baniut.

Summer Institute for Mathematics at the University of Washington

2011 Problems

1. Let x be a positive real number. Prove that

$$
\sqrt{\frac{[x]}{x+\{x\}}}+\sqrt{\frac{\{x\}}{x+[x]}} \geq 1
$$

where $[x]$ is the integer part of x and $\{x\}$ is the fractional part.
2. A drawer has d more black socks than white socks. Suppose that if two socks are selected at random then the probability that they match is $1 / 2$. How many socks of each color are there?
3. Prove that

$$
\log _{e}\left(e^{\pi}-1\right) \log _{e}\left(e^{\pi}+1\right)+\log _{\pi}\left(\pi^{e}-1\right) \log _{\pi}\left(\pi^{e}+1\right)<e^{2}+\pi^{2}
$$

4. A sequence of integers is defined as follows. Starting with $n=1$, list all the multiples of n up to n^{2}. Thus, the sequence starts with the multiples of 1 up to 1 , followed by the multiples of 2 up to 4 , then the multiples of 3 up to 9 , and so on, so that its first few terms are $1,2,4,3,6,9,4,8,12,16$. What is the 2011th term in the sequence?
5. Let a, b, c be positive real numbers and let $0<m<\frac{1}{4}$. Prove that at least one of the following equations has real roots.

$$
\begin{aligned}
& a x^{2}+b x+c m=0 \\
& b x^{2}+c x+a m=0 \\
& c x^{2}+a x+b m=0
\end{aligned}
$$

6. Let A, B, C be the angles of a triangle. Prove that

$$
\sin A+\sin B \sin C \leq \frac{1+\sqrt{5}}{2}
$$

7. Let a, b, c be the length of sides opposite angles A, B, C in triangle ABC . Prove that

$$
\frac{\cos ^{3} A}{a}+\frac{\cos ^{3} B}{b}+\frac{\cos ^{3} C}{c}<\frac{a^{2}+b^{2}+c^{2}}{2 a b c} .
$$

8. Let a, b, c be positive real numbers satisfying $a b c=1$. Prove that

$$
a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq 3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a} .
$$

