Summer Institute for Mathematics at the University of Washington 2011 Solutions

Written by Angus Chung

1. Let x be a positive real number. Prove that

$$\sqrt{\frac{[x]}{x+\{x\}}} + \sqrt{\frac{\{x\}}{x+[x]}} \ge 1,$$

where [x] is the integer part of x and $\{x\}$ is the fractional part.

SOLUTION

$$\begin{split} & \sqrt{\frac{[x]}{x+\{x\}}} + \sqrt{\frac{\{x\}}{x+[x]}} \\ = & \sqrt{\frac{[x]}{[x]+\{x\}+\{x\}}} + \sqrt{\frac{\{x\}}{[x]+\{x\}+[x]}} \\ = & \sqrt{\frac{n}{n+2t}} + \sqrt{\frac{t}{2n+t}}, \end{split}$$

where n = [x] is a non-negative integer, $t = \{x\}$ lies in the interval [0, 1). Note that if n = 0, we have t > 0 since x = n + t > 0, and the sum is 1. Similarly, if t = 0, we have n > 0 since x = n + t > 0, and the sum is also 1. Now, suppose both n, t are non-zero. Let u = t/n. Manipulating the fraction, we have

$$\begin{split} \sqrt{\frac{[x]}{x+\{x\}}} + \sqrt{\frac{\{x\}}{x+[x]}} &= \sqrt{\frac{n}{n+2t}} + \sqrt{\frac{t}{2n+t}} \\ &= \sqrt{\frac{n/n}{(n/n)+2(t/n)}} + \sqrt{\frac{t/n}{2(n/n)+(t/n)}} \\ &= \sqrt{\frac{1}{1+2u}} + \sqrt{\frac{u}{2+u}}. \end{split}$$

Let F(u) be the expression above. Square F and we obtain

$$(F(u))^2 = \left(\sqrt{\frac{1}{1+2u}} + \sqrt{\frac{u}{2+u}}\right)^2$$

= $\frac{1}{1+2u} + 2\sqrt{\frac{1}{1+2u} \cdot \frac{u}{2+u}} + \frac{u}{2+u}$

Since F(u) is the sum of two square roots, it is non-negative. Therefore, $F(u) \ge 1$ is equivalent to $(F(u))^2 \ge 1^2 = 1$, or

$$\frac{1}{1+2u} + 2\sqrt{\frac{u}{(1+2u)(2+u)}} + \frac{u}{2+u} \ge 1$$

Note that u = n/t > 0 (recall that we suppose n, t > 0), so (1 + 2u)(2 + u) > 0. Hence we can multiply the above inequality by (1 + 2u)(2 + u) to get an equivalent statement:

$$(2+u) + 2\sqrt{u(1+2u)(2+u)} + u(1+2u) \ge (1+2u)(2+u).$$

Grouping the terms, we get

$$2\sqrt{u(1+2u)(2+u)} \ge 3u.$$

Again, both sides of the inequality are positive, so by squaring it, we can get an equivalent statement:

$$4u(1+2u)(2+u) \ge 9u^2.$$

Expanding,

$$8u^3 + 11u^2 + 8u \ge 0,$$

which is true since u > 0 and $8u^2 + 11u + 8 = 8(u - 1)^2 + 17u \ge 17u > 0$. Since going backward is valid (as argued in each step), the initial inequality is true.

Alternative Solution: As previous solution,

$$\begin{split} & \sqrt{\frac{[x]}{x+\{x\}}} + \sqrt{\frac{\{x\}}{x+[x]}} \\ &= \sqrt{\frac{[x]}{[x]+\{x\}+\{x\}}} + \sqrt{\frac{\{x\}}{[x]+\{x\}+[x]}} \\ &= \sqrt{\frac{n}{n+2t}} + \sqrt{\frac{t}{2n+t}}, \end{split}$$

where n = [x] is a non-negative integer, $t = \{x\}$ lies in the interval [0,1). Note that if n = 0, t > 0 since x = n + t > 0, and the sum is 1.

Now, suppose n is a positive integer. Fix n and consider the function $f:[0,1) \to \mathbb{R}$ with $f(t) = \sqrt{\frac{n}{n+2t}} + \sqrt{\frac{t}{2n+t}}$. For t > 0,

$$\begin{aligned} \frac{df}{dt} &= -\sqrt{\frac{n}{(n+2t)^3}} + \frac{1}{2}\sqrt{\frac{1}{t(2n+t)}} - \frac{1}{2}\sqrt{\frac{t}{(2n+t)^3}} \\ &= \frac{-2\sqrt{nt(2n+t)^3} + (2n+t)\sqrt{(n+2t)^3} - t\sqrt{(n+2t)^3}}{2\sqrt{t(n+2t)^3(2n+t)^3}} \\ &= \frac{-2(2n+t)\sqrt{nt(2n+t)} + 2n(n+2t)\sqrt{n+2t}}{2(n+2t)(2n+t)} \\ &= \frac{n(n+2t)\sqrt{n+2t} - (2n+t)\sqrt{nt(2n+t)}}{(n+2t)(2n+t)\sqrt{t(n+2t)(2n+t)}} \end{aligned}$$

Note that $(n+2t)(2n+t)\sqrt{t(n+2t)(2n+t)} > 0$ and

Hence, the function is strictly increasing when t > 0. Thus, $f(t) \ge f(0) = 1$ since f is continuous. Therefore, $\sqrt{\frac{[x]}{x+\{x\}}} + \sqrt{\frac{\{x\}}{x+[x]}} \ge 1$. 2. A drawer has d more black socks than white socks. Suppose that if two socks are selected at random then the probability that they match is $\frac{1}{2}$. How many socks of each color are there?

Solution

Suppose it has n white socks and n + d black socks. The probability that the first selected sock is white is $\frac{n}{2n+d}$. Given the first sock is white, the probability that the second selected sock is white is $\frac{n-1}{2n+d-1}$. Thus, the probability that the two selected socks are both white is $\frac{n(n-1)}{(2n+d)(2n+d-1)}$. Similarly, the probability that the two selected socks are both black is $\frac{(n+d)(n+d-1)}{(2n+d)(2n+d-1)}$. Since we know the probability that the socks match is $\frac{1}{2}$, we have

$$\begin{aligned} \frac{n(n-1)+(n+d)(n+d-1)}{(2n+d)(2n+d-1)} &=& \frac{1}{2} \\ 2n(n-1)+2(n+d)(n+d-1) &=& (2n+d)(2n+d-1) \\ 2n^2-2n+2n^2+4nd+2d^2-2n-2d &=& 4n^2+4nd+d^2-2n-d \\ d^2-d &=& 2n \end{aligned}$$

Therefore, there are $\frac{d(d-1)}{2}$ white socks and $\frac{d(d+1)}{2}$ black socks.

3. Prove that

$$\log_e(e^{\pi} - 1)\log_e(e^{\pi} + 1) + \log_{\pi}(\pi^e - 1)\log_{\pi}(\pi^e + 1) < e^2 + \pi^2.$$

Solution

We will first prove that if x > 1, then $\log(x - 1)\log(x + 1) < (\log x)^2$. Note that $0 < \frac{x^2 - 1}{x^2} < 1$, so

$$\log \frac{x^2 - 1}{x^2} < 0$$

as log is strictly increasing. Also, $\log x > 0$ since x > 1, so

$$\log x \log \frac{x^2 - 1}{x^2} < 0.$$

Since $0 < \frac{x-1}{x} < 1 < \frac{x+1}{x}$, we have

$$\log \frac{x-1}{x} < 0 < \log \frac{x+1}{x}$$

as log is strictly increasing, so

$$\log \frac{x-1}{x} \log \frac{x+1}{x} < 0.$$

Since $\log(ab) = \log a + \log b$,

$$\log x \log \frac{x^2 - 1}{x^2} + \log \frac{x - 1}{x} \log \frac{x + 1}{x} < 0$$

$$\log x \log \left[\frac{x - 1}{x} \cdot \frac{x + 1}{x} \right] + \log \frac{x - 1}{x} \log \frac{x + 1}{x} < 0$$

$$\log x \left(\log \frac{x - 1}{x} + \log \frac{x + 1}{x} \right) + \log \frac{x - 1}{x} \log \frac{x + 1}{x} < 0$$

$$(\log x)^2 + \log x \log \frac{x - 1}{x} + \log x \log \frac{x + 1}{x} + \log \frac{x - 1}{x} \log \frac{x + 1}{x} < (\log x)^2$$

$$\left(\log x + \log \frac{x - 1}{x} \right) \left(\log x + \log \frac{x + 1}{x} \right) < (\log x)^2$$

$$\log \left[x \cdot \frac{x - 1}{x} \right] \log \left[x \cdot \frac{x + 1}{x} \right] < (\log x)^2$$

$$\log(x - 1) \log(x + 1) < (\log x)^2$$

as we claimed above.

Note that $e^{\pi} > e > 1$, so by putting $x = e^{\pi}$, we have

$$\log(e^{\pi} - 1) \log(e^{\pi} + 1) < (\log(e^{\pi}))^{2} \frac{\log(e^{\pi} - 1)}{\log e} \frac{\log(e^{\pi} + 1)}{\log e} < \left(\frac{\log(e^{\pi})}{\log e}\right)^{2} \log_{e}(e^{\pi} - 1) \log_{e}(e^{\pi} + 1) < (\log_{e}(e^{\pi}))^{2} = \pi^{2}$$

Similarly, since $\pi^e > \pi > 1$, we have

$$\log_{\pi}(\pi^{e} - 1)\log_{\pi}(\pi^{e} + 1) < e^{2}.$$

Therefore,

$$\log_e(e^{\pi} - 1)\log_e(e^{\pi} + 1) + \log_{\pi}(\pi^e - 1)\log_{\pi}(\pi^e + 1) < e^2 + \pi^2$$

4. A sequence of integers is defined as follows. Starting with n = 1, list all the multiples of n up to n^2 . Thus, the sequence starts with the multiples of 1 up to 1, followed by the multiples of 2 up to 4, then the multiples of 3 up to 9, and so on, so that its first few terms are 1, 2, 4, 3, 6, 9, 4, 8, 12, 16. What is the 2011th term in the sequence?

SOLUTION

We claim that the $\frac{n(n+1)}{2}$ -th term is n^2 . We will prove it by induction.

For n = 1, we know the first term is 1. Suppose the $\frac{n(n+1)}{2}$ -th term is n^2 . Then the next term is (n + 1), according to the rule of the sequence. Hence, we will have multiples of (n+1) until $(n+1)^2$, which occurs after (n+1)' multiples of (n+1), i.e. (n+1) numbers after n^2 . Hence, we know the $\frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$ -th term is $(n+1)^2$, as desired. By Principle of Mathematical Induction, the claim is true. Since $\frac{63\cdot64}{2} = 2016$, we know the 2016-th term is 63^2 . Hence, the 2011-th term is 63(63-5) = 3654.

5. Let a, b, c be positive real numbers and let $0 < m < \frac{1}{4}$. Prove that at least one of the equations has real roots.

$$ax^{2} + bx + cm = 0$$

$$bx^{2} + cx + am = 0$$

$$cx^{2} + ax + bm = 0$$

Solution Without loss of generality, suppose $a \ge b \ge c > 0$. Then $a^2 \ge bc$, so

$$a^{2} - 4bcm = a^{2} - (4m)(bc) > a^{2} - bc \ge 0.$$

Hence, $cx^2 + ax + bm = 0$ has real roots. Therefore, at least one of the three equations has real roots.

6. Let A, B, C be the angles of a triangle. Prove that

$$\sin A + \sin B \sin C \le \frac{1 + \sqrt{5}}{2}.$$

Solution

Recall the sum and product formula:

$$\sin x \sin y = \frac{-1}{2} [\cos(x+y) - \cos(x-y)].$$

Thus,

$$\begin{aligned} \sin A + \sin B \sin C &= \sin A + \frac{-1}{2} [\cos(B+C) - \cos(B-C)] \\ &= \sin A + \frac{1}{2} [-\cos(180^\circ - A) + \cos(B-C)] \\ &= \sin A + \frac{1}{2} [\cos A + \cos(B-C)] \\ &= \sin A + \frac{\cos A}{2} + \frac{\cos(B-C)}{2} \\ &\leq \sin A + \frac{\cos A}{2} + \frac{1}{2} \\ &= \frac{\sqrt{5}}{2} \left(\frac{2}{\sqrt{5}} \sin A + \frac{1}{\sqrt{5}} \cos A\right) + \frac{1}{2} \end{aligned}$$

Let $\phi = \sin^{-1} \frac{1}{\sqrt{5}}$. Since $0^{\circ} < \phi < 90^{\circ}$, we have $\cos \phi = \sqrt{1 - \sin^2 \phi} = \frac{2}{\sqrt{5}}$. Observe that

$$\sin(A+\phi) = \sin A \cos \phi + \cos A \sin \phi = \sin A \cdot \frac{2}{\sqrt{5}} + \cos A \cdot \frac{1}{\sqrt{5}}.$$

Thus,

$$\sin A + \sin B \sin C \leq \frac{\sqrt{5}}{2} \sin(A + \phi) + \frac{1}{2}$$
$$\leq \frac{\sqrt{5}}{2} + \frac{1}{2}$$

Alternative Solution:

Fix A. Let $f(B,C) = \sin B \sin C$. To maximize the sum above, we have to maximize f.

$$f(B,C) = \sin B \sin C = \frac{1}{2}(\cos(B-C) - \cos(B+C)) = \frac{1}{2}(\cos(B-C) - \cos(180^\circ - A))$$

Hence, to maximize f, we have to maximize $\cos(B - C)$. Since $0^{\circ} < B, C < 180^{\circ}, -180^{\circ} < B - C < 180^{\circ}$. In this range, $\cos(B - C)$ is maximized when B - C = 0. Thus, we want B = C in order to maximize the expression.

Now we want to maximize $g(A) = \sin A + \sin^2 B = \sin A + \sin^2 \left(\frac{180^\circ - A}{2}\right)$. Note that

$$g(A) = \sin A + \sin^2 \left(\frac{180^\circ - A}{2}\right) = \sin A + \frac{1 - \cos\left(2 \cdot \frac{180^\circ - A}{2}\right)}{2} = \sin A + \frac{1 - \cos(180^\circ - A)}{2} = \sin A + \frac{1 + \cos A}{2}$$
$$g'(A) = \cos A - \frac{\sin A}{2},$$

which equals 0 iff $\cos A = \frac{\sin A}{2}$, or $\tan A = 2$. Let A_0 be such A in $[0^\circ, 180^\circ]$. We have $\sin A_0 = \frac{2}{\sqrt{5}}$, $\cos A_0 = \frac{1}{\sqrt{5}}$ by Pythagoras' Theorem.

$$g''(A) = -\sin A - \frac{\cos A}{2},$$

so $g''(A_0) = -\frac{\sqrt{5}}{2}$, which shows A_0 is a local maximum for g. Note that $g(A_0) = \frac{1+\sqrt{5}}{2}$, $g(0^\circ) = 1$, $g(180^\circ) = 0$ and A_0 is the only critical point for g in $[0^\circ, 180^\circ]$. This implies that A_0 is the maximum for g when $A \in [0^\circ, 180^\circ]$. Therefore, $\sin A + \sin B \sin C \le g(A) \le \frac{1+\sqrt{5}}{2}$.

7. Let a, b, c be the length of sides opposite angles A, B, C in triangle ABC. Prove that

$$\frac{\cos^3 A}{a} + \frac{\cos^3 B}{b} + \frac{\cos^3 C}{c} < \frac{a^2 + b^2 + c^2}{2abc}.$$

SOLUTION Recall Sine Law

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R, \text{ where } R \text{ is the radius of the curcumcircle of triangle } ABC,$

and Cosine Law

$$a^2 = b^2 + c^2 - 2bc \cos A$$
 (and similar for the other two).

Note that

$$\begin{aligned} \frac{\cos^3 A}{a} + \frac{\cos^3 B}{b} + \frac{\cos^3 C}{c} &= \frac{\cos A(1 - \sin^2 A)}{a} + \frac{\cos B(1 - \sin^2 B)}{b} + \frac{\cos C(1 - \sin^2 C)}{c} \\ &= \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} - \frac{\sin^2 A \cos A}{a} - \frac{\sin^2 B \cos B}{b} - \frac{\sin^2 C \cos C}{c} \\ &= \frac{b^2 + c^2 - a^2}{2abc} + \frac{c^2 + a^2 - b^2}{2abc} + \frac{a^2 + b^2 - c^2}{2abc} \\ &- \left(\frac{\sin A}{a}\right) \sin A \cos A - \left(\frac{\sin B}{b}\right) \sin B \cos B - \left(\frac{\sin C}{c}\right) \sin C \cos C \\ &= \frac{a^2 + b^2 + c^2}{2abc} - \left(\frac{\sin A \cos A}{2R} + \frac{\sin B \cos B}{2R} + \frac{\sin C \cos C}{2R}\right) \\ &= \frac{a^2 + b^2 + c^2}{2abc} - \frac{1}{4R} (\sin 2A + \sin 2B + \sin 2C), \end{aligned}$$

It remains to show that $\sin 2A + \sin 2B + \sin 2C$ is positive. Recall the sum and product formulae:

$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right), \qquad \cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

Observe that

$$\sin 2A + \sin 2B + \sin 2C = 2\sin(A+B)\cos(A-B) + 2\sin C\cos C = 2\sin(180^{\circ} - C)\cos(A-B) + 2\sin C\cos(180^{\circ} - (A+B)) = 2\sin C[\cos(A-B) - \cos(A+B)] = 4\sin A\sin B\sin C > 0$$

since $0^{\circ} < A, B, C < 180^{\circ}$. Therefore, the result follows.

Let R be the radius of the circumcircle of triangle ABC and x = b + c - a, y = c + a - b, z = a + b - c. Then $a = \frac{y+z}{2}$, $b = \frac{z+x}{2}$, $c = \frac{x+y}{2}$. By triangle inequality, x, y, z > 0. Now observe that

$$\begin{array}{ll} (x^2y^2 + xy^3 - y^3z - 2y^2z^2 + x^2z^2 + xz^3 - yz^3) \\ (y^2z^2 + yz^3 - z^3x - 2z^2x^2 + y^2x^2 + yx^3 - zx^3) \\ (z^2x^2 + zx^3 - x^3y - 2x^2y^2 + z^2y^2 + zy^3 - xy^3) &= 0 \end{array}$$

Adding some positive terms to it,

$$+ \left(x^{2} + 2xy + y^{2}\right)(z^{2} + xz + yz - xy) > 0$$

$$+ \left(x^{2} + 2xy + y^{2}\right)(z^{2} + xz + yz - xy) > 0$$

$$+ \left(x + y\right)^{2}(z^{2} + xz + yz - xy) > 0$$

$$\left(\frac{y + z}{2}\right)^{2} \left[-\left(\frac{y + z}{2}\right)^{2} + \left(\frac{z + x}{2}\right)^{2} + \left(\frac{x + y}{2}\right)^{2} \right]$$

$$+ \left(\frac{z + x}{2}\right)^{2} \left[\left(\frac{y + z}{2}\right)^{2} - \left(\frac{z + x}{2}\right)^{2} + \left(\frac{x + y}{2}\right)^{2} \right]$$

$$+ \left(\frac{x + y}{2}\right)^{2} \left[\left(\frac{y + z}{2}\right)^{2} + \left(\frac{z + x}{2}\right)^{2} - \left(\frac{x + y}{2}\right)^{2} \right] > 0$$

Recall that $a = \frac{y+z}{2}$, $b = \frac{z+x}{2}$, $c = \frac{x+y}{2}$. Thus,

$$a^{2}(-a^{2}+b^{2}+c^{2})+b^{2}(a^{2}-b^{2}+c^{2})+c^{2}(a^{2}+b^{2}-c^{2})>0$$

By Sine Law,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

so $a = 2R \sin A$, $b = 2R \sin B$, $c = 2R \sin C$. Hence,

$$\begin{aligned} a^{2}(-4R^{2}\sin^{2}A + 4R^{2}\sin^{2}B + 4R^{2}\sin^{2}C) + b^{2}(4R^{2}\sin^{2}A - 4R^{2}\sin^{2}B + 4R^{2}\sin^{2}C) \\ + c^{2}(4R^{2}\sin^{2}A + 4R^{2}\sin^{2}B - 4R^{2}\sin^{2}C) > 0 \\ a^{2}(-\sin^{2}A + \sin^{2}B + \sin^{2}C) + b^{2}(\sin^{2}A - \sin^{2}B + \sin^{2}C) \\ + c^{2}(\sin^{2}A + \sin^{2}B - \sin^{2}C) > 0 \end{aligned}$$

Now we use the fact that $\sin^2 \theta = 1 - \cos^2 \theta$:

$$\begin{array}{rcl} a^2(-\cos^2 A + \cos^2 B + \cos^2 C - 1) + b^2(\cos^2 A - \cos^2 B + \cos^2 C - 1) \\ & + c^2(\cos^2 A + \cos^2 B - \cos^2 C - 1) &< 0 \\ \cos^2 A(b^2 + c^2 - a^2) + \cos^2 B(c^2 + a^2 - b^2) + \cos^2 C(a^2 + b^2 - c^2) &< a^2 + b^2 + c^2 \end{array}$$

By Cosine Law,

 $b^2 + c^2 - a^2 = 2bc \cos A$ and similar for other 2.

So,

$$\frac{2bc\cos^{3}A + 2ca\cos^{3}B + 2ab\cos^{3}C}{a} < \frac{a^{2} + b^{2} + c^{2}}{a}$$
(2)
$$\frac{\cos^{3}A}{a} + \frac{\cos^{3}B}{b} + \frac{\cos^{3}C}{c} < \frac{a^{2} + b^{2} + c^{2}}{2abc}$$

Therefore, the inequality is true.

8. Let a, b, c be positive real numbers satisfying abc = 1. Prove that

$$a + b + c + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \le 3 + \frac{a}{b} + \frac{b}{c} + \frac{c}{a}.$$

SOLUTION

We will first prove the following lemma:

Lemma. (Schur's inequality) For any non-negative numbers p, q, r, we have

$$p(p-q)(p-r) + q(q-p)(q-r) + r(r-p)(r-q) \ge 0.$$

Proof

Notice that the inequality in the lemma is symmetric w.r.t p, q, r (i.e. by exchanging any of those, the inequality is still preserved). Hence, without loss of generality, we can assume $p \ge q \ge r$. Then

$$p(p-q)(p-r) + q(q-p)(q-r) + r(r-p)(r-q) = (p-q)[p(p-r) - q(q-r)] + r(p-r)(q-r)$$

= $(p-q)(p^2 - q^2 - pr + qr) + r(p-r)(q-r)$
= $(p-q)^2(p+q-r) + r(p-r)(q-r)$
 ≥ 0

Thus, the lemma follows.

Let x, y, z be positive real numbers s.t. $\frac{x}{y} = a, \frac{y}{z} = b, \frac{z}{x} = c$. Such x, y, z exists, for instance, by x = a, y = 1, $z = \frac{1}{b}$. Substitute p = xy, q = yz, r = zx into the lemma:

$$\begin{array}{rcl} p(p-q)(p-r) + q(q-p)(q-r) + r(r-p)(r-q) &\geq & 0 \\ x^2y^2(x-z)(y-z) + y^2z^2(y-x)(z-x) + z^2x^2(z-y)(x-y) &\geq & 0 \\ (x^3y^3 + x^2y^2z^2 - x^3y^2z - x^2y^3z) + (y^3z^3 + x^2y^2z^2 - xy^3z^2 - xy^2z^3) \\ &\quad + (z^3x^3 + x^2y^2z^2 - x^3yz^2 - x^2yz^3) &\geq & 0 \\ x^3y^2z + x^2y^3z + xy^3z^2 + xy^2z^3 + x^3yz^2 + x^2yz^3 &\leq & 3x^2y^2z^2 + x^3y^3 + y^3z^3 + z^3x^3 \end{array}$$

Since x, y, z > 0, we can divide both sides of the inequality by $x^2y^2z^2$.

$$\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + \frac{y}{x} + \frac{z}{y} + \frac{x}{z} \le 3 + \frac{xy}{z^2} + \frac{yz}{x^2} + \frac{zx}{y^2}$$
$$a + b + c + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \le 3 + \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$

This proves the desired result.

Alternative Solution:

Let x, y, z be positive real numbers s.t. $\frac{x}{y} = a$, $\frac{y}{z} = b$, $\frac{z}{x} = c$ (See previous proof for justification of existance). We first claim that

$$3x^{2}y^{2}z^{2} + x^{3}y^{3} + y^{3}z^{3} + z^{3}x^{3} - (x^{3}y^{2}z + xy^{3}z^{2} + x^{2}yz^{3} + x^{3}yz^{2} + x^{2}y^{3}z + xy^{2}z^{3}) \ge 0.$$

To see this, observe that the inequality is symmetric w.r.t. x, y, z. Hence without loss of generality, we can suppose $x \ge y \ge z$. Now, $x - y \ge 0$, so

 $y-z \ge 0$, so

$$\begin{array}{rcl} (y-z)(xy+xz-yz) &\geq & 0 \\ xy^2-zy^2-xz^2+yz^2 &\geq & 0 \\ (x-z)y^2-(x-y)z^2 &\geq & 0 \end{array}$$

And, $x^2(y-z) \ge 0$, so

$$\begin{array}{rcl} x^2(y-z)[(x-z)y^2-(x-y)z^2] &\geq & 0 \\ x^2y^2(z-x)(z-y)+x^2z^2(y-x)(y-z) &\geq & 0 \end{array}$$

Now, $y^2 z^2 (x - y)(x - z) \ge 0$, so

$$\begin{array}{rcl} y^2 z^2 (x-y)(x-z) + z^2 x^2 (y-x)(y-z) + x^2 y^2 (z-x)(z-y) &\geq & 0 \\ (xy^2-y^3)(xz^2-z^3) + (yx^2-x^3)(yz^2-z^3) + (zx^2-x^3)(zy^2-y^3) &\geq & 0 \\ 3x^2 y^2 z^2 + x^3 y^3 + y^3 z^3 + z^3 x^3 - (x^3 y^2 z + xy^3 z^2 + x^2 yz^3 + x^3 yz^2 + x^2 y^3 z + xy^2 z^3) &\geq & 0 \end{array}$$

Thus the inequality we claimed earlier is true. Now divide both sides by $x^2y^2z^2$, which is positive, and then substitute $a = \frac{x}{y}$, $b = \frac{y}{z}$, and $c = \frac{z}{x}$:

$$\begin{array}{rcl} 3+\frac{xz}{y^2}+\frac{xy}{z^2}+\frac{yz}{x^2} & \geq & \frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\\ & 3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a} & \geq & a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}, \end{array}$$

as desired.

(Remark: $y^2 z^2 (x - y)(x - z) + z^2 x^2 (y - x)(y - z) + x^2 y^2 (z - x)(z - y) \ge 0$ is a direct result from Vornicu-Schur Inequality (2007), by letting $f(x) = 1/x^2$. For those who are interested, please refer to http://www.artofproblemsolving.com/Wiki/index.php/Vornicu-Schur_Inequality.)