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1. Let x be a positive real number. Prove that√
[x]

x+ {x}
+

√
{x}

x+ [x]
≥ 1,

where [x] is the integer part of x and {x} is the fractional part.

Solution √
[x]

x+ {x}
+

√
{x}

x+ [x]

=

√
[x]

[x] + {x}+ {x}
+

√
{x}

[x] + {x}+ [x]

=

√
n

n+ 2t
+

√
t

2n+ t
,

where n = [x] is a non-negative integer, t = {x} lies in the interval [0, 1). Note that if n = 0, we have t > 0
since x = n+ t > 0, and the sum is 1. Similarly, if t = 0, we have n > 0 since x = n+ t > 0, and the sum is
also 1. Now, suppose both n, t are non-zero. Let u = t/n. Manipulating the fraction, we have

√
[x]

x+ {x}
+

√
{x}

x+ [x]
=

√
n

n+ 2t
+

√
t

2n+ t

=

√
n/n

(n/n) + 2(t/n)
+

√
t/n

2(n/n) + (t/n)

=

√
1

1 + 2u
+

√
u

2 + u
.

Let F (u) be the expression above. Square F and we obtain

(F (u))2 =

(√
1

1 + 2u
+

√
u

2 + u

)2

=
1

1 + 2u
+ 2

√
1

1 + 2u
· u

2 + u
+

u

2 + u

Since F (u) is the sum of two square roots, it is non-negative. Therefore, F (u) ≥ 1 is equivalent to
(F (u))2 ≥ 12 = 1, or

1

1 + 2u
+ 2

√
u

(1 + 2u)(2 + u)
+

u

2 + u
≥ 1

Note that u = n/t > 0 (recall that we suppose n, t > 0), so (1 + 2u)(2 + u) > 0. Hence we can multiply the
above inequality by (1 + 2u)(2 + u) to get an equivalent statement:

(2 + u) + 2
√
u(1 + 2u)(2 + u) + u(1 + 2u) ≥ (1 + 2u)(2 + u).
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Grouping the terms, we get

2
√
u(1 + 2u)(2 + u) ≥ 3u.

Again, both sides of the inequality are positive, so by squaring it, we can get an equivalent statement:

4u(1 + 2u)(2 + u) ≥ 9u2.

Expanding,

8u3 + 11u2 + 8u ≥ 0,

which is true since u > 0 and 8u2 + 11u+ 8 = 8(u− 1)2 + 17u ≥ 17u > 0. Since going backward is valid (as
argued in each step), the initial inequality is true. �
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Alternative Solution:
As previous solution, √

[x]

x+ {x}
+

√
{x}

x+ [x]

=

√
[x]

[x] + {x}+ {x}
+

√
{x}

[x] + {x}+ [x]

=

√
n

n+ 2t
+

√
t

2n+ t
,

where n = [x] is a non-negative integer, t = {x} lies in the interval [0, 1). Note that if n = 0, t > 0 since
x = n+ t > 0, and the sum is 1.
Now, suppose n is a positive integer. Fix n and consider the function f : [0, 1)→ R
with f(t) =

√
n

n+2t +
√

t
2n+t . For t > 0,

df

dt
= −

√
n

(n+ 2t)3
+

1

2

√
1

t(2n+ t)
− 1

2

√
t

(2n+ t)3

=
−2
√
nt(2n+ t)3 + (2n+ t)

√
(n+ 2t)3 − t

√
(n+ 2t)3

2
√
t(n+ 2t)3(2n+ t)3

=
−2(2n+ t)

√
nt(2n+ t) + 2n(n+ 2t)

√
n+ 2t

2(n+ 2t)(2n+ t)
√
t(n+ 2t)(2n+ t)

=
n(n+ 2t)

√
n+ 2t− (2n+ t)

√
nt(2n+ t)

(n+ 2t)(2n+ t)
√
t(n+ 2t)(2n+ t)

Note that (n+ 2t)(2n+ t)
√
t(n+ 2t)(2n+ t) > 0 and

(n− t)3(n+ t) ≥ 0 since n ≥ 1 ≥ t
n4 − 2n3t+ 2nt3 − t4 ≥ 0

n4 + 6n3t+ 12n2t2 + 8nt3 ≥ 8n3t+ 12n2t2 + 6nt3 + t4

n(n+ 2t)3 ≥ t(2n+ t)3

n2(n+ 2t)3 ≥ nt(2n+ t)3 ≥ 0

n(n+ 2t)
√
n+ 2t ≥ (2n+ t)

√
nt(2n+ t)

n(n+ 2t)
√
n+ 2t− (2n+ t)

√
nt(2n+ t) ≥ 0.

Hence, the function is strictly increasing when t > 0. Thus, f(t) ≥ f(0) = 1 since f is continuous.

Therefore,
√

[x]
x+{x} +

√
{x}
x+[x] ≥ 1. �
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2. A drawer has d more black socks than white socks. Suppose that if two socks are selected at random then
the probability that they match is 1

2 . How many socks of each color are there?

Solution
Suppose it has n white socks and n + d black socks. The probability that the first selected sock is white is
n

2n+d . Given the first sock is white, the probability that the second selected sock is white is n−1
2n+d−1 . Thus,

the probability that the two selected socks are both white is n(n−1)
(2n+d)(2n+d−1) . Similarly, the probability that

the two selected socks are both black is (n+d)(n+d−1)
(2n+d)(2n+d−1) . Since we know the probability that the socks match

is 1
2 , we have

n(n− 1) + (n+ d)(n+ d− 1)

(2n+ d)(2n+ d− 1)
=

1

2

2n(n− 1) + 2(n+ d)(n+ d− 1) = (2n+ d)(2n+ d− 1)

2n2 − 2n+ 2n2 + 4nd+ 2d2 − 2n− 2d = 4n2 + 4nd+ d2 − 2n− d
d2 − d = 2n

Therefore, there are d(d−1)
2 white socks and d(d+1)

2 black socks. �
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3. Prove that
loge(e

π − 1) loge(e
π + 1) + logπ(πe − 1) logπ(πe + 1) < e2 + π2.

Solution
We will first prove that if x > 1, then log(x− 1) log(x+ 1) < (log x)2.

Note that 0 < x2−1
x2 < 1, so

log
x2 − 1

x2
< 0

as log is strictly increasing. Also, log x > 0 since x > 1, so

log x log
x2 − 1

x2
< 0.

Since 0 < x−1
x < 1 < x+1

x , we have

log
x− 1

x
< 0 < log

x+ 1

x

as log is strictly increasing, so

log
x− 1

x
log

x+ 1

x
< 0.

Since log(ab) = log a+ log b,

log x log
x2 − 1

x2
+ log

x− 1

x
log

x+ 1

x
< 0

log x log

[
x− 1

x
· x+ 1

x

]
+ log

x− 1

x
log

x+ 1

x
< 0

log x

(
log

x− 1

x
+ log

x+ 1

x

)
+ log

x− 1

x
log

x+ 1

x
< 0

(log x)2 + log x log
x− 1

x
+ log x log

x+ 1

x
+ log

x− 1

x
log

x+ 1

x
< (log x)2(

log x+ log
x− 1

x

)(
log x+ log

x+ 1

x

)
< (log x)2

log

[
x · x− 1

x

]
log

[
x · x+ 1

x

]
< (log x)2

log(x− 1) log(x+ 1) < (log x)2,

as we claimed above.

Note that eπ > e > 1, so by putting x = eπ, we have

log(eπ − 1) log(eπ + 1) < (log(eπ))2

log(eπ − 1)

log e

log(eπ + 1)

log e
<

(
log(eπ)

log e

)2

loge(e
π − 1) loge(e

π + 1) < (loge(e
π))2 = π2

Similarly, since πe > π > 1, we have

logπ(πe − 1) logπ(πe + 1) < e2.

Therefore,
loge(e

π − 1) loge(e
π + 1) + logπ(πe − 1) logπ(πe + 1) < e2 + π2.

�
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4. A sequence of integers is defined as follows. Starting with n = 1, list all the multiples of n up to n2. Thus, the
sequence starts with the multiples of 1 up to 1, followed by the multiples of 2 up to 4, then the multiples of 3 up
to 9, and so on, so that its first few terms are 1, 2, 4, 3, 6, 9, 4, 8, 12, 16. What is the 2011th term in the sequence?

Solution
We claim that the n(n+1)

2 -th term is n2. We will prove it by induction.

For n = 1, we know the first term is 1. Suppose the n(n+1)
2 -th term is n2. Then the next term is (n + 1),

according to the rule of the sequence. Hence, we will have multiples of (n+1) until (n+1)2, which occurs after

(n+1)’ multiples of (n+1), i.e. (n+1) numbers after n2. Hence, we know the n(n+1)
2 +(n+1) = (n+1)(n+2)

2 -th
term is (n+ 1)2, as desired. By Principle of Mathematical Induction, the claim is true.
Since 63·64

2 = 2016, we know the 2016-th term is 632. Hence, the 2011-th term is 63(63− 5) = 3654. �
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5. Let a, b, c be positive real numbers and let 0 < m < 1
4 . Prove that at least one of the equations has real roots.

ax2 + bx+ cm = 0

bx2 + cx+ am = 0

cx2 + ax+ bm = 0

Solution
Without loss of generality, suppose a ≥ b ≥ c > 0. Then a2 ≥ bc, so

a2 − 4bcm = a2 − (4m)(bc) > a2 − bc ≥ 0.

Hence, cx2 + ax+ bm = 0 has real roots. Therefore, at least one of the three equations has real roots. �
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6. Let A,B,C be the angles of a triangle. Prove that

sinA+ sinB sinC ≤ 1 +
√

5

2
.

Solution
Recall the sum and product formula:

sinx sin y =
−1

2
[cos(x+ y)− cos(x− y)].

Thus,

sinA+ sinB sinC = sinA+
−1

2
[cos(B + C)− cos(B − C)]

= sinA+
1

2
[− cos(180◦ −A) + cos(B − C)]

= sinA+
1

2
[cosA+ cos(B − C)]

= sinA+
cosA

2
+

cos(B − C)

2

≤ sinA+
cosA

2
+

1

2

=

√
5

2

(
2√
5

sinA+
1√
5

cosA

)
+

1

2

Let φ = sin−1 1√
5
. Since 0◦ < φ < 90◦, we have cosφ =

√
1− sin2 φ = 2√

5
. Observe that

sin(A+ φ) = sinA cosφ+ cosA sinφ = sinA · 2√
5

+ cosA · 1√
5
.

Thus,

sinA+ sinB sinC ≤
√

5

2
sin(A+ φ) +

1

2

≤
√

5

2
+

1

2

�
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Alternative Solution:
Fix A. Let f(B,C) = sinB sinC. To maximize the sum above, we have to maximize f .

f(B,C) = sinB sinC =
1

2
(cos(B − C)− cos(B + C)) =

1

2
(cos(B − C)− cos(180◦ −A))

Hence, to maximize f , we have to maximize cos(B − C). Since 0◦ < B,C < 180◦, −180◦ < B − C < 180◦.
In this range, cos(B − C) is maximized when B − C = 0. Thus, we want B = C in order to maximize the
expression.

Now we want to maximize g(A) = sinA+ sin2B = sinA+ sin2
(

180◦−A
2

)
. Note that

g(A) = sinA+sin2

(
180◦ −A

2

)
= sinA+

1− cos
(

2 · 180
◦−A
2

)
2

= sinA+
1− cos(180◦ −A)

2
= sinA+

1 + cosA

2

g′(A) = cosA− sinA

2
,

which equals 0 iff cosA = sinA
2 , or tanA = 2. Let A0 be such A in [0◦, 180◦]. We have sinA0 = 2√

5
,

cosA0 = 1√
5

by Pythagoras’ Theorem.

g′′(A) = − sinA− cosA

2
,

so g′′(A0) = −
√
5
2 , which shows A0 is a local maximum for g. Note that g(A0) = 1+

√
5

2 , g(0◦) = 1, g(180◦) = 0
and A0 is the only critical point for g in [0◦, 180◦]. This implies that A0 is the maximum for g when

A ∈ [0◦, 180◦]. Therefore, sinA+ sinB sinC ≤ g(A) ≤ 1+
√
5

2 . �
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7. Let a, b, c be the length of sides opposite angles A,B,C in triangle ABC. Prove that

cos3A

a
+

cos3B

b
+

cos3 C

c
<
a2 + b2 + c2

2abc
.

Solution
Recall Sine Law

a

sinA
=

b

sinB
=

c

sinC
= 2R, where R is the radius of the curcumcircle of triangle ABC,

and Cosine Law
a2 = b2 + c2 − 2bc cosA (and similar for the other two).

Note that

cos3A

a
+

cos3B

b
+

cos3 C

c
=

cosA(1− sin2A)

a
+

cosB(1− sin2B)

b
+

cosC(1− sin2 C)

c

=
cosA

a
+

cosB

b
+

cosC

c
− sin2A cosA

a
− sin2B cosB

b
− sin2 C cosC

c

=
b2 + c2 − a2

2abc
+
c2 + a2 − b2

2abc
+
a2 + b2 − c2

2abc

−
(

sinA

a

)
sinA cosA−

(
sinB

b

)
sinB cosB −

(
sinC

c

)
sinC cosC

=
a2 + b2 + c2

2abc
−
(

sinA cosA

2R
+

sinB cosB

2R
+

sinC cosC

2R

)
=

a2 + b2 + c2

2abc
− 1

4R
(sin 2A+ sin 2B + sin 2C),

It remains to show that sin 2A+ sin 2B + sin 2C is positive.
Recall the sum and product formulae:

sinx+ sin y = 2 sin

(
x+ y

2

)
cos

(
x− y

2

)
, cosx− cos y = −2 sin

(
x+ y

2

)
sin

(
x− y

2

)
Observe that

sin 2A+ sin 2B + sin 2C = 2 sin(A+B) cos(A−B) + 2 sinC cosC

= 2 sin(180◦ − C) cos(A−B) + 2 sinC cos(180◦ − (A+B))

= 2 sinC[cos(A−B)− cos(A+B)]

= 4 sinA sinB sinC > 0

since 0◦ < A,B,C < 180◦. Therefore, the result follows. �
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Alternative Solution:

Let R be the radius of the circumcircle of triangle ABC and x = b+ c− a, y = c+ a− b, z = a+ b− c. Then
a = y+z

2 , b = z+x
2 , c = x+y

2 . By triangle inequality, x, y, z > 0. Now observe that

(x2y2 + xy3 − y3z − 2y2z2 + x2z2 + xz3 − yz3)

(y2z2 + yz3 − z3x− 2z2x2 + y2x2 + yx3 − zx3)

(z2x2 + zx3 − x3y − 2x2y2 + z2y2 + zy3 − xy3) = 0

Adding some positive terms to it,

(x2y2 + xy2z + xy3 − y3z + 2x2yz + 2xyz2 + 2xy2z − 2y2z2 + x2z2 + xz3 + xyz2 − yz3)

+(y2z2 + yz2x+ yz3 − z3x+ 2y2zx+ 2yzx2 + 2yz2x− 2z2x2 + y2x2 + yx3 + yzx2 − zx3)

+(z2x2 + zx2y + zx3 − x3y + 2z2xy + 2zxy2 + 2zx2y − 2x2y2 + z2y2 + zy3 + zxy2 − xy3) > 0

(y2 + 2yz + z2)(x2 + xz + xy − yz) + (z2 + 2zx+ x2)(y2 + xy + yz − xz)
+(x2 + 2xy + y2)(z2 + xz + yz − xy) > 0

(y + z)2(x2 + xz + xy − yz) + (z + x)2(y2 + xy + yz − xz)
+(x+ y)2(z2 + xz + yz − xy) > 0(

y + z

2

)2
[
−
(
y + z

2

)2

+

(
z + x

2

)2

+

(
x+ y

2

)2
]

+

(
z + x

2

)2
[(

y + z

2

)2

−
(
z + x

2

)2

+

(
x+ y

2

)2
]

+

(
x+ y

2

)2
[(

y + z

2

)2

+

(
z + x

2

)2

−
(
x+ y

2

)2
]

> 0

Recall that a = y+z
2 , b = z+x

2 , c = x+y
2 . Thus,

a2(−a2 + b2 + c2) + b2(a2 − b2 + c2) + c2(a2 + b2 − c2) > 0

By Sine Law,
a

sinA
=

b

sinB
=

c

sinC
= 2R,

so a = 2R sinA, b = 2R sinB, c = 2R sinC. Hence,

a2(−4R2 sin2A+ 4R2 sin2B + 4R2 sin2 C) + b2(4R2 sin2A− 4R2 sin2B + 4R2 sin2 C)

+c2(4R2 sin2A+ 4R2 sin2B − 4R2 sin2 C) > 0

a2(− sin2A+ sin2B + sin2 C) + b2(sin2A− sin2B + sin2 C)

+c2(sin2A+ sin2B − sin2 C) > 0

Now we use the fact that sin2 θ = 1− cos2 θ:

a2(− cos2A+ cos2B + cos2 C − 1) + b2(cos2A− cos2B + cos2 C − 1)

+c2(cos2A+ cos2B − cos2 C − 1) < 0

cos2A(b2 + c2 − a2) + cos2B(c2 + a2 − b2) + cos2 C(a2 + b2 − c2) < a2 + b2 + c2

By Cosine Law,
b2 + c2 − a2 = 2bc cosA and similar for other 2.

So,

2bc cos3A+ 2ca cos3B + 2ab cos3 C < a2 + b2 + c2 (2)

cos3A

a
+

cos3B

b
+

cos3 C

c
<

a2 + b2 + c2

2abc

Therefore, the inequality is true. �
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8. Let a, b, c be positive real numbers satisfying abc = 1. Prove that

a+ b+ c+
1

a
+

1

b
+

1

c
≤ 3 +

a

b
+
b

c
+
c

a
.

Solution
We will first prove the following lemma:

Lemma. (Schur’s inequality) For any non-negative numbers p, q, r, we have

p(p− q)(p− r) + q(q − p)(q − r) + r(r − p)(r − q) ≥ 0.

Proof
Notice that the inequality in the lemma is symmetric w.r.t p, q, r (i.e. by exchanging any of those, the
inequality is still preserved). Hence, without loss of generality, we can assume p ≥ q ≥ r. Then

p(p− q)(p− r) + q(q − p)(q − r) + r(r − p)(r − q) = (p− q)[p(p− r)− q(q − r)] + r(p− r)(q − r)
= (p− q)(p2 − q2 − pr + qr) + r(p− r)(q − r)
= (p− q)2(p+ q − r) + r(p− r)(q − r)
≥ 0

Thus, the lemma follows.

�

Let x, y, z be positive real numbers s.t. x
y = a, yz = b, zx = c. Such x, y, z exists, for instance, by x = a, y = 1,

z = 1
b . Substitute p = xy, q = yz, r = zx into the lemma:

p(p− q)(p− r) + q(q − p)(q − r) + r(r − p)(r − q) ≥ 0

x2y2(x− z)(y − z) + y2z2(y − x)(z − x) + z2x2(z − y)(x− y) ≥ 0

(x3y3 + x2y2z2 − x3y2z − x2y3z) + (y3z3 + x2y2z2 − xy3z2 − xy2z3)

+(z3x3 + x2y2z2 − x3yz2 − x2yz3) ≥ 0

x3y2z + x2y3z + xy3z2 + xy2z3 + x3yz2 + x2yz3 ≤ 3x2y2z2 + x3y3 + y3z3 + z3x3

Since x, y, z > 0, we can divide both sides of the inequality by x2y2z2.

x

y
+
y

z
+
z

x
+
y

x
+
z

y
+
x

z
≤ 3 +

xy

z2
+
yz

x2
+
zx

y2

a+ b+ c+
1

a
+

1

b
+

1

c
≤ 3 +

a

b
+
b

c
+
c

a

This proves the desired result. �
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Alternative Solution:
Let x, y, z be positive real numbers s.t. x

y = a, yz = b, zx = c (See previous proof for justification of existance).
We first claim that

3x2y2z2 + x3y3 + y3z3 + z3x3 − (x3y2z + xy3z2 + x2yz3 + x3yz2 + x2y3z + xy2z3) ≥ 0.

To see this, observe that the inequality is symmetric w.r.t. x, y, z. Hence without loss of generality, we can
suppose x ≥ y ≥ z. Now, x− y ≥ 0, so

(x− y)z ≥ 0

xz − yz ≥ 0

xy + xz − yz > 0.

y − z ≥ 0, so

(y − z)(xy + xz − yz) ≥ 0

xy2 − zy2 − xz2 + yz2 ≥ 0

(x− z)y2 − (x− y)z2 ≥ 0

And, x2(y − z) ≥ 0, so

x2(y − z)[(x− z)y2 − (x− y)z2] ≥ 0

x2y2(z − x)(z − y) + x2z2(y − x)(y − z) ≥ 0

Now, y2z2(x− y)(x− z) ≥ 0, so

y2z2(x− y)(x− z) + z2x2(y − x)(y − z) + x2y2(z − x)(z − y) ≥ 0

(xy2 − y3)(xz2 − z3) + (yx2 − x3)(yz2 − z3) + (zx2 − x3)(zy2 − y3) ≥ 0

3x2y2z2 + x3y3 + y3z3 + z3x3 − (x3y2z + xy3z2 + x2yz3 + x3yz2 + x2y3z + xy2z3) ≥ 0

Thus the inequality we claimed earlier is true. Now divide both sides by x2y2z2, which is positive, and then
substitute a = x

y , b = y
z , and c = z

x :

3 +
xz

y2
+
xy

z2
+
yz

x2
≥ x

y
+
y

z
+
z

x
+
y

x
+
z

y
+
x

z

3 +
a

b
+
b

c
+
c

a
≥ a+ b+ c+

1

a
+

1

b
+

1

c
,

as desired. �

(Remark: y2z2(x− y)(x− z) + z2x2(y − x)(y − z) + x2y2(z − x)(z − y) ≥ 0 is a direct result from Vornicu-
Schur Inequality (2007), by letting f(x) = 1/x2. For those who are interested, please refer to http://www.

artofproblemsolving.com/Wiki/index.php/Vornicu-Schur_Inequality.)
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