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1. The happy Sunday vacationer got into his rented boat and headed up the river - against the direction of its
flow - with the motor wide open. He had traveled upriver one mile when his hat blew off. Unconcerned,
he continued his trip. Ten minutes later, he remembered that his return railroad ticket was under the hat
band. Turning around immediately, he headed downriver with the motor still wide open and recovered his
hat exactly at his starting point. How fast was the river flowing?

Solution
Suppose the river was flowing at the speed x miles per minute, and the net speed of the vacationer’s boat
with the motor wide open was y miles per minute.
The time elapsed between his hat blew off and he recovering his hat is the time when the hat traveled along
the river for 1 mile. Hence, the time elapsed is 1

x minute.
The vacationer traveled against the river for 10 minutes, so he traveled for 10(y − x) miles against the
river. Then it took him 1

x − 10 minutes to get back to the starting point, so he traveled (y + x)( 1
x − 10)

miles along the river. In this 1
x minutes, his net distance traveled is in fact 1 mile along the river, so

1 = (y + x)( 1
x − 10)− 10(y − x). Solve it and we obtain x = 1

20 , so the river was flowing at 1
20 , or 0.05, miles

per minute, or 3 miles per hour. �
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2. Suppose the medians of a triangle are proportional to the corresponding sides. Prove that the triangle is
equilateral.

Solution

A

B

C

D

G

X

Let ABC be the triangle, D,E, F be the midpoints of BC, CA, AB respectively, G be the centroid. Extend
the line AGD so that GD = DX.

Since G is the centroid and AD is a median, AG = 2GD = GD +DX = GX. Hence,

GX

BC
=
AG

BC
.

By our assumption, we know that
AD

BC
=
BE

CA
=
CF

AB
.

Since G is the centroid, AG = 2
3AD, BG = 2

3BE, CG = 2
3CF . Thus,

GX

BC
=
AG

BC
=

2
3AD

BC
=

2
3BE

CA
=
BG

CA

=
2
3CF

AB
=
CG

AB
.

Since GD = DX and BD = DC, BGCX is a parallelogram. So CG = XB and

XG

BC
=
BG

AC
=
CG

AB
=
BX

AB
.

Since the three sides of ∆XBG and ∆BAC are proportional, we have ∆XBG ∼ ∆BAC. Thus,

∠BGD = ∠BGX = ∠BCA.

Similarly,
∠CGE = ∠CAB, ∠AGF = ∠ABC.

Since ∠AGF = ∠ABC = ∠FBD, BFGD is a cyclic quadrilateral.

A

B

C

D

G

E

F
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Since ∠BGD and ∠BFD are angles in the same segment, they are equal. Thus,

∠ACB = ∠BGD = ∠BFD.

Since BD is parallel to AC, we have

∠ACB = ∠BFD = ∠BAC.

Similarly, ∠ABC = ∠ACB, so ∆ABC is equilateral. �
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Alternative Solution

A

B

C
c

a

b

D

EF
ka

θ

G

Let ABC be the triangle, D,E, F be the midpoints of BC, CA, AB respectively, G be the centroid, a, b, c be
the lengths of BC, CA, AB respectively, and ka, kb, kc be the lengths of the corresponding medians (k > 0
is a real number). Let θ be the angle ADB.

By Cosine Law on triangle ABD and triangle ACD,

c2 =
a2

4
+ k2a2 − ka2 cos θ,

b2 =
a2

4
+ k2a2 − ka2 cos(180◦ − θ) =

a2

4
+ k2a2 + ka2 cos θ

So
2(b2 + c2) = a2(4k2 + 1)

Similarly,
2(c2 + a2) = b2(4k2 + 1), 2(a2 + b2) = c2(4k2 + 1)

Sum all the three equaions up, we have

4(a2 + b2 + c2) = (a2 + b2 + c2)(4k2 + 1)

4k2 = 3, k =

√
3

2

Since G is the centroid, BGGE = 2, so BG = 2kb
3 = b√

3
. Similarly, GD = ka

3 = a
2
√
3
. By Cosine Law on triangle

GDB,

b2

3
=

a2

4
+
a2

12
− 2a2√

3
cos θ

b2 = a2(1− 2
√

3 cos θ)

By Cosine Law on triangle ADC,

b2 =
a2

4
+

3a2

4
+

√
3a2

2
cos θ

b2 = a2

(
1 +

√
3

2
cos θ

)

Thus,

a2(1− 2
√

3 cos θ) = a2

(
1 +

√
3

2
cos θ

)
(√

3

2
+ 2
√

3

)
cos θ = 0

∠ADB = θ = 90◦

So AD⊥BC. Similarly, BE⊥CA and CF⊥AB, so triangle ABC is equilateral. �
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3. The positive integers from 1 to 100 are arranged in some random order along a circle. The sum of every three
consecutively arranged numbers is calculated. Prove that there exist two such sums whose difference is at
least 3.

Solution
We will prove it by contradiction. Suppose any two such sums have difference at most 2. Let a1 = 1 and an
be the nth number after 1, counting clockwisely.
By assumption, |(a2 + a3 + a4)− (a1 + a2 + a3)| ≤ 2, so |a4− a1| ≤ 2, i.e. a4 is 2 or 3. Similarly, a98 is 2 or 3.
Without loss of generality (which means the other case(s) can be done in the exact same way), we suppose
a4 = 2, and a98 = 3.
Now we claim that a3n+1 = 2n and a101−3n = 2n+ 1 for 1 ≤ n ≤ 33. We will prove it by Strong Induction.
The base case is true by assumption.
Suppose the claim is true for all 1 ≤ k < n. Consider the set S = {1, 2, 3, · · · , 2n − 1}. These numbers are
associated with al for some l = 3m + 1 or 101 − 3m, where 1 ≤ m < n, by induction assumption. Clearly,
3n+ 1 6= 3m+ 1 and 101− 3n 6= 101− 3m for all 1 ≤ m < n. Also, 3a+ 1 is 1 modulo 3, where 101− 3b is 2
modulo 3, so 3n+ 1 6= 101− 3m and 101− 3n 6= 3m+ 1 for all 1 ≤ m < n. Hence a3n+1 and a101−3n cannot
be in the set.
By assumption, 2 ≥ |(a3n−1 +a3n+a3n+1)−(a3n−2 +a3n−1 +a3n)| = |a3n+1−a3(n−1)+1| = |a3n+1−(2n−2)|,
so a3n+1 ∈ {2n− 4, 2n− 3, 2n− 2, 2n− 1, 2n}. However, the first four values are in S, so a3n+1 must be 2n.
Similarly, 2 ≥ |(a101−3n + a100−3n + a99−3n) − (a100−3n + a99−3n + a98−3n)| = |a101−3n − a101−3(n−1)| =
|a101−3n − (2n − 1)|, so a101−3n ∈ {2n − 3, 2n − 2, 2n − 1, 2n, 2n + 1}. However, the first 3 values are in S,
and a3n+1 = 2n, so a101−3n must be 2n+ 1.

Hence, the claim is true by Strong Induction. By applying the claim to n = 32 and 33, we have a97 = 64,
a5 = 65, a100 = 66, a2 = 67. Consider a3. By assumption we have 2 ≥ |(a1 + a2 + a3)− (a100 + a1 + a2)| =
|a3−a100| = |a3−66|, so a3 ∈ {64, 65, 66, 67, 68}. However, from above we see the first four numbers are asso-
ciated with other an’s, so a3 = 68. Now, |(a100 +a1 +a2)− (a2 +a3 +a4)| = |(66+1+67)− (67+68+2)| = 3,
contradicting our assumption that the difference is at most 2.
Therefore, there exist two such sums with difference at least 3. �
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4. Prove that

1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2009
− 1

2010
=

1

1006
+

1

1007
+

1

1008
+ · · ·+ 1

2010
.

Solution

1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2009
− 1

2010

= 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

2009
+

1

2010
− 2

(
1

2
+

1

4
+

1

6
+ · · ·+ 1

2010

)
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

2009
+

1

2010
−
(

1 +
1

2
+

1

3
+ · · ·+ 1

1005

)
=

1

1006
+

1

1007
+

1

1008
+ · · ·+ 1

2010

�
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5. Evaluate
cos2 1◦ + cos2 2◦ + · · ·+ cos2 90◦.

Solution
Note that cos(2n)◦ = 2 cos2 n◦ − 1, so cos2 n◦ = 1+cos(2n)◦

2 . Hence,

cos2 1◦ + cos2 2◦ + · · ·+ cos2 90◦

=
cos 2◦ + 1

2
+

cos 4◦ + 1

2
+ · · ·+ cos 180◦ + 1

2

=
1

2
(cos 2◦ + cos 4◦ + · · ·+ cos 180◦) + 45

Note that sin(2k + 1)◦ − sin(2k − 1)◦ = 2 cos(2k)◦ sin 1◦, so cos(2k)◦ = 1
2 sin 1◦ (sin(2k + 1)◦ − sin(2k − 1)◦),

and

cos2 1◦ + cos2 2◦ + · · ·+ cos2 90◦

=
1

4 sin 1◦
(2 sin 1◦ cos 2◦ + 2 sin 1◦ cos 4◦ + · · ·+ 2 sin 1◦ cos 180◦) + 45

=
1

4 sin 1◦
[(sin 3◦ − sin 1◦) + (sin 5◦ − sin 3◦) + · · ·+ (sin 181◦ − sin 179◦)] + 45

=
sin 181◦ − sin 1◦

4 sin 1◦
+ 45 =

−2 sin 1◦

4 sin 1◦
+ 45 =

89

2

�

Alternatively, note that cos θ = sin(90◦ − θ), so

cos2 1◦ + cos2 2◦ + · · ·+ cos2 90◦

= (cos2 1◦ + cos2 89◦) + (cos2 2◦ + cos2 88◦) + · · ·+ (cos2 44◦ + cos2 46◦) + cos2 45◦

= (cos2 1◦ + sin2 1◦) + (cos2 2◦ + sin2 2◦) + · · ·+ (cos2 44◦ + sin2 44◦) +
1

2

= 44 +
1

2
=

89

2

�
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6. Let a1, a2, . . . , an, . . . be a sequence of positive integers. Suppose this sequence has the property that
aan + an = 2n for all n ≥ 1. Prove that an = n for all n.

Solution
We will prove it by Strong Induction.
Base case: For n = 1, we have aa1 + a1 = 2. Since aa1 and a1 are positive integers, aa1 ≥ 1 and a1 ≥ 1, so
aa1 + a1 ≥ 2, equality holds iff aa1 = a1 = 1. Therefore, a1 must be 1.
Inductive Step: Suppose ak = k for all 1 ≤ k < n.
If an < n, then aan = an by induction assumption. Then 2n = aan + an = 2an, implying an = n, contradict-
ing our assumption that an < n. Hence, an ≥ n.
If an > n, then by aan + an = 2n we have aan < n. By Induction assumption, we have aaan

= aan < n.
Hence, 2n > aaan

+ aan = 2an > 2n, a contradiction. Thus, an ≤ n. So we force an = n.
Therefore, by Strong Induction, an = n for all n. �
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7. Suppose that M is the midpoint of side AB of square ABCD. Let P and Q be the points of intersection of
the line MD with the circle with center M and radius MA, where P is insider the square and Q is outside
the square. Prove that

PB

PA
=

1 +
√

5

2
.

Solution

A

B

C

D

M

Q

Pθ

Let θ = ∠PAB. Since MA,MP are radii of the circle, MA = MP , so ∠AMP = 180◦ − 2θ. Consider the
right triangle DAM . We have

tan(180◦ − 2θ) =
AD

AM
=

AB

AM
= 2, so

−2 = tan 2θ =
2 tan θ

1− tan2 θ
.

Thus, tan2 θ − tan θ − 1 = 0. Since 0◦ < θ < 90◦, we have tan θ > 0, so tan θ = 1+
√
5

2 .
Since AB is the diameter of the circle, ∠APB = 90◦, so

PB

PA
= tan θ =

1 +
√

5

2
.

�
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8. Let a, b, c be positive real numbers so that a+ b+ c = 1. Prove that(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
≥ 64.

Solution
Since 1 = a+ b+ c, we have (

1 +
1

a

)(
1 +

1

b

)(
1 +

1

c

)
=

(
1 +

a+ b+ c

a

)(
1 +

a+ b+ c

b

)(
1 +

a+ b+ c

c

)
=

64

abc

(
a+ a+ b+ c

4

)(
b+ a+ b+ c

4

)(
c+ a+ b+ c

4

)
Note that AM-GM inequality states that for any x, y, z, w ≥ 0, we have

x+ y + z + w

4
≥ 4
√
xyzw.

So, (
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
=

64

abc

(
a+ a+ b+ c

4

)(
b+ a+ b+ c

4

)(
c+ a+ b+ c

4

)
≥ 64

abc

(
4
√
a2bc

)(
4
√
ab2c

)(
4
√
abc2

)
(AM-GM Inequality)

=
64

abc
· (abc) = 64

�
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