Summer Institute for Mathematics at the University of Washington

2012 Problems

1. Assume that x, y, z are numbers with $x+y+z=1$ and $0<x, y, z<1$. Prove that

$$
\sqrt{\frac{x y}{z+x y}}+\sqrt{\frac{y z}{x+y z}}+\sqrt{\frac{z x}{y+z x}} \leq \frac{3}{2}
$$

2. A polynomial $p(x)$ satisfies $p(5-x)=p(5+x)$ for all real x. Suppose $p(x)=0$ has four distinct real roots. Find the sum of these roots.
3. A person cashes a check at a bank. By mistake the teller pays the number of cents as dollars and dollars as cents. The person spends $\$ 3.50$ before noticing, then later finds that the remaining money is exactly double the amount of the check. What was the amount?
4. Let a, b, c be integers such that 2005 divides both $a b+9 b+81$ and $b c+9 c+81$. Prove that 2005 also divides $c a+9 a+81$.
5. Two thieves stole an open chain with $2 k$ white beads and $2 m$ black beads. They want to share the loot equally, by cutting the chain in pieces in such a way that each one gets k white beads and m black beads. What is the minimum number of cuts that is sufficient? Describe an algorithm to make the cuts.
6. Find all solutions of the system

$$
\begin{align*}
& x+\log \left(x+\sqrt{x^{2}+1}\right)=y \tag{1}\\
& y+\log \left(y+\sqrt{y^{2}+1}\right)=z \tag{2}\\
& z+\log \left(z+\sqrt{z^{2}+1}\right)=x \tag{3}
\end{align*}
$$

7. Find all solutions of $\cos x \cdot \cos 2 x \cdot \cos 3 x=1$.
8. Let $A B C D$ be a unit square and mark off points E, F, G, H successively in sides $A B, B C, C D, D A$ so that $A E=B F=C G=D H=\frac{2011}{2012}$. Prove that the region that is the intersection of triangles $A G B, B H C, C E D, D F A$ is a square with area

$$
\frac{1}{2011^{2}+2012^{2}}
$$

