Summer Institute for Mathematics at the University of Washington 2011 Solutions

Written by Angus Chung

1. Let x be a positive real number. Prove that

$$
\sqrt{\frac{[x]}{x+\{x\}}}+\sqrt{\frac{\{x\}}{x+[x]}} \geq 1
$$

where $[x]$ is the integer part of x and $\{x\}$ is the fractional part.

Solution

$$
\begin{aligned}
& \sqrt{\frac{[x]}{x+\{x\}}}+\sqrt{\frac{\{x\}}{x+[x]}} \\
= & \sqrt{\frac{[x]}{[x]+\{x\}+\{x\}}}+\sqrt{\frac{\{x\}}{[x]+\{x\}+[x]}} \\
= & \sqrt{\frac{n}{n+2 t}}+\sqrt{\frac{t}{2 n+t}},
\end{aligned}
$$

where $n=[x]$ is a non-negative integer, $t=\{x\}$ lies in the interval $[0,1)$. Note that if $n=0$, we have $t>0$ since $x=n+t>0$, and the sum is 1 . Similarly, if $t=0$, we have $n>0$ since $x=n+t>0$, and the sum is also 1 . Now, suppose both n, t are non-zero. Let $u=t / n$. Manipulating the fraction, we have

$$
\begin{aligned}
\sqrt{\frac{[x]}{x+\{x\}}}+\sqrt{\frac{\{x\}}{x+[x]}} & =\sqrt{\frac{n}{n+2 t}}+\sqrt{\frac{t}{2 n+t}} \\
& =\sqrt{\frac{n / n}{(n / n)+2(t / n)}}+\sqrt{\frac{t / n}{2(n / n)+(t / n)}} \\
& =\sqrt{\frac{1}{1+2 u}}+\sqrt{\frac{u}{2+u}} .
\end{aligned}
$$

Let $F(u)$ be the expression above. Square F and we obtain

$$
\begin{aligned}
(F(u))^{2} & =\left(\sqrt{\frac{1}{1+2 u}}+\sqrt{\frac{u}{2+u}}\right)^{2} \\
& =\frac{1}{1+2 u}+2 \sqrt{\frac{1}{1+2 u} \cdot \frac{u}{2+u}}+\frac{u}{2+u}
\end{aligned}
$$

Since $F(u)$ is the sum of two square roots, it is non-negative. Therefore, $F(u) \geq 1$ is equivalent to $(F(u))^{2} \geq 1^{2}=1$, or

$$
\frac{1}{1+2 u}+2 \sqrt{\frac{u}{(1+2 u)(2+u)}}+\frac{u}{2+u} \geq 1
$$

Note that $u=n / t>0$ (recall that we suppose $n, t>0)$, so $(1+2 u)(2+u)>0$. Hence we can multiply the above inequality by $(1+2 u)(2+u)$ to get an equivalent statement:

$$
(2+u)+2 \sqrt{u(1+2 u)(2+u)}+u(1+2 u) \geq(1+2 u)(2+u) .
$$

Grouping the terms, we get

$$
2 \sqrt{u(1+2 u)(2+u)} \geq 3 u
$$

Again, both sides of the inequality are positive, so by squaring it, we can get an equivalent statement:

$$
4 u(1+2 u)(2+u) \geq 9 u^{2} .
$$

Expanding,

$$
8 u^{3}+11 u^{2}+8 u \geq 0
$$

which is true since $u>0$ and $8 u^{2}+11 u+8=8(u-1)^{2}+17 u \geq 17 u>0$. Since going backward is valid (as argued in each step), the initial inequality is true.

Alternative Solution:
As previous solution,

$$
\begin{aligned}
& \sqrt{\frac{[x]}{x+\{x\}}}+\sqrt{\frac{\{x\}}{x+[x]}} \\
= & \sqrt{\frac{[x]}{[x]+\{x\}+\{x\}}}+\sqrt{\frac{\{x\}}{[x]+\{x\}+[x]}} \\
= & \sqrt{\frac{n}{n+2 t}}+\sqrt{\frac{t}{2 n+t}},
\end{aligned}
$$

where $n=[x]$ is a non-negative integer, $t=\{x\}$ lies in the interval $[0,1)$. Note that if $n=0, t>0$ since $x=n+t>0$, and the sum is 1 .
Now, suppose n is a positive integer. Fix n and consider the function $f:[0,1) \rightarrow \mathbb{R}$ with $f(t)=\sqrt{\frac{n}{n+2 t}}+\sqrt{\frac{t}{2 n+t}}$. For $t>0$,

$$
\begin{aligned}
\frac{d f}{d t} & =-\sqrt{\frac{n}{(n+2 t)^{3}}}+\frac{1}{2} \sqrt{\frac{1}{t(2 n+t)}}-\frac{1}{2} \sqrt{\frac{t}{(2 n+t)^{3}}} \\
& =\frac{-2 \sqrt{n t(2 n+t)^{3}}+(2 n+t) \sqrt{(n+2 t)^{3}}-t \sqrt{(n+2 t)^{3}}}{2 \sqrt{t(n+2 t)^{3}(2 n+t)^{3}}} \\
& =\frac{-2(2 n+t) \sqrt{n t(2 n+t)}+2 n(n+2 t) \sqrt{n+2 t}}{2(n+2 t)(2 n+t) \sqrt{t(n+2 t)(2 n+t)}} \\
& =\frac{n(n+2 t) \sqrt{n+2 t}-(2 n+t) \sqrt{n t(2 n+t)}}{(n+2 t)(2 n+t) \sqrt{t(n+2 t)(2 n+t)}}
\end{aligned}
$$

Note that $(n+2 t)(2 n+t) \sqrt{t(n+2 t)(2 n+t)}>0$ and

$$
\begin{aligned}
(n-t)^{3}(n+t) & \geq 0 \quad \text { since } n \geq 1 \geq t \\
n^{4}-2 n^{3} t+2 n t^{3}-t^{4} & \geq 0 \\
n^{4}+6 n^{3} t+12 n^{2} t^{2}+8 n t^{3} & \geq 8 n^{3} t+12 n^{2} t^{2}+6 n t^{3}+t^{4} \\
n(n+2 t)^{3} & \geq t(2 n+t)^{3} \\
n^{2}(n+2 t)^{3} & \geq n t(2 n+t)^{3} \geq 0 \\
n(n+2 t) \sqrt{n+2 t} & \geq(2 n+t) \sqrt{n t(2 n+t)} \\
n(n+2 t) \sqrt{n+2 t}-(2 n+t) \sqrt{n t(2 n+t)} & \geq 0 .
\end{aligned}
$$

Hence, the function is strictly increasing when $t>0$. Thus, $f(t) \geq f(0)=1$ since f is continuous.
Therefore, $\sqrt{\frac{[x]}{x+\{x\}}}+\sqrt{\frac{\{x\}}{x+[x]}} \geq 1$.
2. A drawer has d more black socks than white socks. Suppose that if two socks are selected at random then the probability that they match is $\frac{1}{2}$. How many socks of each color are there?

Solution

Suppose it has n white socks and $n+d$ black socks. The probability that the first selected sock is white is $\frac{n}{2 n+d}$. Given the first sock is white, the probability that the second selected sock is white is $\frac{n-1}{2 n+d-1}$. Thus, the probability that the two selected socks are both white is $\frac{n(n-1)}{(2 n+d)(2 n+d-1)}$. Similarly, the probability that the two selected socks are both black is $\frac{(n+d)(n+d-1)}{(2 n+d)(2 n+d-1)}$. Since we know the probability that the socks match is $\frac{1}{2}$, we have

$$
\begin{aligned}
\frac{n(n-1)+(n+d)(n+d-1)}{(2 n+d)(2 n+d-1)} & =\frac{1}{2} \\
2 n(n-1)+2(n+d)(n+d-1) & =(2 n+d)(2 n+d-1) \\
2 n^{2}-2 n+2 n^{2}+4 n d+2 d^{2}-2 n-2 d & =4 n^{2}+4 n d+d^{2}-2 n-d \\
d^{2}-d & =2 n
\end{aligned}
$$

Therefore, there are $\frac{d(d-1)}{2}$ white socks and $\frac{d(d+1)}{2}$ black socks.
3. Prove that

$$
\log _{e}\left(e^{\pi}-1\right) \log _{e}\left(e^{\pi}+1\right)+\log _{\pi}\left(\pi^{e}-1\right) \log _{\pi}\left(\pi^{e}+1\right)<e^{2}+\pi^{2}
$$

Solution

We will first prove that if $x>1$, then $\log (x-1) \log (x+1)<(\log x)^{2}$.
Note that $0<\frac{x^{2}-1}{x^{2}}<1$, so

$$
\log \frac{x^{2}-1}{x^{2}}<0
$$

as \log is strictly increasing. Also, $\log x>0$ since $x>1$, so

$$
\log x \log \frac{x^{2}-1}{x^{2}}<0
$$

Since $0<\frac{x-1}{x}<1<\frac{x+1}{x}$, we have

$$
\log \frac{x-1}{x}<0<\log \frac{x+1}{x}
$$

as \log is strictly increasing, so

$$
\log \frac{x-1}{x} \log \frac{x+1}{x}<0 .
$$

Since $\log (a b)=\log a+\log b$,

$$
\begin{aligned}
\log x \log \frac{x^{2}-1}{x^{2}}+\log \frac{x-1}{x} \log \frac{x+1}{x} & <0 \\
\log x \log \left[\frac{x-1}{x} \cdot \frac{x+1}{x}\right]+\log \frac{x-1}{x} \log \frac{x+1}{x} & <0 \\
\log x\left(\log \frac{x-1}{x}+\log \frac{x+1}{x}\right)+\log \frac{x-1}{x} \log \frac{x+1}{x} & <0 \\
(\log x)^{2}+\log x \log \frac{x-1}{x}+\log x \log \frac{x+1}{x}+\log \frac{x-1}{x} \log \frac{x+1}{x} & <(\log x)^{2} \\
\left(\log x+\log \frac{x-1}{x}\right)\left(\log x+\log \frac{x+1}{x}\right) & <(\log x)^{2} \\
\log \left[x \cdot \frac{x-1}{x}\right] \log \left[x \cdot \frac{x+1}{x}\right] & <(\log x)^{2} \\
\log (x-1) \log (x+1) & <(\log x)^{2},
\end{aligned}
$$

as we claimed above.

Note that $e^{\pi}>e>1$, so by putting $x=e^{\pi}$, we have

$$
\begin{aligned}
\log \left(e^{\pi}-1\right) \log \left(e^{\pi}+1\right) & <\left(\log \left(e^{\pi}\right)\right)^{2} \\
\frac{\log \left(e^{\pi}-1\right)}{\log e} \frac{\log \left(e^{\pi}+1\right)}{\log e} & <\left(\frac{\log \left(e^{\pi}\right)}{\log e}\right)^{2} \\
\log _{e}\left(e^{\pi}-1\right) \log _{e}\left(e^{\pi}+1\right) & <\left(\log _{e}\left(e^{\pi}\right)\right)^{2}=\pi^{2}
\end{aligned}
$$

Similarly, since $\pi^{e}>\pi>1$, we have

$$
\log _{\pi}\left(\pi^{e}-1\right) \log _{\pi}\left(\pi^{e}+1\right)<e^{2}
$$

Therefore,

$$
\log _{e}\left(e^{\pi}-1\right) \log _{e}\left(e^{\pi}+1\right)+\log _{\pi}\left(\pi^{e}-1\right) \log _{\pi}\left(\pi^{e}+1\right)<e^{2}+\pi^{2}
$$

4. A sequence of integers is defined as follows. Starting with $n=1$, list all the multiples of n up to n^{2}. Thus, the sequence starts with the multiples of 1 up to 1 , followed by the multiples of 2 up to 4 , then the multiples of 3 up to 9 , and so on, so that its first few terms are $1,2,4,3,6,9,4,8,12,16$. What is the $2011^{\text {th }}$ term in the sequence?

Solution

We claim that the $\frac{n(n+1)}{2}$-th term is n^{2}. We will prove it by induction.
For $n=1$, we know the first term is 1 . Suppose the $\frac{n(n+1)}{2}$-th term is n^{2}. Then the next term is $(n+1)$, according to the rule of the sequence. Hence, we will have multiples of $(n+1)$ until $(n+1)^{2}$, which occurs after $(n+1)^{\prime}$ multiples of $(n+1)$, i.e. $(n+1)$ numbers after n^{2}. Hence, we know the $\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$-th term is $(n+1)^{2}$, as desired. By Principle of Mathematical Induction, the claim is true.
Since $\frac{63 \cdot 64}{2}=2016$, we know the 2016 -th term is 63^{2}. Hence, the 2011-th term is $63(63-5)=3654$.
5. Let a, b, c be positive real numbers and let $0<m<\frac{1}{4}$. Prove that at least one of the equations has real roots.

$$
\begin{aligned}
a x^{2}+b x+c m & =0 \\
b x^{2}+c x+a m & =0 \\
c x^{2}+a x+b m & =0
\end{aligned}
$$

Solution

Without loss of generality, suppose $a \geq b \geq c>0$. Then $a^{2} \geq b c$, so

$$
a^{2}-4 b c m=a^{2}-(4 m)(b c)>a^{2}-b c \geq 0
$$

Hence, $c x^{2}+a x+b m=0$ has real roots. Therefore, at least one of the three equations has real roots.
6. Let A, B, C be the angles of a triangle. Prove that

$$
\sin A+\sin B \sin C \leq \frac{1+\sqrt{5}}{2}
$$

Solution

Recall the sum and product formula:

$$
\sin x \sin y=\frac{-1}{2}[\cos (x+y)-\cos (x-y)] .
$$

Thus,

$$
\begin{aligned}
\sin A+\sin B \sin C & =\sin A+\frac{-1}{2}[\cos (B+C)-\cos (B-C)] \\
& =\sin A+\frac{1}{2}\left[-\cos \left(180^{\circ}-A\right)+\cos (B-C)\right] \\
& =\sin A+\frac{1}{2}[\cos A+\cos (B-C)] \\
& =\sin A+\frac{\cos A}{2}+\frac{\cos (B-C)}{2} \\
& \leq \sin A+\frac{\cos A}{2}+\frac{1}{2} \\
& =\frac{\sqrt{5}}{2}\left(\frac{2}{\sqrt{5}} \sin A+\frac{1}{\sqrt{5}} \cos A\right)+\frac{1}{2}
\end{aligned}
$$

Let $\phi=\sin ^{-1} \frac{1}{\sqrt{5}}$. Since $0^{\circ}<\phi<90^{\circ}$, we have $\cos \phi=\sqrt{1-\sin ^{2} \phi}=\frac{2}{\sqrt{5}}$. Observe that

$$
\sin (A+\phi)=\sin A \cos \phi+\cos A \sin \phi=\sin A \cdot \frac{2}{\sqrt{5}}+\cos A \cdot \frac{1}{\sqrt{5}}
$$

Thus,

$$
\begin{aligned}
\sin A+\sin B \sin C & \leq \frac{\sqrt{5}}{2} \sin (A+\phi)+\frac{1}{2} \\
& \leq \frac{\sqrt{5}}{2}+\frac{1}{2}
\end{aligned}
$$

Alternative Solution:
Fix A. Let $f(B, C)=\sin B \sin C$. To maximize the sum above, we have to maximize f.

$$
f(B, C)=\sin B \sin C=\frac{1}{2}(\cos (B-C)-\cos (B+C))=\frac{1}{2}\left(\cos (B-C)-\cos \left(180^{\circ}-A\right)\right)
$$

Hence, to maximize f, we have to maximize $\cos (B-C)$. Since $0^{\circ}<B, C<180^{\circ},-180^{\circ}<B-C<180^{\circ}$. In this range, $\cos (B-C)$ is maximized when $B-C=0$. Thus, we want $B=C$ in order to maximize the expression.

Now we want to maximize $g(A)=\sin A+\sin ^{2} B=\sin A+\sin ^{2}\left(\frac{180^{\circ}-A}{2}\right)$. Note that

$$
\begin{gathered}
g(A)=\sin A+\sin ^{2}\left(\frac{180^{\circ}-A}{2}\right)=\sin A+\frac{1-\cos \left(2 \cdot \frac{180^{\circ}-A}{2}\right)}{2}=\sin A+\frac{1-\cos \left(180^{\circ}-A\right)}{2}=\sin A+\frac{1+\cos A}{2} \\
g^{\prime}(A)=\cos A-\frac{\sin A}{2}
\end{gathered}
$$

which equals 0 iff $\cos A=\frac{\sin A}{2}$, or $\tan A=2$. Let A_{0} be such A in $\left[0^{\circ}, 180^{\circ}\right]$. We have $\sin A_{0}=\frac{2}{\sqrt{5}}$, $\cos A_{0}=\frac{1}{\sqrt{5}}$ by Pythagoras' Theorem.

$$
g^{\prime \prime}(A)=-\sin A-\frac{\cos A}{2}
$$

so $g^{\prime \prime}\left(A_{0}\right)=-\frac{\sqrt{5}}{2}$, which shows A_{0} is a local maximum for g. Note that $g\left(A_{0}\right)=\frac{1+\sqrt{5}}{2}, g\left(0^{\circ}\right)=1, g\left(180^{\circ}\right)=0$ and A_{0} is the only critical point for g in $\left[0^{\circ}, 180^{\circ}\right]$. This implies that A_{0} is the maximum for g when $A \in\left[0^{\circ}, 180^{\circ}\right]$. Therefore, $\sin A+\sin B \sin C \leq g(A) \leq \frac{1+\sqrt{5}}{2}$.
7. Let a, b, c be the length of sides opposite angles A, B, C in triangle $A B C$. Prove that

$$
\frac{\cos ^{3} A}{a}+\frac{\cos ^{3} B}{b}+\frac{\cos ^{3} C}{c}<\frac{a^{2}+b^{2}+c^{2}}{2 a b c}
$$

Solution

Recall Sine Law

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R, \quad \text { where } R \text { is the radius of the curcumcircle of triangle } A B C,
$$

and Cosine Law

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \quad \text { (and similar for the other two). }
$$

Note that

$$
\begin{aligned}
\frac{\cos ^{3} A}{a}+\frac{\cos ^{3} B}{b}+\frac{\cos ^{3} C}{c}= & \frac{\cos A\left(1-\sin ^{2} A\right)}{a}+\frac{\cos B\left(1-\sin ^{2} B\right)}{b}+\frac{\cos C\left(1-\sin ^{2} C\right)}{c} \\
= & \frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}-\frac{\sin ^{2} A \cos A}{a}-\frac{\sin ^{2} B \cos B}{b}-\frac{\sin ^{2} C \cos C}{c} \\
= & \frac{b^{2}+c^{2}-a^{2}}{2 a b c}+\frac{c^{2}+a^{2}-b^{2}}{2 a b c}+\frac{a^{2}+b^{2}-c^{2}}{2 a b c} \\
& -\left(\frac{\sin A}{a}\right) \sin A \cos A-\left(\frac{\sin B}{b}\right) \sin B \cos B-\left(\frac{\sin C}{c}\right) \sin C \cos C \\
= & \frac{a^{2}+b^{2}+c^{2}}{2 a b c}-\left(\frac{\sin A \cos A}{2 R}+\frac{\sin B \cos B}{2 R}+\frac{\sin C \cos C}{2 R}\right) \\
= & \frac{a^{2}+b^{2}+c^{2}}{2 a b c}-\frac{1}{4 R}(\sin 2 A+\sin 2 B+\sin 2 C),
\end{aligned}
$$

It remains to show that $\sin 2 A+\sin 2 B+\sin 2 C$ is positive.
Recall the sum and product formulae:

$$
\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right), \quad \cos x-\cos y=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)
$$

Observe that

$$
\begin{aligned}
\sin 2 A+\sin 2 B+\sin 2 C & =2 \sin (A+B) \cos (A-B)+2 \sin C \cos C \\
& =2 \sin \left(180^{\circ}-C\right) \cos (A-B)+2 \sin C \cos \left(180^{\circ}-(A+B)\right) \\
& =2 \sin C[\cos (A-B)-\cos (A+B)] \\
& =4 \sin A \sin B \sin C>0
\end{aligned}
$$

since $0^{\circ}<A, B, C<180^{\circ}$. Therefore, the result follows.

Alternative Solution:

Let R be the radius of the circumcircle of triangle $A B C$ and $x=b+c-a, y=c+a-b, z=a+b-c$. Then $a=\frac{y+z}{2}, b=\frac{z+x}{2}, c=\frac{x+y}{2}$. By triangle inequality, $x, y, z>0$. Now observe that

$$
\begin{aligned}
& \left(x^{2} y^{2}+x y^{3}-y^{3} z-2 y^{2} z^{2}+x^{2} z^{2}+x z^{3}-y z^{3}\right) \\
& \left(y^{2} z^{2}+y z^{3}-z^{3} x-2 z^{2} x^{2}+y^{2} x^{2}+y x^{3}-z x^{3}\right) \\
& \left(z^{2} x^{2}+z x^{3}-x^{3} y-2 x^{2} y^{2}+z^{2} y^{2}+z y^{3}-x y^{3}\right)=0
\end{aligned}
$$

Adding some positive terms to it,

$$
\begin{array}{r}
\left(x^{2} y^{2}+x y^{2} z+x y^{3}-y^{3} z+2 x^{2} y z+2 x y z^{2}+2 x y^{2} z-2 y^{2} z^{2}+x^{2} z^{2}+x z^{3}+x y z^{2}-y z^{3}\right) \\
+\left(y^{2} z^{2}+y z^{2} x+y z^{3}-z^{3} x+2 y^{2} z x+2 y z x^{2}+2 y z^{2} x-2 z^{2} x^{2}+y^{2} x^{2}+y x^{3}+y z x^{2}-z x^{3}\right) \\
+\left(z^{2} x^{2}+z x^{2} y+z x^{3}-x^{3} y+2 z^{2} x y+2 z x y^{2}+2 z x^{2} y-2 x^{2} y^{2}+z^{2} y^{2}+z y^{3}+z x y^{2}-x y^{3}\right)>0 \\
\left(y^{2}+2 y z+z^{2}\right)\left(x^{2}+x z+x y-y z\right)+\left(z^{2}+2 z x+x^{2}\right)\left(y^{2}+x y+y z-x z\right) \\
+\left(x^{2}+2 x y+y^{2}\right)\left(z^{2}+x z+y z-x y\right)>0 \\
(y+z)^{2}\left(x^{2}+x z+x y-y z\right)+(z+x)^{2}\left(y^{2}+x y+y z-x z\right) \\
+(x+y)^{2}\left(z^{2}+x z+y z-x y\right)>0
\end{array}
$$

Recall that $a=\frac{y+z}{2}, b=\frac{z+x}{2}, c=\frac{x+y}{2}$. Thus,

$$
a^{2}\left(-a^{2}+b^{2}+c^{2}\right)+b^{2}\left(a^{2}-b^{2}+c^{2}\right)+c^{2}\left(a^{2}+b^{2}-c^{2}\right)>0
$$

By Sine Law,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$

so $a=2 R \sin A, b=2 R \sin B, c=2 R \sin C$. Hence,

$$
\begin{aligned}
a^{2}\left(-4 R^{2} \sin ^{2} A+4 R^{2} \sin ^{2} B+4 R^{2} \sin ^{2} C\right)+b^{2}\left(4 R^{2} \sin ^{2} A-4 R^{2} \sin ^{2} B+4 R^{2} \sin ^{2} C\right) & \\
+c^{2}\left(4 R^{2} \sin ^{2} A+4 R^{2} \sin ^{2} B-4 R^{2} \sin ^{2} C\right) & >0 \\
a^{2}\left(-\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)+b^{2}\left(\sin ^{2} A-\sin ^{2} B+\sin ^{2} C\right) & \\
+c^{2}\left(\sin ^{2} A+\sin ^{2} B-\sin ^{2} C\right) & >0
\end{aligned}
$$

Now we use the fact that $\sin ^{2} \theta=1-\cos ^{2} \theta$:

$$
\begin{aligned}
& a^{2}\left(-\cos ^{2} A+\cos ^{2} B+\cos ^{2} C-1\right)+b^{2}\left(\cos ^{2} A-\cos ^{2} B+\cos ^{2} C-1\right) \\
&+c^{2}\left(\cos ^{2} A+\cos ^{2} B-\cos ^{2} C-1\right)<0 \\
& \cos ^{2} A\left(b^{2}+c^{2}-a^{2}\right)+\cos ^{2} B\left(c^{2}+a^{2}-b^{2}\right)+\cos ^{2} C\left(a^{2}+b^{2}-c^{2}\right)<a^{2}+b^{2}+c^{2}
\end{aligned}
$$

By Cosine Law,

$$
b^{2}+c^{2}-a^{2}=2 b c \cos A \quad \text { and similar for other } 2
$$

So,

$$
\begin{align*}
2 b c \cos ^{3} A+2 c a \cos ^{3} B+2 a b \cos ^{3} C & <a^{2}+b^{2}+c^{2} \tag{2}\\
\frac{\cos ^{3} A}{a}+\frac{\cos ^{3} B}{b}+\frac{\cos ^{3} C}{c} & <\frac{a^{2}+b^{2}+c^{2}}{2 a b c}
\end{align*}
$$

Therefore, the inequality is true.
8. Let a, b, c be positive real numbers satisfying $a b c=1$. Prove that

$$
a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq 3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a} .
$$

Solution

We will first prove the following lemma:
Lemma. (Schur's inequality) For any non-negative numbers p, q, r, we have

$$
p(p-q)(p-r)+q(q-p)(q-r)+r(r-p)(r-q) \geq 0 .
$$

Proof
Notice that the inequality in the lemma is symmetric w.r.t p, q, r (i.e. by exchanging any of those, the inequality is still preserved). Hence, without loss of generality, we can assume $p \geq q \geq r$. Then

$$
\begin{aligned}
p(p-q)(p-r)+q(q-p)(q-r)+r(r-p)(r-q) & =(p-q)[p(p-r)-q(q-r)]+r(p-r)(q-r) \\
& =(p-q)\left(p^{2}-q^{2}-p r+q r\right)+r(p-r)(q-r) \\
& =(p-q)^{2}(p+q-r)+r(p-r)(q-r) \\
& \geq 0
\end{aligned}
$$

Thus, the lemma follows.

Let x, y, z be positive real numbers s.t. $\frac{x}{y}=a, \frac{y}{z}=b, \frac{z}{x}=c$. Such x, y, z exists, for instance, by $x=a, y=1$, $z=\frac{1}{b}$. Substitute $p=x y, q=y z, r=z x$ into the lemma:

$$
\begin{aligned}
p(p-q)(p-r)+q(q-p)(q-r)+r(r-p)(r-q) & \geq 0 \\
x^{2} y^{2}(x-z)(y-z)+y^{2} z^{2}(y-x)(z-x)+z^{2} x^{2}(z-y)(x-y) & \geq 0 \\
\left(x^{3} y^{3}+x^{2} y^{2} z^{2}-x^{3} y^{2} z-x^{2} y^{3} z\right)+\left(y^{3} z^{3}+x^{2} y^{2} z^{2}-x y^{3} z^{2}-x y^{2} z^{3}\right) & \\
+\left(z^{3} x^{3}+x^{2} y^{2} z^{2}-x^{3} y z^{2}-x^{2} y z^{3}\right) & \geq 0 \\
x^{3} y^{2} z+x^{2} y^{3} z+x y^{3} z^{2}+x y^{2} z^{3}+x^{3} y z^{2}+x^{2} y z^{3} & \leq 3 x^{2} y^{2} z^{2}+x^{3} y^{3}+y^{3} z^{3}+z^{3} x^{3}
\end{aligned}
$$

Since $x, y, z>0$, we can divide both sides of the inequality by $x^{2} y^{2} z^{2}$.

$$
\begin{gathered}
\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{y}{x}+\frac{z}{y}+\frac{x}{z} \leq 3+\frac{x y}{z^{2}}+\frac{y z}{x^{2}}+\frac{z x}{y^{2}} \\
a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq 3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}
\end{gathered}
$$

This proves the desired result.

Alternative Solution:
Let x, y, z be positive real numbers s.t. $\frac{x}{y}=a, \frac{y}{z}=b, \frac{z}{x}=c$ (See previous proof for justification of existance). We first claim that

$$
3 x^{2} y^{2} z^{2}+x^{3} y^{3}+y^{3} z^{3}+z^{3} x^{3}-\left(x^{3} y^{2} z+x y^{3} z^{2}+x^{2} y z^{3}+x^{3} y z^{2}+x^{2} y^{3} z+x y^{2} z^{3}\right) \geq 0
$$

To see this, observe that the inequality is symmetric w.r.t. x, y, z. Hence without loss of generality, we can suppose $x \geq y \geq z$. Now, $x-y \geq 0$, so

$$
\begin{aligned}
(x-y) z & \geq 0 \\
x z-y z & \geq 0 \\
x y+x z-y z & >0 .
\end{aligned}
$$

$y-z \geq 0$, so

$$
\begin{aligned}
(y-z)(x y+x z-y z) & \geq 0 \\
x y^{2}-z y^{2}-x z^{2}+y z^{2} & \geq 0 \\
(x-z) y^{2}-(x-y) z^{2} & \geq 0
\end{aligned}
$$

And, $x^{2}(y-z) \geq 0$, so

$$
\begin{aligned}
x^{2}(y-z)\left[(x-z) y^{2}-(x-y) z^{2}\right] & \geq 0 \\
x^{2} y^{2}(z-x)(z-y)+x^{2} z^{2}(y-x)(y-z) & \geq 0
\end{aligned}
$$

Now, $y^{2} z^{2}(x-y)(x-z) \geq 0$, so

$$
\begin{aligned}
y^{2} z^{2}(x-y)(x-z)+z^{2} x^{2}(y-x)(y-z)+x^{2} y^{2}(z-x)(z-y) & \geq 0 \\
\left(x y^{2}-y^{3}\right)\left(x z^{2}-z^{3}\right)+\left(y x^{2}-x^{3}\right)\left(y z^{2}-z^{3}\right)+\left(z x^{2}-x^{3}\right)\left(z y^{2}-y^{3}\right) & \geq 0 \\
3 x^{2} y^{2} z^{2}+x^{3} y^{3}+y^{3} z^{3}+z^{3} x^{3}-\left(x^{3} y^{2} z+x y^{3} z^{2}+x^{2} y z^{3}+x^{3} y z^{2}+x^{2} y^{3} z+x y^{2} z^{3}\right) & \geq 0
\end{aligned}
$$

Thus the inequality we claimed earlier is true. Now divide both sides by $x^{2} y^{2} z^{2}$, which is positive, and then substitute $a=\frac{x}{y}, b=\frac{y}{z}$, and $c=\frac{z}{x}$:

$$
\begin{aligned}
3+\frac{x z}{y^{2}}+\frac{x y}{z^{2}}+\frac{y z}{x^{2}} & \geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{y}{x}+\frac{z}{y}+\frac{x}{z} \\
3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a} & \geq a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}
\end{aligned}
$$

as desired.
(Remark: $y^{2} z^{2}(x-y)(x-z)+z^{2} x^{2}(y-x)(y-z)+x^{2} y^{2}(z-x)(z-y) \geq 0$ is a direct result from VornicuSchur Inequality (2007), by letting $f(x)=1 / x^{2}$. For those who are interested, please refer to http://www. artofproblemsolving.com/Wiki/index.php/Vornicu-Schur_Inequality.)

