic programming” and “dynamic programming.” Both take a probabilistic ap-
proach to uncertainty and contemplate not just one decision and one observation, but a
possible interplay between decisions and observations in stages. They differ significantly,
however, in their philosophy, scope and practicality. We’ll look now at basic stochastic
programming and later at dynamic programming. Eventually we’ll examine an advanced
stochastic programming setup that combines some of the best features of the two.

Distinguishing features: In overview, the chief characteristics of stochastic program-
ming are the following.

Focus on the here-and-now: Despite heavy involvement of the future, everything is
aimed at enhancing the decision that must be made in the present.

Recourse decisions: The attitude is adopted that a decision can’t properly be made in
the present without taking into account, at least to some extent, the opportunities
for modification or correction at later times.

Information through observations: Decisions at later times can respond to information
that has become available since the initial decision. This information is modeled
by observations of random variables.

Optimization technology: The context is that of large-scale optimization and associated
numerical techniques, as adapted and elaborated to handle uncertainty. This isn’t
to be taken for granted; dynamic programming, in contrast, doesn’t make such a
vital connection with the rest of the world of optimization.

Large-scale: A term referring to high dimensionality—extremely many variables.

Convexity: Properties of convexity are assumed and made the most of. This is the
prime way of coping with the otherwise formidable complications of problems in
this area. In principle one could hope someday to cover nonconvexity, but for now
that seems out of practical reach. Convexity is essential above all in decomposing
a large-scale problem iteratively into digestible pieces.

Probabilities independent of decisions: It’s assumed that the probability structure is
unaffected by any of the decisions that are taken. Understandably this goes hand
in hand with the desire to maintain convexity, but it also draws a crucial dividing
line between problems that can be tackled with stochastic programming, in its
current state, and those that can’t.

17

Illustration: Typical sources of uncertainty are “weather” or “demand.” In hydropower
applications, one has to worry on a week-to-week basis about whether rainfall will be
adequate to fill reservoirs and, on the other hand, whether a heat wave may cause a
surge in the use of air conditioners, say. In the second case the demand for power is
in question, but it’s weather-dependent. Clearly the weather is driven by forces that
aren’t going to be affected by a decision to operate turbines in one way or another.

In deciding how big to build a new dam and reservoir, however, it’s quite con-
ceivable that population growth and industry could be altered in the long run, and
that could well mean a change in the statistics of demand. Especially that would
be likely if the utility that constructs the dam seeks to recover costs by advertising
to encourage people to use more electricity. (This was common in the industry for
many years.)

Ambiguous situations: It’s quite possible that when a situation is modeled in the man-
ner that seems most natural, decisions will appear to affect probabilities, but
through more careful attention to the setup, this may turn out to be an artifact
that can be removed.

Underlying process: The basic ingredient to a problem of stochastic programming,
which we need to think about before such a problem can even be formulated, is
a “process” in which decisions alternate with observations:

u0 ∈ IRn0 initial decision

ω1 ∈ Ω1 observation

u1 ∈ IRn1 recourse decision

ω2 ∈ Ω2 observation

u2 ∈ IRn2 recourse decision
...

ωN ∈ ΩN observation

uN ∈ IRnN recourse decision.

Here we have an initial stage, centered on the choice of u0, followed by N recourse
stages, each consisting of an observation and a decision which we wish to think of
as capable of responding to that observation. Note that the spaces from which the
decisions are to be chosen are taken as finite-dimensional but of possibly varying
dimensionality. The number of stages gives a so-called finite horizon to the process;
it doesn’t go on indefinitely. When it has finished, we have a record of decisions

18

taken, expressible as a “supervector”

u := (u0, u1, . . . , uN) ∈ IRn for n := n0 + n1 + · · ·+ nN ,

and a history of observations made, representable by

ω := (ω1, . . . , ωN) ∈ Ω := Ω1 × · · · × ΩN .

The outcome is in these terms a pair (u, ω) ∈ IRn × Ω.

Cost of outcome: Another essential ingredient is the cost ultimately associated with the
outcome of this process. We take it to be given by a function f on IRn × Ω, with

f(u, ω) = f(u0, u1, . . . , uN , ω1, . . . , ωN).

We allow this cost to be infinite, of course, since constraints can conveniently be
captured in that fashion at our current level of theory. The specification of f carries
with it the specification of the set

C(ω) = C(ω1, . . . , ωN) :=
{
u = (u0, u1, . . . , uN)

∣∣ f(u, ω) <∞
}
.

Implicitly we’ll want to have (u0, u1, . . . , uN) ∈ C(ω1, . . . , ωN).

Convexity assumption: We suppose that f(u, ω) is convex as a function of u for each
fixed ω. Then too, C(ω) is a convex set for each ω. The precise meaning of
convexity in this framework of extended-real-valuedness will be explained below.

Costs and constraints in stages: Details can be added to the specification of f to account
for the stage-by-stage evolution of costs and constraints. For instance, f can be
expressed as a sum of terms, some of which are independent of ω or depend only
on certain initial components of ω. This will be taken up shortly.

Probability structure: The space Ω is regarded as supplied with an overall probability
distribution for ω = (ω1, . . . , ωN). The individual components ωk, thought of as
random variables, aren’t required to be independent of each other in the statistical
sense. If they were, the distribution of ω in Ω would just be the “product” of the
distributions of the ωk’s in the spaces Ωk. We allow, however, for a more complicated
interdependence.

Important qualification: We suppose, though, that the overall distribution of ω is fixed
and unaffected by the choice of u.

19

Big mistake—watch out: It would be easy to fall into the trap of thinking now that
the problem to be solved is that of minimizing IEω

{
f(u0, u1, . . . , uN , ω1, . . . , ωN)

}
over all choices of (u0, u1, . . . , uN), but no!

That would put us back in the pattern of having to choose u = (u0, u1, . . . , uN)
before we know ω = (ω1, . . . , ωN), but here we are treating a pattern that’s really
different, where the components of u and ω are interspersed in the decision process.
The recourse decision in stage k, as viewed from stage 0, must be allowed to respond
to information that becomes available between stage 0 and stage k. It has to be
modeled as a function of that information instead of as a lone vector.

Evolution of information: Random elements have a before-and-after character, and it’s
crucial to keep track of their status in any discussion. In the “before” mode, ωk is
known only in a probabilistic sense, whereas in the “after” mode it has become a
fixed piece of data. The transition between these modes is called observation.

At the time when u0 must be chosen, nothing about the random elements in our
process has been pinned down, but in making a recourse decision uk we have more
at our disposal. At that point the elements ω1, . . . , ωk have been observed and we
have to think of ω = (ω1, . . . , ωN) as partitioned into two parts with different status:

(ω1, . . . , ωk) constituting the current information,

(ωk+1, . . . , ωN) representing the residual uncertainty.

The probability space has thus been reduced to Ωk+1×· · ·×ΩN . The corresponding
distribution for (ωk+1, . . . , ωN) in this space is its conditional probability distribu-
tion given (ω1, . . . , ωk). (Note once more that although this distribution depends in
general on the preceding observations, it isn’t permitted, under our assumptions, to
depend on the preceding decisions.)

Effect of information on the decision process: The data environment in which the de-
cision uk is taken is richer than that of earlier decisions. Somehow this has to be
reflected in our formulation of an optimization problem, which hasn’t yet been
achieved beyond listing “ingredients.”.

A major step comes in understanding that we can’t get very far with the
naive notion that “the decisions u0, u1, . . . , uN can be made optimally as we go
along,” or in other words, through a sort of sequence of optimization problems.
The shortcoming there is in failing to appreciate that in every decision stage,
except the last, we can’t properly optimize without taking into account the recourse
opportunities we might have later.

20

Anyway, our true goal is a good choice of u0. For that, we have to put ourselves
squarely in the present and handle the future through its influence on the present,
not just leaving it to take care of itself.

Recourse functions: We model the ability of the decision uk to respond to the current
information (ω1, . . . , ωk) in recourse stage k by thinking of this decision not in terms
of choosing a vector in IRnk , but rather in terms of choosing a recourse function on
the space Ω1 × · · · × Ωk:

uk(·) : (ω1, . . . , ωk) 7→ uk(ω1, . . . , ωk) ∈ IRnk .

Here we write uk(·) rather than uk as a way of emphasizing that we are looking at
the decision in question as a function instead of a plain vector. (In getting used to
the subject, that distinction could otherwise be a source of confusion.)

The adoption of the function point of view is dictated by our need to consider
the kth recourse decision from the perspective of the present, where we are occupied
still with u0 and don’t yet know which (ω1, . . . , ωk) will emerge from the future
observations. In selecting a particular function uk(·), we are specifying in advance
exactly how we would respond to all outcomes of the first k observations!

Policies: By a policy we’ll mean a choice of the initial decision u0 together with a choice
of recourse functions u1(·), . . . , uN(·). Such a policy will be denoted by u(·) and
regarded as a function from Ω to IRn, with

u(ω) = (u0, u1(ω1), u2(ω1, ω2), . . . , uN(ω1, ω2, . . . , ωN)),

even though its components depend in varying degrees on ω = (ω1, . . . , ωN). We’ll
denote by U the collection of functions u(·) of this type, calling it the policy space.

Nonanticipativity: In insisting that the uk(ω) component of u(ω) can only depend
on (ω1, . . . , ωk) and not on (ωk+1, . . . , ωN), we are imposing a condition on u(·)
called nonanticipativity. Recourse decisions can react to the past, but they can’t
be based on knowing the future before it happens. In this terminology, the space
U consists of all functions u(·) : Ω→ IRn that are nonanticipative.

Stochastic programming problem: The problem we come down to is that of minimiz-
ing, over all u(·) in the policy space U , the expected cost

J
[
u(·)

]
: = IEω

{
f
(
u(ω), ω

)}
= IEω

{
f
(
u0, u1(ω1), u2(ω1, ω2), . . . , uN(ω1, ω2, . . . , ωN), ω1, ω2, . . . , ωN

)}
.

21

Constraints are implicit; a policy u(·) is deemed feasible when J [u(·)] < ∞. This
definitely requires having

(u0, u1(ω1), u2(ω1,ω2), . . . , uN(ω1, ω2, . . . , ωN))

∈ C(ω1, ω2, . . . , ωN) almost surely,

and in the case of discrete probability, at least, is fully captured by that.

Remark: The expression f(u0, u1(ω1), u2(ω1, ω2), . . . , uN(ω1, ω2, . . . , ωN), ω1, . . . , ωN)
could, in the context of continuous probability, be finite almost surely with respect
to ω, yet its integral J [u(·)], could nonetheless be ∞. Issues about additional
assumptions that may be needed on u(·) for the integral to be well defined come
up too—and are indicated below.

Optimization context: We are minimizing here over a particular space U of functions
u(·) : Ω → IRn, distinguished by the special rules of dependence that go into the
definition of a policy, namely nonanticipativity. Minimization over a function space
puts us at a more advanced level of mathematics, at least conceptually, and it raises
further questions about the degree to which conventional optimization methodology
may be applicable. From this angle, there’s a major division between discrete and
continuous probability.

Case of discrete probability: In this setting, which we fall back on whenever mathe-
matical rigor is called for in these notes, not only Ω but each of the component
spaces Ωk is supposed to be finite. Expectations are given by weighted sums
rather than more complicatedly by integrals relative to a density, and there are
important simplifications as well in the way we can look at recourse functions.

A function on a finite set can always be interpreted as a “supervector” in a
finite-dimensional space. First consider u1(·), which goes from Ω1 to IRn1 . For
concreteness, let’s think of the elements of Ω1 as indexed by a superscript, say
ωq

1 for q = 1, . . . , q1. To specify u1(·), we merely have to specify the finitely many
vectors it assumes as its values, namely u1(ω

q
1) for q = 1, . . . , q1. Thus we have a

correspondence
u1(·) ←→ (u1

1, u
2
1, . . . , u

q
1, . . . , u

q1
1)

in which uq
1 stands for u1(ω

q
1). This identifies u1(·) with a vector in [IRn1]q1 .

Next consider u2(·), which goes from Ω1 × Ω2 to IRn1 . Thinking of Ω2 as
consisting of ω1

2 , . . . , ω
q2
2 , we can view the elements of Ω1 ×Ω2 as pairs (ωq

1, ω
q′
2),

where q = 1, . . . , q1 and q′ = 1, . . . , q2. This gives us a correspondence

u2(·) ←→ (u11
2 , u

12
2 , . . . , u

1q2
2 ;u21

2 , u
22
2 , . . . , u

2q2
2 ; . . . ;uq11

2 , uq12
2 , . . . , uq1q2

2)

22

in which uqq′
2 stands for u2(ω

q
1, ω

q′
2). With such double indexing one might think of

u2(·) as corresponding to a sort of matrix whose components are vectors, but it can
also be thought of as a “supervector” in [IRn2]q1q2 . This indexing procedure can
obviously be extended to stage k to identify uk(·) with an element of [IRnk]q1q2···qk ,
where qk is the number of elements in Ωk.

Sophisticated view: There’s really no need to introduce such ordered indexing ex-
cept when it comes to manipulating data in a computer. For theoretical
purposes, it’s easy to get accustomed to thinking directly of the values of
uk(·) as indexed by the finitely many elements (ω1, . . . , ωk) themselves.

Inevitably high dimensionality: It’s worth noting in this the tremendous effect of
“future branching” on the size of the optimization problem under consid-
eration. Suppose, for example, that each decision space IRnk is modestly
3-dimensional, and each uncertain element ωk is allowed to take on just
10 possible values; i.e., qk = 10. (Perhaps ωk has been obtained from a
single random real variable by discretizing its range into 10 subintervals—
deciles.) With 6 recourse stages, the dimension of the policy space U will be
d = 3+30+300+· · ·+3 ·106 = 3, 333, 333! The challenge of solving problems in
so many variables is an overriding characteristic of stochastic programming.

Case of continuous probability: When each of the spaces Ωk is a continuum, we can’t
escape from the function context to finite-dimensional supervectors. Policies u(·)
have to be treated as elements of a function space that’s infinite-dimensional .
But anyone having experience in working with function spaces is aware that
many technical questions come up, not the least of which is how the space should
be narrowed down. Should the functions be continuous? piecewise continuous?
just “measurable”? What norm should describe convergence? And so forth.

Restrictions may already be required in making sure that the integral behind
the expectation J [u(·)] is well defined; we won’t really be able to take the policy
space U to consist of all nonanticipative functions u(·). However, such restrictions
also have a troublesome “a priori” quality in seeming to dictate properties of a
solution before we know whether those properties are legitimate. For instance, if
we restrict recourse functions to be continuous, because that appears convenient,
we may find ourselves unable to verify that an optimal policy exists. Further-
more, we may be excluding from consideration numerical techniques that operate
outside of continuity, e.g. with step functions.

23

Finite-dimensional approximations: Two approaches to passing from an infinite-
dimensional space to a finite-dimensional one have already been mentioned.
Random variables can be discretized by partitioning their domains. Alterna-
tively, random variables can be “sampled” a number of times, and the given
probability space can in that way be replaced by a sample space.

The classical means of approximation of functions aren’t available, how-
ever. In much of applied mathematics a function can be replaced by a trun-
cated Taylor series or trigonometric series, but that’s not helpful for policy
functions because of the need to attend to constraints and, in many situations,
cope with cost discontinuities.

Convexity of costs: The expression f(u, ω) = f(u0, u1, . . . , uN , ω1, . . . , ωN) has been
assumed to be convex as a function of u = (u0, u1, . . . , uN) for each ω = (ω1, . . . , ωN),
but just what does this mean in the presence of extended-real-valuedness, and what
are the consequences?

Extended definition of convexity: For a function ϕ on IRn with values in IR, convexity
can be viewed equivalently in different ways. For one thing, it corresponds to
the usual convexity inequality being satisfied, provided that one keeps to the
extended arithmetic of ±∞ described earlier. There’s nothing special to say
about this except that if, for some reason, both ∞ and −∞ should both pop up
together, their sum is taken as ∞. (Ordinarily we don’t encounter this because
we know for some reason that ϕ > −∞ everywhere.)

Alternatively, the convexity of ϕ can be identified with the convexity of the
epigraph of ϕ, which is the set of all pairs (u, α) ∈ IRn × IR having ϕ(u) ≤ α.
Note that the α components of these pairs are always finite; by definition, no
infinities enter the epigraph itself.

When ϕ is a convex function on IRn, the set
{
u

∣∣ϕ(u) < ∞
}

is a convex
subset of IRn. On the other hand, if one is given a convex subset C of IRn and
a real-valued function ϕ0 that’s convex on C, then by setting ϕ(u) = ϕ0(u) for
u ∈ C but ϕ(u) =∞ elsewhere, one obtains a convex function ϕ on all of IRn.

Convexity in expectations: Under our convexity assumption on f , the expected cost
J [u(·)] is convex as a function of the policy u(·) ∈ U .

Proof: Consider any two policies u(·) and u′(·) and any τ ∈ (0, 1). Let u′′(·) =
(1−τ)u(·)+τu′(·), so that the kth component of u′′(·) is (1−τ)uk(·)+τu′k(·).
Since uk(ω) and u′k(ω) depend only on (ω1, . . . , ωk), the same is true of u′′(ω);
this confirms that u′′(·) is indeed another policy, i.e., satisfies the requirement

24

of nonanticipativity. (More generally, U is a linear space of functions—it
contains all linear combinations of its various elements.) Recall now that

J
[
u′′(·)

]
= IEω

{
f
(
u′′(ω), ω

)}
= IEω

{
f
(
(1− τ)u(ω) + τu′(ω), ω

)}
.

By assumption f
(
(1− τ)u(ω)+ τu′(ω), ω

)
≤ (1− τ)f

(
u(ω), ω

)
+ τf

(
u′(ω), ω

)
for each ω. From this it follows that IEω

{
f
(
(1 − τ)u(ω) + τu′(ω), ω

)}
≤

(1− τ) IEω

{
f
(
u(ω), ω

)}
+ τ IEω

{
f
(
u′(ω), ω

)}
, or in other words that we have

J [u′′(·)] ≤ (1− τ)J [u(·)] + τJ [u′(·)], as claimed.

Implication for optimal policies: Any locally optimal solution ū(·) to our problem of
stochastic programming has to be globally optimal.

Two-stage stochastic programming: Problems with only two stages have long been a
workhorse in stochastic programming. Such problems involve an initial decision u0,
an opportunity for gaining additional information through observation, and then a
single recourse decision u1. Time is divided starkly into just the “present” and the
“future.” That could make rough sense, for instance, in planning for a new facility
like a shopping center or factory. Initially one has to decide on its location, scale,
etc., but only later does one have to decide how best to operate it.

Beyond the practicality of its applications, two-stage stochastic programming has
been—and continues to be—important as a testing ground for concepts and solution
techniques. It will serve those purposes here as well.

Specialized formulation: In dealing with just one uncertain element, it would be tedious
to denote it by ω1 and speak of it lying in a space Ω1, in the manner of our
general notation. We’ll simply work with ω and Ω. At the same time, though,
we’ll introduce more structure in costs and constraints. We take the decision-
observation process to be:

choose u0 ∈ U0 ⊂ IRn0 , paying f0(u0),

observe ω ∈ Ω,

choose u1 ∈ U1 ⊂ IRn1 , paying f1(u0, u1, ω).

The functions f0 and f1 are still extended-real-valued; the “payments” could be
∞, but we suppose these functions don’t take on −∞. We’ll eventually look at
how constraints and penalties may enter their definitions.

It should be clear that we’re merely specializing our general stochastic pro-
gramming model to the case of N = 1, ω = ω1, and total cost

f(u0, u1, ω) =
{
f0(u0) + f1(u0, u1, ω) if u0 ∈ U0 and u1 ∈ U1

∞ otherwise.

25

This cost formula can be written compactly in terms of functions δU0 and δU1

which enforce the set membership through infinite penalties: δU0(u0) = 0 if
u0 ∈ U0 but δU0(u0) = ∞ if u0 /∈ U0, and similarly for δU1(u1). It comes
out then as

f(u0, u1, ω) = f0(u0) + δU0
(u0) + f1(u0, u1, ω) + δU1

(u1).

Indicators: The functions δU0 and δU1 are called the indicators of U0 and U1.

Convexity: To be sure that f(u0, u1, ω) is convex with respect to (u0, u1), we assume
that the sets U0 and U1 are convex, that f0(u0) is convex with respect to u0, and
that f1(u0, u1, ω) is convex with respect to (u0, u1).

Implicit constraints: In order to avoid invoking an infinite penalty, u0 must belong to
the initial set

C0 :=
{
u0 ∈ U0

∣∣ f0(u0) <∞
}
,

while u1 must belong to the recourse set

C1(u0, ω) :=
{
u1 ∈ U1

∣∣ f1(u0, u1, ω) <∞
}
.

Under our convexity assumptions, these sets that describe feasibility are convex
subsets of IRn0 and IRn1 , respectively.

Two-stage policies and optimization: In this setting a policy u(·) is a pair (u0, u1(·)),
where u0 ∈ IRn0 and u1(·) is a function from Ω to IRn1 . Its expected total cost is

J [u(·)] = J [u0, u1(·)] = IEω

{
f(u0, u1(ω), ω)

}
= f0(u0) + δU0

(u0) + IEω

{
f1(u0, u1(ω), ω) + δU1

(u1(ω))
}
.

The stochastic programming problem we wish to solve is

(P) minimize J [u(·)] over the space U of policies u(·) = (u0, u1(·)).

Feasibility: The feasibility of a policy u(·) = (u0, u1(·)), i.e., the property J [u(·)] <∞,
necessitates having u(·) satisfy the conditions{

u0 ∈ C0,
u1(ω) ∈ C1(u0, ω) almost surely.

Here C0 and C1(u0, ω) are the feasible sets for the costs in the two stages, as
introduced above. In the case of discrete probability, the feasibility of u(·) is
equivalent to these conditions being satisfied.

26

Projected costs: It’s instructive, and eventually very fruitful in seeing how two-stage
stochastic programming problems can be solved, to investigate how costs in the
recourse stage can be projected back to the initial stage. This requires first looking
at the recourse stage parametrically.

Recourse subproblem: Once we have chosen u0 and observed ω, the optimization prob-
lem in u1 that we are confronted with has the form

(P1(u0, ω)) minimize f1(u0, u1, ω) over u1 ∈ U1.

In terms of u0 and ω as parameters, let’s denote by ϕ(u0, ω) the optimal value in
this problem and by Φ(u0, ω) its optimal solution set; thus,

ϕ(u0, ω) : = inf
u1∈U1

{
f1(u0, u1, ω)

}
,

Φ(u0, ω) : = argmin
u1∈U1

{
f1(u0, u1, ω)

}
.

Of course, we haven’t yet introduced assumptions that would tell us whether the
optimal value is finite or that an optimal solution actually exists.

Argmin notation: In general, “argmin” refers to the minimizing arguments, i.e., the
points where the minimum in question is attained, whereas “inf” refers only
to the greatest lower bound of the expression being minimized, regardless of
whether or not it’s attained. Because of our way of using ∞, however, there’s
a small exception we need to make—when inf = ∞. In that case there are
no points that give a value less than ∞ in the minimization, so there are
no points considered to be feasible. We don’t want to regard any points as
optimal then either, so we prefer to think of the “argmin” set in that case as
empty. The convention is therefore followed that argmin = ∅ when inf =∞.

Projected problem: Relative to any choice of u0, but prior to the observation of ω,
the optimal value ϕ(u0, ω) in the recourse subproblem is a random variable. Its
expected value

ϕ̂(u0) := IEω

{
ϕ(u0, ω)

}
is the projected cost of recourse, from the perspective of the initial stage. It tells
us all that’s essential about the future effects of u0. It focuses us on solving

(P0) minimize f0(u0) + ϕ̂(u0) over u0 ∈ U0.

How does this projected problem, in u0 alone, coordinate with solving the original
two-stage problem (P)?

27

Note: In the literature of two-stage stochastic programming, the projected problem
is often called the “deterministic equivalent problem” because it no longer
involves a random element. This terminology may be misleading, however,
because the problem in question is fully based on stochastic modeling and
not in any way on getting rid of the stochastic structure and passing to a
deterministic model in its place.

Characterization of an optimal policy: The optimal value in the original problem
(P) equals the optimal value in the projected problem (P0). As long as this is finite,
a policy ū(·) = (ū0, ū1(·)) is optimal in (P) if and only if{

ū0 is an optimal solution to (P0), and

ū1(ω) ∈ Φ1(ū0, ω) almost surely in ω.

Argument: Denote the optimal values in (P) and (P0) by ᾱ and ᾱ0. Consider any
policy u(·) = (u0, u1(·)) with f0(u0) <∞, u0 ∈ U0 and u1(ω) ∈ U1. We have

f1(u0, u1(ω), ω) ≥ ϕ(u0, ω),

where the condition u1(ω) ∈ Φ(u0, ω) characterizes the case where the two sides
are equal and not ∞. Taking the expectation on each side and adding f0(u0) to
each, we obtain

J [(u(·)] ≥ f0(u0) + ϕ̂(u0) ≥ ᾱ0.

By varying the u1(·) part of the policy u(·) with the u0 part fixed, we can make
the value on the left as close as we please to the value in the middle; when
ϕ̂(u0) < ∞, the two are equal if and only if u1(ω) ∈ Φ(u0, ω) almost surely.
(When ϕ̂(u0) = ∞, they both must be ∞.) On the other hand, by varying u0

we can bring the middle value down to ᾱ0. To say that u0 is an optimal solution
to (P0) is to say that these values are equal and not ∞. Thus, the infimum ᾱ of
J [u(·)] over all feasible policies equals ᾱ0 and, when not ∞, is attained precisely
by the policies ū(·) of the kind stipulated.

Rigor: Beyond discrete probability, where only finite sums are involved in taking an
expectation, more care would need to be exercised in arguing about what hap-
pens when the recourse function u1(·) is varied. The difficulty arises from the
need to stay within the category of “measurable” recourse functions. Further
assumptions about f1 have to be added for this purpose.

Convexity of projected costs: The infimum ϕ(u0, ω) is convex with respect to u0, and
the same holds for its expected value ϕ̂(u0).

28

Proof: The second assertion follows from the first, as noted earlier. The first assertion
is based on the general fact that when a convex function of two vector variables is

minimized in one of these variables, the optimal value, as a function of the other

variable is again a convex function. We’ll supply the argument now in the special
notation at hand; ω is fixed throughout.

Consider any two points u0 and u′0 and any λ ∈ (0, 1). Let u′′0 := (1− λ)u0 +
λu′0. It will suffice to demonstrate for arbitrary α > ϕ(u0, ω) and α′ > ϕ(u′0, ω)
that the value α′′ := (1− λ)α+ λα′ satisfies α′′ ≥ ϕ(u′′0 , ω).

Since ϕ(u0, ω) < α, there exists by definition of the function ϕ some u1 ∈ U1

with f1(u0, u1, ω) < α. Likewise, there exists some u′1 ∈ U1 with f1(u′0, u
′
1, ω) <

α′. Then, in terms of u′′1 := (1 − λ)u1 + λu′1, which still belongs to U1 by the
convexity assumed for that set, we have by the convexity of f1 in its first two
arguments that

(1− λ)α+ λα′ > (1− λ)f1(u0, u1, ω) + λf1(u′0, u
′
1, ω)

≥ f1(u′′0 , u
′′
1 , ω) ≥ ϕ(u′′0 , ω),

and since the first expression equals α′′ this chain gives us what we want.

Implications for two-stage stochastic programming: The projected problem (P0) is
one of convex optimization. It differs from classical problems of convex programming
primarily in the nature of the function ϕ̂ and how it might be handled, and in that
respect the convexity of ϕ̂ is an extremely important feature. By approximating ϕ̂
in some manner or another, one can hope to approximate (P0) and in that way come
close to determining an optimal initial decision ū0.

Projected constraints: A vector u0 is a feasible solution to the projected problem (P0)
if and only if it satisfies u0 ∈ U0, f0(u0) < ∞, and ϕ̂(u0) < ∞. The first and
second of these conditions are known directly from the data in the original problem
(P) and have already been lumped together in the notation u0 ∈ C0. The third
condition, however, is only known indirectly as a by-product of analyzing the recourse
subproblem (P1(u0, ω)) parametrically. It doesn’t itself involve uncertainty, but it
arises out of future uncertainty. It necessitates having u0 ∈ D̂, where

D̂ : =
{
u0

∣∣u0 ∈ D(ω) almost surely
}

for

D(ω) : =
{
u0

∣∣ ∃u1 ∈ U1 with f1(u0, u1, ω) <∞
}
,

and it is equivalent to this in the context of discrete probability, in which D̂ is sure
to be the effective domain of ϕ̂. Note that D̂ is a convex set, so the condition u0 ∈ D̂
is a convex type of constraint.

29

Relatively complete recourse: This term refers to the case where the implicit constraint
ϕ̂(u0) <∞ in (P0) imposes no additional restriction, i.e., where

ϕ̂(u0) <∞ for all u0 ∈ C0.

So-called complete recourse requires ϕ̂(u0) <∞ for all u0 ∈ IRn0 .

Trouble otherwise: Without relatively complete recourse, the projected problem can
be much harder to solve. Numerical methods are harder to set up, and they
waste considerable effort just in trying to ensure feasibility. It’s important
therefore to build this property into a problem’s formulation if possible.

The role of penalty expressions: In order to achieve relatively complete recourse in
the formulation of a problem, it’s essential to be careful about constraints in the
recourse stage. Appropriate penalties should be introduced when an inequality or
equality constraint might create uncertainty about recourse feasibility.

Exploring this more closely, we see that the recourse subproblem (P1(u0, ω)) will
generally need to be viewed in a form like the following:

minimize g0(u0, u1, ω) +
∑r

i=1θi

(
gi(u0, u1, ω)

)
subject to

u1 ∈ U1 and gi(u0, u1, ω)
{
≤ 0 for i = r + 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

which corresponds to taking

f1(u0, u1, ω) =


g0(u0, u1, ω) +

∑r
i=1 θi

(
gi(u0, u1, ω)

)
when

gi(u0, u1, ω)
{
≤ 0 for i = r + 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

u1 ∈ U1,
∞ otherwise.

Relatively complete recourse will be present if for each u0 ∈ U0 with f0(u0) < ∞
there exists, almost surely with respect to ω, a u1 ∈ U1 giving a finite value to the
expression g0(u0, u1, ω) +

∑r
i=1 θi

(
gi(u0, u1, ω)

)
and satisfying the listed inequalities

and equations on the gi(u0, u1, ω)’s for i = r + 1, . . . ,m.

Typically that would be because the objective expression is finite for all u0 ∈ U0,
u1 ∈ U1 and ω ∈ Ω, and the inequality and equality constraints can be always
fulfilled. (For instance, the components of u1 involved in these constraints might
merely be “slack variables” which don’t enter any other expressions.)

Convexity considerations: The required convexity of f1(u0, u1, ω) in (u0, u1) is assured
if all expressions gi(u0, u1, ω) are convex in (u0, u1) and the functions θi are
convex and nondecreasing . When gi(u0, u1, ω) is affine in (u0, u1), the associated
θi doesn’t need to be nondecreasing; its convexity is enough.

30

3. LINEAR PROGRAMMING MODELS

Stochastic programming problems may appear to be so complicated that there is little hope
of solving them, but important progress has been made. Naturally, when people first put
their minds to devising numerical methods they concentrated on two-stage models that
were amenable to the use of techniques in large-scale linear programming. We’ll begin
there as well.

In examining the ideas behind such methods, we’ll have opportunities to gain insights into
aspects of optimization beyond stochastic programming. We’ll see how duality can be put
to work. We’ll also look at “subgradients” of convex functions and the ways they can
substitute for gradients in the absence of differentiability.

Two-stage stochastic linear programming: The two-stage stochastic programming
theory that we’ve been examining will be applied now to the case where each stage
fits the traditional patterns of linear programming.

Description: In terms of vector inequalities, we take the process to have the form

choose u0 ≥ 0 with A00u0 ≥ b0, paying c0 ·u0,

observe ω ∈ Ω,

choose u1 ≥ 0 with A10(ω)u0 +A11(ω)u1 ≥ b1(ω), paying c1(ω) ·u1.

Here u0 ∈ IRn0 and u1 ∈ IRn1 , so the conditions u0 ≥ 0 and u1 ≥ 0 are shorthand
for u0 ∈ IRn0

+ and u1 ∈ IRn1
+ . We think of A00 and b0 as belonging to IRm0×n0

and IRm0 , so that the condition A00u0 ≥ b0 summarizes m0 linear inequality
constraints on u0. Likewise we take A10(ω) ∈ IRm1×n0 , A11(ω) ∈ IRm1×n1 and
b1(ω) ∈ IRm1 , so that the condition A10(ω)u0 + A11(ω)u1 ≥ b1(ω) summarizes
m1 additional constraints that come into play only in the recourse stage.

In the scheme previously adopted for two-stage stochastic programming, U0

and U1 are the orthants IRn0
+ and IRn1

+ , f0(u0) equals c0 ·u0 plus the indicator of
the set of points u0 satisfying A00u0 ≥ b0, and f1(u0, u1, ω) equals c1(ω) ·u1 plus
the indicator of the set of points u1 satisfying A10(ω)u0 +A11(ω)u1 ≥ b1(ω).

Feasiblity in the two stages: The feasible set C0 associated with the initial stage spe-
cializes here to the polyhedral set

C0 =
{
u0 ≥ 0

∣∣A00u0 ≥ b0
}
,

whereas the feasible set C1(u0, ω) for the recourse stage is the polyhedral set

C1(u0, ω) =
{
u1 ≥ 0

∣∣A11(ω)u1 ≥ b1(ω)−A10(ω)u0

}
.

31

Problem statement: As always in two-stage stochastic programming, we optimize over
policies u(·) = (u0, u1(·)). Because the expected cost J [u(·)] is ∞ unless u0 ∈ C0

and u1(ω) ∈ C1(u0, ω) almost surely, but otherwise is given by an expression
depending only on the linear cost terms in the two stages, we can state the
problem as:

(P)
minimize c0 ·u0 + IEω

{
c1(ω) ·u1(ω)

}
subject to{

u0 ≥ 0, A00u0 ≥ b0,
u1(ω) ≥ 0, A10(ω)u0 +A11(ω)u1(ω) ≥ b1(ω) almost surely.

Comments on the constraint setup: Equality constraints could be incorporated along
with, or instead of, inequalities, but we’ve left this out to keep the notation more
manageable. A bigger issue is why inequality or equality constraints are allowed
to depend on ω at all, in light of the earlier criticism of such uncertain constraints.
Shouldn’t penalty expressions be brought in?

The answer is “historic.” This is the format suggested by linear programming,
and it’s therefore the one that people were led to adopt. Linear programming
doesn’t allow for penalty expressions—directly. But such expressions, if of piece-
wise linear type, can often be converted to the linear programming format through
the introduction of additional variables, and so forth. That’s in fact what’s usu-
ally behind the circumstances in which one is able, in the current context, to
claim relatively complete recourse.

Comments on the depiction of uncertainty: In writing A10(ω), A11(ω), b1(ω) and c1(ω),
we indicate that these arrays might not be fully known initially, when we have to
choose u0. The “observation of ω” is code language for getting the information
needed to fill in the knowledge gaps. We are supposing that the information will
be available before the deadline for choosing u1.

At one extreme, every component of each array might be a random variable—a
total of d = m1n0+m1n1+m1+n1 such variables. Those random variables could
to some degree be independent of each other, but in principle might have a joint
probability distribution. We could think of them as comprising a “supervector”
which ranges randomly over a region in IRd. The region could then be identified
with Ω, and the supervector itself with ω.

More commonly, only some of the components might be uncertain. Perhaps ω
just refers to those, or ω is a vector of two or three random variables (e.g. current

32

interest rates) which aren’t themselves components of A10(ω), A11(ω), b1(ω) or
c1(ω), but enter the formulas for several of the components.

Random right sides only: Especially noteworthy is the case where the matrices and
costs in the recourse stage are certain, hence expressible as A10, A11, and
c1, so that only b1(ω) is uncertain. Much of the early literature of stochastic
programming was devoted to that, with b1(ω) as a vector of demands, say.

Recourse subproblems: With u0 and ω as parameters, the problem faced in the second
stage has the form

(P1(u0, ω))
minimize c1(ω) ·u1 subject to

u1 ≥ 0, A11(ω)u1 ≥ b1(ω)−A10(ω)u0.

The effects of u0 are felt only through the term A10(ω)u0, which has been moved
to the right side of the vector inequality in order to make this role clearer. If c1(ω)
and A11(ω) didn’t really depend on ω, we would have a parametric family of linear
programming problems which differ only in these right sides.

Projected problem: The projected problem in u0 alone comes out in the form

(P0) minimize c0 ·u0 + ϕ̂(u0) subject to u0 ≥ 0, A00u0 ≥ b0,

where the projected cost is defined by

ϕ̂(u0) := IEω

{
ϕ(u0, ω)

}
for ϕ(u0, ω) := inf

(
P1(u0, ω)

)
.

We’ll have relatively complete recourse available if this cost ϕ̂(u0) is finite for all u0

satisfying the initial linear constraints u ≥ 0 and A00u0 ≥ b0, and complete recourse
if it’s finite even when u0 doesn’t satisfy those constraints.

Convexity: This two-stage linear programming model meets the general convexity re-
quirements in stochastic programming, so the function ϕ̂ is convex. In the case
of relatively complete recourse, and even better in the case of complete recourse,
problem (P0) is thus one of minimizing a convex function subject to initial linear
constraints only.

Expression of the overall problem as large-scale linear programming: Before
getting down to the close scrutiny of the projected cost function ϕ̂ that’s crucial
to the most popular approaches to computation in the projected problem (P0), it’s
instructive to look at how the overall problem (P) can itself be viewed as large-scale

33

linear programming. For this purpose we concentrate on discrete probability. We
take

Ω =
{
ωq for q = 1, . . . , q̄

}
, π

q = π(ωq),

and adopt in place of u1(ω), b1(ω), c1(ω), A10(ω) and A11(ω) the compact notation

uq
1 = u1(ωq), bq1 = b1(ωq), cq1 = c1(ωq), Aq

10 = A10(ωq), Aq
11 = A11(ωq).

The specification of a recourse function u1(·) is tantamount then to the specification
of a family of vectors uq

1 for q = 1, . . . , q̄.

The objective and constraints in (P) can be rewritten in this notation, but we
have to be careful about the conditions that only need to be satisfied “almost surely.”
A distinction is being made between elements ωq with πq > 0 and those with πq = 0.
We could take the position that πq > 0 always (else why include wq in Ω?), but
it will be better just to multiply all the linear constraints in the recourse stage by
their probability. That has the effect of canceling out the constraints of 0 probability
without forcing us to delete elements from Ω. The restated version of the overall
stochastic problem (P) is then

(P ′)
minimize c0 ·u0 +

∑q̄
q=1π

q
cq1 ·u

q
1

subject to
{
u0 ≥ 0, A00u0 ≥ b0,
uq

1 ≥ 0, πqAq
10u0 + πqAq

11u
q
1 ≥ π

qbq1 for q = 1, . . . , q̄.

Representation in a tableau: In the tableau format for linear programming problems,
which assists with determining dual problems while helping to reveal patterns of
matrix sparsity, (P ′) has the schematic representation:

[u0 u1
1 . . . uq

1 . . . uq̄
1] ≥ 0

A00 0 0 0
π1A1

10 π1A1
11 0 0

...
...

πqAq
10 0 . . . πqAq

11 . . . 0
...

...
πq̄Aq̄

10 0 0 πq̄Aq̄
11


≥



b0
π1b11

...
πqbq1

...
πq̄bq̄1


[c0 π1c11 . . . πqcq1 . . . πq̄cq̄1] → min

Potential for direct computation: The matrix sparsity in (P ′) suggests that advanced
implementations of the simplex method, or some other technique for solving linear
programming problems, might be used to solve (P ′) and hence (P).

34

That’s indeed how people first looked at two-stage stochastic linear program-
ming. Efforts were made to take advantage of the particular matrix pattern
exhibited here. This goes on today, but the alternative approach of solving (P)
by way of the projected problem and approximations of the projected cost func-
tion ϕ̂, offers a framework in which the same linear programming ideas can be
viewed more insightfully, without being obscured by algorithm-specific details. It
relies on duality, which we’ll pursue now on more than one level.

Duality: The corresponding dual problem of linear programming can be derived from this
tableau by associating a “multiplier” with each row of the A matrix. The multipliers
are in this case vectors, since the rows give vector constraints; we’ll denote them by
v0 (for the initial row) and vq

1 (for the recourse rows). Instead of keeping with rows,
however, it will be more convenient to pass to the transpose tableau, in which the
rows have turned into columns. Using ∗ to indicate the transposes of the various
submatrices, we get the dual scheme

[v0 v1
1 . . . vq

1 . . . vq̄
1] ≥ 0

A∗00 π1A1∗
10 πqAq∗

10 πq̄Aq̄∗
10

0 π1A1∗
11 0 0

...
0 0 . . . πqAq∗

11 . . . 0
...

0 0 0 πq̄Aq̄∗
11


≤



c0
π1c11

...
πqcq1

...
πq̄cq̄1


[b0 π1b11 . . . πqbq1 . . . πq̄bq̄1] → max

The dual linear programming problem represented in this tableau can be read off
now as:

(D′)
maximize b0 ·v0 +

∑q̄
q=1π

qbq1 ·v
q
1

subject to
{
v0 ≥ 0, A∗00v0 +

∑q̄
q=1π

qAq∗
10v

q
1 ≤ c0,

vq
1 ≥ 0, πqAq∗

11v
q
1 ≤ πqcq1 for q = 1, . . . , q̄.

This dual problem can also be posed in the original notation of (P) if we interpret
the vectors vq

1 as the values v1(ωq) of a function v(·) : Ω→ IRm1 . It comes out then
in the form:

(D)
maximize b0 ·v0 + IEω

{
b1(ω) ·v1(ω)

}
subject to

{
v0 ≥ 0, A∗00v0 + IEω

{
A∗10(ω)v1(ω)

}
≤ c0,

v1(ω) ≥ 0, A∗11(ω)v1(ω) ≤ c1(ω) almost surely.

35

Comments: Interestingly enough, this dual problem (D) resembles the primal prob-
lem (P), in that the optimization takes place with respect to pairs v(·) =
(v0, v1(·)). The objective functions look similar as well. The constraints fol-
low quite a different pattern, though.

In (D), the constraints tied to the recourse stage don’t involve v0 at all,
just v1(ω). On the other hand, the constraints in the initial stage involve
v1(·) together with v0 and, more strikingly, place a bound on a vector of
expectations. To the extent that multiplier vectors can be interpreted as price
vectors, it’s evident that we must be dealing, in the initial stage, with a vector
of expected future prices, but little more can be said outside the framework
of a specific application of the model.

Theoretical consequences: From general linear programming duality, we know that
problems (P ′) and (D′), or equivalently (P) and (D) (as long as we keep to discrete
probability), are tightly connected:

The optimal values inf(P) and sup(D) are equal except in the remote case
where both inf(P) = ∞ and sup(D) = −∞, i.e., neither of the problems has
a feasible solution. Moreover, as long as the common optimal value is finite,
both problems are sure to have an optimal solution.

Lagrangian: Optimal solutions ū(·) to (P) and v̄(·) to (D) can jointly be character-
ized in terms of the Lagrangian. In the general notation of these problems, the
Lagrangian comes out as

L
(
u(·), v(·)

)
= c0 ·u0 + IEω

{
c1(ω) ·u1(ω)

}
+ v0 ·

[
b0 −A00u0

]
+ IEω

{
v1(ω) · [b1(ω)−A10(ω)u0 −A11(ω)u1(ω)]

}
= b0 ·v0 + IEω

{
b1(ω) ·v1(ω)

}
+ u0 ·

[
c0 −A∗00v0 − IEω

{
A∗10(ω)v1(ω)

}]
+ IEω

{
u1(ω) · [c1(ω)−A∗11(ω)v1(ω)]

}
on the set U × V ⊂ U × V, where

U =
{
u(·) = (u0, u1(·))

∣∣u0 ∈ IRn0
+ , u1(ω) ∈ IRn1

+ almost surely
}

V =
{
v(·) = (v0, v1(·))

∣∣ v0 ∈ IRm0
+ , v1(ω) ∈ IRm1

+ almost surely
}
.

Optimality conditions: In our setting of discrete probability, we can conclude from
linear programming theory that ū(·) and v̄(·) are optimal solutions to (P) and
(D) if and only if they furnish a saddle point of L on U ×V in the sense of having

ū(·) ∈ argmin
u(·)∈U

L
(
u(·), v̄(·)

)
, v̄(·) ∈ argmax

v(·)∈V

L
(
ū(·), v(·)

)
.

36

Furthermore, this is equivalent to the following conditions of complementary
slackness being fulfilled:

v0 ≥ 0, A00u0 − b0 ≥ 0, v0 ·
[
A00u0 − b0

]
= 0,

v1(ω) ≥ 0, A10(ω)u0 +A11(ω)u1(ω)− b1(ω) ≥ 0,

v1(ω) ·
[
A10(ω)u0 +A11(ω)u1(ω)− b1(ω)

]
= 0 almost surely,

u0 ≥ 0, c0 −A∗00v0 − IEω

{
A∗10(ω)v1(ω)

}
≥ 0,

u0 ·
[
c0 −A∗00v0 − IEω

{
A∗10(ω)v1(ω)

}]
= 0,

u1(ω) ≥ 0, c1(ω)−A∗11(ω)v1(ω) ≥ 0,

u1(ω) ·
[
c1(ω)−A∗11(ω)v1(ω)

]
= 0 almost surely.

Recourse analysis: In our discrete probability notation we have, with respect to any
choice of the initial vector u0, just a finite family of recourse subproblems (P(u0, ω

q))
for determining appropriate responses uq

1. We can write these subproblems as

(
Pq

1 (u0)
)

minimize cq1 ·u
q
1 subject to uq

1 ≥ 0, Aq
11u

q
1 ≥ b

q
1 −A

q
10u0

and denote the corresponding optimal value functions by

ϕq(u0) := inf
(
Pq

1 (u0)
)

The function ϕ̂ giving the expected cost of recourse is a weighted sum of these
functions ϕq, namely

ϕ̂(u0) =
q̄∑

q=1

πqϕq(u0).

By analyzing the ϕq’s individually, we can hope to understand better how ϕ̂ might
be handled in the projected problem (P0).

Recourse assumptions: For this purpose we’ll assume that the value inf(P0) = inf(P)
is finite and keep to the case of relatively complete recourse, in which

u0 ≥ 0, A00u0 ≥ b0 =⇒ ϕ̂(u0) <∞

=⇒ ϕq(u0) <∞ almost surely.

Here “almost surely” refers to the inequality just holding for the indices q with
πq > 0, but to avoid the hassling with this minor technicality we’ll suppose
henceforth in this discussion that actually πq > 0 for all q. In terms of the

37

polyhedral set C0 :=
{
u0

∣∣u0 ≥ 0, A00u0 ≥ b0
}
, which is nonempty (or the

optimal value in (P0) would be ∞), we then have that

ϕq is finite on C0 for all q = 1, . . . , q̄.

Indeed, relatively complete recourse makes the functions ϕq be < ∞ on C0,
and then they must also be > −∞ on C0 or there would exist u0 ∈ C0 with
ϕ̂(u0) = −∞ (so that inf(P0) would be −∞, contrary to assumption).

Dualization in the recourse stage: The recourse subproblem (Pq
1 (u0)) is one of linear

programming too. Its dual problem, focused on the vector vq
1, has the form(

Dq
1(u0)

)
maximize

[
bq1 −A

q
10u0

]
·vq

1 subject to vq
1 ≥ 0, Aq∗

11v
q
1 ≤ c

q
1.

Note that (Dq
1(u0)) depends on u0 only through its linear objective in vq

1, not
through its constraints on vq

1.

Dual formula for recourse costs: The optimal values in (Pq
1 (u0)) and (Dq

1(u0)) have
to agree when either is finite, and under our recourse assumptions the optimal value
in (Pq

1 (u0)), namely ϕq(u0), is finite when u0 ∈ C0, in particular. Therefore we have

ϕq(u0) = max
(
Dq

1(u0)
)

when u0 ∈ C0,

where “max” is justified since linear programming problems have optimal solutions
whenever their optimal values are finite.

Envelope interpretation: This has a valuable interpretation as an “envelope formula,”
i.e., a formula in which the function ϕq is expressed as the pointwise maximum
(or supremum) of a collection of simpler functions. Let

Dq
1 := [feasible set in (Dq

1(u0))] =
{
vq
1

∣∣ vq
1 ≥ 0, Aq∗

11v
q
1 ≤ c

q
1

}
,

l
q(u0, v

q
1) :=

[
bq1 −A

q
10u0

]
·vq

1 =
[
bq1 ·v

q
1

]
−

[
Aq∗

10v
q
1

]
·u0.

Obviously lq(u0, v
q
1) is an affine function of u0 for each choice of vq

1. Our dual
formula for ϕq says that

ϕq(u0) = max
vq
1∈Dq

1

l
q(u0, v

q
1) when u0 ∈ C0,

and this can be interpreted as saying that, relative to the set C0 at least, ϕq

is the supremum of the collection of affine functions u0 7→ lq(u0, v
q
1), viewed as

“indexed” by the vectors vq
1 ∈ D

q
1.

38

Consequence for expected costs: From the dual formula for ϕq and the expression of
ϕ̂ as a weighted sum of the ϕq functions, we immediately obtain the formula

ϕ̂(u0) = max
vq
1∈Dq

1
q=1,...,q̄

∑q̄
q=1π

ql
q(u0, v

q
1)

= max
vq
1∈Dq

1
q=1,...,q̄

{[∑q̄
q=1π

qbq1 ·v
q
1

]
−

[∑q̄
q=1π

qAq∗
10v

q
1

]
·u0

}
for u0 ∈ C0.

Corresponding envelope interpretation: This likewise has can be interpreted in terms
of the pointwise maximum of a collection of affine functions of u0 ∈ C0:

ϕ̂(u0) = max
vq
1∈Dq

1
q=1,...,q̄

l(u0; v1
1 , . . . , v

q̄
1), where

l(u0; v1
1 , . . . , v

q̄
1) :=

[∑q̄
q=1π

qbq1 ·v
q
1

]
−

[∑q̄
q=1π

qAq∗
10v

q
1

]
·u0.

In our general probability notation, this takes the form

ϕ̂(u0) = max
v1(·):

v1(ω)∈D1(ω)

{
IEω

{
b1(ω) ·v1(ω)

}
− IEω

{
A∗10(ω)v1(ω)

}
·u0

} }
for u0 ∈ C0,

whereD1(ω) denotes the set of feasible solutions to the problem (D1(u0, ω)) that’s
dual to (P1(u0, ω)) for fixed u0 and ω.

Refinement utilizing extreme points: We’re getting ever deeper into the special prop-
erties of linear programming problems, and the next fact in that line is going
to be the to taking advantage of the envelope formula for expected cost. Each
of the feasible sets Dq

1, being specified by the linear constraint system vq
1 ≥ 0,

Aq∗
11v

q
1 ≤ cq1, is a polyhedral set having a finite number of extreme points (also

called corner points, or vertices). When a linear function is maximized over such
a set, the maximum is attained in particular at some extreme point. Thus, in
letting

extDq
1 := [set of extreme points of Dq

1],

we have a nonempty, finite set of points with the property that, for each u0 ∈ C0,
problem (Dq

1(u0)) will have an optimal solution vq
1 that belongs to extDq

1. It
follows that

ϕq(u0) = max
vq
1∈ext Dq

1

{[
bq1 ·v

q
1

]
−

[
Aq∗

10v
q
1

]
·u0

}
when u0 ∈ C0,

39

so that ϕq has an expression, relative to C0, as the pointwise maximum of finitely
many affine functions. Correspondingly for ϕ̂ we have

ϕ̂(u0) =
∑q̄

q=1π
q

[
max

vq
1∈ext Dq

1

{[
bq1 ·v

q
1

]
−

[
Aq∗

10v
q
1

]
·u0

}]
= max

vq
1∈ext Dq

1
q=1,...,q̄

{ [∑q̄
q=1π

qbq1 ·v
q
1

]
−

[∑q̄
q=1π

qAq∗
10v

q
1

]
·u0

}
when u0 ∈ C0,

which likewise is a formula of such character.

Piecewise linearity: It can be deduced from these refined formulas that, relative to
the polyhedral set C0, the convex functions ϕq and ϕ̂ are piecewise linear .
A function is said to have that property if C0 can be expressed as the union
of finitely many polyhedral subsets on each of which the function is given by
some affine expression.

Subgradients of convex functions: Functions that might not be differentiable can
anyway be “subdifferentiated,” and this is especially helpful in dealing with envelope
formulas like the ones just derived. Consider any function ϕ : IRn → IR and a point
ū with ϕ(ū) finite. A vector z ∈ IRn is a subgradient of ϕ at ū, written

z ∈ ∂ϕ(ū),

if (z,−1) belongs to the normal cone NE(ū, ϕ(ū)) to the epigraph E of ϕ in IRn× IR
at the point (ū, ϕ(ū)). Much could be said about this general definition and its
consequences, but we’re only going to be involved with convex functions ϕ, having
convex epigraphs E. In that case, the condition (z,−1) ∈ NE(ū, ϕ(ū)) corresponds
to having (z,−1) ·

[
(u, α)− (ū, ϕ(ū))

]
≤ 0 for all (u, α) ∈ E, so

z ∈ ∂ϕ(ū) ⇐⇒ ϕ(u) ≥ ϕ(ū) + z · [u− ū] for all u.

(This characterization was in fact the original definition of “subgradient” in convex
analysis. Only much later was it generalized to nonconvex functions, as indicated.)

Connection with envelope formulas: Equivalently, according to the inequality test just
given, we have for a convex function ϕ that

z ∈ ∂ϕ(ū) ⇐⇒


there is an affine function l, having z
as its (constant) gradient, such that
ϕ(u) ≥ l(u) for all u, and ϕ(ū) = l(ū).

40

Thus, whenever ϕ has a representation as the pointwise maximum of a collection
of affine functions l, we can get subgradients of ϕ by looking at where these affine
functions l actually “touch” ϕ.

Some background properties: For ϕ convex, the subgradient set ∂ϕ(ū) at a point ū
could be empty, or could consist of a unique z, or could contain more than one
vector z. It’s always a closed, convex set, at least, as can be seen immediately
from the definition. It can be proved that ∂ϕ(ū) is a nonempty, bounded set if
and only if ϕ is finite on a neighborhood of ū.

If ϕ is differentiable at ū, then ∂ϕ(ū) is a singleton set whose sole element z
is the gradient vector ∇ϕ(ū). Interestingly, the converse is true as well: if ∂ϕ(ū)
is a singleton set, then ϕ must be differentiable at ū.

Calculus rules: A lot can be said about how to get subgradients of a convex function ϕ
in circumstances when ϕ is expressed in terms of other, more elementary convex
functions for which subgradients are already available. A key case for us will be
that of

ϕ = λ1ϕ1 + · · ·+ λrϕr with ϕi convex, λi ≥ 0.

Then we have a rule coming straight from the inequality test for subgradients:

zi ∈ ∂ϕi(ū)

i = 1, . . . , r

}
=⇒ λ1z1 + · · ·+ λrzr ∈ ∂ϕ(ū).

This can be written neatly as the inclusion

∂(λ1ϕ1 + · · ·+ λrϕr)(ū) ⊃ λ1∂ϕ1(ū) + · · ·+ λr∂ϕr(ū),

where the “sum of sets” on the right refers to the sum of all possible combinations
obtained by choosing vectors from those sets. As a matter of fact, “⊃” can often
be replaced by “=” in this relation (as for example in the case where the convex
functions ϕi are finite in a neighborhood of ū), but we won’t go into that here.

Application of subgradients to expectations: The inclusion just explained can be
applied in particular in our linear programming framework:

ϕ̂ =
∑q̄

q=1π
qϕq =⇒ ∂ϕ̂(u0) ⊃

∑q̄
q=1π

q∂ϕq(u0).

An analogue in our general probability notation can readily be obtained too for the
case of ϕ̂(u0) = IEω

{
ϕ(u0, ω)

}
, which covers not only weighted combinations of

41

convex functions but also “integral combinations.” In denoting by ∂ϕ(u0, ω) the set
of subgradients of ϕ(·, ω) at u0 (i.e., with “∂” referring to subgradients taken only in
the first argument), we get

z(ω) ∈ ∂ϕ(u0, ω) almost surely =⇒ IEω

{
z(ω)

}
∈ ∂ϕ̂(u0).

Cutting plane approach to the projected problem: We’re headed toward the most
popular method for solving two-stage stochastic linear programming problems, but it
will be best to look first at the main idea in the broader case of a two-stage stochastic
programming problem that’s not necessarily linear. The projected problem then
takes the form

(P0) minimize f0(u0) + ϕ̂(u0) over u0 ∈ U0

for a convex set U0 and convex functions f0 and ϕ̂. We can suppose that U0 and
f0 are easy enough to handle directly, and that the difficulty just comes from ϕ̂. As
earlier, we denote by C0 the set of points u0 ∈ U0 satisfying f0(u0) <∞. We assume
that ϕ̂ is finite on C0, with the subgradient set ∂ϕ̂(u0) nonempty for all u0 ∈ C0.

Successive envelope approximations: An approach will be described for generating suc-
cessively better “approximations” of (P0) out of subgradients of ϕ̂. Afterward we
can see how such subgradients can be computed through the rules above.

The basic picture is that of a sequence of problems, indexed by ν = 1, 2, . . .
in which ϕ̂ is replaced by a simpler function ϕ̂ν :

(Pν
0) minimize f0(u0) + ϕ̂ν(u0) over u0 ∈ U0.

We’ll have ϕ̂1 ≤ · · · ≤ ϕ̂ν ≤ · · · ≤ ϕ̂, so that the optimal values in these problems
will form a nondecreasing sequence.

Algorithm statement: At the start, when ν = 1, ϕ̂1 can be taken to be any convex
function ≤ ϕ̂ on C0, e.g. an affine function (see below). In the general step,
where we have problem (Pν

0), we calculate

uν
0 ∈ argmin(Pν

0), ϕ̂ν(uν
0), ϕ̂(uν

0).

If ϕ̂ν(uν
0) = ϕ̂(uν

0), we terminate with the claim that the current point uν
0 is an

optimal solution ū0 to (P0) itself. Otherwise ϕ̂ν(uν
0) < ϕ̂(uν

0), in which case we
generate an affine function lν by taking

lν(u0) := ϕ̂(uν
0) + zν · [u0 − uν

0] for some zν ∈ ∂ϕ̂(uν
0).

42

Then we define a next approximate function ϕ̂ ν+1 by

ϕ̂ ν+1(u0) := max
{
ϕ̂ν(u0), lν(u0)

}
and proceed to the next iteration, where the problem to be solved is (Pν+1

0).

Form of the approximate functions: On the basis of this prescription we have in each
problem (Pν

0) that

ϕ̂ν(u0) = max
{
ϕ̂1(u0), l1(u0), . . . , lν(u0)

}
.

Such an expression can be handled in the minimization through the introduction
of an epigraphical variable, for instance. Note that the initial function ϕ̂1 could
in particular be taken to be an affine function l0 defined like lν but with respect
to a subgradient z0 of ϕ̂ at some choice of a starting point u0

0.

Technical issues: For the algorithm to make sense, we have to know that an optimal
solution uν

0 to (Pν
0) exists. This will be true surely if C0 is closed and bounded

(as well as nonempty), and the functions f0 and ϕ̂ν are continuous relative to C0.
The continuity of ϕ̂ν follows from its max formula as long as ϕ̂1 is continuous.

Termination: It was claimed that if, in iteration ν, the current point uν
0 has ϕ̂ν(uν

0) =
ϕ̂(uν

0), it actually solves (P0) itself. Why?

In this situation the objective function f0 + ϕ̂ in (P0) has the same value at
uν

0 as the objective function f0 + ϕ̂ν in (Pν
0), namely the value inf(Pν

0). Since
uν

0 can’t give a lower value to f0 + ϕ̂ than inf(P0), while on the other hand
inf(Pν

0) ≤ inf(P0), it’s legitimate to conclude that uν
0 gives the value inf(P0) to

f0 + ϕ̂ and thus constitutes an optimal solution to (P0).

Convergence in general: If the algorithm doesn’t terminate in finitely many iterations
in the manner just explained, it generates an infinite sequence of points uν

0 and
values αν := inf(Pν

0) with α1 ≤ · · · ≤ αν ≤ · · · ≤ ᾱ := inf(P0). It evidently
makes improvements of a sort in each iteration, but what guarantee is there that
αν converges to ᾱ as ν → ∞, rather than stagnating at some value lower than
ᾱ? Additional assumptions are needed to handle this.

Suppose for instance (along with the closedness and boundedness of C0 and
the continuity of f0 and ϕ̂1 on C0) that the function ϕ̂ is finite not merely on
C0 but on some open set O ⊃ C0 (as would be true under the complete recourse
property, say). Then (1) αν → ᾱ, and (2) every cluster point of the sequence
{uν

0}∞ν=1 is an optimal solution ū0 to (P0). (Note that the sequence {uν
0}∞ν=1 is

bounded by virtue of lying in C0, so it does have a cluster point.)

43

Justification: The proof of this exactly parallels the proof of convergence of the
cutting plane method for minimizing a smooth convex function over a compact
convex set, but with subgradients substituted for gradients. An appeal must
be made to “continuity properties” in the behavior of subgradients of ϕ̂, which
we’re not going into here, and so the details will be omitted.

“L-shaped method” in stochastic linear programming: The cutting plane al-
gorithm for solving the projected problem can be applied in the two-stage linear-
programming case we investigated above, and special features then come to the fore.
The resulting algorithm is known as the “L-shaped method” for reasons that are
now obscure but probably have to do with the pattern of matrices A00, A10(ω) and
A11(ω) —with no A01 matrix.

Linear programming in the subproblems: Let the initial approximation ϕ̂0 be chosen
affine (see above). Then in each iteration the subproblem to be solved is:

(Pν
0)

minimize c0 ·u0 + max
{
l0(u0), l1(u0), . . . , l ν−1(u0)

}
subject to u0 ≥ 0, A00u0 ≥ b0.

Through the introduction of an epigraphical variable to rewrite the max term,
this can be converted to linear programming in one higher dimension.

Subgradient calculation: A crucial step is that of calculating, for the current vector uν
0 ,

a subgradient zν ∈ ∂ϕ̂(u0). In our discrete probability setting, we know this can
be reduced to the following:

find zq ν ∈ ∂ϕq(uν
0) for each q, then take zν :=

∑q̄
q=1π

qzq ν .

How can we determine a vector zq ν ∈ ∂ϕq(uν
0)? Our envelope formula for ϕq

comes in here. We can take zq ν to be the gradient of any affine function in this
formula whose graph “touches” that of ϕq at uν

0 . Thus, we merely need to

calculate vq ν
1 ∈ argmax

(
Dq

1(u
ν
0)

)
, then set zq ν = −Aq∗

10v
q ν
1 .

An important observation is that, in carrying this out, we can always choose vq ν
1

to be an optimal solution to
(
Dq

1(u
ν
0)

)
that’s an extreme point of the feasible set

Dq
1 in this problem, i.e., vq ν

1 ∈ extDq
1.

Getting an extreme point: Some linear programming algorithms, most notably the
“simplex method,” automatically produce, as an optimal solution, an extreme
point of the feasible set.

44

Finite termination property: Under the provision that the vectors vq ν
1 are always taken

to be in extDq
1, this specialized version of the cutting plane algorithm always

terminates in finitely many iterations with an optimal solution ū0 to (P0).

Justification: Because of the way the subgradients zν are generated from vectors
vq ν
1 ∈ extDq

1, with the sets extDq
1 being finite, there are only finitely many

possible vectors that are eligible to be a zν . If the algorithm were to fail
to terminate and instead keep iterating indefinitely, the infinite sequence of
vectors zν it would produce would have to contain repetitions. Every time
we generate zν , we derive from it an affine function that has this vector as
its gradient and touches the graph of ϕ̂ somewhere; that function is uniquely
determined by zν , regardless of where we think of it as touching. Thus,
repetitions in the sequence of vectors zν necessarily induce repetitions in the
sequence l0, l1, . . . , l ν−1, lν , . . . of affine functions used in approximating ϕ̂.
But when lν is obtained, it satisfies

lν(uν
0) = ϕ̂(uν

0) > ϕ̂ν(uν
0) = max

{
l0(uν

0), l1(uν
0), . . . , l ν−1(uν

0)
}

and therefore can’t be one of the functions l0, l1, . . . , l ν−1 encountered previ-
ously. In other words, such repetition is impossible.

Comments: The proof that the L-shaped method has finite termination confirms that
it is soundly formulated, but doesn’t, in itself, show that it’s “good.” For all
we know, the finitely many iterations could take a million years! For practical
justification, any computational method depends on the experience people have
with how it behaves for real problems. In this, the L-shaped method has in fact
been very successful, due in no small measure to the clever implementations that
have been made of it.

These implementations have been based to some extent on making simplify-
ing assumptions about the randomness. Especially favorable is the case where
the c1(ω) and A11(ω) aren’t uncertain at all and therefore don’t depend on ω.
Then, in our discrete probability notation, we can drop the q superscript on these
elements and on the feasible set Dq

1 in (Dq
1(u0)), which becomes just

D1 :=
{
v1 ≥ 0

∣∣A∗11v1 ≤ c1}.
The only difference then between the various problems (Dq

1(u0)) is in the coeffi-
cient vector bq1 −A

q
10u0 in the linear function being minimized over D1. Optimal

solutions can always be obtained in extD1.

45

With or without this simplification, it’s clear that in each iteration of the
algorithm one is faced with solving batches of small-scale linear programming
subproblems which are identical except for shifts in some coefficients. In this
situation, the advanced technology of the simplex method can be brought to bear.
Having solved one of the problems, we can get the solution to another problem in
the same batch by making relatively minor “adjustments.” The option of solving
some of these problems in parallel (on separate processors) is available as well.

Another feature of successful implementations is having a way of deleting
some of the older affine functions in the expression for ϕ̂ν when they no longer
seem needed. This has to be done carefully, however, so that progress toward a
solution isn’t disrupted.

Benders decomposition: The L-shaped method, and more generally the cutting plane
approach to the projected problem (P0), are often cited as instances of “Benders
decomposition” in stochastic programming. The original idea of Benders was that
of projecting a problem in two vector variables into a projected problem in one of
them, and then using a cutting plane technique to handle the projected objective
function.

Multistage stochastic linear programming: These ideas can be extended to prob-
lems with more than just one recourse stage, but of course everything gets more
complicated. In a three-stage model, for example, the process has the form

choose u0 ≥ 0 with A00u0 ≥ b0, paying c0 ·u0,

observe ω1 ∈ Ω1,

choose u1 ≥ 0 with A10(ω1)u0 +A11(ω1)u1 ≥ b1(ω1), paying c1(ω1) ·u1,

observe ω2 ∈ Ω2,

choose u2 ≥ 0 with A20(ω1, ω2)u0 +A21(ω1, ω2)u1 +A22(ω1, ω2)u2 ≥ b2(ω1, ω2),

paying c2(ω1, ω2) ·u2.

The corresponding optimization problem concerns policies u(·) comprised of an initial
decision u0, first recourse u1(ω) and second recourse u2(ω1, ω2).

Projected costs: Costs in the second recourse stage can be projected back to the first
recourse stage and from there back to the initial stage. Once more, linear pro-
gramming duality can be put to good use in representing these projected costs
for purposes of computation.

Nested Benders decomposition: Cutting plane methods in such a multistage setting
can be developed in a “nested” manner, based on repeated projection.

46

4. EXTENDED LINEAR-QUADRATIC MODELS

The virtues of stochastic linear programming are offset to some degree by the shortcomings
of linear modeling in optimization. The most serious shortcoming is seen in the insistence
on linear objective functions, which are unable to accommodate the penalty expressions
that ought to be a vital part of problem formulation. An awkward inconsistency is met
also in the fact that the projected problems one gets through consideration of projected
costs are no longer linear programming problems. In these respects, the context of linear
programming is unpleasantly fragile for stochastic programming.

A painless remedy for these difficulties is available and will now be laid out. We’ll see that
the classical duality theory of linear programming problems can readily be broadened to
cover “extended linear-quadratic” programming problems, which even go beyond quadratic
programming problems. Among other things, this generalization will provide powerful tools
for handling penalty expressions.

Linear versus quadratic programming in optimization: Linear programming mod-
els are very popular because of the high state of development of linear programming
methodology. Linear programming problems don’t fit into optimization theory in the
same way that solving linear equations, say, fits with the theory of solving nonlinear
equations, however. For instance, we don’t typically approximate an optimization
problem in conventional format with smooth objective function f0 and constraint
functions fi by “linearizing” all these functions locally around a given point. Instead,
the appropriate approximation is based on linearizing only the constraint functions
and replacing the objective function by a quadratic function, moreover one derived
not just from f0 but the Lagrangian function by way of a vector of Lagrange multi-
pliers. This is seen in nonlinear programming techniques like “sequential quadratic
programming,” which essentially generalize the optimization version of Newton’s
method to the case of constraints.

Two-stage stochastic quadratic programming: It’s natural therefore to work, at
least as a start in the right direction, toward an adaptation to stochastic quadratic
programming of the ideas we’ve been considering for stochastic linear programming.
In the two-stage case, it’s clear that the process should then be viewed as follows:

choose u0 ≥ 0 with A00u0 ≥ b0, paying c0 ·u0 + 1
2u0 ·C0u0,

observe ω ∈ Ω,

choose u1 ≥ 0 with A10(ω)u0 +A11(ω)u1 ≥ b1(ω),

paying c1(ω) ·u1 + 1
2u1 ·C1(ω)u1,

47

where the matrices C0 ∈ IRn0×n0 and C1(ω) ∈ IRn1×n1 are symmetric and positive
semidefinite.

Difficulty: A major obstacle that arises in such a model is the absence of a duality the-
ory for quadratic programming on quite the same level of symmetry and simplicity
as the one for linear programming. This is troublesome because dualization lies
at the heart of the solution techniques used in stochastic linear programming.

Before progress can be made in stochastic quadratic programming, we have
to look closely at this difficulty to see what can be done about it. We’ll find that
a broader format than just quadratic programming is needed to make dualization
more understandable. An important gain will be made at the same time in the
constructive use of penalty expressions.

Quadratic programming duality: Let’s leave the stochastic programming scene tem-
porarily and put some effort into basic duality theory. Consider the quadratic pro-
gramming problem

(Pqp) minimize c ·u+ 1
2u ·Cu subject to u ≥ 0, Au ≥ b

for u ∈ IRn and a symmetric matrix C ∈ IRn×n that’s positive semidefinite. In the
special case where C = 0, (Pqp) becomes the canonical linear programming problem

(Plp) minimize c ·u subject to u ≥ 0, Au ≥ b,

which dualizes, as we know, to

(Dlp) maximize b ·v subject to v ≥ 0, A∗v ≤ c.

Naively one might hope that in dualizing (Pqp) one would get another quadratic
programming problem, involving an auxiliary quadratic form constructed somehow
from the data in (Pqp), but that’s not the case, at least not straightforwardly. Instead,
one gets a dual problem in which a penalty expression appears. That, however, sparks
interest in itself.

Derivation of the dual problem from the Lagrangian: The Lagrangian function for
problem (Pqp) has the form

L(u, v) = c ·u+ 1
2u ·Cu+ v · [b−Au] on IRn

+ × IR
m
+ .

Out of the general theory of Lagrangians, as developed in the context of two-
person zero-sum games, we know that the given (“primal”) problem (Pqp) can
be identified with

minimize f(u) subject to u ≥ 0, where f(u) := sup
v≥0

L(u, v),

48

and that the corresponding dual problem comes out then abstractly as

maximize g(v) subject to v ≥ 0, where g(v) := inf
u≥0

L(u, v).

To get further, we have to see what additional information about g can be gleaned
from the particular structure we now have for L. We obtain

g(v) = v ·b+ inf
u≥0

{
c ·u+ 1

2u ·Cu− v ·Au
}

= v ·b− θ(A∗v − c)

for the function θ on IRn defined by the (envelope!) formula

θ(z) := sup
u≥0

{
z ·u− 1

2u ·Cu
}
.

Clearly θ(z) is convex as a function of z, because it’s the pointwise supremum of a
collection of affine functions of z. Whether or not we easily can bring the formula
for θ(z) down to something sharper, the dual problem we obtain in association
with (Pqp) can be written in terms of θ as

(Dqp) maximize b ·v − θ(A∗v − c) subject to v ≥ 0.

Since θ might in principle take on the value ∞ in some regions, there could be
additional constraints on v in (Dqp) that have yet to be made explicit.

Linear programming subcase: As a matter of fact, in the linear programming case,
where C = 0, problem (Pqp) reduces to (Plp), and the dual problem (Dqp) reduces
accordingly to (Dlp). The θ function is then just the indicator of the nonpositive
orthant IRn

−, so that θ(A∗v − c) = 0 if A∗v − c ≤ 0 but θ(A∗v − c) = ∞ if
A∗v− c 6≤ 0. In other words, the θ term then represents the constraint A∗v ≤ c.

A quadratic example in more detail: Let’s inspect the case where the matrix C is
diagonal, say C = diag[γ1, . . . , γn] with γj ≥ 0. If actually γj = 0 for all j, we
have the linear programming case just described, where θ is the indicator of IRn

−.
This will serve as a reference point. Our aim is to understand what we get more
generally when the γj ’s aren’t all 0, say{

γj > 0 for j = 1, . . . , r,
γj = 0 for j = r + 1, . . . , n.

The calculation of θ(z) can proceed then in terms of the components of z =
(z1, . . . , zn) and u = (u1, . . . , un) with

θ(z1, . . . , zn) = sup
uj≥0

j=1,...,n

{ ∑n

j=1

[
zjuj −

γj

2
u2

j

] }
=

∑n

j=1
θj(zj)

49

for the functions
θj(zj) := sup

uj≥0

{
zjuj −

γj

2
u2

j

}
,

which come out in the form:
for j = 1, . . . , r : θj(zj) =

{
0 when zj ≤ 0,
1

2γj
z2
j when zj > 0,

for j = r + 1, . . . , n : θj(zj) =
{

0 when zj ≤ 0,
∞ when zj > 0.

Therefore, in terms of having

zj =
∑m

i=1
viaij − cj for j = 1, . . . , n when z = A∗v − c,

the effect of γj being positive is to replace the constraint
∑m

i=1 viaij ≤ cj by a
penalty term that vanishes when the constraint is satisfied but grows quadratically
(at a rate governed by 1/γj) when the constraint is violated.

Penalty interpretation more broadly: Even when C isn’t a diagonal matrix, the function
θ appearing in (Dqp) can be seen to vanish on IRn

+ but to be positive everywhere
else (with ∞ as a possibility). The expression θ(A∗v − c) acts therefore as a
penalty substitute for the constraint A∗v ≤ c that appears when C = 0.

Quadratic programming with an abstract constraint: Quadratic programming, like lin-
ear programming, can be formulated in terms of a general linear system of con-
straints, not necessarily in the canonical form given in (Pqp). In particular, such
a system can involve an abstract constraint u ∈ U with U polyhedral. A prime
example would be a box U , bounded or unbounded, but there are other useful
candidates as well. What do we get then?

In replacing the condition u ≥ 0 in (Pqp) by u ∈ U , the form of the dual
problem (Dqp) comes out the same, except for a shift in the formula for the
θ function: the maximization over u ≥ 0 in obtaining θ(z) simply turns into
maximization over u ∈ U . There are lots of possibilities to explore in trying to
understand the expressions one could get in this way for θ(z). The main thing,
however, is that we are naturally led to consider functions θ that depend on two
objects: a polyhedral set U and a positive semidefinite matrix C.

Piecewise linear-quadratic penalty expressions: It’s worth formalizing this notion.
For any choice of a nonempty polyhedral set U ⊂ IRn and a symmetric, positive
semidefinite matrix C ∈ IRn×n, we denote by θUC the function on IRn defined by

θUC(z) := sup
u∈U

{
z ·u− 1

2u ·Cu
}
.

50

This notation carries over to other circumstances. For instance, we’ll soon have use
also for the function θV B on IRm defined by

θV B(w) := sup
v∈V

{
w ·v − 1

2v ·Bv
}

for any choice of a nonempty polyhedral set V ⊂ IRm and a symmetric, positive
semidefinite matrix B ∈ IRm×m. Note that these are envelope formulas. We set
aside for now the question of how θUC looks for various U and C, but some general
facts can be stated (without proof, since the machinery is beyond us).

Penalty aspects: As long as 0 ∈ U , the function θUC will be nonnegative everywhere,
with θUC(0) = 0. There can be other points besides 0 where θUC vanishes; the
set of all such points is inevitably a certain polyhedral cone KUC . The expression
θUC(A∗v−c) can thus be viewed as a penalty substitute for the condition A∗v−c ∈
KUC , which moreover (through the polyhedral property of KUC) can be viewed
as standing for a “linear” constraint system on v.

If 0 /∈ U , θUC isn’t a penalty function in that mode, but may serve a useful
purpose anyway. Negative values of θUC can be still be called penalties if we wish
(with negative penalties as rewards).

Linear-quadratic aspects: Another property of importance is that θUC is always a con-
vex function that’s piecewise linear-quadratic. The latter means by definition that
the effective domain

{
z

∣∣ θUC(z) < ∞
}

of θUC is a polyhedral set representable
as a union of finitely many polyhedral subsets on which θUC(z) is given by a
polynomial function of degree at most 2 in the components zj of z. (As a special
case there might be no “pieces”: θUC could be given by a single such formula
over its entire effective domain, which could even be all of IRn.)

Advantages of the envelope formulas: One can contemplate many functions that, in
some context or another, might be appropriate as a penalty function θ having
a formula in pieces. Descriptions could be quite complicated, however, if one is
obliged to write down just which all the pieces are and how they articulate with
respect to each other. A powerful advantage of the functions θUC is that they can
be specified very simply, without any need to list the pieces. It’s only necessary
to specify a matrix C and a polyhedral set U , which is particularly easy when U
is a box and at worst requires writing down a system of linear constraints.

Experience counts: With experience one soon gets used to working with θ functions
in this class and knowing what U and C to invoke for a given purpose.

51

Extended linear-quadratic programming: If piecewise linear-quadratic penalty func-
tions have a natural role in dualizing quadratic programming problems, and are at-
tractive as tools in optimization models more generally, why not incorporate them
into the problem format from the start? By a problem of extended linear-quadratic
programming (in “primal canonical format”), we’ll mean an optimization problem of
the type

(Pelqp) minimize c ·u+ 1
2u ·Cu+ θV B(b−Au) over u ∈ U,

where the sets U ⊂ IRn and V ⊂ IRm are nonempty and polyhedral, and the matrices
C ∈ IRn×n and B ∈ IRm×m are symmetric and positive semidefinite.

Feasible set: The set of points u ∈ U such that θV B(Au − b) < ∞ is polyhedral by
virtue of the fact that U and the effective domain

{
w

∣∣ θV B(w) <∞
}

of θV B are
polyhedral. Thus, problem (Pelqp) is “linearly constrained” in principle.

Objective properties: The function being minimized over the feasible set is convex and
piecewise linear-quadratic.

Quadratic programming and linear programming cases: Problem (Pelqp) reduces to
(Pqp) when U = IRn

+, V = IRm
+ , and B is the zero matrix; then θV B(b−Au) = 0

if b − Au ≤ 0 but θV B(b − Au) = ∞ if b − Au 6≤ 0. When C = 0 in addition,
(Pelqp) reduces of course to (Plp).

Lagrangian function: Although (Pelqp) doesn’t have constraints in the conventional
format, and therefore doesn’t fit into the framework where Lagrange multipliers
have traditionally been introduced, it makes sense to speak of it anyway as having,
as its Lagrangian, the function

L(u, v) := c ·u+ 1
2u ·Cu+ b ·v − 1

2v ·Bv − v ·Au on U × V.

The reason is that (Pelqp) consists of minimizing over U the function f(u) =
supv∈V L(u, v). Indeed, this supremum comes out as c ·u+ 1

2u ·Cu+ θV B(b−Au)
by the definition of θV B .

Dual problem: This leads us to introduce, as dual to (Pelqp), the problem of maximizing
over V the function g(v) = infu∈U L(u, v). It comes out as

(Delqp) maximize b ·v − 1
2v ·Bv − θUC(A∗v − c) over v ∈ V,

and thus is again a problem of extended linear-quadratic programming (but now
in “dual canonical format”).

52

Note: In the special cases corresponding to quadratic programming and linear pro-
gramming, this turns into the dual problems previously considered.

General test for ELQP: Whether an optimization problem is a problem of extended
linear-quadratic programming doesn’t, of course, depend on the notation in which
it’s written. The real criterion that emerges is this: it should be the primal (or
dual) problem associated with a Lagrangian triple consisting of a convex-concave
linear-quadratic function on a product of two polyhedral sets.

Duality facts: The fundamental theorem about duality in extended linear-quadratic pro-
gramming exactly follows the lines of the familiar one in linear programming:

The optimal values in (Pelqp) and (Delqp) are equal unless inf(Pelqp) = ∞
and sup(Delqp) = −∞, i.e., neither of the problems has a feasible solution.
Moreover, as long as the common optimal value in these problems is finite,
optimal solutions ū and v̄ exist for (Pelqp) and (Delqp).

Observation: These facts apply in particular to the quadratic programming problem
(Pqp) and its dual (Dqp), even though the latter typically isn’t another quadratic
programming problem. Without having passed to the broader context of extended
linear-quadratic programming, we wouldn’t have achieved a clear and satisfying
view of this duality.

Proof background: The stated facts can be derived from the theory of quadratic pro-
gramming by a technique of rewriting any problem of extended linear-quadratic
programming as one of conventional quadratic programming in extra variables
(cf. below). Quadratic programming problems, as convex programming problems
with linear constraints, don’t need a constraint qualification in order to have
their optimal solutions characterized in terms of saddle points of the Lagrangian.
By working with such saddle points, one can connect up with the game-theoretic
framework from which (Pqp) and (Dqp) have been derived. A property that needs
to be established separately, as a stepping stone, is the existence of an optimal
solution to any quadratic programming problem with finite optimal value.

Saddle point characterization of optimality: Because (Pqp) and (Dqp) correspond to
the “game” for L, U , V , the stated duality facts mean the following: ū and v̄

are optimal solutions to (Pqp) and (Dqp) if and only if the pair (ū, v̄) is a saddle
point of L(u, v) over U × V , i.e.,

ū ∈ argmin
u∈U

L(u, v̄), v̄ ∈ argmax
v∈V

L(ū, v).

53

Generalized Kuhn-Tucker conditions: The saddle point condition just provided trans-
lates, through the convexity of L(u, v) in u and its concavity in v, to an alternative
characterization of optimality in terms of normal vectors: ū and v̄ are optimal
solutions to (Pqp) and (Dqp), respectively, if and only if

−∇uL(ū, v̄) ∈ NU (ū), ∇vL(ū, v̄) ∈ NV (v̄).

Here of course ∇uL(ū, v̄) = c+ Cū−A∗v̄, whereas ∇vL(ū, v̄) = b−Bv̄ −Aū.

Reduction to quadratic programming for computational purposes: The people
who write optimization software don’t yet think about extended linear-quadratic
programming, so one can’t invoke existing software directly. But there’s a simple
trick that can be used when necessary. It’s based on the fact that

θV B(w) = inf
z≥0, y

Dy+Ez=w

{
1
2y ·Py + e ·z

}
for any representation of the (nonempty, polyhedral) set V as

{
v

∣∣E∗v ≤ e} for some
vector e ∈ IRr and matrix E ∈ IRm×r, and any representation of the (symmetric,
positive semidefinite) matrix B as DP−1D∗ for some matrix D ∈ IRm×s and positive
definite, symmetric matrix P ∈ IRs×s. (Such representations, by no means unique,
are readily available always, and P can even be taken to be an identity matrix,
although that might not be the most expedient in a given situation.)

This is established by looking at the minimization problem on the right side as a
quadratic programming problem in (y, z) and applying to it the dualization already
described. The equation follows then as a special case of the cited duality facts.

From this expression, one can see that, for the sake of utilizing quadratic pro-
gramming software, it’s always possible to re-express a problem (Pelqp) in primal
canonical format as one of ordinary quadratic programming,

minimize c ·u+ 1
2u ·Cu+ 1

2y ·Py + e ·z

over all (u, y, z) ∈ U × IRs × IRr
+ satisfying Au+Dy + Ez = b.

Recovering the multiplier: The Lagrange multiplier vector for the constraint equation
Au+Dy+Ez = b, as generated in such a software application, will be an optimal
solution v̄ to the dual problem (Delqp).

This can be seen by deriving the dual to the quadratic programming problem
just described and verifying that it turns out to be (Delqp). We know from convex
programming in general that the Lagrange multiplier vector obtained from the
optimality conditions solves the dual problem associated with the Lagrangian.

54

Two-stage stochastic ELQP: We’re now in position to generalize stochastic linear
programming to stochastic extended linear-quadratic programming. The two-stage
model comes out as follows:

choose u0 ∈ U0, paying

c0 ·u0 + 1
2u0 ·C0u0 + θV0B0

(
b0 −A00u0

)
,

observe ω ∈ Ω,

choose u1 ∈ U1(ω), paying

c1(ω) ·u1 + 1
2u1 ·C1(ω)u1 + θV1(ω)B1(ω)

(
b1(ω)−A10(ω)u0 −A11(ω)u1

)
.

Here the matrices C0, C1(ω), B0 and B1(ω) are symmetric and positive semidefinite,
and the sets U0, U1(ω), V0 and V1(ω) are polyhedral (and nonempty).

Recourse problem and projected problem: The corresponding projected problem in the
initial stage is

(P0)
minimize over u0 ∈ U0 the expression:

c0 ·u0 + 1
2u0 ·C0u0 + θV0B0

(
b0 −A00u0

)
+ ϕ̂(u0),

where ϕ̂(u0) := IEω

{
ϕ(u0, ω)

}
for the optimal value ϕ(u0, ω) in the recourse

problem

(P1(u0, ω))

minimize over u1 ∈ U1(ω) the expression:

c1(ω) ·u1 + 1
2u1 ·C1(ω)u1

+ θV1(ω)B1(ω)

(
b1(ω)−A10(ω)u0 −A11(ω)u1

)
.

We want to understand how the projected cost function ϕ̂ can be handled in these
circumstances, different from the ones in the LP model.

Relatively complete recourse: It will be assumed that for each u0 ∈ U0 satisfying
θV0B0

(
b0 − A00u0

)
< ∞ there exists, almost surely with respect to ω ∈ Ω, some

u1 ∈ U1(ω) satisfying θV1(ω)B1(ω)

(
b1(ω) − A10(ω)u0 − A11(ω)u1

)
< ∞. This

means, as we know, that the condition ϕ̂(u0) <∞ imposes no constraint in (P0)
beyond what was already present in the initial-stage data.

Dualization: In our pattern of taking Ω =
{
ωq

∣∣ q = 1, . . . , q̄
}

and denoting by πq the
probability of ωq, we can write ϕq(u0) in place of ϕ(u0, ω) and get ϕ̂ =

∑q̄
q=1 π

qϕq,
where

ϕq(u0) = inf
uq

1∈Uq
1

{
cq1 ·u

q
1 + 1

2u
q
1 ·C

q
1u

q
1 + θV q

1 Bq
1

(
bq1 −A

q
10u0 −Aq

11u
q
1

)}
.

55

The important thing is that the recourse problem for which ϕq(u0) is the optimal
value is an ELQP problem and therefore can immediately be dualized. As long as
ϕq(u0) < ∞, which we are assuming to be true when u0 satisfies the initial-stage
constraints, we have

ϕq(u0) = sup
vq
1∈V q

1

{
[bq1 −A

q
10u0] ·vq

1 −
1
2v

q
1 ·B

q
1v

q
1 − θUq

1 Cq
1

(
Aq∗

11v
q
1 − c

q
1

) }
.

Moreover, the maximization involves u0 only in the coefficient of the linear term in
the objective function.

Parametric properties: The expression ϕq(u0) is convex and piecewise linear-quadratic
as a function of u0. In consequence, ϕ̂ too is convex and piecewise linear-
quadratic.

Argument: This follows from our earlier observation about how the common optimal
value in a pair of problems (Pelqp) and (Delqp) behaves as a function ρ(b) of
the b vector in those problems. We saw that it was a convex, piecewise linear-
quadratic function. The meaning for the present context is that the optimal
value

ρq(b) = sup
vq
1∈V q

1

{
b ·vq

1 −
1
2v

q
1 ·B

q
1v

q
1 − θUq

1 Cq
1

(
Aq∗

11v
q
1 − c

q
1

) }
is convex and piecewise linear-quadratic as a function of the coefficient vector
b. Here we are putting bq1−A

q
10u0 in place of b to get ϕq(u0) = ρq(bq1−A

q
10u0).

Since the mapping u0 7→ bq1 − A
q
10u0 is affine, we conclude that ϕq likewise is

convex and piecewise linear-quadratic.

It’s elementary from the definition of “piecewise linear-quadratic” that
when a weighted sum of such functions is taken, as in passing from the ϕq’s
to ϕ̂, the result is another piecewise linear-quadratic function.

Cutting plane approach to finding a solution: Just as in two-stage stochastic linear
programming, we can rely on the discretization and dualization process to build up
approximations ϕ̂ν of ϕ̂ in which ϕ̂ν is the pointwise max of a finite collection of affine
functions generated from subgradients of ϕ̂. That way, a sequence of solutions uν

0 to
approximate problems (Pν

0) can be obtained, with the hope of getting convergence
to an optimal solution ū0 to (P0).

Subgradient generation: For this purpose one simply needs to recognize from the dual
formula for ϕq(u0), writing it as

ϕq(u0) = sup
vq
1∈V q

1

{
[−Aq∗

10v
q
1] ·u0 + bq1 ·v

q
1 −

1
2v

q
1 ·B

q
1v

q
1 − θUq

1 Cq
1

(
Aq∗

11v
q
1 − c

q
1

) }
,

56

that a subgradient of ϕq at u0 can be calculated by solving the ELQP subproblem
in this maximization. Specifically,

vq
1 ∈ argmax

vq
1∈V q

1

{
[−Aq∗

10v
q
1] ·u0 + bq1 ·v

q
1 −

1
2v

q
1 ·B

q
1v

q
1 − θUq

1 Cq
1

(
Aq∗

11v
q
1 − c

q
1

) }
=⇒ −Aq∗

10v
q
1 ∈ ∂ϕq(u0).

In calculating such a vector vq
1 for each q, we generate the subgradient

−
∑q̄

q=1
πqAq∗

10v
q
1 ∈ ∂ϕ̂(u0).

Differences with the linear-programming case: In contrast to what we had in stochastic
linear programming, there is no guarantee that such a system of approximation
will produce an optimal solution ū0 in finitely many steps. The reason is that
in solving the subproblems to get the vectors vq

1 we can’t count on them being
extreme points of the set of feasible solutions. The feasible set is indeed polyhedral
still, but because the maximization isn’t just of a linear function, it might not be
attained at any extreme point and indeed could be attained even in the interior.
Moreover, the location of that point could be influenced by u0. Thus, there aren’t
just finitely many candidates for the optimal vq

1, independently of u0.

Still, it’s possible to develop convergence results in which the infinite sequence
{uq

0}∞ν=1 sequence is bounded and all of its cluster points are optimal solutions
to (P0). Actually, though, there’s a much better approach to solving (P0), which
takes advantage of the piecewise linear-quadratic structure rather than perceiving
it as an obstacle.

Extended envelope generation method: The solution technique to be described next
resembles the cutting plane approach in many respects, but it develops approxima-
tions ϕ̂ν of ϕ̂ that aren’t just of the piecewise linear type expressed by the maximum
of a finite collection of affine functions, but instead are piecewise linear-quadratic.
Such approximations obviously can follow ϕ̂ more closely and thus act more robustly
in producing an approximate solution to (P0).

Simplified dual format: We continue in the context of discretization and dualization of
the stochastic ELQP format, but introduce now a convenient special form for the
dual subproblems, arguing that this is possible without any loss of generality. So
far, we have observed that

ϕq(u0) = sup
vq
1∈V q

1

{
[bq1 −A

q
10u0] ·vq

1 −
1
2v

q
1 ·B

q
1v

q
1 − θUq

1 Cq
1

(
Aq∗

11v
q
1 − c

q
1

) }
.

57

We know, on the other hand, that the θ term in this maximization can be re-
expressed in the form

θUq
1 Cq

1
(Aq∗

11v
q
1 − c

q
1) = inf

zq≥0, yq

Dqyq+Eqzq=Aq∗
11vq

1−cq
1

{
1
2y

q ·P qyq + eq ·zq
}
.

In substituting this into the maximization, we get

ϕq(u0) = sup
(vq

1 ,yq,zq)∈V q
1 ×IRsq

×IRrq

+

Aq∗
11vq

1−Dqyq−Eqzq=cq
1

{
[bq1 −A

q
10u0] ·vq

1 −
1
2v

q
1 ·B

q
1v

q
1 −

1
2y

q ·P qyq − eq ·zq
}

By introducing ṽq := (vq
1, y

q, zq), Ṽ q := V q
1 ×IR

sq

×IRrq

+ , B̃q = diag[Bq, P q, 0], and
setting up the vector b̃q and matrix Ãq so that [b̃q − Ãqu0] = [bq1−A

q
10u0, 0,−eq],

we obtain

ϕq(u0) = sup
ṽq∈Ṽ q

{
[b̃q − Ãqu0] · ṽq − 1

2 ṽ
q ·B̃q ṽq

}
= θṼ qB̃q (b̃q − Ãqu0).

This is the formula we’ll stick to in what follows. It gives us

ϕ̂(u0) =
∑q̄

q=1
πqθṼ qB̃q (b̃q − Ãqu0)

and provides an insightful and notationally more convenient way of getting at the
approximations of ϕ̂ that we’ll make use of.

Reinterpretation of the projected problem: According to this expression we actually
have the formula

ϕ̂(u0) = θṼ B̃(b̃− Ãu0)

for a certain choice of a set Ṽ , matrices B̃ and Ã, and vector b̃. Indeed we
introduce ṽ as the supervector (ṽ1, . . . , ṽq̄) and then take Ṽ = Ṽ 1 × · · · × Ṽ q̄,
B̃ = diag[π1B̃1, . . . , πq̄B̃q̄], Ã = [Ã1, . . . , Ãq̄], and b̃ = [π1b̃1, . . . , πq̄ b̃q̄]. In this
manner, (P0) can be identified with the problem

(P̃0)
minimize over u0 ∈ U0 the expression

c ·u0 + 1
2u0 ·Cu0 + θV0B0

(b0 −A00u0) + θṼ B̃(b̃− Ãu0).

This problem is of course one of extended linear-quadratic programming, in which
we could combine the two θ terms to a θV B by forming V0 × Ṽ and diag[B0, B̃].

58

Approximation scheme: The basic idea for approximating (P0), construed as (P̃0), is
to replace the polyhedral set Ṽ by a smaller set Ṽ ν . The corresponding term
ϕ̂ν(u0) := θṼ νB̃(b̃ − Ãu0) then provides a substitute for ϕ̂(u0), moreover with
ϕ̂ν(u0) ≤ ϕ̂(u0). In solving the associated problem (P̃ν

0) we’ll get a point uν
0 , and

it’s through a sequence of such points that we aim to come closer and closer to
an optimal initial stage decision ū0. A key factor, though, is that in substituting
Ṽ ν for Ṽ we’ll also pass to a parameterization of the dual elements in terms of
special coefficients.

Envelope generation algorithm: Keeping matters simple, let’s suppose that by the
start of iteration ν we have generated a sequence of vectors ṽ0, ṽ1, . . . , ṽν in Ṽ . The
subset Ṽ ν of Ṽ that we assign to this list consists of all the vectors ṽ representable
in the form

ṽ = λ0ṽ
0 + λ1ṽ

1 + · · ·+ λν ṽ
ν with λi ≥ 0 and λ0 + λ1 + · · ·+ λν = 1.

The way the variable coefficients λi can be utilized directly will be explained under
“reparameterization,” but the updating plan for uν

0 and Ṽ ν is as follows. We solve
the approximate problem (P̃ν

0) involving θṼ ν ,B̃ to get uν+1
0 , and we next solve the

subproblem giving the value θṼ ,B̃(b̃− Ãuν+1
0), namely

maximize [b̃− Ãuν+1
0] · ṽ − 1

2 ṽ ·B̃ṽ over ṽ ∈ Ṽ ,

in order to obtain ṽν+1. Then by adding ṽν+1 to the list ṽ0, ṽ1, . . . , ṽν we get the set
Ṽ ν+1 (in which an additional variable λν+1 enters the representation as the coefficient
for ṽν+1). This set, lying between Ṽ ν and Ṽ , yields an approximation ϕ̂ν+1 to ϕ̂

with ϕ̂ν ≤ ϕ̂ν+1 ≤ ϕ̂. Moreover the new function ϕ̂ν+1 will agree with ϕ̂ at the point
uν+1

0 in particular. Thus, when this procedure is followed from the start, we will
have on reaching iteration ν+1 that ϕ̂ν+1 also agrees with ϕ̂ also at all the previous
points u0

0 (initialization) and u1
0, . . . , u

ν
0 .

Decomposition of the maximization subproblems: The indicated maximization problem
with respect to ṽ ∈ Ṽ , while seemingly of the same high dimension as ṽ, is actually
easy. This is because it decomposes immediately into a separate subproblem in
each component ṽq of ṽ according to the product form of Ṽ and the diagonal
form of B̃.

Reparameterization of the minimization subproblems: The essential step of solving
the approximate problem

(P̃ν
0)

minimize over u0 ∈ U0 the expression

c0 ·u0 + 1
2u0 ·Cu0 + θV0B0

(b0 −A00u0) + θṼ νB̃(b̃− Ãu0).

59

to obtain uν+1
0 may seem discouragingly complicated. How can this be carried out

when Ṽ ν is embedded within Ṽ in a space of probably very high dimension, and
furthermore when a special representation of the elements of Ṽ ν is called for? In fact
this is the glory of the method. The maximization can be dealt with in terms of the
coefficients λi themselves and therefore in a space of relatively low dimension.

To see how this comes about, we only have to see what happens when the weighted
sum that represents ṽ is substituted into the defining formula

θṼ νB̃(b̃− Ãu0) = sup
ṽ∈Ṽ ν

{
[b̃− Ãu0] · ṽ − 1

2 ṽ ·B̃ṽ
}
.

The expression being maximized in this formula is

[b̃− Ãu0] ·
[∑ν

i=0
λiṽ

i
]
− 1

2

[∑ν

i=0
λiṽ

i
]
·B̃

[∑ν

i=0
λiṽ

i
]
,

which is clearly a quadratic function of λ := (λ0, λ1, . . . , λν). It takes the form

[b̃ν − Ãνu0] ·λ− 1
2λ ·Γνλ

for the vector b̃ν = [b̃ · ṽ0, . . . , b̃ · ṽν], the matrix Ãν = [Ã∗ṽ0, . . . , Ã∗ṽν], and the
positive semidefinite matrix Γν with entries γij = vi ·B̃vj for i, j = 0, 1, . . . , ν. This
expression has to be maximized over the polyhedral set Λν consisting of all λ =
(λ0, . . . , λν) such that λi ≥ 0 and

∑ν
i=0 λi = 1. What we get here is yet another θ

expression: the maximum value is by definition

θΛνΓν (b̃ν − Ãνu0).

Low-dimensional ELQP substitute: It follows that the optimization subproblem we
have to solve in order to get uν+1

0 is:

minimize over u0 ∈ U0 the expression

c0 ·u0 + 1
2u0 ·Cu0 + θV0B0

(b0 −A00u0) + θΛνΓν (b̃ν − Ãνu0).

This is again a problem in extended linear-quadratic programming! Its dimension
is relatively low, so it can be solved directly.

Refinements: In the description just given, the number of points ṽi grows by 1 in each
iteration, and with it the number of components in the vector λ ∈ Λν . As with
the supporting hyperplane approach, however, techniques can be developed for
discarding points that no longer seem needed, and in this way the dimensionality
of the subproblems can be held in check.

60

5. STATES AND CONTROLS

Problems of optimization under uncertainty typically concern “systems” that undergo
changes over time. While our main goal is the exploration of how best to respond to such
changes when they are tied in part to the ongoing realization of random variables, there is
a substantial body of mathematics, already well appreciated for its many applications, in
which the behavior of the system is deterministic. We’ll go over some of this deterministic
theory now for the background in handling dynamical structure that it provides. Then
we’ll look at its stochastic counterpart.

States and dynamics: One of the lessons learned long ago in mathematical modeling
is that many systems can be described in terms of “states” which evolve over time
according to certain laws of “dynamics” from a given initial state. A classical model
is that of a system with states x ∈ IRd governed in continuous time by an ordinary
differential equation:

ẋ(t) = F (t, x(t)) from x(0) = a,

where ẋ(t) = (dx/dt)(t). The specification of an initial state a uniquely determines
a trajectory of future states x(t) for t > 0 (under appropriate assumptions on F).

Control of a system: To model the way that the evolution of states might be influenced
in accordance with some goal, one can think of choices being available that affect
the dynamics as time goes on. In the framework of an ordinary differential equation,
the mapping F may involve parameters that can be represented by a vector u ∈ IRn,
say, and a value u(t) for this parameter vector can be specified at each time t. The
dynamical description then becomes

ẋ(t) = F (t, x(t), u(t)) from x(0) = a for a choice of u(·).

The control function u(·) yields an expression G(t, x) = F (t, x, u(t)), and the differ-
ential equation ẋ(t) = G(t, x(t)) then yields a corresponding state trajectory x(·).

Optimization: A time interval [0, T] can be fixed, and costs and constraints on x(t)
and u(t) for t ∈ [0, T] can be introduced. In this way one gets an optimization
problem with respect to the choice of u(·) over some time interval.

Discretization: Problems in continuous time can be approximated by ones in discrete
time so as to make them finite-dimensional and more amenable to computation.

61

Multistage deterministic control: Differential equations and their continuous-time
control merely stand as an analogy for what we’ll now be occupied with. In the
setup about to be described, states and controls have an abstract character, which
turns out to be surprisingly useful. Talk of “time” is supplanted by talk of “stages,”
so as to allow for models in which time, discrete or continuous, can march on between
opportunities for intervening in the dynamics. There’s no need even to think of the
stages as coming from “time.” For many applications they may have immediate
meaning in a decision process, as was seen in stochastic programming.

Stages: k = 0, 1, . . . , N . The number N gives the model’s horizon.

Note: If N weren’t specified, so that the stages go on and on, one would have an
“infinite-horizon” model, but we won’t really be treating that case.

States: Elements xk of the “state spaces” Xk, which are certain nonempty sets for
k = 0, 1, . . . , N . Note that the space in question can change from stage to stage.

Controls: Elements uk of the “control spaces” Uk, which are certain nonempty sets for
k = 0, 1, . . . , N . Again, this space can change from stage to stage.

Dynamics: xk = Fk(xk−1, uk−1) for k = 1, . . . , N . The initial state is supposed to be
given: x0 = a, a particular element of X0.

Tacit supposition: Fk(xk−1, uk−1) is a well defined element of Xk for every choice
of xk−1 ∈ Xk−1 and uk−1 ∈ Uk−1.

Costs: fk(xk, uk) for k = 0, 1, . . . , N , with values that may be ∞ as a means of incor-
porating constraints. A control uk isn’t regarded as feasible in association with
the state xk unless fk(xk, uk) < ∞. A state xk isn’t regarded as feasible unless
there’s at least one such control uk.

Stage-by-stage description: Controls are viewed as generating states and incurring costs
by the following process:

starting from x0 = a,

choose u0, pay f0(x0, u0), get x1 = F1(x0, u0),

choose u1, pay f1(x1, u1), get x2 = F2(x1, u1),
...

choose uN−1, pay fN−1(xN−1, uN−1), get xN = FN(xN−1, uN−1),

choose uN , pay fN(xN , uN).

62

Role of the final control: The final control uN only effects costs; there’s no further
evolution of the state.

Twin forms of the deterministic optimal control problem: The optimization prob-
lem we want to work with has the general, but preliminary statement

(Pd)
minimize

∑N

k=0
fk(xk, uk) subject to

xk = Fk(xk−1, uk−1) for k = 1, . . . , N, with x0 = a

(where “d = deterministic”). This statement is preliminary because of ambiguity in
what we’re actually minimizing over. We don’t have a rigorously posed optimization
problem until that’s resolved. In fact, there are two good ways to get an unambiguous
problem statement, and we have to be clear about distinguishing them.

Basic form (P d): In one interpretation, seemingly the most natural, only the controls
uk are “decision elements.” The states are regarded as determined from them
by the dynamics, so that xk is viewed for k > 0 as standing merely for a certain
expression in the controls u0, . . . , uk−1. In this mode we have, starting from
x0 = a, that

x1 = F1(a, u0) =: χ1(u0),

x2 = F2

(
χ1(u0), u1

)
=: χ2(u0, u1),

...

xk = Fk

(
χk−1(u0, u1, . . . , uk−2), uk−1

)
=: χk(u0, u1, . . . , uk−1),

...

xN = FN

(
χN−1(u0, u1, . . . , uN−2), uN−1

)
:= χN(u0, u1, . . . , uN−1).

The term fk(xk, uk) is accordingly just shorthand for fk(χk(u0, u1, . . . , uk−1), uk)
when k > 0, whereas f0(x0, u0) = f0(a, u0). The aim is to minimize the sum of
these terms over the space U0 × U1 × · · · × UN .

Full form (Pd): In the other interpretation, which for some mathematical purposes is
more advantageous, the states are decision elements along with the controls, and
the dynamical equations are regarded as constraints. In this case the sum of terms
fk(xk, uk) is viewed as a function of all these elements, and the minimization takes
place over the space X0 ×X1 × · · · × XN × U0 × U1 × · · · × UN .

Status of the initial state: The double view of what we are optimizing over is re-
flected in the notation in the initial stage, which refers to a general x0 when

63

it seems we could just replace x0 by a. In the full form of the problem, the
equation x0 = a is a constraint on x0 as a variable.

Generality of the model: The stage-by-stage pattern we’ve described is convenient
in many ways, but to what extent is such model structure restrictive? Could it
be necessary to abandon it eventually in order to achieve greater generality in the
optimization of deterministic decision processes over time? The answer is no. In
explaining this, we begin with two minor observations.

Problems with no final control: In some situations it’s convenient to drop the final con-
trol vector uN from the model. The cost term fN(xN , uN) then becomes fN(xN),
and there’s no space UN . Everything else stays the same.

Problems with no initial state: In other situations it’s convenient to drop the initial
state vector x0. Then there is no space X0 or data vector a. The cost term
f0(x0, u0) simplifies to just f0(u0), and the state first seen is x1 = F0(u0).

Coverage of problems with no apparent ‘states’ at all: To see how a structure of states
and controls can always be deemed to be present in principle, even if not visible
on the surface, consider the extreme case of a problem

minimize f(u0, u1, . . . , uN) over uk ∈ IRnk for k = 0, 1, . . . , N,

where f possibly incorporates constraints through ∞ values. We can think of
this as a multistage problem in which uk is the control vector in stage k, and the
“history vector” (u0, u1, . . . , uk−1) is the state vector xk in stage k. (This is an
example where there is no initial state x0.)

The action begins with x1 = u0 and continues with xk = (xk−1, uk−1) for
k = 2, . . . , N ; thus, xk is obtained by adjoining uk−1 to the end of xk−1 to
make an even longer vector—here we have an instance where the dimension
of the state space definitely isn’t the same from stage to stage, but rather in-
creases. Finally, we take f0(u0) ≡ 0 and fk(xk, uk) ≡ 0 for k = 1, . . . , N − 1,
but fN(xN , uN) = f(u0, u1, . . . , uN−1, uN), which makes sense because xN =
(u0, u1, . . . , uN−1). Note that this dynamical system is actually linear, as a special
case of the following.

Linear dynamics: As an important example, the state spaces Xk to IRdk , the control
spaces Uk to IRnk , and the dynamics taken to be

xk = Akxk−1 +Bkuk−1 + bk for k = 1, . . . , N, with x0 = a.

64

Here Ak ∈ IRdk×dk−1 , Bk ∈ IRdk×nk−1 , and bk ∈ IRdk . (One speaks of “linear”
dynamics even though Fk(xk−1, uk−1) is merely affine in xk−1 and uk−1 when bk 6= 0.)

Interpretation in basic form: In the basic form (P d) of an optimal control problem
with such dynamics, the xk’s symbolize affine expressions in the uk’s:

x0 = a,

x1 = A0a+B0u0 + b0,

x2 = A1

[
A0a+B0u0

]
+B1u1 + b1,

x3 = A2

[
A1

[
A0a+B0u0

]
+B1u1 + b1

]
+B2u2 + b2,

and so forth. The minimization takes place over the uk’s.

Interpretation in full form: In the full form (Pd), however, the minimization takes place
jointly over the xk’s and the uk’s, subject to the constraints

x0 − a = 0,

x1 −A1x0 +B1u0 − b1 = 0,

x2 −A2x1 +B2u1 − b2 = 0,

x3 −A3x2 +B3u2 − b3 = 0,

and so forth. An interesting aspect then is the introduction of multiplier vectors
yk ∈ IRdk for these equations. In optimality conditions, such vectors come out as
“dual states” governed by a “dual dynamical system,” as will soon be seen.

ELQP model in deterministic control: Building on a linear dynamical system as just
described, suppose now that the costs are given by

fk(xk, uk) = δUk
(uk) + rk ·uk + 1

2uk ·Rkuk + θVkSk

(
sk − Ckxk −Dkuk

)
− ck ·xk

for nonempty polyhedral sets Uk ⊂ IRnk and Vk ⊂ IRmk , symmetric positive semi-
definite matrices Rk ∈ IRnk×nk and Sk ∈ IRmk×mk , matrices Ck ∈ IRmk×dk and
Dk ∈ IRmk×nk , and vectors rk ∈ IRnk , sk ∈ IRmk and ck ∈ IRdk . Recall that

θVkSk
(w) := sup

vk∈Vk

{
w ·vk − 1

2vk ·Skvk

}
and that δUk

is the indicator of Uk, i.e., δUk
vanishes on Uk but is ∞ outside of Uk.

In its general statement, the optimal control problem is thus to

(Pelpqd)

min
∑N

k=0

(
rk ·uk + 1

2uk ·Rkuk + θVkSk

(
sk − Ckxk −Dkuk

)
− ck ·xk

)
subject to

{x0 = a,
xk = Akxk−1 +Bkuk−1 + bk for k = 1, . . . , N ,
uk ∈ Uk for k = 0, 1, . . . , N ,

(where the “d” in “elqpd” refers to this being a deterministic control model).

65

LP example: A linear programming version, more or less in canonical format, can be
obtained by specializing Uk and Vk to IRnk

+ and IRmk
+ while taking both Rk = 0

and Sk = 0. Then we have

fk(xk, uk) =
{
rk ·uk − ck ·xk if uk ≥ 0 and Ckxk +Dkuk ≥ qk,
∞ otherwise.

Tracking example: Another good case to keep in mind is the one in which Vk = IRmk ,
Sk is nonsingular, Dk = 0 and ck = 0. Then the expression being minimized has
the form

∑N

k=0

(
δUk

(uk) + rk ·uk + 1
2uk ·Rkuk + 1

2 |qk − Ckxk|2k
)
, with |z|2k := z ·S−1

k z.

In this case we’re choosing controls uk ∈ Uk, costing rk ·uk + 1
2uk ·Rkuk, with the

aim of making the vector sequence {Ckxk}N

k=0 track (i.e., follow) a given sequence
{qk}N

k=0. The norms |·|k are used to quantify the tracking errors, and the objective
function balances these errors against the control costs. In particular one could
have Sk = εI, so that 1

2 | · |2 = 1
2ε | · |

2. Then the smaller the value of ε the more
weight would be given to insisting on the closeness of Ckxk to qk.

Note that in the still more special case with Uk = IRnk , rk = 0 and qk = 0 for
all k, the total cost is

∑N

k=0

(
1
2xk ·Qkxk + 1

2uk ·Rkuk

)
, where Qk := C∗kS

−1
k Ck.

This is a standard setup in optimal control. Any symmetric, positive semidefinite
matrix Qk can of course be represented (in more than one way) as C∗kS

−1
k Ck for

some choice of Ck and positive definite Sk (e.g., Sk = I, as is always possible).

Full Lagrangian: In its full form (Pelqpd), the optimal control problem (Pelqpd) can be
identified as the primal problem associated with a certain expression L(x, u; y, v) in
(x, u) ∈ [IRd × U] and (y, v) ∈ [IRd × V], where

IRd = IRd0 × · · · × IRdN , U := U0 × · · · × UN , V := V0 × · · · × VN

along with the notation

x = (x0, . . . , xN) ∈ IRd, u = (u0, . . . , uN) ∈ U,

y = (y0, . . . , yN) ∈ IRd, v = (v0, . . . , vN) ∈ V.

66

The function L in question is defined on [IRd × U]× [IRd × V] by

L(x, u; y, v) =
N∑

k=0

(
rk ·uk + 1

2uk ·Rkuk − ck ·xk

)
+

N∑
k=0

(
vk · [sk − Ckxk −Dkuk]− 1

2vk ·Skvk

)
+ y0 · [x0 − a] +

N∑
k=1

yk · [xk −Akxk−1 −Bkuk−1 − bk].

Indeed, (Pelqpd) consists of minimizing f(x, u) over IRd × U , where

f(x, u) := sup
(y,v)∈IRd×V

L(x, u; y, v).

Thus L, on [IRd × U]× [IRd × V], serves as a Lagrangian for (Pelqpd).

ELQP status: Since the sets [IRd ×U] and [IRd × V] are polyhedral, while L(x, u; y, v)
is a linear-quadratic expression that is convex in (x, u) and concave in (y, v), we
conclude that (Pelqpd) is a problem of extended linear-quadratic programming.

Methodological implications: In principle we may therefore contemplate solving for an
optimal solution (x̄, ū) by a way of any numerical method in extended linear-
quadratic programming that’s capable of coping with the dimensionality that
might be faced. It’s valuable also, though, to explore the special structure of the
problem that might emerge from its optimality conditions, since that could lay a
foundation for more specialized solution techniques.

Optimality in the ELQP model: On the basis of our full Lagrangian representation,
we can conclude from the theory of extended linear-quadratic programming that:

A pair (x̄, ū) is optimal for (Pelqpd) if and only if there is a pair (ȳ, v̄) such that
(x̄, ū; ȳ, v̄) furnishes a saddle point of L on [IRd×U]× [IRd×V]. Furthermore,
(ȳ, v̄) fills this role if and only if it solves the associated dual problem.

Let’s see what can be developed out these facts in conjunction with the highly spe-
cialized Lagrangian structure.

Re-expression of the full Lagrangian: The Lagrangian L can fruitfully be rewritten as
the special sum

L(x, u; y, v) =
∑N

k=0
lk(uk, vk) + l(x, u; y, v), with

lk(uk, vk) := rk ·uk + 1
2uk ·Rkuk + vk ·sk − 1

2vk ·Skvk − vk ·Dkuk,

67

where the term l(x, u; y, v) embodies everything about the dynamical connections
between the various stages and can be expressed either as

l(x, u; y, v) = y0 · [x0 − a] +
∑N

k=1
yk · [xk −Akxk−1 −Bkuk−1 − bk]

−
∑N

k=0
vk · [Ckxk]−

∑N

k=0
ck ·xk.

or equivalently in terms of the transpose matrices as

l(x, u; y, v) =
∑N−1

k=0
xk · [yk −A∗k+1yk+1− C∗kvk− ck] + xN · [yN− C∗NvN

− cN]

−
∑N−1

k=0
uk · [B∗

k+1yk+1]−
∑N

k=1
bk ·yk − a ·y0.

Here l(x, u; y, v) is affine in (x, u) for fixed (y, v), and also in (y, v) for fixed (x, u).

Dualization: The two equivalent ways of expressing l(x, u; y, v) make it easy to de-
termine the dual problem associated with this Lagrangian setup. On general
grounds, the dual problem consists of maximizing g(y, v) over IRd × V , where

g(y, v) := inf
(x,u)∈IRd×U

L(x, u; y, v).

From the second formula for l(x, u; y, v) we can readily see that the problem
thereby obtained is the full form (Delqpd) of the following dual problem

(Delqpd)

max
∑N

k=0

(
vk ·sk − 1

2vk ·Skvk

)
−

∑N

k=1
bkyk − a ·y0

−
∑N−1

k=0
θUkRk

(
B∗

k+1yk+1 +D∗
kvk − rk

)
− θUN RN

(
D∗

NvN
− rN

)
subject to

{
yN = C∗NvN + cN ,
yk = A∗k+1yk+1 + C∗kvk + ck for k = 0, . . . , N − 1,
vk ∈ Vk for k = 0, . . . , N − 1, N ,

i.e., the version of this problem in which the minimization takes place over the
yk’s and vk’s jointly, and the equations for yk’s are treated as constraints. This
optimization problem too, of course, is a problem of extended linear-quadratic
programming.

Dual dynamics: The vectors yk are dual states, whereas the vectors vk are dual
controls. They obey a dynamical system that goes backward from stage N
to stage 0. From the choice of vN one gets yN = C∗NvN

+ cN . Stage by stage
thereafter, one gets yk from yk+1 and vk by yk = A∗k+1yk+1 + C∗kvk + ck.

68

Optimality stage by stage: The saddle point condition on (x̄, ū) and (ȳ, v̄), which we
know to be equivalent to (x̄, ū) solving (Pelqpd) and (ȳ, v̄) solving (Delqpd), boils
down now to the following:

(a)
{
x̄k = Akx̄k−1 +Bkūk−1 + bk for k = 1, . . . , N ,
x̄0 = a,

(b)
{
ȳk = A∗k+1ȳk+1 + C∗k v̄k + ck for k = 0, . . . , N − 1,
ȳN = C∗N v̄N + cN ,

(c) ūk ∈ argmin
uk∈Uk

{
lk(uk, v̄k)− uk · [Bk+1ȳk+1]

}
for k = 0, . . . , N − 1,

ūN ∈ argmin
uN∈UN

{
lN(uN , v̄N)

}
,

(d) v̄k ∈ argmax
vk∈Vk

{
lk(ūk, vk)− vk · [Ckx̄k]

}
for k = 0, 1, . . . , N.

Interestingly, this consists just of the primal dynamics, the dual dynamics, and a
condition on ūk and v̄k in stage k which only depends on the data embodied in
lk, Uk and Vk, and the state vector images Ckx̄k and B∗

k+1ȳk+1.

Interpretation through stage-based ELQP subproblems: According to this, optimal
primal and dual controls ūk and v̄k are characterized by the following property:

Let x̄ and ȳ be the primal and dual trajectories generated from ū and v̄ by
the dynamics. Then in each stage k we have an extended linear-quadratic
programming problem (P̃k), depending on Ckx̄k and B∗

k+1ȳk+1, such that ūk

solves (P̃k) and v̄k solves the corresponding dual problem (D̃k).

In fact the primal and dual subproblems are:

min
uk∈Uk

: [rk −B∗
k+1ȳk+1] ·uk + 1

2uk ·Rkuk + θVkSk

(
sk − Ckx̄k −Dkuk

)
(P̃k)

max
vk∈Vk

: vk · [sk − Ckx̄k]− 1
2vk ·Skvk − θUkRk

(
B∗

k+1ȳk+1 +D∗
kvk − rk

)
,(D̃k)

except that the B∗
k+1ȳk+1 terms drop out when k = N . These subproblems

isolate the optimization in stage k controls to stage k itself, accomplishing this
by supplementing the stage k data by means of primal information generated
forward from the past through the primal states and dual information generated
backward from the future through the dual states.

Explanation: Conditions (c) and (d) above correspond to (ūk, v̄k) being a saddle
point on Uk × Vk of the function

l̃k(uk, vk) := lk(uk, vk)− uk ·B∗
k+1ȳk+1 − vk ·Ckx̄k.

69

This means that ūk and v̄k solve the primal and dual problems of extended
linear-quadratic programming that are associated with the triple l̃k, Uk, Vk,
and these problems are (P̃k) and (D̃k).

Duality for control problems in their basic form: We’ve seen that the problems
(Pelqpd) and (Delqpd), when interpreted in their full forms (Pelqpd) and (Delqpd), are
dual to each other with respect to the full Lagrangian L on [IRd × U] × [IRd × V].
But they can also be seen as dual to each other when interpreted in their basic forms
(P elqpd) and (D elqpd), in which only the control vectors are decision elements.

For this purpose we merely have to introduce the basic Lagrangian L on U × V
by taking

L(u, v) =
∑N

k=0
lk(uk, vk) + l(u, v)

with lk(uk, vk) the same as above, and with l(u, v) defined to be the value obtained
from l(x, u; y, v) when x is viewed as standing for the associate expression in u,
generated from the primal dynamics, while y is viewed as standing for the associate
expression in v, generated from the dual dynamics. It’s clear from the analysis we’ve
already made that (P elqpd) can be identified with the problem of minimizing

f(u) := sup
v∈V

L(u, v) for u ∈ U,

whereas (D elqpd) can be identified with the problem of maximizing

g(v) := inf
u∈U

L(u, v) for v ∈ V.

This confirms the claimed relationship of “basic” duality—again in the ELQP frame-
work. Of course, the saddle point condition for optimality that’s obtained by looking
at the primal and dual control problems in this basic form is equivalent to the one
obtained by looking at them in their full form.

ELQP status revisited: We see that (Pelqpd) comes out as a problem of extended linear-
quadratic programming regardless of whether it’s interpreted in its basic form or
in its full form. Moreover the same holds for the dual problem (Delqpd).

Multistage stochastic control: Let’s now extend the abstract deterministic model of
multistage control to allow for stochastic costs and dynamics. As before, in stages
k = 0, 1, . . . , N there are states xk belonging to state spaces Xk and controls uk

belonging to control spaces Uk, along with costs fk(xk, uk). In addition, however,
there are uncertain elements ωk in spaces Ωk, and these can influence the dynamics:

xk = Fk(xk−1, uk−1, ωk) for k = 1, . . . , N, with x0 = a.

70

The stochastic aspects of these elements are allowed, in general, to evolve with the
states and controls.

Probability distributions: The probability distribution for ωk in Ωk can depend on xk−1

and uk−1 and is denoted by πk(xk−1, uk−1). Thus, in our discrete probability
framework the probability of a particular element ωk ∈ Ωk is a number

πk(xk−1, uk−1;ωk) ≥ 0, with
∑

ωk∈Ωk

πk(xk−1, uk−1;ωk) = 1.

In “continuous probability,” the distribution πk(xk−1, uk−1) would correspond to
a density function ρk(xk−1, uk−1, ωk) of ωk ∈ Ωk, and so forth.

Stage-by-stage description: It’s crucial to understand the order of things—what comes
before what, and what can depend on what. The process being modeled has fea-
tures like those in multistage deterministic control, but also resembles multistage
stochastic programming, except for a much broader treatment of probabilities:

start from x0 = a,

choose u0, pay f0(x0, u0),

observe ω1 from π1(x0, u0), get x1 = F1(x0, u0, ω1)

choose u1, pay f1(x1, u1),

observe ω2 from π2(x1, u1), get x2 = F2(x1, u1, ω2),

choose u2, pay f2(x2, u2),
...

observe ωk from πk(xk−1, uk−1), get xk = Fk(xk−1, uk−1, ωk),

choose uk, pay fk(xk, uk),
...

observe ωN from πN(xN−1, uN−1), get xN = FN(xN−1, uN−1, ωN),

choose uN , pay fN(xN , uN).

As we now know well, this pattern doesn’t by itself give us an optimization
problem but simply furnishes the raw materials out of which an optimization
problem might be formulated. To arrive at such a problem, we’ll need to work
with control policies of some kind.

Certainty versus uncertainty in the states: A key idea in the process description is
knowing the state xk at the time of choosing uk, and thus knowing everything

71

about the function fk then as well, including any implicit constraints that stem
from ∞ values of fk. The successor state xk+1, on the other hand, isn’t known
at that time except as a random element whose distribution depends on that
of ωk+1, and hence parametrically on xk and uk, through the equation xk+1 =
Fk+1(xk, uk, ωk+1) and the distribution πk+1(xk, uk) for ωk+1.

Cost modeling: One might imagine situations in which, instead of fk(xk, uk), the cost
term for stage k has the form fk(xk, uk, ωk+1). There’s really no need for that,
however. The underlying question is whether a subsequent decision might alter
this cost. If yes, the cost ought to be regarded as paid at some later stage.
If no, one can simply replace it by its expectation relative to the distribution
πk+1(xk, uk) for ωk+1. That would convert it back to the case of a value that’s
known on the basis of knowing xk and uk.

Status of observations: In speaking of the “observation” of ωk at the start of stage k,
we are effectively taking the position that, from this stage on, ωk has a known value.
It’s from knowing ωk along with xk−1 and uk−1 that we know xk. For now, this is
indeed how we wish to look at things, but other approaches are interesting as well. In
particular, we could have the view that it isn’t ωk we observe, but just the resultant
state xk itself. We’ll get into this variant and others in the next chapter.

Fundamental policies: For the rest of this chapter, we put ourselves in the perspective
of stage 0 and consider that when a stage k > 0 is reached we’ll have a record
available of the observations ω1, . . . , ωk. We allow the decision to be made in this
stage to respond to these observations and thus model it by a function

uk(·) : (ω1, . . . , ωk) 7→ uk(ω1, . . . , ωk),

as in basic stochastic programming. A mapping

u(·) : ω 7→
(
u0, u1(ω1), u2(ω1, ω2), . . . , uN(ω1, ω2, . . . , ωN)

)
will be called a fundamental policy. The problem we’ll next formulate will concern
optimization over such policies, which are also termed the nonanticipative mappings
from the space Ω = Ω1 × · · · × ΩN to the space U0 × U1 × · · · × UN .

Feedback alternative: We’ll later be looking instead at schemes in which we regard
xk as the sole item of information to which we can respond in choosing uk in
stage k. Policies then will be feedback policies, whose components have the form
uk(·) : xk 7→ uk(xk) as mappings from Xk to Uk.

72

Consequences of executing a fundamental policy: Having selected a (fundamental)
policy u(·), the following is what we get in the future—as seen from the standpoint
of the present, with the random elements as yet unresolved.

Evolution of states: The states come out as functions of the observations that precede
them. From the policy u(·) = (u0, u1(·), . . . , uN(·)) we obtain a trajectory x(·) =
(x0, x1(·), . . . , xN(·)), which is likewise a nonanticipative mapping, by setting

x0 = a,

x1(ω1) = F1(x0, u0, ω1),

x2(ω1, ω2) = F2(x1(ω1), u1(ω1), ω2),
...

xN(ω1, . . . , ωN) = FN(xN−1(ω1, . . . , ωN−1), uN−1(ω1, . . . , ωN−1), ωN).

Evolution of probabilities: Once stage N is reached, a probability distribution π will
have been constructed over Ω = Ω1 × · · · × ΩN for ω = (ω1, . . . , ωN). Such a
distribution isn’t known prior to that, because of its possible dependence on the
policy u(·) and the trajectory x(·). It emerges u(·) and x(·) only as follows. On
entering stage 1, we have

π1 := π1(x0, u0) : the marginal distribution of ω1,

i.e., the distribution that will turn out to be the projection on Ω1 of the eventual
distribution π on Ω. Then through x1(·) and u1(·) we get

π2

(
x1(ω1), u1(ω1)

)
: the conditional distribution of ω2 given ω1.

The marginal distribution π1 of ω1 and this conditional distribution for ω2, given
ω1, combine to produce

π2 := the marginal distribution of (ω1, ω2)

for the start of stage 2. Similarly, after entering a stage k − 1 with

πk−1 := the marginal distribution of (ω1, . . . , ωk−1),

we proceed by way of xk−1(ω1, . . . , ωk−1) and uk−1(ω1, . . . , ωk−1) to

πk

(
xk−1(ω1, . . . , ωk−1), uk−1(ω1, . . . , ωk−1)

)
:

the conditional distribution of ωk given (ω1, . . . , ωk−1).

73

The marginal distribution πk−1 of (ω1, . . . , ωk−1) and this conditional distribution
for ωk, given (ω1, . . . , ωk−1), combine then to produce

πk := the marginal distribution of (ω1, . . . , ωk−1, ωk).

When finally k = N , we have the entire distribution πN = π for ω on Ω.

Mathematical technicalities: In general, the development of these conditional and
marginal distributions is complicated to justify. It’s an important topic in
probability theory, requiring careful assumptions. There’s no trouble, though,
in the setting of discrete probability.

Evolution of costs: From the policy u(·) and trajectory x(·) we also obtain expressions
for the costs paid in the various stages as functions of the uncertain elements:

c0 := f0(x0, u0),

c1(ω1) := f1
(
x1(ω1), u1(ω1))

)
,

c2(ω1, ω2) := f2
(
x2(ω1, ω2), u2(ω1, ω2)

)
,

...

cN(ω1, . . . , ωN) := fN

(
xN(ω1, . . . , ωN), uN(ω1, . . . , ωN)

)
.

The corresponding total cost

c0 + c1(ω1) + c2(ω1, ω2) + · · ·+ cN(ω1, . . . , ωN)

is a random variable from the perspective of stage 0, but its expectation can be
taken relative to the probability distribution π that comes out of u(·) and x(·),
and this expected value can be regarded as known in stage 0.

Twin forms of the stochastic optimal control problem: The optimization problem
now has the general statement

(Ps)
minimize IE

{∑N

k=0
fk(xk(ω1, . . . , ωk), uk(ω1, . . . , ωk))

}
subject to{

xk(ω1, . . . , ωk) = Fk(xk−1(ω1, . . . , ωk−1, uk−1(ω1, . . . , ωk−1), ωk)
for k = 1, . . . , N, with x0 = a

(where “s=stochastic”). The expectation is taken over the probability distribution
for ω that’s generated in parallel with the states and controls. But as in the deter-
ministic case, this problem statement is merely preliminary . There are two ways of
interpreting it which have to be distinguished.

74

Basic form (P s): In the basic version, each xk(ω1, . . . , ωk) is regarded as standing
for a certain expression in a, u0, u1(ω1), . . . , uk−1(ω1, . . . , ωk−1) as developed
from the dynamics. The minimization therefore takes place over the space of all
fundamental policies u(·).

Full form (Ps): In the full version, the minimization takes place not only with respect
to policies u(·) but also with respect to trajectories x(·) = (x0, x1(·), . . . , x(·))
(nonanticipative). The dynamical equations are regarded then as constraints on
x0, x1(ω1), . . . , xN(ω1, . . . , ωN) as well as u0, u1(ω1), . . . , uN(ω1, . . . , ωN).

Convexity: The road is now wide open to the discussion of linear dynamics, extended
linear-quadratic cost expressions, and so forth. Essentially, everything we looked at
in the deterministic case would have an analog in this stochastic case, if it weren’t
for one big hang-up:

In allowing the probability distributions for ω to be influenced by the states
and controls, there is a very serious danger of convexity being lost.

When that happens, the optimization problem is prone to becoming intractable nu-
merically, at least in this formulation.

How basic stochastic programming fits in: Stochastic programming, as developed so
far, corresponds to the special case of stochastic optimal control in which

(a) xk = (ω1, . . . , ωk) for k > 0 (no initial state),

(b) Fk(xk−1, uk−1, ωk) = (xk−1, ωk) for k > 1 (whereas F1(ω1) = ω1),

(c) πk(xk−1, uk−1) is independent of uk−1,

(d) fk(xk, uk) is convex in uk.

The effect of (c) in combination with (a) and (b) is the freeing up of the probability
structure from being influenced by the decisions uk that are selected. This indepen-
dence is essential also in obtaining, through (d), the convexity of the problem.

Advanced stochastic programming: Convexity can in fact be maintained under weaker
assumptions. The key is to divide the state into two parts: xk = (x′k, x

′′
k), where

x′′k = (ω1, . . . , ωk) as above, but x′k is subject to a linear system of dynamics in
the controls uk, with matrices that can depend on (ω1, . . . , ωk). The distributions
πk(xk−1, uk−1) = πk(x′k−1, x

′′
k−1, uk−1) are taken to be independent of x′k−1 and

uk−1, and the costs fk(xk, uk) = fk(x′k, x
′′
k , uk) to be convex with respect to

(x′k, uk). We’ll develop this advanced model—in better notation—after examining
the alternative approach to stochastic control through feedback policies.

75

6. DYNAMIC PROGRAMMING

Dating back to the 1950’s but following a track different from that of much of the rest
of optimization, is a theory of multistage decision problems under uncertainty known
as ‘dynamic programming’. This theory focuses on states and controls in a context of
stochastic dynamics as inspired originally by engineering applications, but it makes little
use of Lagrange multipliers, convexity, duality and other such problem characteristics in
linear and nonlinear programming. Its centerpiece is a “principle of optimality” giving a
recursive relation among cost-to-go functions. The methodology doesn’t lead to numerical
solutions to practical problems except in rather special cases, yet dynamic programming
has many interesting things to offer nonetheless. We’ll survey its foundations here with
an eye toward trying later to combine some of the best features with those coming from
other approaches.

Multistage stochastic control from a different viewpoint: Dynamic programming
grows out of a stage-by-stage process of control under uncertainty that’s just like the
one we’ve already investigated. In stages k = 0, 1, . . . , N there are states xk ∈ Xk,
controls uk ∈ Uk, and uncertain elements ωk ∈ Ωk, governed by dynamics xk =
Fk(xk−1, uk−1, ωk) and probability distributions πk(xk−1, uk−1). Costs fk(xk, uk)
are accumulated and foreseen through their probabilistic expectations. There’s a
significant shift in attitude, however, in how optimization should be carried out and
what it should be based on.

Parametric treatment of the initial state: There isn’t just a single problem for a single
initial state a. Instead, an entire family of problems is made the focus, namely
one for each possible initial state x0. The optimal values and solutions to these
problems are studied in their parametric dependence on x0.

States as sole repositories of current information: The attitude is adopted that, when
stage k is reached, the state xk contains all the information that’s available about
the past of the system. The choice of the control uk can respond only to xk.
There’s no memory of anything else, except to the extent that it has been built
into xk. This holds even for the realized values of ω1, . . . , ωk.

Modeling implications: From one angle, this is a harmless assumption which could
be seen merely as clarifying what a “state” ought to mean. It simply requires
us to pay close attention to how we set up the states in a particular application.
From another angle, however, this has the potential to be a serious restriction
because of its effect on watershed properties like convexity.

76

Example of states as cumulative observations: The state could, as a special case,
contain a record of all past observations. For instance, we could start with
x0 as furnishing some kind of background information and then, after ω1 has
been observed, take x1 = (x0, ω1). After ω2 has been observed we could take
x2 = (x0, ω1, ω2), and so forth. This would correspond to Xk = X0×Ω1×· · ·×Ωk

and
Fk(xk−1, ωk) = (xk−1, ωk) for k = 1, . . . , N,

with no controls being involved in the dynamics at all. Many variations on this
theme are possible. There could be additional aspects to the state beyond such a
record of observations. Or, observations could be subject to a “sunset law”: we
might have xk = (ωk−2, ωk−1, ωk) (when k ≥ 3) to capture the idea that decisions
ought not to be based on more than the three latest observations, say. Again xk

would be determined then from xk−1 and ωk without intervention of uk−1.

Feedback policies: Because the choice of the control uk in stage k can’t be based on
any information about the past beyond what’s in xk, the concept of a policy has
to be different from the one we worked with until now. We can’t take for granted
that the record of observations ω1, . . . , ωk is part of xk (although it might be, as just
noted). Anyway, that wouldn’t fit with the desire now for parametric analysis, since
fundamental policies only make sense with respect to a fixed initial state a. Instead
we have to concentrate on feedback policies

u(·) =
(
u0(·), u1(·), . . . , uN(·)

)
with component functions uk(·) : Xk → Uk.

This means we work with uk(xk) rather than uk(ω1, . . . , ωk) and moreover with
u0(x0), whereas previously we had only a single choice of the initial control.

Feedback: This term refers generally to schemes in which a process of generating
states from controls is supplemented by one of getting controls from states.

Evolution of the states and controls: In the execution of a feedback policy u(·), the
dynamical system reduces to one in which xk, as an uncertain element of Xk with
a specific probabilistic behavior, can be known from xk−1:

xk = Fk(xk−1, uk−1(xk−1), ωk), where

ωk has distribution πk(xk−1, uk−1(xk−1)).

Proceeding stage by stage, starting from x0 as a parameter, we get a conditional
distribution for x1 given x0, then one for x2 given x0 and x1, and so forth.

77

In this manner we build up, from the standpoint of stage 0, a distribution of
(x1, x2, . . . , xN) as a random variable in X1 × X2 × · · · × XN with respect to any
initial x0 ∈ X0. Since controls are uniquely prescribed from the states, we can
think of this as likewise building up a distribution of (u1, u2, . . . , uN) as a random
variable in U1 × U2 × · · · × UN .

Evolution of the underlying probabilities: The distributions for (x1, x2, . . . , xN) and
(u1, u2, . . . , uN) correspond of course to one for ω = (ω1, ω2, . . . , ωN) that emerges
at the same time on the probability space Ω.

Evolution of costs: The cost terms can be viewed similarly. From the distribution
generated for xk we get a distribution for ck = fk(xk, uk(xk)). The expected
values of these cost terms for k = 0, 1, . . . , N therefore make sense in the light of
any initial state x0 and feedback policy u(·).

Technical considerations: In a general probability framework, it would be neces-
sary to impose further conditions on the mappings uk(·) : Xk → Uk, such
as “measurability,” in order to be sure that the expectations are well defined.
Questions of the “integrability” of the cost expressions as functions on Ω would
also need attention. By concentrating on the case of discrete probability, we
are able to avoid such ramifications.

Expected cost functional: On the basis of this probabilistic evolution, we can asso-
ciate with any initial state x0 and feedback policy u(·) = (u0(·), u1(·), . . . , uN(·)) an
expected cost value

J0

[
x0, u(·)

]
= J0

[
x0, u0(·), u1(·), . . . , uN(·)

]
: = IE

{
f0

(
x0, u0(x0)

)
+ f1

(
x1, u1(x1)

)
+ · · ·+ fN

(
xN , uN(xN)

)}
,

where the expectation is taken with respect to the probability distribution on the
cost terms that’s induced by x0 and u(·), as described.

Feasibility: A feedback policy u(·) is deemed to be feasible if J0

[
x0, u(·)

]
<∞ for every

x0 ∈ X0. This necessitates having

uk(xk) ∈ Ck(xk) for k = 0, 1, . . . , N, where

Ck(xk) :=
{
uk ∈ Uk

∣∣ fk(xk, uk) <∞
}
,

and it’s equivalent to that property in our framework of discrete probability.
Here Ck(xk) is the feasible control set in stage k. Obviously there can’t be
any policy u(·) unless Ck(xk) 6= ∅ almost surely with respect to the probability

78

distribution on xk that comes out of the preceding states and policy mappings
u0(·), . . . , uk−1(·), for every initial x0.

General problem of dynamic programming: Given a multistage stochastic control
model as above, find a feedback policy ū(·) = (ū0(·), ū1(·), . . . , ūN(·)) such that, with
respect to every other feedback policy u(·) = (u0(·), u1(·), . . . , uN(·)), one has

J0

(
x0, ū0(·), . . . , ūN(·)

)
≤ J0

(
x0, u0(·), . . . , uN(·)

)
for all x0.

Such a policy ū(·) is called optimal—in the sense of dynamic programming.

Interpretation as a form of parametric optimization: This description of the general
problem underscores one of the most distinguishing features of dynamic pro-
gramming. The subject isn’t concerned with solving just a single optimization
problem, as would correspond to the specification of a single initial state x0 = a

as earlier, but rather with solving systematically an entire family of optimization
problems parameterized by x0. A optimal policy ū(·) of the kind being sought
isn’t an optimal solution to one optimization problem, but a parametric descrip-
tion of optimal solutions to many such problems.

Rationale: The focus on parametric optimization is dictated in part by a recursive rule
for constructing optimal policies which will soon be explained. Equally important
in the concept, however, is the idea of feedback itself as making sense in every
stage of control. Much of the motivation derives also from interest in studying
what happens to the mappings ū0(·), . . . , ūk(·), . . . as the horizon N in the model
is allowed to go toward ∞.

Connection with basic stochastic programming: Stochastic programming, as devel-
oped so far, fits closely with the case of dynamic programming in which

(a) xk = (x0, ω1, . . . , ωk) for k > 0,

(b) Fk(xk−1, uk−1, ωk) = (xk−1, ωk) for k > 0,

(c) πk(xk−1, uk−1) is independent of uk−1,

(d) fk(xk, uk) is convex in uk.

Feedback policies are comprised then of mappings uk(·) : (x0, ω1, . . . , ωk) → xk and
are almost the same as the fundamental policies we looked at previously, except that
instead of a fixed initial state a there’s a parameter x0.

Any optimal policy ū(·) in the dynamic programming sense will, in particular
in this setup, yield an optimal policy in the stochastic programming sense simply
through specialization of x0 to a. A bigger question, however, is whether the higher

79

level of effort required to produce an optimal policy in the dynamic programming
sense is well spent if only one such specialization is called for.

Residual minimization in later stages: Parametric optimization in multistage sto-
chastic control has so far been viewed only from stage 0, but an important virtue
of the dynamic programming setup is that it exhibits essentially the same structure
from any stage forward.

Let’s try this out by shifting our perspective to that of stage 1. We imagine
ourselves at a state x1 ∈ X1. How we got there doesn’t matter; all that counts is
what happens from now on. Although mappings u0(·) : X0 → U0 for stage 0 are no
longer relevant, any choice of mappings uk(·) : Xk → Uk for k = 1, . . . , N results in
a probability distribution for the cost just as before and thereby has an associated
expected cost J1

[
x1, u1(·), . . . , uN(·)

]
:= IE

{
f1

(
x1, u1(x1)

)
+ · · ·+ fN

(
xN , uN(xN)

)}
.

The situation is just what we faced earlier, but with one stage fewer to go until
termination, and with x1 as the parameter instead of x0.

The same goes for subsequent stages as well. Having arrived reached stage k, we
have an N − (k− 1)-stage residual problem of dynamic programming, parameterized
by xk, in which the expected cost functional is

Jk

[
xk, uk(·), . . . , uN(·)

]
:= IE

{
fk

(
xk, uk(xk)

)
+ · · ·+ fN

(
xN , uN(xN)

)}
,

the expectation being taken relative to the probability distribution for these cost
terms that’s generated by (uk(·), . . . , uN(·)) from xk. We seek a residual feedback
policy (ūk(·), . . . , ūN(·)) such that, with respect to every other residual feedback
policy (uk(·), . . . , uN(·)), one has

Jk

[
xk, ūk(·), . . . , ūN(·)

]
≤ Jk

[
xk, uk(·), . . . , uN(·)

]
for all xk.

Such a feedback policy is said to be optimal from stage k on.

Cost-to-go functions: The optimal value in the control problem faced if, on arriving in
stage k, the state is xk, is called the (expected) cost-to-go associated with xk. As a
function ψk of xk ∈ Xk, it’s given by the formula

ψk(xk) = inf
uk(·),...,uN (·)

Jk

[
xk, uk(·), . . . , uN(·)

]
.

The key to dynamic programming is the exploration of the relationships between

the successive functions ψ0, ψ1, . . . , ψN . This can be carried out by analyzing the
structure of the expectations that are involved.

80

Some rules for expectations: To proceed, we’ll need ways of manipulating expectations
of random variables. For convenience in stating general rules about this, we can
think of the random variables as functions of ω ∈ Ω with the distribution of ω fixed,
although the applications we’ll make will be in more diverse situations.

Several rules are obvious from the fact that an expectation is in principle an
integral with respect to a probability measure. For instance, for random variables
θ(ω) and θ′(ω) (either vector or scalar) one has

IEω

{
θ(ω) + θ′(ω)

}
= IEω

{
θ(ω)

}
+ IEω

{
θ′(ω)

}
, IEω

{
λθ(ω)

}
= λ IEω

{
θ(ω)

}
.

As an extension of the rule for scalar multiplication, a vector inner product v ·θ(ω)
satisfies

IEω

{
v ·θ(ω)

}
= v · IEω

{
θ(ω)

}
.

Also, because “probabilities add up to 1” it’s always true for any constant c that

IEω

{
c
}

= c, IEω

{
θ(ω) + c

}
= IEω

{
θ(ω)

}
+ c.

Conditional expectations (i.e., expectations with respect to conditional probability
distributions) follow the same principles but give rise to the following additional rule
in case of ω = (ω1, ω2) ∈ Ω = Ω1 × Ω2:

IE
ω1,ω2

{
θ(ω1, ω2)

}
= IE

ω1

{
IE

ω2|ω1

{
θ(ω1, ω2)

}}
.

Here ω1 is a parameter in the inner expectation, which is taken with respect to the
conditional probability distribution for ω2 given the value of ω1, so that this inner
expectation designates a value θ̂(ω1). The outer expectation is then that of θ̂(ω1)
as a function of ω1 with respect to the marginal distribution for ω1 induced by the
joint distribution for (ω1, ω2).

Conditional and marginal distributions: Roughly speaking, the marginal distribution
of ω1 induced by a joint distribution of (ω1, ω2) is the one in which the probability
of ω1 belonging to a subset A of X1 is identified with the probability of (ω1, ω2)
belonging to the subset A × Ω2 of Ω1 × Ω2. The representation of any joint
probability distribution for (ω1, ω2) in terms of a marginal distribution of ω1

along with a conditional distribution of ω2 for each ω1, so as to justify the rule
just given, is an important part of probability theory and is fraught with technical
complications of a “measurability” nature.

81

Example of applying the expectation rules: If θ(ω1, ω2) = θ1(ω1) + θ2(ω1, ω2), then

IE
ω1,ω2

{
θ(ω1, ω2)

}
= IE

ω1

{
θ1(ω1) + IE

ω2|ω1

{
θ2(ω1, ω2)

}}
,

where the outer expectation is taken with respect to the marginal distribution of
ω1 and the inner expectation with respect to the conditional distributions of ω2

corresponding to the various values of ω1.

Some rules for minimization: Similar rules will be needed for coping with the mini-
mization of complicated expressions of a variable z. Obviously

infz

{
λϕ(z)

}
= λ infz

{
ϕ(z)

}
for λ > 0,

infz

{
ϕ(z) + c

}
= infz

{
ϕ(z)

}
+ c for any constant c.

In general one only has infz

{
ϕ(z)+ϕ′(z)

}
≥ infz

{
ϕ(z)

}
+infz

{
ϕ′(z)

}
, but equality

does hold for a separable function ϕ(z1, z2) = ϕ(z1) + ϕ(z2):

inf
z1,z2

{
ϕ(z1) + ϕ(z2)

}
= inf

z1

{
ϕ(z1)

}
+ inf

z2

{
ϕ2(z2)

}
,

and similarly for more than two arguments. On the other hand, one always has

inf
z1,z2

{
ϕ(z1, z2)

}
= inf

z1

{
inf
z2

{
ϕ(z1, z2)

}}
,

where the inner minimization produces a function of z1 to which the outer minimiza-
tion is then addressed.

Example of applying the minimization rules: If ϕ(z1, z2) = ϕ1(z1) + ϕ2(z1, z2), then

inf
z1,z2

{
ϕ1(z1) + ϕ2(z1, z2)

}
= inf

z1

{
ϕ1(z1) + inf

z2

{
ϕ2(z1, z2)

}}
.

This is seen from the fact that, for fixed z1, we have infz2

{
ϕ1(z1)+ϕ2(z1, z2)

}
=

ϕ1(z1) + infz2

{
ϕ2(z1, z2)

}
because the term ϕ1(z1) merely has the role of a con-

stant when we minimize with respect to z2.

One-stage models: To grasp the point of dynamic programming, we have to look first
at the simplest case, from which we’ll learn a lesson we can apply repeatedly. What
if there is only one stage to the model? Then the initial stage is also the last, and no
uncertainty enters the picture. The sole cost-to-go function is ψ0, which by definition
has the formula

ψ0(x0) = inf
u0(·)

f0(x0, u0),

82

with the minimization carried out over all mappings u0(·) : X0 → U0. It’s obvious in
this elementary situation the mapping u0(·) affects ψ0 at a particular point x0 only
through its value u0(x0) at that point. Equally well we have the formula

ψ0(x0) = inf
u0
f0(x0, u0),

in which ψ0(x0) appears as the optimal value in a minimization problem over U0

instead of over a space of mappings. The corresponding optimal solution set

Ψ0(x0) = argmin
u0

f0(x0, u0)

also plays a role, because dynamic programming requires us to look for a mapping
ū0(·) : X0 → U0 such that, with respect to every other u0(·) : X0 → U0, one has

f0
(
x0, ū0(x0)

)
≤ f0

(
x0, u0(x0)

)
for all x0.

Clearly ū0(·) enjoys this property if and only if

ū0(x0) ∈ Ψ0(x0) for all x0.

In other words, an optimal policy in the dynamic programming sense can be put
together by selecting for each x0 ∈ X0 some element of Ψ0(x0) as the value of ū0(·).

Note: For this to be possible the set Ψ0(x0) must of course be nonempty for each
x0 ∈ X0. Conditions on f0 and the spaces X0 and U0 might have to be imposed
to make sure that’s the case, but regardless, the function ψ0 is well defined (as
long as infinite values are admitted).

Two-stage models: Continuing with this scrutiny of special cases, suppose that N = 1,
so that we have cost-to-go functions ψ0 and ψ1. These are defined by

ψ0(x0) = inf
u0(·),u1(·)

{
IE

ω1|x0,u0(x0)

{
f0

(
x0, u0(x0)

)
+ f1

(
x1, u1(x1)

)}}
,

ψ1(x1) = inf
u1(·)

f1
(
x1, u1(x1)

)
,

with the minimization taken over mappings u0(·) : X0 → U0 and u1(·) : X1 → U1.
The stage 1 formula has x1 standing merely for an element of X1, but the stage 0
formula has x1 standing for F1

(
x0, u0(x0), ω1

)
, i.e., for a random variable based on

x0, u0(·), and the probability distribution π1

(
x0, u0(x0)

)
for ω1. (We could write

x1(ω1) in this case but in the interest of notational simplicity have chosen simply to

83

write x1 again. The notation “ω1 | x0, u0(x0)” under the expectation sign emphasizes
that the expected value generally depends on x0 and u0(x0) through the dependence
of the distribution π1

(
x0, u0(x0)

)
on these elements.)

The stage 1 formula refers to a residual one-stage problem. Our analysis of such
problems tells us it can be written equally well as

ψ1(x1) = inf
u1

f1(x1, u1).

The stage 0 formula, on the other hand, can be manipulated by the listed rules of
expectation and minimization to obtain

ψ0(x0) = inf
u0(·),u1(·)

{
f0

(
x0, u0(x0)

)
+ IE

ω1|x0,u0(x0)

{
f1

(
x1, u1(x1)

)}}
= inf

u0(·)

{
f0

(
x0, u0(x0)

)
+ inf

u1(·)

{
IE

ω1|x0,u0(x0)

{
f1

(
x1, u1(x1)

)}} }
= inf

u0(·)

{
f0

(
x0, u0(x0)

)
+ IE

ω1|x0,u0(x0)

{
inf

u1(·)
f1

(
x1, u1(x1)

)}}
= inf

u0(·)

{
f0

(
x0, u0(x0)

)
+ IE

ω1|x0,u0(x0)

{
ψ1

(
x1

)}}
= inf

u0(·)

{
f0

(
x0, u0(x0)

)
+ IE

ω1|x0,u0(x0)

{
ψ1

(
F1(x0, u0(x0), ω1)

)}}
.

This expression can be simplified conceptually by introducing the function

ψ̂0(x0, u0) := IE
ω1|x0,u0

{
ψ1

(
F1(x0, u0, ω1)

)}
,

where the distribution of ω1 is given by π1(x0, u0). It comes out as

ψ0(x0) = inf
u0(·)

{
f0

(
x0, u0(x0)

)
+ ψ̂0

(
x0, u0(x0)

)}
and therefore through our one-stage analysis as

ψ0(x0) = inf
u0

{
f0(x0, u0) + ψ̂0(x0, u0)

}
,

where the minimization for each x0 is carried out over U0 instead of over mappings
from X0 to U0. The one-stage analysis further reveals now how to get an optimal
policy

(
ū0(·), ū1(·)

)
: just take

ū0(x0) ∈ Ψ0(x0) = argmin
u0

{
f0(x0, u0) + ψ̂0(x0, u0)

}
for each x0,

ū1(x1) ∈ Ψ1(x1) = argmin
u1

f1(x1, u1) for each x1.

84

Summary: The picture emerges that we could determine ψ1 and ū1(·) by minimizing
f1(x1, u1) in u1 for each x1, and after that, by forming ψ̂0(x0, u0), we could
determine ψ0 and ū0(·) by minimizing f0(x0, u0) + ψ̂0(x0, u0) in u0 for each x0.
That would produce an optimal policy (ū0(·), ū1(·)).

Principle of optimality in dynamic programming: In the general multistage frame-

work, the cost-to-go functions ψk for k < N satisfy the recursive relations

ψk(xk) = inf
uk

{
fk(xk, uk) + ψ̂k(xk, uk)

}
where

ψ̂k(xk, uk) := IE
ωk+1|xk,uk

{
ψk+1

(
Fk+1(xk, uk, ωk+1)

)}
,

from which they can be generated backward from stage to stage, starting with

ψN(xN) = inf
uN

fN(xN , uN).

In terms of the corresponding argmin sets Ψk(xk) for k = 0, 1, . . . , N , an optimal

policy ū(·) =
(
ū0(·), ū1(·), . . . , ūN(·)

)
can be obtained from this procedure by taking

ūk(xk) ∈ Ψk(xk) for each x0.

Proof. Our preceding analysis of one-stage models directly supports the assertions
about ψN and ūN(·). For any k < N , we can argue now much as we did for
two-stage models, although the notation is somewhat more complicated. By the
definition of the cost-to-go functions, we have

ψk(xk) = inf
uk(·),uk+1(·),...,uN (·)

{
IE

ωk,ωk+1,...,ωN

{
fk

(
xk, uk(xk)

)
+ fk+1

(
xk+1, uk+1(xk+1)

)
+ · · ·+ fN

(
xN , uN(xN)

)}}
,

ψk+1(xk+1) = inf
uk+1(·),...,uN (·)

{
IE

ωk+1,...,ωN

{
fk+1

(
xk+1, uk+1(xk+1)

)
+ · · ·+ fN

(
xN , uN(xN)

)}}
,

where in the first formula xk+1, xk+2, . . . , xN stand for random variables generated
by the dynamics starting from xk, but in the second formula only xk+2, . . . , xN

have this character, and they are generated by the dynamics starting from xk+1

85

as a parameter ranging over Xk+1. We can apply the rules of expectation and
minimization to the first formula to rewrite it as

ψk(xk) = inf
uk(·)

{
IE
ωk

{
fk

(
xk, uk(xk)

)
+

inf
uk+1(·),...,uN (·)

{
IE

ωk+1,...,ωN |ωk

{
fk+1

(
xk+1, uk+1(xk+1)

)
+ · · ·+ fN

(
xN , uN(xN)

)}} }}
= inf

uk(·)

{
IE
ωk

{
fk

(
xk, uk(xk)

)
+ ψk+1(xk+1)

}}
= inf

uk(·)

{
IE
ωk

{
fk

(
xk, uk(xk)

)
+ ψk+1

(
Fk+1(xk, uk(xk), ωk+1

)}}
.

We recognize that the last version gives the optimal value in a two-stage model
as already analyzed, and that it therefore yields the claimed expression of ψk(xk)
as the infimum of fk(xk, uk) + ψ̂k(xk, uk) with respect to uk. At the same time
we deduce that ūk(·) is optimal if ūk(xk) is taken for each xk to be an element
of the associated minimizing set.

Dynamic programming algorithm: These recursive relations are the foundation for a
‘algorithm’ which, at least in concept, might be used to solve the general problem in
dynamic programming. First we construct the function ψN , obtaining at the same
time a mapping ūN(·) : XN → UN . Next we insert this in the recursive relation
in order to construct the function ψN−1 and a mapping ūN−1(·) : XN−1 → UN−1.
Continuing from ψN−1 we get ψN−2 and so forth down to ψ0, generating additional
mappings ūN−2(·), . . . , ū0(·) along the way.

In the end we not only have all the cost-to-go functions for the problem but a
particular optimal feedback policy ū(·) formed by ū0(·), ū1(·), . . . , ūN(·) (as long as
the minimizing sets that are encountered are all nonempty).

Technical troubles: To apply the recursive formula for ψk in terms of ψk+1, it’s necessary
to solve for each xk ∈ Xk an optimization problem in which the expression

fk(xk, uk) + IE
ωk+1|xk,uk

{
ψk+1

(
Fk(xk, uk, ωk+1)

)}
is minimized over all uk ∈ Uk. What might this involve? This problem could in some
cases be discrete, with Uk a finite set and therefore only finitely many choices of uk

to compare. Then, as long as the number of choices isn’t too large, the minimization
can be carried out by “brute force.”

86

Let’s think instead, though, about cases involving continuous variables, say with
Uk = IRnk . In our setup we know the function fk in stage k, and with it the implicit
control set Ck(xk). For the sake of concreteness, let

fk(xk, uk) =
{
gk(xk, uk) if uk ∈ Uk, Gk(xk, uk) ≤ 0,
∞ otherwise

for a finite function gk, so that Ck(xk) is given by the constraints uk ∈ Uk and
Gk(xk, uk) ≤ 0. Under the condition that ϕ̂k(xk, uk) < ∞ whenever uk ∈ Ck(xk),
so that there aren’t any implicit constraints induced from the future, the constraint
structure faced in this subproblem can be imagined as falling into the conventional
patterns in finite-dimensional optimization and not posing any unusual difficulties:
we have to minimize the finite expression gk(xk, uk) + ψ̂k(xk, uk) over all uk ∈ Uk

with Gk(xk, uk) ≤ 0.
In contrast to gk(xk, uk), Gk(xk, uk) and Uk, however, the values of ψ̂k(xk, uk)

aren’t known directly but have to be developed from a formula dependent on ψk+1,
which itself had to be constructed from other data. This raises questions about
how the minimization can be carried out, since some techniques might demand for
instance that we know first or second partial derivatives of ψ̂k(xk, uk) with respect
to the components of uk. Will such derivatives exist? Indeed, is there even any
assurance that ψ̂k(xk, uk) will have continuity properties with respect to uk of the
kind taken for granted in elementary optimization? We already know from our look
at stochastic programming that the answer can well be negative, but that convexity
might come to the rescue if it can be counted on.

Troubles with the expectation: From the standpoint of mathematical rigor, we would
need to ensure in the first place that the expression being integrated with respect
to the probability distribution πk+1(xk, uk) of ωk+1 makes sense (“measurability”
etc.), yet this is beset with the issue of what we can say about the function ψk+1.
Clearly, a sound theory demands that facts be carefully developed about the
extent to which crucial properties of the cost-to-go functions can be propagated
backward from stage N in the presence of nice properties of the data elements
fk, Fk, and the constraints.

Troubles with global minimization: We can’t truly get ψk(xk) without performing the
minimization globally . Apart from “brute force” cases, that may be very hard to
do. Convexity of fk(xk, uk) with respect to uk could help a lot, but when can
we hope for that to be available? Again the difficulty lies in the circumstance
that ψ̂k depends in general not only on Fk but also on the particular probability
distribution πk+1(xk, uk) for ωk+1.

87

Practical considerations: In a specific problem of multistage optimal control with a
fixed initial state a, the real goal is to determine the initial control element ū0

that should be utilized. Everything else is subsidiary and designed as a way of
achieving an adequate present representation of the future (with its various recourse
opportunities). The dynamic programming approach can serve to find the desired
element ū0, but it requires the construction of whole functions ψk on the spaces
Xk, at least for k = 1, . . . , N . This is a formidable undertaking, as already can be
appreciated just by raising the question of how a function ψk might be represented.
The following are some cases to think about.

Functions given by tables of values: Lacking any other handle on the situation, we can
imagine representing and storing the functions simply through extensive lists of
their values. After all, many functions with only an empirical basis are stored
like this in computers anyway. But there are sharp limitations to such an ap-
proach. Usually it’s employed for functions of one or two variables over a modest
range like an interval or box. If the state xk is a vector having 10, or 100, or
1000 “continuous” components, the idea is hopeless. Furthermore it suffers from
the disadvantage that function properties of potentially great importance, like
convexity for instance, don’t readily come to the surface.

Functions given by specifying parameters: Much of mathematics revolves around spe-
cial classes of functions: linear, quadratic, polynomial, trigonometric, etc. To
select a function from such a class, it’s only necessary to specify the values of
certain coefficients. We might hope to take advantage of this by concentrating
on cases of dynamic programming where the cost-to-go functions ψk stay within
a particular class as we propagate them backward. The procedure could then
be reduced in effect to one in which formulas are derived for propagating the
needed coefficient values backward. Unfortunately, although there are interesting
and important examples of this, the idea is severely restricted in its applicability.
The operation of minimization, especially constrained minimization, just doesn’t
preserve classes of functions like those that have served so well traditionally.

Functions given by approximation: If the true functions ψk are hard to come by, per-
haps we can develop and maintain approximations of them which at least will
support approximate methods of solving stochastic multistage control problems.
This is a great idea—and an intriguing challenge for mathematical research. Once
more a break with tradition is demanded because approximation by polynomi-
als (e.g. through “Taylor expansions”) or trigonometric functions (e.g. through

88

“Fourier expansions”) miss the boat. Even if it were possible to calculate such
approximations, they couldn’t be propagated through the formula for ψk in terms
of ψk+1. Maybe, though, other kinds of approximation (e.g. ones relying on con-
vexity and duality) might be discovered that could work effectively.

Calculation of expectation values: Just because expectations are integrals, and in-
tegration is a familiar, classical operation, that doesn’t mean that expected values
are easy to calculate. Even when the function being integrated is expressed by an
analytic formula, an integral in three or more dimensions can be hard to compute.
Roughly speaking, beyond dimension 10 numerical integration is virtually impossible,
and difficulties can set in much earlier than that.

Schemes based on multidimensional grids, for instance, fail because the number
of points needed in a grid in order to ensure a reasonable degree of accuracy grows
exponentially. If 1000 points along the real line are needed to compute an integral
well with respect to a single variable, than with 10 integration variables there could
be the need for (1000)10 = 1030 points making up a grid in IR10. And this is just
for computing the value of a single expectation, whereas what we actually have to
aim at, in the case of ψ̂k(xk, uk) = IEωk+1

{
ψk+1

(
F (xk, uk, ωk+1)

)}
, is such a value

as parameterized by xk and uk!

Simulation and sampling: One idea that has attracted a lot of attention for such reasons
is the calculation of expectations approximately through sampling. Suppose for
simplicity that the distribution of ωk doesn’t really depend on xk or uk. Instead
of trying to calculate the expectation of ψk+1

(
Fk(xk, uk, ωk+1

)
by numerical inte-

gration in ωk+1 for each xk and uk (with respect to the distribution πk+1(xk, uk)),
we can think of using random number generators and simulation in a scheme of
producing a sample set of values ω1

k+1, ω
2
k+1, . . . , ω

s
k+1 that mimics what might

happen if we made s independent observations of ωk+1. We could then, as a sort
of approximation, replace the true expected value ψ̂k(xk, uk) by the simulated
“empirical” expected value

ψ̂?k (xk, uk) =
1
s

∑s

q=1
ψk+1

(
Fk(xk, uk, ω

q
k+1).

Note that there’s no problem with maintaining dependence on xk and uk.

Interesting mathematical questions then come up. In what quantifiable sense
does ψ̂?k approximate ψ̂k, and how does the number s of sample points affect
the closeness of approximation? If simulation is used in each stage, the given
control problem is replaced by one in which all the probability distributions are

89

discrete and finite, and when this altered problem is solved, an optimal initial ū?
0 is

obtained which is likely to differ from an initial control ū0 that would correspond
to solving the given problem, if that were possible. Can we be sure that as the
sample sizes in the simulation are increased, ū?0 will converge to ū0, or something
like that? How big a sample might be needed in order for us to be confident
about our closeness of approximation? These are subjects of ongoing research for
which newly developed techniques of variational analysis are essential.

Example of linear-quadratic regulation: A beautiful illustration of dynamic program-
ming at its best is seen in applications to stabilizing a system around a desired state,
such as a state of equilibrium. Let’s think of a system with states xk ∈ IRd (identified
as the state space Xk for all k) which, in the absence of any controls or disturbances,
would be governed by

xk = Axk−1

for a certain matrix A ∈ IRd×d. The origin is a stationary point for such dynamics:
if xk−1 = 0, then xk = 0. This could be a stable rest point, in the sense that the
trajectory x0, x1, . . . , xk, . . . generated from any initial state x0 exhibits convergence
to 0. (Certain conditions on the eigenvalues of A would imply that.) The origin
could be then be interpreted as representing a state of stable equilibrium. Whether
this is the case or not, let’s imagine that the origin represents the state we wish the
system to reach and maintain.

Deterministic control: Our wishes can only be exercised through the possibility of con-
trol, however. Let’s augment the dynamics now to

xk = Axk1 +Buk−1

for a control vectors uk in IRn (identified as the control space Uk for all k) and
a certain matrix B ∈ IRd×n. We can then imagine that if the system is initially
in a state x0 6= 0 we can perhaps steer it there by selecting a sequence of vec-
tors u0, u1, . . . , uk, . . . , uN−1 with the property that the corresponding trajectory
x0, x1, . . . , xk, . . . , xN−1, xN generated from the augmented dynamics has xN = 0.
Whether this is possible or not, regardless of the initial state x0, depends on the
matrices A and B and is an issue studied in control theory. (There’s an algebraic
answer which we don’t need to go into here.) A less demanding criterion would
be the possibility that over an unlimited number of time periods one could choose
a control sequence such that the corresponding state sequence converges to 0.

90

Supposing some degree of control is possible, we can ask how it might be
exercised optimally. It’s standard to consider minimizing a sum of expressions

1
2xk ·Qxk + 1

2uk ·Ruk =: fk(xk, uk)

in which Q and R are symmetric matrices in IRd×d and IRn×n, with Q positive
semidefinite and R positive definite. The quadratic term in xk gives a penalty for
deviations of xk from the desired state 0, while the quadratic term in uk measures
the “energy” expended in executing uk. (Doing nothing, i.e., taking uk = 0, costs
nothing; energy is modeled as growing quadratically with the magnitude of the
control effort.)

Stochastic control: Consider now the situation in which the dynamics are really

xk = Axk−1 +Buk−1 + ωk = Fk(xk−1, uk−1, ωk),

with ωk representing a disturbance—a random vector in IRd having expectation
E{ωk} = 0, the distribution of ωk being the same for every k and independent of
xk and uk; we’ll denote it simply by π. Even if the system started at x0 = 0 and
we left it alone (taking uk = 0 for all k), the state xk could wander farther and
farther from 0 as time passes. On the other hand, no matter how much control
we might try to apply, the repeated disturbances could keep us from being able to
keep the state at 0. But we could still try to choose the controls so as to minimize
a sum of quadratic expressions fk(xk, uk) of the type described.

Dynamic programming formulation: We are led to seek, for an arbitrary but fixed
horizon N , a policy ū(·) =

(
ū0(·), u1(·), . . . , ūN(·)

)
that, regardless of the initial

state x0, minimizes the expression

IE
ω0,...,ωN

{∑N

k=0

[1
2xk ·Qxk + 1

2uk(xk) ·Ruk(xk)
]}

in which x1, . . . , xN stand for the random variables generated from x0 and u(·)
by xk = Axk−1 + Buk−1(xk−1) + ωk. (The distribution of xk depends then on
that of (ω1, . . . , ωk), which is just the product of k copies of the distribution π.)

Application of the dynamic programming algorithm: We start by determining the final
cost-to-go function

ψN(xN) = inf
uN∈IRn

{
1
2xN ·QxN + 1

2uN ·RuN

}
.

91

Trivially this definition just yields

ψN(xN) = 1
2xN ·QxN , ūN(xN) ≡ 0.

Next we can invoke the formula for ψN−1 in terms of ψN in the dynamic pro-
gramming principle of optimality, employing this simple expression for ψN . In
working out all the details, we find that ψN−1 is again a quadratic function with
a positive semidefinite matrix, but this time with a constant term added. Further
iterations result in cost-to-go functions with this property as well.

To avoid excess algebraic tedium in the verification of this fact, let’s establish
it by a recursive argument, which will also have the advantage of leading to an
algorithm for generating the matrices and constants that are involved. The claim

is that

ψk(xk) = 1
2xk ·Kkxk + γk for k = 0, 1, . . . , N

for certain symmetric, positive semidefinite matrices Kk ∈ IRd×d and constants

γk, and hence that ψk is convex.

This has already been seen to be true for ψN with KN = Q and γN = 0.
Calculating backwards, we suppose now that it’s true for ψk+1. From the formula
for ψk in terms of ψk+1 we get

ψk(xk) = inf
uk∈IRn

{
1
2xk ·Qxk + 1

2uk ·Ruk + IE
ωk+1

ψk+1

(
Axk +Buk + ωk+1

)}
= 1

2xk ·Qxk + inf
uk∈IRn

{
1
2uk ·Ruk + IE

ωk+1

{
ψk+1

(
Axk +Buk + ωk+1

)}}
in which we have

ψk+1

(
Axk +Buk + ωk+1

)
= 1

2 [Axk +Buk + ωk+1] ·Kk+1[Axk +Buk + ωk+1] + γk+1

= 1
2 [Axk +Buk] ·Kk+1[Axk +Buk]

+ ωk+1 ·Kk+1[Axk +Buk] + 1
2ωk+1 ·Kk+1ωk+1 + γk+1.

In taking the expectation of this with respect to ωk+1 only the terms containing
ωk+1 are affected, and moreover we have

IE
ωk+1

{
ωk+1 ·Kk+1[Axk +Buk + ωk+1]

}
= E{ωk+1}·Kk+1[Axk +Buk + ωk+1] = 0

92

because E{ωk+1} = 0. Adding the expectation of 1
2ωk+1 ·Kk+1ωk+1 to the con-

stant γk+1 to get a new constant γk, we obtain

ψk(xk) = 1
2xk ·Qxk + γk + inf

uk∈IRn
ϕk(xk, uk)

for the function ϕk defined by

ϕk(xk, uk) := 1
2uk ·Ruk + 1

2 [Axk +Buk] ·Kk+1[Axk +Buk]

= 1
2xk ·A∗Kk+1Axk + uk ·B∗Kk+1Axk + 1

2uk · [R+B∗Kk+1B]uk

(with ∗ denoting transpose). Because Kk+1 is positive semidefinite and R is pos-
itive definite, we have ϕk(xk, uk) convex jointly in xk and uk and strictly convex
in uk, with the matrix R + B∗Kk+1B being positive definite and in particular
nonsingular. The convexity of ϕk ensures that infuk

ϕk(xk, uk) is convex in xk

and therefore by the positive semidefiniteness of Q that ψk(xk) is convex in xk.
The strict convexity in uk enables us to carry out the minimization by taking the
gradient of ϕk(xk, uk) in uk and setting it equal to 0. We get the equation

B∗Kk+1Axk + (R+B∗Kk+1B)uk = 0,

which solves out to uk = −(R+B∗Kk+1B)−1B∗Kk+1Axk. Substituting back to
see what the minimum value is, we come up with

ψk(xk) = 1
2xk ·(Q+A∗Kk+1A)xk

− 1
2 (B∗Kk+1Axk) ·(R+B∗Kk+1B)−1(B∗Kk+1Axk) + γk

= 1
2xk ·

[
(Q+A∗Kk+1A)−A∗Kk+1B(R+B∗Kk+1B)−1B∗Kk+1A

]
xk + γk.

Seems complicated? This is indeed a quadratic form xk plus a constant, in which
the matrix is symmetric and moreover positive semidefinite, due to ψk being
convex. Thus, we have verified that ψk inherits from ψk+1 the pattern claimed.

Solution: The methodology has revealed that ψk(xk) = 1
2xk ·Kkxk + γk for the sym-

metric, positive definite matrices Kk and constants γk ≥ 0 given recursively byKk = (Q+A∗Kk+1A)−A∗Kk+1B(R+B∗Kk+1B)−1B∗Kk+1A,

γk = γk+1 + E
{

1
2ωk+1 ·Kk+1ωk+1

}
for k = N − 1, , 0, starting from

KN = Q, γN = 0,

93

and that an optimal policy for stage k (any k < N) is given by the linear rule

ūk(xk) = Lkxk, Lk = −(R+B∗Kk+1B)−1B∗Kk+1A.

We wouldn’t like to perform the indicated matrix computations ourselves by hand,
but for a computer there’s nothing to them, as long as they are numerical stable.

Dynamic programming as a source of control laws: We’ve been looking at dynamic
programming as a possible approach to solving multistage control problems under
uncertainty when an initial state a is given, but that doesn’t do full justice to the
subject. It’s real strength emerges in circumstances in which policies take on the
aura of “laws” about how the control invoked should be dictated by the current
state. The results in the example of linear-quadratic regulation have such a quality,
revealing in particular that “linear control laws” suffice for that application.

Models with repetitive circumstances: Dynamic programming is especially of interest in
circumstances in which our attention is concentrated on the behavior as N →∞
when the data elements in the problem are the same at every stage:

Xk = X , Uk = U , fk = f, Fk = F, πk = π.

In such models the imposition of a finite horizon N seems particularly artificial,
and there’s motivation for trying to understand the “limiting case” that might
arise as the horizon recedes farther and farther into the future.

Asymptotic considerations: Let’s indicate the dependence of the cost-to-go functions
on N by marking them with superscript N . Thus, we have ψN

0 , ψ
N
1 , . . . , ψ

N
N , all

on the space X , given recursively by

ψN

N (x) = inf
u∈U

f(x, u),

ψN

k (x) = inf
u∈U

{
f(x, u) + IEω

{
ψN

k+1

(
F (x, u, ω)

)}}
for k = N − 1, . . . , 1, 0,

where the subscripts have been dropped from x, u and ω because they are now su-
perfluous; the expectations are taken always with respect to the same distribution
π. Along with this we have optimal policy functions given by

ūN

k (x) ∈ ΨN

k (x)

for the corresponding argmin sets. The question is what happens to these cost-
to-go functions and policy functions as N → ∞. One may conjecture that, as

94

the horizon recedes into the indefinite future, the cost-to-go picture from stage 1
should more and more resemble the cost-to-go picture from stage 0. Heuristically
on this basis one is led to the following “steady-state” equation for an unknown
cost-to-go function ψ:

ψ(x) = inf
u∈U

{
f(x, u) + IEω

{
ψ

(
F (x, u, ω)

)}}
,

yielding the policy function

ū(x) ∈ argmin
u∈U

{
f(x, u) + IEω

{
ψ

(
F (x, u, ω)

)}}
.

There are some technical difficulties with taking the conjectured equation for ψ at
face value, because of convergence issues. Nevertheless, the asymptotic concept
is important, and a major branch of dynamic programming theory is devoted to
justifying it in particular cases. The benefit is a single control “law” x 7→ ū(x)
for generating the control to be applied when in state x, no matter what stage
the process might be in.

Linear-quadratic regulation revisited: These asymptotic considerations in the special
context of the linear-quadratic regulator problem lead to the investigation of the
existence of a symmetric, positive definite matrix K such that

K = (Q+A∗KA)−A∗KB(R+B∗KB)−1B∗KA,

which would be associated with a steady-state linear control law

ū(x) = Lx, L = −(R+B∗KB)−1B∗KA.

The special relation that K is required to satisfy is called a discrete-time Riccati
equation. Such equations have been closely studied for the sake of this very
application. It’s known that under our assumptions about A, B, Q and R there
is indeed a unique symmetric, positive definite matrix K providing a solution.
Moreover, if the matrices Kk and Lk previously generated are denoted by KN

k

and LN

k to indicate their dependence on the horizon N , one has

lim
N→∞

KN

k = K and lim
N→∞

LN

k = L for all k.

Deterministic equivalent: A remarkable feature of this special case is that the asymp-
totic law u = Lx doesn’t in any way involve the probability distribution π for

95

the disturbances! We would end up with the same matrix L no matter what
this distribution is (as long as it makes ω average out to 0). In fact, it is
the same law that would be obtained if we dropped the disturbances entirely
and looked only at the corresponding deterministic problem! Unfortunately,
like the derivation of the law itself, this feature depends on the very simple
linear-quadratic structure and the absence of any constraints.

Adjustment of the convergence proposal: The example of linear-quadratic regulation
shows that the suggested equation for an “asymptotic” cost-to-go function ψ

might not correspond quite to a limit of the functions ψN

k as N → ∞. If we let
ψ̄k = 1

2x ·Kkx, so that ψk = ψ̄k + γk for γk = IEω

{ 1
2ω ·Kk+1ω

}
with γN = 0, we

see that ψ̄N

k (x) converges to ψ(x) = 1
2x ·Kx, but

ψN

k = ψ̄N

k +
∑N

k=0
γk with 0 ≤ γk → IEω

{
1
2ω ·Kω

}
.

Unless IEω

{ 1
2ω ·Kω

}
= 0, which would exclude applications with real distur-

bances, we’d get ψN

k (x) → ∞ for all x. Thus, the convergence proposal needs
some degree of modification, for instance in terms of discounting future costs by
some factor.

Future mathematical challenges: Little is known about the proposed asymptotic equa-
tion in general, although an ability to solve it approximately could have interest-
ing consequences in a number of situations where the designation of a particular
horizon N is troublesome.

96

7. ADVANCED STOCHASTIC PROGRAMMING

This section of the lecture notes never got written as an addition to the earlier sections.
However, the material that was intended to go into it was published separately as an
article:

“Duality and optimality in multistage stochastic programming,”

Annals of Operations Research 85 (1999), 1-19.

This article is appended now to these notes.

DUALITY AND OPTIMALITY IN

MULTISTAGE STOCHASTIC PROGRAMMING

Abstract. A model of multistage stochastic programming over a scenario tree is developed
in which the evolution of information states, as represented by the nodes of a scenario tree,
is supplemented by a dynamical system of state vectors controlled by recourse decisions.
A dual problem is obtained in which multipliers associated with the primal dynamics
are price vectors that are propagated backward in time through a dual dynamical system
involving conditional expectation. A format of Fenchel duality is employed in order to have
immediate specialization not only to linear programming but extended linear-quadratic
programming. The resulting optimality conditions support schemes of decomposition in
which a separate optimization problem is solved at each node of the scenario tree.

97

1. Introduction

In all branches of optimization, duality draws on convexity. In stochastic programming,
another important ingredient to duality is dynamical structure. Such structure describes
the evolution of information about the random elements in a problem’s environment, and
to that extent is essential to the very concept of optimization under uncertainty, but it can
also be developed with respect to other ways that the past and future affect the present.
Concepts of “state” and “control” are useful in this. Controls correspond to decisions to
be made, whereas states summarize the current primal or dual status of the system at the
time of making those decisions.

A distinguishing feature of the multistage model of stochastic programming to be laid
out here is that the dynamics of uncertainty, discretized as a scenario tree in which nodes
represent probabilistic states of information, is supplemented by a linear dynamical system
of vectors representing auxiliary aspects of state. The relations in this system can be
treated as constraints to which multiplier vectors are assigned, and those vectors become
dual states in a dual dynamical system.

A forerunner to this model was developed in Rockafellar and Wets [1], but with the evo-
lution of probabilistic information described by a sequence of fields of measurable sets in
a discrete probability space. The notion of a scenario tree, adopted here instead, adds
concreteness without serious loss of generality. In associating the nodes of the tree with
decision stages, the crucial property of nonanticipativity of decisions is made automatic.
Moreover, the role of conditional expectations in the dynamics of prices is clarified. Inde-
pendently, Korf [2] has found an equivalent expression for that role in the measurability
context of [1], but the scenario tree approach brings it out quite naturally.

Another difference between the model in [1] and the one here is that the framework of linear
or extended linear-quadratic programming has been generalized to the extended Fenchel
duality format, which is more flexible and less cluttered. Simultaneously, some features
of the cost structure in [1], such as ways of writing initial and terminal costs, have been
simplified. The problem should therefore be easier to understand and work with.

A powerful property of the optimality conditions in [1] emerges again here. It is seen in
how the dynamical systems of primal and dual state vectors lead to a decomposition in
which a small-scale optimization problem, depending on those vectors, is solved at each
individual node of the scenario tree in order to obtain the optimal controls. This differs
both from the classical Dantzig-Wolfe type of decomposition (which, in extension to convex
programming, is tied to separability of the Lagrangian in the primal argument for fixed
values of the dual argument) and from Benders decomposition (which concerns cost-to-go

98

functions and their subgradients). It relates instead to a characterization of primal and
dual optimal solution pairs as saddle points of a generalized Lagrangian function that is
the sum of two “sub-Lagrangians.” One of these breaks into separate expressions for each
node of the scenario tree, while the other is a bi-affine representation of the dynamics of
the primal and dual state vectors.

Decomposition of this third kind dates back, in deterministic rather than stochastic set-
tings, to Rockafellar [3], [4]. In stochastic programming computations it has recently been
utilized by Salinger [5]. A corresponding numerical application to the deterministic case
of the model in [1] has been carried out by Eckstein and Ferris [6]. The backward-forward
splitting methods applied by Chen [7] to deterministic problems would be suited to this
kind of decomposition also; for related results on the general convergence of such methods,
see [8].

The Lagrangian saddle point scheme in [1] relies on a “reduced” formulation of the under-
lying problem, in which only the controls appear as independent variables. Here, in further
contrast to [1], we look at a “full” formulation in tandem with the reduced formulation. In
that way additional insights are obtained about the interpretation of the primal and dual
state vectors.

2. Scenario Tree and Dynamics

We begin with a scenario tree based on a finite set I of nodes i. One of the nodes, i = 0,
stands for the here-and-now. Every other node i 6= 0 has a unique predecessor node,
denoted by i−, and a transition probability τi > 0, which is the probability that i will be
the successor to i−. The successors to any node i, denoted generically by i+, form the set
I+(i) ⊂ I; the transition probabilities of those nodes add to 1. Thus, i+ can be viewed
as a discrete random variable over I+(i) with distribution given by the probabilities τi+ .
Nodes i with I+(i) = ∅ are called terminal ; they constitute the set T ⊂ I.
In tracing back from any node i through its predecessors to 0, we trace in reverse a sequence
of realizations of the discrete random variables associated with the transition probabilities.
It’s convenient to think of i as standing for this history of realizations, and to define πi to
be the probability of the particular sequence occurring. Such probabilities are generated
recursively by

π0 = 1, πi = τiπi− for i 6= 0. (2.1)

In the case of a node i ∈ T , the history of realizations corresponds to a path from the root
0 of the tree all the way to one of its “leaves” and is called a scenario. The probabilities
πi for i ∈ T obviously add to 1 and provide a distribution for the set of all scenarios.

99

In many, or most, situations it may be helpful to view the node set I as partitioned into
subsets Ik designating stages k = 0, 1, . . . , N , where I0 = {0}, IN = T , and the successor
to a node in Ik belongs to Ik+1. Mathematically, however, there’s no actual need for that,
so stage notation will be left out in the interests of simplicity. Further details about the
scenario tree can always be brought in when it matters.

Every information state i ∈ I is viewed as providing the opportunity for a decision to
be made. We model this as the choice of a vector ui ∈ IRni ; the vector u0 gives rise to
the “here-and-now” decision, whereas the vectors ui for i 6= 0 give “recourse” decisions.
Optimization revolves around these elements, which will be termed the controls of the
system, but it’s important that the decision environment in state i be able to be molded
by the decisions taken in the states leading up to i. The mechanism for this is provided
by the introduction for each i ∈ I of a state vector xi ∈ IRdi and letting the states and
controls be governed by a dynamical system

x0 = a (given), xi = Fi(xi− , ui−) for i 6= 0. (2.2)

The optimization environment in information state i is modeled then by a cost expression
fi(xi, ui) (oriented toward minimization), in which the vector xi acts as a parameter ele-
ment supplying the influence from the past. This cost is allowed to be ∞ as a means of
incorporating constraints without having to appeal at once to some particular constraint
structure and its burdensome notation; a vector ui is only considered feasible relative to xi

if fi(xi, ui) < ∞. The forms of Fi and fi will be specialized in due course, but it’s useful
for now to approach the situation more generally.

In attaching Fi, fi and xi by subscript to the information state i, we take the position that
these elements are known to the decision maker upon reaching i; thus too, the function
fi(xi, ·) giving the costs (and implicit constraints) in choosing ui is known. (Any random
variables that enter the description of fi are regarded as having been built into the specifi-
cation of the transition probabilities encountered on the way from 0 to i.) Observe however
that although Fi is supposed to be known upon reaching i, it might not have been known
at the predecessor node i−, when ui− had to be chosen. The explanation again is that in
passing from i− to i the dynamics in (2.2) may involve the realization of some additional
aspect of uncertainty. Alternatively these dynamics can be written as

xi+ = Fi+(xi, ui) for i /∈ T, with x0 = a, (2.3)

in which the role of i+ as a random variable ranging over I+(i) is more apparent.

The stochastic programming problem we consider has two formulations, fundamentally
equivalent yet different, and it will be important to distinguish between them. In the full

100

formulation, the problem is

(P+
0)

minimize
∑
i∈I

πifi(xi, ui) over all xi and ui

subject to the relations (2.2) as constraints.

Implicit in this, as already mentioned, are the conditions fi(xi, ui) < ∞, without which
the expression being minimized would have the value ∞. In the reduced formulation, the
xi’s are regarded as dependent rather than independent variables:

(P−
0)

minimize
∑
i∈I

πifi(xi, ui) over all ui, where

xi stands for an expression in prior control vectors.

The expressions in question are generated recursively from (2.2).

The two problems are obviously equivalent in the sense that vectors ūi and x̄i furnish an
optimal solution to (P+

0) if and only if the controls ūi furnish an optimal solution to (P−
0)

and the states x̄i furnish the corresponding trajectory obtained from them by “integrating”
the dynamics (2.2). Both of these formulations are useful. Problem (P−

0) has the advantage
of being “smaller” and conceptually leaner, but (P+

0) promotes the exploration of dual state
vectors yi, which come out as multipliers for the relations in (2.2) as constraints.

Theorem 1 (basic convexity). As long as the functions fi are convex and the mappings

Fi are affine, both (P+
0) and (P−

0) are problems of convex optimization—where a convex

function is minimized subject to constraints describing a convex feasible set.

The proof of this fact is elementary; we record the theorem for the perspective it offers,
since convexity will be needed for duality. Note that the convexity depends heavily on the
transition probabilities being unaffected by the decisions that are to be made over time; we
are dealing with constants τi instead of variable expressions τi(xi− , ui−). Problems (P+

0)
and (P−

0) would still make sense if such variable transition probabilities were allowed, with
the πi’s then turning into expressions in prior states and controls as generated through
(2.1) and (2.2). Convexity would be lost, however, and with it the prospect of being able
to use duality-based decomposition methods of solution to compensate for the extremely
large scale of problems in stochastic programming.

101

3. Duality Background

From Theorem 1 it’s clear that, for our purposes, the mappings Fi should be affine, but
what structure should be introduced in the cost functions fi to bring out duality most
conveniently? Because the fi’s are extended-real-valued, constraint structure is at stake
as well. We want multistage models of linear programming type to be covered nicely, and
also quadratic programming analogs, for instance. Even in ordinary quadratic program-
ming, however, there is trouble over duality. Unlike the situation in linear programming,
one can’t dualize a quadratic programming problem and expect to get another quadratic
programming problem.

The kind of Lagrangian duality that is available from conventional formulations of convex
programming with equality and inequality constraints is too narrow for the task now facing
us and suffers from the further drawback that such formulations tend to emphasize “hard
constraints,” whereas the needs of stochastic programming may often be better served by
penalty expressions. The Fenchel scheme of duality comes to the rescue here. It’s much
more flexible, yet just as explicit in key cases. In particular, it gets around the quadratic
programming difficulty by way of “extended linear-quadratic programming,” which handles
penalties and even box constraints with ease. The ideas behind Fenchel duality will be
reviewed now as background to presenting, in the next section, more structured versions
of problems (P+

0) and (P−
0). A fresh treatment of such duality in more detail is available

now in [9, Chap. 11].

Recall that an extended-real-valued convex function ϕ on IRn is proper if it nowhere takes
on −∞ and is not the constant function∞. The function ϕ∗ conjugate to a proper convex
function ϕ is defined by

ϕ∗(w) = sup
u∈IRn

{
u·w − ϕ(u)

}
.

It’s always proper convex and lsc (lower semicontinuous). As long as ϕ itself is lsc, the
function ϕ∗∗ conjugate to ϕ∗ is in turn ϕ:

ϕ(w) = sup
w∈IRn

{
u·w − ϕ∗(w)

}
.

Although it may be hard in some cases to come up with a more explicit formula for ϕ∗

than the definition, there are cases where it’s easy, and they go a long way toward making
conjugate functions a practical tool in duality schemes.

The extended Fenchel duality scheme that will serve as our basic guide concerns a proper
lsc convex function ϕ on IRn, another such function ψ on IRm, a matrix D ∈ IRn×m, and
vectors p ∈ IRn and q ∈ IRm. The primal problem has the form

(P) minimize Φ(u) := p·u+ ϕ(u) + ψ(q −Du) over u ∈ IRn,

102

while the dual problem is

(D) maximize Ψ(v) := q·v − ψ∗(v)− ϕ∗(D∗v − p) over v ∈ IRm,

where D∗ is the transpose of D. Implicit constraints come out of the effective domains
domϕ :=

{
u ∈ IRn

∣∣ϕ(u) < ∞
}

and domψ :=
{
z ∈ IRm

∣∣ψ(z) < ∞
}
. The implicit

feasible set in (P) is the convex set consisting of the vectors u that satisfy

u ∈ domϕ, q −Du ∈ domψ. (3.1)

Similarly, the implicit feasible set in (D) is described by

v ∈ domψ∗, D∗v − p ∈ domϕ∗. (3.2)

Examples will be considered after the main results about this pairing of problems are
stated.

For problems in this format, the constraint qualifications needed to obtain duality in
general are expressed in terms of the notion of the relative interior “ri” of a convex set.
Such constraint qualifications turn out not to be needed for functions that are piecewise
linear-quadratic. A proper convex function ϕ is said to fall into that category if domϕ is
a polyhedral (convex) set on which ϕ is given by a linear-quadratic formula, or a union
of finitely many such sets on which ϕ is given by such formulas. By a linear-quadratic
formula we mean a polynomial function of degree at most 2; linear functions and constant
functions are a special case. For instance if ϕ is the indicator δU of a polyhedral set U (i.e.,
has the value 0 on U and∞ elsewhere), then in particular, ϕ is piecewise linear-quadratic,
although the full generality of the definition isn’t utilized.

An important fact is this: if a proper convex function is piecewise linear-quadratic, its
conjugate function is piecewise linear-quadratic as well. Thus, if ϕ and ψ are piecewise
linear-quadratic in (P), the same is true of ϕ∗ and ψ∗ in (D). We refer to this as the
piecewise linear-quadratic case in Fenchel duality.

Theorem 2 (extended Fenchel duality).

(a) The relation inf(P) = sup(D) <∞ is guaranteed under the primal constraint quali-

fication that

∃u satisfying u ∈ ri domϕ, q −Du ∈ ri domψ. (3.3)

Then too, unless the common optimal value is −∞ (so (D) has no feasible solution), (D)
is sure to have an optimal solution.

103

(b) The relation inf(P) = sup(D) > −∞ is guaranteed under the dual constraint quali-

fication that

∃ v satisfying v ∈ ri domψ∗, D∗v − p ∈ ri domϕ∗. (3.4)

Then too, unless the common optimal value is ∞ (so (P) has no feasible solution), (P) is

sure to have an optimal solution.

(c) In the piecewise linear-quadratic case, the primal and dual constraint qualifications

are superfluous and can be replaced simply by the feasibility conditions in (3.1) and (3.2),

respectively. In that case, therefore,

inf(P) = sup(D) unless inf(P) =∞ and sup(D) = −∞,

(i.e., unless neither (P) nor (D) has a feasible solution). Moreover, when the common

optimal value is finite, both problems have an optimal solution.

Proof. The basic facts in (a) and (b) go back all the way to Rockafellar [10]. The
piecewise linear-quadratic case, while partially covered earlier, was recently established in
its full scope in Rockafellar and Wets [9; cf. 11.42].

Among the special cases to note here, linear programming duality corresponds to taking
ϕ to be the indicator of IRn

+ and ψ to be the indicator of IRm
− , so that (P) comes out as

minimizing p·u subject to u ≥ 0 and Du ≥ q. Then ϕ∗ and ψ∗ are the indicators of IRn
−

and IRm
+ , so that (D) consists of maximizing q·v subject to v ≥ 0 and D∗v ≤ p. This is

covered by part (c) of Theorem 2.

The orthants here could be replaced by other convex cones. (The function conjugate to
the indicator of a cone is the indicator of the polar cone.) More interesting for stochastic
programming, however, is the case where IRn is replaced by some box (a product of closed
intervals, bounded or unbounded). When ϕ = δU , ϕ∗ is the support function σU of U ,
and for a box U that is bounded this means ϕ∗ is piecewise linear (and easy to write down
explicitly). Even more to the point is the case where ψ is such a support function σV of a
box V , so that ψ∗ = δV . The term ψ(q −Du) in (P) corresponds then to a linear penalty
expression in place of, say, a constraint like q −Du ≤ 0. There are rich possibilities.

A handy tool in this respect is that of the function θV,Q on IRm defined in terms of a
nonempty polyhedral set V ⊂ IRm and a symmetric positive semi -definite matrix Q ∈
IRm×m (Q = 0 allowed) by

θV,Q(z) = sup
v∈V

{
z·v − 1

2v·Qv
}
. (3.5)

104

This means that θV,Q is the convex function conjugate to δV + jQ, where jQ(v) = 1
2v·Qv.

Since δV + jQ falls in the category of piecewise linear-quadratic functions, the same is true
of θV,Q. For various useful choices of V and Q it’s possible to make this linear-quadratic
structure of θV,Q quite explicit. Analogously, functions θU,P can be introduced on IRn as
the piecewise linear-quadratic conjugates of functions δU +jP for a polyhedral set U ⊂ IRn

and symmetric positive semi -definite matrix P ∈ IRn×n.

In taking ϕ = δU + jP and ψ = θV,Q, so that ϕ∗ = θU,P and ψ∗ = δV + jQ, we obtain the
following pair of problems from (P) and (D):

(P ′) minimize p·u+ 1
2u·Pu+ θV,Q(q −Du) over u ∈ U,

(D′) maximize q·v − 1
2v·Qv − θU,P (D∗v − p) over v ∈ V.

This is the duality scheme of extended linear-quadratic programming . It too is governed
by part (c) of Theorem 2. Linear programming comes out when U and V are cones while
P and Q are zero matrices. As another example, conventional quadratic programming
would consist of minimizing p·u+ 1

2u·Pu subject to u ∈ U and Du ≥ q, where U is IRn
+ or

perhaps some other box. A problem of such type can’t be dualized within that format, but
in the framework of extended linear-quadratic programming the dual problem consists of
maximizing q·v − θU,P (D∗v − p) over v ≥ 0. (The implicit constraint D∗v − p ∈ dom θU,P

combines with v ≥ 0 to produce the implicit feasible set in this dual.)

Because stochastic programming is our subject here, it’s worth mentioning that piecewise
linear-quadratic functions of type θV,Q were first introduced in a stochastic programming
context, in Rockafellar and Wets [11]. This was motivated by the convenience of such func-
tions in furnishing penalty expressions in a readily dualizable form. Penalty substitutes for
constraints are especially welcome when dealing with uncertainty. The format of extended
linear-quadratic programming in (P ′) and (D′) comes from [11] as well. Examples of the
many special problem statements covered by it were subsequently presented in [3; §§2,3];
for stochastic programming, see also [12], where the separable case of functions θV,Q is well
described.

Although Fenchel duality isn’t based on Lagrange multipliers, at least of the traditional
variety, a Lagrangian function plays a crucial role nonetheless. This Lagrangian in the
general case of (P) and (D) is

L(u, v) = p·u+ ϕ(u) + q·v − ψ∗(v)− v·Du

on U × V, where U := domϕ, V := domψ∗.
(3.6)

105

In the extended linear-quadratic programming format of problems (P ′) and (D′), the
generalized Lagrangian that takes on the right role is

L(u, v) = p·u+ 1
2p·Pu+ q·v − 1

2v·Qv − v·Du on U × V. (3.7)

The Lagrangians associated with extended linear-quadratic programming are thus the func-
tions obtained by restricting some convex-concave linear-quadratic function to a product
of nonempty polyhedral sets.

Note that the Lagrangian in each case isn’t a function with unspecified domain, but a
triple (L,U, V). This entire triple enters the picture through the way that the objective
functions in the two problems can be recovered from L, U and V by

Φ(u) =
{

supv∈V L(u, v) when u ∈ U
∞ when u /∈ U ,

(3.8)

Ψ(v) =
{

infu∈U L(u, v) when v ∈ V
−∞ when v /∈ V .

(3.9)

It also enters in saddle point characterizations of optimality, as in the next theorem. Recall
that (ū, v̄) is a saddle point of L on U × V when{

ū ∈ U, v̄ ∈ V, and
L(u, v̄) ≥ L(ū, v̄) ≥ L(ū, v) for all u ∈ U, v ∈ V. (3.10)

Theorem 3 (Lagrangians in Fenchel duality). In the circumstances of Theorem 2 in which

inf(P) = sup(D), a pair (ū, v̄) is a saddle point of the Lagrangian L over U × V in (3.6)

if and only if ū is an optimal solution to (P) and v̄ is an optimal solution to (D). This

saddle point property of (ū, v̄) is equivalent to the subgradient conditions

D∗v̄ − p ∈ ∂ϕ(ū), q −Dū ∈ ∂ψ∗(v̄). (3.11)

Proof. The original saddle point characterization of optimal solutions in Fenchel duality
was developed in [13], where the corresponding subgradient conditions were first given as
well. More recently see also [9; Chap. 11].

The saddle point characterization of optimality assists in interpreting v̄ as a “generalized
multiplier vector” associated with the term ψ(q −Du) in (P). This perspective is opened
further in [14].

The formulas in (3.8) and (3.9) for the objectives in (P) and (D) in terms of L, U and
V lead to a general principle that can help us, in more complicated situations in other
notation, to ascertain whether a given optimization problem fits the Fenchel format, and if

106

so, what the corresponding dual problem is. All we need to know is whether the function
of u (say) that is being minimized in the given problem can be expressed by the right side
of (3.8) through a function L(u, v) of the type in (3.6)—and that too can be viewed very
broadly: L(u, v) need only be the difference between two lsc proper convex functions of u
and v separately (as restricted to their effective domains U and V), plus some expression
that’s bi-affine in u and v (i.e., affine in u for fixed v as well as affine in v for fixed u).
Once this has been confirmed, we can identify the dual with the problem of maximizing
the function of v given by the right side of (3.9), and the theorems above can be applied.

The point here is that we can bypass having to write down what the vectors p and q and
the matrix D are in a given case in order to invoke Fenchel duality. The objective in the
dual problem can be deduced straight from the right side of (3.9) without that distraction.
For stochastic programming in particular, that will be the most expedient approach to
dualization.

4. Stochastic Programming Duality

The stage is set now for the specialization of the general stochastic programming problems
(P+

0) and (P−
0) to models that are able to take advantage of extended Fenchel duality. We

choose the mappings Fi to be linear in the notation

Fi(xi− , ui−) = Aixi− +Biui− (4.1)

for matrices Ai and Bi, so that the vectors xi have the dynamics{x0 = a,
xi = Aixi− +Biui− for i 6= 0. (4.2)

We take the cost functions fi to have the form

fi(xi, ui) = pi·ui + ϕi(ui) + ψi(qi − Cixi −Diui) (4.3)

for matrices Ci and Di, vectors pi and qi, and lsc proper convex functions ϕi and ψi on IRni

and IRmi , respectively. As the subscripting by i indicates, all these elements are regarded
as known to the decision maker once the information state i has been reached.

(Affine mappings Fi(xi− , ui−) = Aixi− +Biui− + bi could be handled in place of the linear
ones in (4.2), but the additional notation gets cumbersome. Anyway, no real generality
would be gained, because the vector bi could equally well be incorporated as an extra
column of Bi for which the corresponding component of ui− has to be 1, as secured
implicitly through the specification of the effective domain of the corresponding ϕi.)

107

Let u = {ui}i∈I be the “supervector” of controls ui, and similarly let x = {xi}i∈I . We
have u ∈ IRn := Πi∈IIR

ni and x ∈ IRd := Πi∈IIR
di . Let X : IRn → IRd be the affine

mapping defined by

X(u) = the primal state trajectory generated from u by the dynamics (4.2).

Our stochastic programming problem in its full formulation is then

(P+)
minimize Φ+(x, u) :=

∑
i∈I

πi

[
pi·ui + ϕi(ui) + ψi(qi − Cixi −Diui)

]
over x and u, subject to x−X(u) = 0,

whereas in its reduced formulation it is

(P−)
minimize Φ−(u) :=

∑
i∈I

πi

[
pi·ui + ϕi(ui) + ψi(qi − Cixi −Diui)

]
over u, where x = X(u).

In the full version the equations in (4.2) are taken as a system of linear constraints on
the vector variables xi and ui. In the reduced version, though, xi merely stands for an
affine expression in the control vectors associated with the information states leading up
to i. Those expressions can be generated out of (4.2) by a chain of substitutions, but it
won’t actually be necessary to do that in order to make effective use of (P−). The implicit
conditions for feasibility in both problems can anyway be written as

ui ∈ domϕi, qi − Cixi −Diui ∈ domψi, x = X(u), (4.4)

whichever point of view is being adopted. Obviously (P+) and (P−) are equivalent in the
sense that inf(P+) = inf(P−) and

(x̄, ū) solves (P+) ⇐⇒ ū solves (P−) and x̄ = X(ū). (4.5)

Dualization will proceed first with the full primal problem (P+). The full dual problem
(D+) obtained in this way will have a reduced form (D−), which will be shown later to be
dual to the reduced problem (P−) with respect to a reduced Fenchel scheme. Let

Li(ui, vi) := pi·ui + ϕi(u) + qi·vi − ψ∗i (vi)− vi·Diui

on Ui × Vi := [domϕi]× [domψ∗i] ⊂ IRni × IRmi .
(4.6)

Let v = {vi}i∈I in IRm := Πi∈IIR
mi and define

U = Πi∈IUi ⊂ IRn, V = Πi∈IVi ⊂ IRm. (4.7)

108

The sets U and V are convex.

In terms of yi ∈ IRdi and y = {yi}i∈I ∈ IRd, we take as the full Lagrangian L+, associated
with (P+), the expression

L+(x, u; y, v) :=
∑
i∈I

πi

[
Li(ui, vi)− vi·Cixi

]
+

∑
i 6=0

πiyi·
[
xi −Aixi−−Biui−

]
+ y0·[x0 − a]

on [IRd × U]× [IRd × V].
(4.8)

The vectors yi ∈ IRdi are multipliers in the traditional sense for the equations in (4.2) as
constraints in (P+) (so that, in overview, y is a multiplier for the constraint x−X(u) = 0).
The vectors vi, on the other hand, will act as generalized multipliers, in the sense of Fenchel
duality, for the ψi terms in the objective of (P+).

The principle set down at the end of §3 will guide our effort at dualization. We apply
this principle by thinking of L+(x, u; y, v) as L+(u′, v′) for u′ = (x, u) ∈ U ′ = IRd × U and
v′ = (y, v) ∈ V ′ = IRd × V . Calculating supv′∈V ′ L+(u′, v′) as on the right side of (3.8),
we get the function Φ+ in (P+) as restricted by the dynamics in (4.2): namely, whereas
Φ+(x, u) =∞ when u /∈ U , we have for u ∈ U that

sup
(y,v)∈IRd×V

L+(x, u; v, y) =
{

Φ+(x, u) when x = X(u),
∞ when x 6= X(u). (4.9)

Next we observe that L+ has the form required for Fenchel duality: it’s the difference
between the lsc proper convex functions

ϕ+(u′) =
∑
i∈I

ϕi(ui), (ψ+)∗(v′) =
∑
i∈I

ψ∗i (vi) (4.10)

(not really depending on x and y), as restricted to their effective domains U ′ and V ′, plus
an expression that’s affine in u′ for fixed v′ and affine in v′ for fixed u′. It follows by our
principle that, in the Fenchel duality framework, (P+) is the primal problem associated
with L+ on U ′ × V ′, and moreover that the corresponding dual problem can be obtained
by developing the expression

inf
u′∈U ′

L+(u′, v′) = inf
(x,u)∈IRd×U

L+(x, u; y, v) (4.11)

on the right side of (3.9).

This calculation is facilitated by a notation for conditional expectation in a state i with
respect to its successor states i+. We’ll set

Ei{wi+} :=
∑

i+∈I+(i)

τi+wi+
(4.12)

109

when a vector wi+ depends on i+.

The trick now is to rewrite the linear and bilinear terms in L+(x, u; y, v) from the (i−, i)
mode to the (i, i+) mode, in which

xi+ = Ai+xi +Bi+ui for i /∈ T. (4.13)

Denoting the transposes of Ai, Bi and Ci by A∗i , B
∗
i and C∗i , it’s easy to see in this way,

through (2.1), that

∑
i 6=0

πiyi·Aixi− =
∑
i/∈T

 ∑
i+∈I+(i)

πi+yi+ ·Ai+xi


=

∑
i/∈T

 ∑
i+∈I+(i)

πiτi+xi·A∗i+yi+

 =
∑
i/∈T

πixi·Ei{A∗i+yi+},

∑
i 6=0

πiyi·Biui− =
∑
i/∈T

 ∑
i+∈I+(i)

πi+yi+ ·Bi+ui


=

∑
i/∈T

 ∑
i+∈I+(i)

πiτi+ui·B∗
i+yi+

 =
∑
i/∈T

πiui·Ei{B∗
i+yi+},

and consequently, for potential use in the context of (4.8), that

−
∑
i∈I

πivi·Cixi +
∑
i 6=0

πiyi·
[
xi −Aixi−−Biui−

]
+ y0·[x0 − a]

=
∑
i/∈T

πixi·
[
yi − Ei{A∗i+yi+

} − C∗i vi

]
+

∑
i∈T

πixi·
[
yi − C∗i vi

]
−

∑
i/∈T

πiui·Ei{B∗
i+yi+} − y0·a.

(4.14)

The vectors xi can be perceived now as multipliers for the constraints associated with the
dynamical system {

yi = C∗i vi for i ∈ T ,
yi = Ei{A∗i+yi+}+ C∗i vi for i /∈ T , (4.15)

in which the vectors yi can be interpreted as dual states, propagating backward in time
in response to the vectors vi as dual controls. Let Y : IRm → IRd be the affine mapping
defined by

Y (v) = the dual state trajectory generated from v by the dynamics (4.15).

110

In expressing L+(x, u; y, v) in terms of the right side of (4.14) in place of the left, and
performing the minimization in (4.11), we now get, as the full dual problem,

(D+)

maximize

Ψ+(y, v) :=
∑
i∈I

πi

[
qi·vi − ψ∗i (vi)− ϕ∗

(
Ei{B∗

i+yi+}+D∗
i vi − pi

)]
− a·y0

over y and v, subject to y − Y (v) = 0.

Here the equations in (4.15) are taken as a system of linear constraints on the vector
variables yi and vi. In analogy with the foregoing we can immediately also write down a
corresponding reduced dual problem, namely

(D−)

maximize

Ψ−(v) :=
∑
i∈I

πi

[
qi·vi − ψ∗i (vi)− ϕ∗

(
Ei{B∗

i+yi+}+D∗
i vi − pi

)]
− a·y0

over v, where y = Y (v).

The feasibility conditions can be written for both problems as

vi ∈ domψ∗i , Ei{B∗
i+yi+

}+D∗
i vi − pi ∈ domϕ∗i , y = Y (v). (4.16)

It’s clear that (D+) and (D−) are equivalent in the sense that inf(D+) = inf(D−) and

(ȳ, v̄) solves (D+) ⇐⇒ v̄ solves (D−) and ȳ = Y (v̄). (4.17)

Theorem 4 (Fenchel scheme in the full model). The full problems (P+) and (D+) are dual

to each other in the extended Fenchel sense with Lagrangian L+ on [IRd × U]× [IRd × V].
In this, the piecewise linear-quadratic case is the one in which all the convex functions ϕi

and ψi (or equivalently ϕ∗i and ψ∗i) are piecewise linear-quadratic. The primal constraint

qualification in (3.3) comes out as the strict feasibility condition

∃ui ∈ ri domϕi with qi − Cixi −Diui ∈ ri domψi for x = X(u), i ∈ I, (4.18)

whereas the dual constraint qualification in (3.4) corresponds to the strict feasibility con-

dition

∃ vi ∈ ri domψ∗i with Ei{B∗
i+yi+}+D∗

i vi − pi ∈ ri domϕ∗i for y = Y (v), i ∈ I. (4.19)

Proof. The preceding derivation has shown that these problems fit the framework of
Fenchel duality in which ϕ+ and (ψ+)∗ are the functions in (4.10). In terms of the vector
variable v′ = (y, v) being dual to z′ = (w, z), ψ+ itself is given by

ψ+(w, z) =
{ ∑

i∈I ψi(zi) when w = 0,
∞ when w 6= 0.

111

Feasibility in this problem, which in the Fenchel scheme takes the form

(x, u) ∈ domϕ+, M(x, u) ∈ domψ+, (4.20)

for a certain affine transformation M , has to correspond to (4.4); it’s apparent that M
must be the transformation that takes (x, u) to (M1(x, u),M2(x, u)) with M1(x, u) the
element w = x−X(u) and M2(x, u) the element z = {zi}i∈I with zi = qi − Cixi −Diui.
The relative interior of a product of convex sets is the product of their relative interiors, so
in replacing domϕ+ and domψ+ in (4.20) by ri domϕ+ and ri domψ+ we simply replace
the sets domϕi and domψi in (4.4) by ri domϕi and ri domψi. This confirms that the
strict feasibility conditions in (4.18) do correspond to the constraint qualification obtained
for (P+) through the theory in §3.

In like manner, the strict feasibility conditions in (4.19) can be seen to correspond to the
dual constraint qualification (3.4) as applied to (D+).

The direct connection between the reduced problems (P−) and (D−) can now be brought
to light. For this purpose we define

l(u, v) = common value of both sides of (4.14) when x = X(u) and y = Y (v),

so that
l(u, v) = −

∑
i∈I

πivi·Cixi for x = X(u) (4.21)

but at the same time

l(u, v) = −
∑
i/∈T

πiui·Ei{B∗
i+yi+} − y0·a for y = Y (v). (4.22)

The value l(u, v) is affine in its dependence on u for fixed v, as well as affine in its depen-
dence on v for fixed u. Next we define the reduced Lagrangian L− by

L
−(u, v) :=

∑
i∈I

πiLi(ui, vi) + l(u, v) on U × V, (4.23)

where U and V are given still by (4.7).

Theorem 5 (Fenchel scheme in the reduced model). The reduced problems (P−) and

(D−) are dual to each other in the extended Fenchel sense with Lagrangian L− on U × V .

In this, the piecewise linear-quadratic case is the one in which all the convex functions

ϕi and ψi (or equivalently ϕ∗i and ψ∗i) are piecewise linear-quadratic. Again, the primal

112

constraint qualification (3.3) comes out as (4.18), whereas the dual constraint qualification

(3.4) comes out as (4.19).

Proof. Once more we appeal to the principle at the end of §3. The reduced Lagrangian
L− is the difference of the lsc, proper, convex functions

ϕ−(u) =
∑
i∈I

ϕi(ui), [ψ−]∗(u) =
∑
i∈I

ψ∗i (ui),

as restricted to the product of their effective domains, namely U×V , plus terms aggregating
to an expression that is affine separately in u and v. Here [ψ−]∗ is conjugate to ψ−(u) =∑

i∈I ψi(ui). On the basis of the two ways of looking at l(u, v) in (4.21) and (4.22), we
calculate that the objective functions specified in (P−) and (D−) have the form

Φ−(u) = sup
v∈V

L
−(u, v), Ψ−(v) = inf

u∈U
L
−(u, v),

so these problems are indeed the ones that correspond in the Fenchel duality format to the
triple (L−, U, V).

The justification of the constraint qualifications follows the same argument as given in the
proof of Theorem 4.

Theorems 4 and 5 combine immediately with Theorem 2 to give us the following results
for stochastic programming problems in either formulation.

Theorem 6 (stochastic programming duality).

(a) The relation inf(P+) = sup(D+) < ∞ is guaranteed by (4.18). Then, unless the

common optimal value is −∞ (so (D+) has no feasible solution), problem (D+) is sure to

have an optimal solution.

(b) The relation inf(P+) = sup(D+) > −∞ is guaranteed by (4.19). Then, unless the

common optimal value is ∞ (so (P+) has no feasible solution), problem (P+) is sure to

have an optimal solution.

(c) In the piecewise linear-quadratic case, the primal and dual constraint qualifications in

(4.18) and (4.19) are superfluous and can be replaced simply by the feasibility conditions

in (4.4) and (4.16), respectively. In that case,

inf(P+) = sup(D+) unless inf(P+) =∞ and sup(D+) = −∞,

(i.e., unless neither (P+) nor (D+) has a feasible solution). Moreover, when the common

optimal value is finite, both problems have an optimal solution.

113

(d) All these results hold equally with the full problems (P+) and (D+) replaced by the

reduced problems (P−) and (D−).

Examples of multistage stochastic programming problems that are covered by the results
in Theorem 6 are easily generated from the examples in §3. Stochastic linear programming
is obtained by choosing

ϕi(ui) =
{

0 if ui ∈ IRni
+ ,

∞ if ui /∈ IRni
+ , ψi(zi) =

{
0 if zi ∈ IRmi

− ,
∞ if zi /∈ IRmi

− ,

so that
ϕ∗i (wi) =

{
0 if wi ∈ IRni

− ,
∞ if wi /∈ IRni

− , ψ∗i (vi) =
{

0 if vi ∈ IRmi
+ ,

∞ if vi /∈ IRmi
+ .

This model belongs to the piecewise linear-quadratic case, where the theorems are at their
best. A much broader model in that category is obtained by choosing

ϕi(ui) =
{

1
2ui·Piui if ui ∈ Ui,
∞ if ui /∈ Ui,

ψi(zi) = θVi,Qi
(zi),

for nonempty polyhedral sets Ui and Vi and symmetric, positive semidefinite matrices Pi

and Qi, with θVi,Qi
defined as in (3.5). In dualizing one then has

ψ∗i (vi) =
{

1
2vi·Qivi if vi ∈ Vi,
∞ if vi /∈ Vi,

ϕ∗i (wi) = θUi,Pi
(wi).

This is stochastic piecewise linear-quadratic programming.

5. Optimality Conditions and Decomposition

The duality in Theorem 6 has interesting implications for optimality conditions in multi-
stage stochastic programming and how such conditions might be employed in computation.

Theorem 7 (saddle points in stochastic programming).

(a) In the circumstances of Theorem 6 where inf(P+) = sup(D+), one has that

(x̄, ū; ȳ, v̄) is a saddle point

of L+ on [IRd × U]× [IRd × V]

}
⇐⇒

{
(x̄, ū) solves (P+),

(ȳ, v̄) solves (D+).

(b) In the same circumstances, where equally inf(P−) = sup(D−), one has that

(ū, v̄) is a saddle point

of L
−

on U × V

}
⇐⇒

{
ū solves (P−),

v̄ solves (D−).

114

(c) The two saddle point conditions are both equivalent to the following subgradient

properties being satisfied:

Ei{B∗
i+ ȳi+}+D∗

i v̄i − pi ∈ ∂ϕi(ūi)

qi − Cix̄i −Diūi ∈ ∂ψ∗i (v̄i)

}
for i ∈ I, with x̄ = X(ū), ȳ = Y (v̄). (5.1)

Proof. This comes from Theorem 3 as applied by way of Theorems 4 and 5. The conditions
in (5.1) fall directly out of the saddle point condition for L+, namely

(x̄, ū) ∈IRd × U, (ȳ, v̄) ∈ IRd × V, and

L+(x, u; ȳ, v̄) ≥ L+(x̄, ū; ȳ, v̄) ≥ L+(x̄, ū; y, v)

for all (x, u) ∈ IRd × U, (y, v) ∈ IRd × V.

The maximization of L+(x̄, ū; y, v) in (y, v) can be seen from the formula for L+ in (4.8) to
come down to separate maximizations in the components yi and vi. This yields the second
set of subgradient relations along with x̄ = X(ū). Likewise, by substituting the alternative
expression in (4.14) into the formula (4.8), one sees that the minimization of L+(x, u; ȳ, v̄)
in (x, u) corresponds to separate minimizations in xi and ui, which furnish the second set
of subgradient conditions along with ȳ = Y (v̄). The fact that (5.1) also describes saddle
points (ū, ū) of L− is evident from (4.6) and (4.17).

To put a good face on the subgradient conditions in (5.1), we introduce now—in terms of
any x̄ and ȳ in IRd, acting as parameter elements—the vectors

p̄i := pi − Ei{B∗
i+ ȳi+

}, q̄i := qi − Cix̄i, (5.2)

and an associated family of subproblems, one for each information state i ∈ I:

(P̄i) minimize p̄i·ui + ϕi(ui) + ψi(q̄i −Diui) in ui.

The dual problem paired with (P̄i) in the extended Fenchel format is

(D̄i) maximize q̄i·vi − ψ∗i (vi)− ϕ∗i (D∗
i vi − q̄i) in vi,

and the corresponding Lagrangian is

L̄i(ui, vi) := p̄i·ui + ϕi(ui) + q̄i·vi − ψi(vi)− vi·Diui on Ui × Vi. (5.3)

The facts in Theorems 2 and 3 are available for these problems.

115

Theorem 8 (problem decomposition by information states). The optimality conditions

in Theorem 7 have the following interpretation:{
x̄ = X(ū), ȳ = Y (v̄), and for each i ∈ I

(ūi, v̄i) is a saddle point of L̄i on Ui × Vi.
(5.4)

Thus, in the piecewise linear-quadratic case in particular, ū = {ūi} solves the reduced

problem (P−) if and only if there exists v̄ = {v̄i}i∈I such that, when x̄ = {x̄i}i∈I and

ȳ = {ȳi}i∈I are taken as the trajectories of primal and dual states generated from these

controls by the dynamics in (4.2) and (4.15), it turns out that, for every i ∈ I,{
ūi is an optimal solution to (P̄i),

v̄i is an optimal solution to (D̄i).

Proof. All we need to observe is that the subgradient conditions in (5.1) are the ones
furnished by Theorem 3, as specialized to the problems (P̄i) and (D̄i). In the piecewise
linear-quadratic case, saddle points correspond always to pairs of optimal solutions, as we
know from Theorem 2.

In practical terms, this decomposition result is especially suited to algorithms that in some
way alternate between, on the one hand, integrating linear dynamical systems to get states
from controls and, on the other hand, solving collections of problems (P̄i), perhaps in par-
allel for various information states i ∈ I. Backward-forward splitting algorithms have just
this character; cf. [8]. Other splitting methods can likewise exploit the special Lagrangian
structure in (4.23) without relying necessarily on repeated integration of the dynamics; cf.
[5] and [6]. It usually wouldn’t be required, of course, to solve the corresponding dual prob-
lems (D̄i) directly, since almost any method for solving (P̄i) to get ūi would automatically
produce v̄i as an associated multiplier vector.

References

1. R. T. Rockafellar and R. J-B Wets, “Generalized linear-quadratic problems of deterministic
and stochastic optimal control in discrete time,” SIAM J. Control Opt. 28 (1990), 810–822.

2. L. Korf, “Approximation and solution schemes for dynamic stochastic optimization prob-
lems,” Ph.D. dissertation, Dept. of Mathematics, University of California at Davis, 1998.

3. R. T. Rockafellar, “Linear-quadratic programming and optimal control,” SIAM J. Control
and Opt. 25 (1987), 781–814.

116

4. R. T. Rockafellar, “Multistage convex programming and discrete-time optimal control,”
Control and Cybernetics 17 (1988), 225–246.

5. D. H. Salinger, A Splitting Algorithm for Multistage Stochastic Programming with Appli-

cation to Hydropower Scheduling, Ph.D. dissertation, Dept. of Applied Math., University
of Washington, 1997.

6. J. Eckstein and M. C. Ferris, “Operator splitting methods for monotone affine variational
inequalities with a parallel application to optimal control,” INFORMS J. on Computing
10 (1998), No. 2.

7. G. H.-G. Chen, Forward-Backward Splitting Techniques: Theory and Applications, PhD
dissertation, Dept. of Applied Math., University of Washington, 1994.

8. G. H.-G. Chen and R. T. Rockafellar, “Convergence rates in forward-backward splitting,”
SIAM J. Optim. 7 (1997), 421–444.

9. R. T. Rockafellar and R. J-B Wets, Variational Analysis, Grundlehren der Mathematischen
Wissenschaften 317, Springer-Verlag, 1997.

10. R. T. Rockafellar, “Duality theorems for convex functions,” Bull. Amer. Math. Soc. 70
(1964), 189-192.

11. R. T. Rockafellar and R. J-B Wets, “A Lagrangian finite generation technique for solving
linear-quadratic problems in stochastic programming,” Math. Programming Studies 28
(1986), 63–93.

12. R. T. Rockafellar and R. J-B Wets, “Linear-quadratic problems with stochastic penalties:
the finite generation algorithm,” in Stochastic Optimization, V. I. Arkin, A. Shiraev and
R. J-B Wets (eds.), Springer-Verlag Lecture Notes in Control and Information Sciences
No. 81, 1987, 545-560.

13. R. T. Rockafellar, “Duality and stability for extremum problems involving convex func-
tions,” Pacific J. Math. 21 (1967), 167-187.

14. R. T. Rockafellar, “Lagrange multipliers and optimality,” SIAM Review 35 (1993), 183–
238.

117

