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AUSLANDER-GORENSTEIN RINGS 

K .  AJITABH: DEPARTMENT OF MATHEMATICS, FLORIDA INTERNATIONAL UNIVERSITY, MIAMI, FL 33199, 
A N D  S. P.  SMITH, J .  J .  ZHANO: DEPARTMENT O F  MATHEMATICS, BOX 354350, UNIVERSITY O F  WASHINGTON, 
SEATTLE, WA 98195 

E-mail address: ajitabhkPservma.fiu.edu, srnithQnath.washington.edu and zhangPmath.uashington.edu 

ABSTRACT. We study basic properties of Auslander-Gprenstein rings related to duality, localization 
and purity of minimal injective resolutions. 
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0. Introduction and definitions 

An Auslander-Gorenstein ring can be viewed as a noncommutative analogue of a commuta- 
tive local Gorenstein ring and as a generalization of a quasi-Frobenius ring. Familiar examples 
include Weyl algebras, universal enveloping algebras of finite dimensional Lie algebras, three- 
dimensional Artin-Schelter regular algebras and the Sklyanin algebras. Several recent results in 
noncommutative ring theory suggest that the Auslander-Gorenstein property is a fundamental 
homological property that relates to other properties such as being domain, localizable, etc. This 
paper studies several topics about Auslander-Gorenstein rings. 

Definition 0.1. Let A be a ring. The grade of an A-module M is 
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2160 AJITABH. SMITH, AND ZHANG 

or w if no such i exists. We say that A 
0 satisfies the Auslander condition if for every noetherian A-module M and for all i > 0, 

we have j ( N )  2 i for all submodules N C EX~'(M,  A); 
is Auslander-Gorenstein (AG) if A is two-sided noetherian, satisfies the Auslander con- 

dition, and has finite left and right injective dimension; 
0 is Auslander regular if it is Auslander-Gorenstein, and has finite global dimension; 
0 is grade-symmetric if j (MA) =  AM) for every (A, A)-bimodule M finitely generated on 

both sides. 
The injective dimension of a module M is written injdim M. By [Za, Lemma A], injdim AA 

is equal to injdim AA if both are finite. If A is commutative, noetherian, and has finite injective 
dimension, then A is AG. A ring is quasi-Robenius (QF) if it is left and right artinian, and 
left and right self-injective. It is easy to see that every QF ring is AG. 

The plan of the paper is as follows. We start, in section 1, with duality aspects between left 
and right modules. Let M -A denote the category of finitely generated right A-modules. If 
A is QF, then Horn(-,A) gives a duality between M -A and M -AOP [Fa, 24.41. We prove 
that if A is an AG ring of injective dimension d, then M -A and M -AOP are in (d + 1)-step 
duality [Theorem 1.21. Using this we recover a result of Roos [Bj2] that the left and right Krull 
dimensions of an AG ring are bounded above by its injective dimension (Corollary 1.31. 

In sections 2-4, we study different aspects of injective resolutions of the ring. Section 2 contains 
the preliminaries, where we also prove that if A is a noetherian ring of finite injective dimension, 
then every indecomposable injective module does appear in a minimal injective resolution of A 
[Theorem 2.31. This indicates that, in some sense, a minimal injective resolution of A contains 
a lot of information about A-modules. Section 3 gives detailed information about the last term 
of a minimal injective resolution. Our objective in section 4 is to study the injective resolutions 
with respect to purity, which we now explain. 

Let a denote a dimension function on A-modules, in the sense of [MR, 6.8.41. We say 6' is 
exact if for all A-modules M,  8(M) = max{d(N), B(M/N)} whenever N is a submodule of 
M. The standard example is Krull dimension (Kdim) due to Rentschler-Gabriel. For an algebra 
over a field, we also have the notion of Gelfand-I<irillov dimension (GKdim). Krull dimension is 
always, and GK-dimension is often, exact. 

Definition 0.2. Given a dimension function a,  exact or not, we say that a moduie M is 
s-pure with respect to a if a (N)  = s for all non-zero noetherian submodules N C M; 

0 essentially s-pure with respect t o  a if it contains an essential submodule which is s-pure 
with respect to 8 ;  

s-critical with respect t o  8 if it is s-pure and B(M/N) < s for all non-zero submodules 
N C M. 

The word 'pure' is a substitute for the word 'homogeneous' used in [MR], and we prefer the 
former because this has been frequently used in  recent literature. If 8 is exact, then a non-zero 
submodule of an s-critical module is s-critical, and critical modules are uniform. 

Definition 0.3. Suppose that injdim A* = d < w, and let 

be a minimal injective resolution. We say this resolution is 
0 pure with respect to d if each I' is (a(A) - i)-pure with respect to a .  
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AUSLANDER-GORENSTEIN RINGS 2161 

0 essentially pure  with respect to 8 if each I' is essentially (8(A) - 2)-pure with respect to 
a. 

Let A be a noetherian ring of finite injective dimension d. We define 6(M) = d - j (M) ,  
for a (left or right) noetherian A-module M;  we say 6 is exact if 6(M) = sup{C(N),C(M/N)], 
or equivalently, j (M)  = inf{j(M), j(M/N)} for all submodules N of a noetherian module M. 
Note that, in general, 6 is not a dimension function. It is a simple fact that for any ,ring A 
and A-module M,  j (M)  1 inf{j(N), j(M/N)] where N is a submodule of M; therefore, for a 
ring A of finite injective dimension, the inequality 6(M) 5 sup{6(N),6(M/N)] always holds for 
A-modules M and submodules N C M. It follows that whenever 6 is a dimension function, it 
is exact. If A is AG then, by [Le, 4.51 and [Bj, 1.81, 6 is a dimension function, and therefore 
exact; we call it the canonical dimension function. One consequence of this is that if M is an 
AIP-module where P E Spec A, then j (M) > j(A/Z?) if and only if M is a torsion AIP-module, 
and j (M) = j(A/P) otherwise. Levasseur [Le, 4.51 also shows that 6 is finitely partitive, 
meaning that if M is noetherian then any chain of submodules M = MO 3 MI 2 . . ., for which 
6(Mi/Mi+1) = 6(M) for all i ,  is necessarily finite. 

Whether 6 is a dimension function or not, we still define that a module M is 
0 s-pure if 6(N) = s for all non-zero noetherian submodules N C M; 

essentially s-pure if it contains an essential submodule which is s-pure; 
0 s-critical if it is s-pure and 6(M/N) < s for all non-zero submodules N C M. 
Whenever we use the terms s-pure or s-critical without reference to any particular dimension 

function, we mean pure or critical with respect to 6, irrespective of whether 6 is a dimension 
function or not. For example, it is easy to see that A is always d-pure both as a left and a right 
A-module. 

Let A be a commutative local noetherian Gorenstein ring. It is well-known that if 0 -+ A -+ I' 
is a minimal injective resolution of the A-module A, then 

where E(-) denotes an injective hull. As a consequence, every non-zero finitely generated s u b  
module of I' has Krull dimension equal to Kdim A - a .  Thus, in  our language, A has a pure 
minimal injective resolution with respect to Krull dimension. In the noncommutative case, Artin 
and Stafford have given examples of AG rings which do not have pure or even essentially pure 
minimal injective resolutions (Examples 5.2 and 5.3). So it is natural to a s k  under what hypothe- 
ses AG rings have pure or essentially pure injective resolutions. We prove that if A is an AG, 
grade-symmetric ring satisfying a polynomial identity, then A has a pure resolution [Theorem 
4.21. In [ASZ], we have also proved that many AG rings with small injective dimension have 
pure or essentially pure injective resolution. Conversely, under a reasonable hypothesis, essential 
purity can occur only for AG rings [Theorem 4.41; and if A has an essentially pure minimal 
injective resolution with respect to an exact dimension function a, then in fact a is equal to 6 
up to some additive constant [Proposition 4.31. It is in  this sense that 6 behaves like a canonical 
dimension function. 

In section 6, we describe certain conditions for the existence of quotient rings of AG rings. We 
prove that a grade-symmetric AG ring has a QF quotient ring [Remark to Theorem 6.11, and as 
a corollary, a grade-symmetric Auslander regular algebra is semiprime [Corollary 6.31. This last 
result is a noncommuatative analog of the fact if A is a noetherian commutative ring of finite 
global dimension, then A has no nilpotent elements. We give an easy example to show that an 
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2162 AJITABH, SMITH. AND ZHANG 

Auslander regular ring need not be gradesymmetric, and, for such a ring, the quotient ring (if 
it exists) need not be QF or semiprime [Example 5.4.21. 

Another property often appearing together with the AG property is the Cohen-Macaulay 
propeity. 

Definition 0.4. We say that A is Cohen-Macaulay with respect t o  a dimension function 
8 (or, 8-CM, in short) if 

j (M) + a (M)  = a(A) < co 
for every non-zero noetherian A-module M. When we say A is Cohen-Macaulay (CM) without 
reference to any particular dimension function, we mean A is Cohen-Macaulay with respect to 
GKdim (assuming tacitly that A is an algebra over a field). For an algebra A over a field k,  we 
say that A is Cohen-Macaulay a t  zero (CMo) ptovided that, for a noetherian A-module M, 
j (M) = injdim A if and only if M is finite k-dimensional. 

It is a tautology that an AG ring is CM with respect to the canonical dimension function 6. If 
a ring is CM with respect to a dimension function 8, then 8 has to be exact. If A is a noetherian 
ring with finite injective dimension d ,  then A is CM with respect to some dimension function 8 
if and only if 6 is a dimension function: indeed, then a(M) = 6(M) + (8(A) - d). 

In section 7, we examine the relation between the groups EX~>(M,  N) and EX~;(N, M) under 
some hypotheses such as CMo and commutative Gorenstein [Propositions 7.1 and 7.71. 

Conventions and Notations. Throughout the paper A will be a left and right noe- 
therian ring. Unless otherwise specified, we work with right modules. We will usually omit 
the subscript A from E X ~ > ( M ,  N). We will often write EPM for ExtP(M,A), and EPqM for 
ExtP(Extq(M, A ) ,  A). 

We will often use Ischebeck's spectral sequence: if A is noetherian with injdim A = d, and M 
a noetherian right A-module, there is a convergent spectral sequence 

E:' = Ext: (Ext: (M. A). A) ==+ HPeq (M) := { 0 i f p f q ,  
M if p = q. 

Thus, on the Em-page only the diagonal terms are non-zero. To simplify notation later, we have 
used a non-standard indexing of Eiq;  with our indexing, the boundary maps on the Ez-page are 
Eiq  4 E ~ ~ + ~ ~ ~ ~  This spectral sequence is functorial in M. Consequently, there is a canonical 
filtration of M by submodules, 

where FiM/Fi+ 'M S EG. If A is AG, then by [Bjl, 1.31, F'M is the largest submodule X C M 
such that j ( X )  2 i. For each i there is an exact sequence of A-modules: 

0 --+ F'M/F'+' M -+ EX~ ' (EX~ ' (M,  A), A) --+ Qi+2(M) -+ 0 (0-3) 

where 6(Q,+z(M)) < d - (i + 2) or, equivalently, j(Q,+2(M)) 2 i + 2 

1. Duality between left and right modules 

The basic idea of this section appeared implicitly in [Le] and [Bj2]. Let M -A denote the 
category of finitely generated right A-modules. If A is AG of injective dimension d, then 6 is 
exact, and we define M, to be the full subcategory consisting of modules with 6(M) 5 i. There D

ow
nl

oa
de

d 
by

 [U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n 

Li
br

ar
ie

s]
 a

t 0
5:

52
 0

6 
A

pr
il 

20
12

 



AUSLANDER-GORENSTEIN RINGS 

are inclusions 
O = M - 1  C M o C . . . C  Md-1 C M d = M  : = M - A .  

Similarly M0 and M o i  denote the analogous categories of left A-modules. 
An abelian category C is ar t inian (respectively noetherian) if every object in C is artinian 

(respectively noetherian) [Po, p. 3701. Since A is noetherian, M and its subcategories M ,  are 
noetherian. 

A full subcategory D of an abelian category C is dense if, for every short exact sequence 

in C, M is in D if and only if both L and N are in D (see [Po, p. 1651). The exactness of 
6 implies that M i  is a dense subcategory of M .  Hence we may form the quotient category 
M' := Mi / M , - l ,  and similarly the quotient categbry MO' := Mot / M a i - ]  for i = 0,1,. . . , d. 
The basic properties of quotient categories may be found in [Po, Ch. 41. 

L e m m a  1.1. Each M' defined above is  a noetherian category. 

Proof. Let xi-1 denote the category of those right A-modules all of whose finitely generated 
submodules belong to Mi-l and % the category of all right A-modules. Since Mi-1 is dense - - 
in M,  so is n,-l dense in x, whence the quotient category M / M i W 1  may also be formed. 
If M is any A-module then the sum of all its finitely generated submodules having &-dimension 
5 i - 1 is in x , - , .  In particular, if M E n, there is a largest submodule of M belonging to - 
Mi-1 .  Hence the quotient functor n -t n / n , - l  has a right adjoint [Po, 4.5.21. Therefore, if - - 
M is a noetherian object it is also noetherian as an object in the quotient category M / M i - \  - - 
[Po, 5.8.31. In particular, each M E M i  C %is  noetherian as an object in M' C M /M,-p  0 

We say that  two categories C and V are in duality if there are contravariant functors F : 
C ---t V and G : D -+ C such that FG 2 I d n  and GF 2 Idc. The functors F and G are called 
dualities. It is easy to see that C is noetherian if and only if the dual category V is artinian. 
Two categories C and V are in n-step duality if there are dense subcategories 

such that the quotient categories C' := Ci/Ci-l and D' := Vi are in duality for all 
i = 1,. . . , n. The following result shows that AG rings have a duality analogous to QF rings. 

T h e o r e m  1.2. Let A be an AG ring of injective dimension d. Then M' and MO' aw in duality 
for all a = 0 , l  . . . , d. As a consequence, M -A and M -AOP are in (d + 1)-step duality. 

P m f .  By the Auslander condition, ~ x t ~ - ' ( - , A )  is a contravariant functor from M, to M O ,  
so induces a contravariant functor from M ,  to the quotient category M O ' .  If 6(M) < a ,  the 
Auslander condition implies that E x t f ( ~ , A )  is in M a , - ]  whenever 1 > d - a ,  whence Extf(- ,  A)  
is zero a s  a functor from M ,  to M O '  whenever 1 # d - a .  By the long exact sequence for 
Ext'(-, A), Extd-I(-, A) is an exact functor from M,  to Ma' sending objects of M,- ,  to 0, so 
it induces a functor from M '  to M O '  [Po, 4.3.111. It follows from (0-3) that for each M E M,,  
there IS a short exact sequence, natural in M ,  of the form 

0 -+ M/F~- '+ '  M -+ E X ~ * - ' ( E X ~ ~ - ' ( M ,  A ) ,  A )  -+ Qd-,+?(M) -+ 0, (1-1) 

where Fd-l t 'M is the largest submodule of M with &dimension 5 i - 1 and Qd-i+2(M) is 
a module with 6-dimension 5 i - 2. Hence (1-1) yields a natural transformation from the 
identity functor to the functor Extd-'(Extd-'(-, A), A) for all modules in M ,  and this natural 
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2164 AJITABH, SMITH, AND ZHANG 

transformation becomes a natural isomorphism a t  the level of the  quotient categories M' and 
Mot .  Hence the  induced functors of Extd-'(-, Aa) and ~ x t ~ - ' ( - ,  * A )  give a duality between 
M' and MO' .  0 

Since M' and Mot  are  noetherian by Lemma 1.1 ,  they are also artinian by duality. Hence, 
by induction, Kdim M 5 i for all M E Mi and we reprove a result of Roos [Bj2]. 

Corollary 1.3. Let A be an AG ring of injective dimension d .  If M is a finitely genemted 
A-module, then Kdim M 5 6(M)  = d - j ( M ) .  Hence the leff and right Krull dimensions of A 
are bounded above by its injective dimension. In particular, if j ( M )  = d then M is artinian. 

Over a finitely generated commutative k-algebra, Kdim M = GKdim M ,  and in most reason- 
able noncommutative rings Kdim M < GKdim M .  In the presence of the  C M  property Corollary 
1.3 gives such an  inequality. If A is AG, then 

injdim A = max{j(M) I 0 # M E M ) .  

Hence the  C M  property ensures t ha t  GKdim A-injdim A is a non-negative integer. The  following 
corollary is an immediate consequence of Corollary 1.3  and the  equalities 

6 (M)  = injdim A - j ( M )  = GKdim M - (GKdim A - injdim A). 

Corollary 1.4. Let A be an AG and CM ring. 
1 .  For every non-zero noetherian A-module M ,  

Kdim M 5 GKdim M - (GKdim A - injdim A), 

where GKdim A - injdim A 2 0. 
2. GK-dimension is left and right finitely partitive. 

The  inequalities in Corollary 1.3 and Corollary 1.4.1 may be strict: if A is the  enveloping 
algebra of the  Lie algebra a I ( 2 , 0 ,  then Kdim A = 2 whereas injdim A = GKdim A = 3. 

Remark: If M is a finitely generated right (respectively left) A-module with j ( M )  = j ,  define 
M V  to  be the  left (respectively right) A-module Ex t J (M,  A ) .  By the proof of Theorem 1.2, 
j ( M )  = j ( M V )  or equivalently 6 (M)  = 6 ( M V ) .  If 6 ( M )  = 0, then by Corollary 1.3 ,  M and M Y  
are  artinian. Since Mo and Moo are  in duality, M is simple if and only if M Y  is simple. We 
also have (MY)"  2 M for all M with 6 ( M )  = 0. 

2 Injective resolutions 

Write R, for t he  image of the  boundary map IS-' -t IS in (0-1). Thus Ro = A, and there are 
exact sequences 

0 -4 R,-l 4 IS-' t R, 4 0 (2-1) 
for all s = 1 , .  . . , d ,  with each Id an essential extension of 0 , .  By the definition of minimal 
injective resolution, the  injective dimension of A is d if and only if Rd = Id. 

Lemma 2.1. For any A-module N ,  and any i 2 0 ,  
1. Ext t+ ' (N ,  A) 4 ~ x t ' ( N ,  R,), and 
2. if Hom(N,  I'-') = 0, then E X ~ ' ( N ,  A) % Hom(N,R,)  
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AUSLANDER-GORENSTEIN RINGS 

P m f .  The long exact sequence for Ext*(N, -) applied to (2-1) gives isomorphisms 

for 1 5 s 5 d, and i 2 1. Furthermore, if Hom(N, I*-') = 0, then 

The result follows by induction. 0 
There is an obvious generalization of this, applying to E X ~ ' ( N ,  M), which involves Ri(M), the 

cosyzygies of M.  

Lemma 2.2. Let M be a noetherian module. Then there exist f l , .  , . , f, E Hom(M, R,) such 
that for evey N c nj ker(f,), the natuml map EX~'(M,  A) -t Ext'(N, A) is zero, or equivalently, 
the natuml map EX~'(M/N,  A) -t E x t i ( ~ , A )  is surjective. 

Proof. We prove that the natural map from EX~' (M/N,  A) to Extl(M, A )  is surjective. From the 
injective resolution of A, we see that 

Suppose that EX~' (M,  A )  is generated as a left A-module by maps f l , .  . . , fn E Hom(M,R,). 
Because N C kerf,, there are corresponding maps g l , .  . . ,gn E Hom(M/N, Ri), so the natural 
map EX~'(M/N, A) -t EX~ ' (M,  A) sending gj  to f j  is surjective. 0 

The next result appears as Corollary 4.6 of [Miy), but the proof below is shorter. The com- 
mutative case of the result is well-known [Bass]. 

Theorem 2.3. Let A be a noetherian ring with injdim A = d. 
1. Then for each non-zero noetherian right A-module M there is a non-zero submodule N of 

M which embeds in some R,. 
2. Every indecomposable injective module appears in the minimal injective resolution of A. 

P m f .  Part 2 is an obvious consequence of part 1 and we prove part 1 next. 
Replacing by a submodule, we may assume M is uniform. Suppose to the contrary that no 

non-zero submodule N of M embeds in any Q,. Under this hypothesis we claim that there is a 
chain of non-zero submodules 

such that Fd-'Mt = 0 for all t = -1,0,. . . , d. If t = -1, F d t 1 ~ - 1  = 0 by definition. Now 
suppose Fd-'MI = 0 for some t. As in  Lemma 2.2, Ext'(Mt, A) is generated a s  a left A-module 
by f f ,  . . . , f:, E Hom(Mt, Qi). Let Mt+1 = niaj ker(fj). Since MI does not embed in any Q,, 
ker(fj) # 0 for all i ,  j, whence Mt+l # 0 because M is uniform. By Lemma 2.2, the natural map 
t ? x t ' ( ~ ~ ,  A )  -r Exti(Mt+l, A) is zero for all i ,  so the natural map ExtP(Extq(Mttlr A ) ,  A) -t 
ExtP(Extq(Mt, A), A) is zero for all p and 9. Therefore, by the spectral sequence (0-2), the 
natural maps from F'Mt+l/F'+'Mt+l to FtMt/F'+'Mt are zero for all a .  I n  particular, the 
natural map from F ~ - ( ~ + ' ) M ~ + I / F ~ - ~ M L + I  to F ~ - ( ~ + ~ ) M ~ / F ~ - ~ M ~  is zero. The filtration is 
functorial, so the inclusion Mt+l = W(Mf+l) + Mt = H(Mt) embeds F 'Mtt l  in  F'Mt. Hence 
Fd- 'Mttl  C Fd-IMt = 0, SO the morphism from Fd-('+') M ,+I  to Fd-('+l1 Mt is zero. Therefore 
F ~ - ( ' + ' ) M ~ + ~  = 0 and we have proved our claim by induction. Letting t = d we obtain Md = 

Md = 0, a contradiction. Therefore part 1 follows. 0 

Proposition 2.4. Let A be a right noetherian ring with injdim Aa = d, and let N be a noetherian 
right A-module. D
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2166 AJITABH, SMITH, AND ZHANG 

1. If N embeds in Ri,  then EX~' (N,A)  # 0, whence j ( N )  < i .  
2. If every non-zero submodule of N is (d - ;)-critical, then N embeds in Ri.  
3. I0 is essentially d-pure (and d-pure if 6 is ezact). 
4.  If A has a Q F  quotient ring Q, then IO 2L Q is d-pure and every torsion module M (i.e., a 

module such that M @A Q = 0) has j (M)  2 1. As a consequence, Ql is (d - 1)-pure, and I' is 
essentially (d - 1)-pure. Furthermore, if A is semiprime and 6 is ezact, then I' is (d - 1)-pure. 

Proof. 1. The statement is obvious for Ro = A. If i 2 1 and A' is a submodule of R,,  then there 
is a nonsplit exact sequence 0 -i + E -+ N -+ 0, so E x t l ( ~ ,  R,-l) f 0. By Lemma 
2.1.1, E X ~ ~ N , A )  % E X ~ ' ( N , R , - ~ )  # o .  

2. If M is (d - ;)-critical, then j(M/L) 2 i for all submodules L C M ,  so Hom(M,Q,-1) = 
0, by part 1. However, if Hom(N, It-') # 0, then for some non-zero submodule M C N, 
Hom(M,R,-1) # 0 which contradicts the previolis sentence; hence Hom(N, I;-') = 0. By 
Lemma 2.1.2, Hom(N, 0 , )  Y Ext'(N, A), which is non-zero because j ( N )  = i, so there is a non- 
zero map f : N t R,. But N is critical and R, contains no submodule X with 6(X) < d - i ,  
so f is injective. 

3. Because I0 is an essential extension of the d-pure module A, I0 is essentially d-pure. If 6 
is exact, then essentially d-pure is the same as d-pure. 

4. Since Qg is injective and Q A  is flat, Q A  is injective. Since A is essential in Q A ,  Q is an 
injective hull of A; that is I0 % Q. For every finitely generated submodule M C Q A ,  there is a 
regular element c such that c M  C A. Hence j (M)  = 0 and 6(M) = d, whence Qa is d-pure. 

If M were a torsion module with j ( M )  = 0, then some non-zero quotient of M would be both 
torsion and a submodule of A. But this cannot happen, so torsion modules have grade 2 1. 

Since Rl = Q/A is torsion, every submodule M C R1 is too, so has grade 2 1. Combining 
this with part 1 gives j ( M )  = 1, whence Q1 is (d- 1)-pure. Now 11, being an essential extension 
of R1, is essentially (d - 1)-pure. If in addition A is semiprime, then an essential extension of a 
torsion module is torsion, so I' is torsion. Thus every finite submodule M of I' has j ( M )  2 1 
or 6(M)  < d - 1. By exactness of 6, 6(M) = d - 1, whence I' is (d - 1)-pure. 0 

If injdim AA = 0 (i.e., A is QF [Fa, 24.5]), then it is obvious that AA has a pure injective 
resolution. If A is a semiprime noetherian ring of injective dimension 1, then its injective reso- 
lution is 0 -t AA + Q -+ Q/A -+ 0, where Q = Fract A, so A has a pure injective resolution by 
Proposition 2.4.4; one may also check that A is AG i n  this case. 

Proposition 2.5. Let A be AG with injdim A = d. Then 
1. Id is a direct sum of injective hulls of 0-critical modules, hence essentially 0-pure; 
2. E X ~ ~ ( M ,  A) E! E X ~ ~ ( F ~ M ,  A) where F d ~  is the largest submodule of gmde > d. 
For nezt two pads we further assume that A has finite global dimension. 
3. pdim M = d if and only if F d M  # 0; 
4. if L is a right A-module and Id(L) is the d-th term of the minimal injective resolution of 

L, then Id(L)  is either 0 or essentially 0-pure. 

Proof. 1. We need to show that contains no s-critical submodules for s > 0. If s > 0 and M 
is s-critical then, by (0-3), there is an exact sequence 

But F d M  = 0 because M is s-critical with s > 0, and Qd+*(M) = 0 because j ( X )  5 d for all 
X # 0, so E X ~ ~ ( E X ~ ~ ( M ,  A), A) = 0. But j (Extd(M, A)) 2 d by the Auslander condition, whence 
Extd(M, A) = 0. So M is not a submodule of Rd = I ~ ,  by Proposition 2.4.1. D
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AUSLANDER-GORENSTEIN RINGS 2167 

2. Applying Ext*(-, A) to the exact sequence 0 + F d M  + M -+ M / F ~ M  ---t 0 gives 
an exact sequence 

so it suffices to show that Extd(M/FdM, A) = 0. Since L = M / F d ~  is noetherian and 6 is 
exact, no submodule of L has &dimension 0. Further, since 6 is finitely partitive, there is a 
finite chain of submodules {Li} such that each Li/Li+1 is s,-critical for si > 0. By part 1 and 
Proposition 2.4.1, E X ~ ~ ( L , / L ~ + I , A )  = 0 whence E X ~ ~ ( L , A )  = 0 by induction, using the long 
exact sequence. 

3. (t) This is clear because E X ~ ~ ( M ,  A) 2 E x t d ( F d ~ ,  A) f 0. 
(a) If pdim M = d, then Extd(M, N)  # 0 for some N. Writing N as a quotient of a free 

module, and using the fact that Extd+'(M, -) = 0,'it follows from the long exact sequence for 
Ext*(M, -) that Extd(M, A) # 0. Hence, by part 2, F d M  # 0. 

4. Suppose to the contrary that Id(L) contains an s-critical module M for some s > 0. By part 
2, pdim M < d .  By an analogous version of Proposition 2.4.1, valid for an injective resolution of L 
(and which can be proved in the same way), we have E X ~ ~ ( M ,  L) # 0, contradicting pdim M < d. 
0 

Part 1 of Theorem 2.5 appears as Theorem 6 of [IS]. 

3. The  last te rm in the  injective resolution 

In this section we will study AG and CMo algebras over a field k. A finitely generated CM 
k-algebra of finite injective dimension, which equals GK-dimension, is CMo and a connected 
graded AG ring is graded CMo. 

Let A be an AG and CMo k-algebra and let Id be the last term of the minimal injective 
resolution of A. By Proposition 2.5.1, Id is adirect sum of the injective hulls of finite dimensional 
simple modules. Let S be a finite dimensional simple module and E(S) its injective hull. Then 
the multiplicity of E(S)  in Id is equal to dim H O ~ ( S ,   dim Hom(S, S ) .  It is easy to see that 
Hom(S, Id) Z Extd(s, A) = SV and that Hom(S, S) = k if k is algebraically closed. 

Theorem 3.1. Let A be an A G  and CMo k-algebm with injdim A = d. Then 

where S runs over all finite dimensional simple modules, and ms = dim Sv/dim End(Sa). As a 
consequence, the injective modiule E(S)  appears in Id finitely many times. 0 

For a finite dimensional module M,  define M' := Homk(M, k) .  If M is a left A-module, 
M' is a right A-module (and conversely), and M is simple if and only if M' is simple. Since 
(M*)' E M ,  the functor M cr M* is a duality between Mo and Moo. Composing " and * 

yields auto-equivalences of M o  and M o o  (Recall that M V  = ExtJ(M, A) where J = j (M) ) .  In  
general this auto-equivalence is not equivalent to the identity functor. Write M' := (MV)' .  The 
following example shows that Mt need not be isomorphic to M. 

Example 3.2. Let L be the 2-dimensional solvable Lie algebra over C generated by x and y and 
subject to the relation (2, y] = 2. Let A be the enveloping algebra U(L). The finite dimensional 
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2168 AJITABH, SMITH, AND ZHANG 

simple A-modules are {S, := A/(z, y - r)  I r E C). Each S, is an A-A-bimodule and S: F S,. 
The projective resolution of S, as  a right A-module is 

where the boundary map from A@A to A is defined by f l ( a ,  b) = z a + ( y  -r)b and the boundary 
map from A to  A $ A is defined by f2(a)  = ((y - r - l ) a ,  -za) .  Applying Horn(-, A )  to (3-I), 
we obtain the complex 

O t A t A $ A t A t O  

where the boundary maps are f i ( a )  = (az ,a (y  - r))  and f;(a,b) = a(y - r - I)  - bz. Hence 
Exti(S,,A) = 0 if i # 2, and S,V := Ext2(s,,  A) Y S,+,. Therefore S: P S,. 0 

I t  is trivial that A := Mz(k)$k is AG, CM, and gldim A = 0. There are two finite dimensional 
simple modules with dimensions 1 and 2 respectively. There is an obvious auto-equivalence of 
M (which is also equal to  M o )  which exchanges the 1-dimensional and the 2-dimensional simple 
modules. Hence an auto-equivalence of Mo may change the dimension of simple modules. Next 
we will show that  the auto-equivalence ' preserves the dimension of finite dimensional modules 
in some rings (including enveloping algebras). 

Theorem 3.3. Let A be a filtered ring such that the associated gmded algebm grA is a connected 
graded AG and CM k-algebra of injective dimension d.  If M is a finite dimensional right A- 
module, then dim M V  = dim M .  

P m f .  By [Sf& 4.41, A is a noetherian, AG and CM k-algebra of injective dimension a t  most d. 
Since grA is connected and noetherian, it is finitely generated, and hence A is finitely generated. 
If M is afinite dimensional right A-module, then j ( M )  = d by the CM property, so injdim A = d. 
Since M is finitely generated it has a good filtration so, by [Bjl, 3.11, g r ( ~ x t ; ( ~ ,  A)) is a sub- 
quotient of ~ x t ; ~ ~ ( g r M , g r A ) .  Since g rA is connected graded and AG, kV E k. By induction we 
obtain that  dim M V  =dim M for every finite dimensional graded grA-module M .  In particular, 

d i r n ( g r ~ ) V  =dim g r M  = dim M. 

Hence 
dim M V  = dim ~ x t ; ( M ,  A) = dim g r ~ ~ t i ( ~ ,  A )  5 dim(grM)V = dim M. 

But M V V  S M ,  so dim M = dim M V v  < dim M V .  Therefore dim M = dim M V  

Applying Theorems 3.1 and 3.3, we have the following immediate corollary, 

Corollary 3.4. Let L be a d-dimensional Lie algebm over an algebraically closed field. Then 
the last term in the minimal injective resolution oJ its enveloping algebra is 

where S runs over all finite dimensional simple modules, and E ( S )  is the injective hull of S .  O 

Remark: For the universal enveloping algebra U(L) of a finite dimensional solvable or semisimple 
Lie algebra L, Theorem 3.3 and Corollary 3.4 can be proved without using the filtration on U(L) 
(still under the hypothesis that k is algebraically closed). First, suppose L is a solvable Lie 
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AUSLANDER-GORENSTEIN RINGS 2169 

algebra. Every simple right (or left) U(L)-module S is 1-dimensional. Since S V  is also simple, 
it is 1-dimensional too. Hence dim S = dim S v .  Therefore dim M = dim M V  for all finite 
dimensional modules M.  Second, suppose L is semisimple. Non-isomorphic finite dimensional 
simple modules S and T are annihilated by different central elements. Since S V  2 E X ~ ~ ( S ,  A)  and 
S z ~ x t ~ ( S " ,  A ) ,  S and SV are annihilated by the same central elements. Therefore S 2 S' := 
(SV)*. Hence dim S = dim S V  for finite dimensional simples and hence for all finite dimensional 
modules. In this case we have a stronger statement: if L is semisimple, then S E S' for every 
finite dimensional simple module S .  

If A is Auslander regular and C M o ,  then analog of Theorem 3.1 holds for injective resolutions 
of all A- modules. 

Theorem 3.5. Let A be Auslander regular with gldim A = d and CMo and L a finitely genemted 
right A-module. Then the d-th term in a minimal ii?iective resolution of L is 

I ~ ( L )  = $ E(S)'S 
S 

where S runs over all finite dimensional simple modules, E(S) is an injective hull of S, and 
1s = dim Extd(s,  L)/dimHom(S,S). As a consequence, the injective module E(S)  appears in 
Id(L)  finitely many times. 

Proof. By Proposition 2.5.4,  id(^) is essentially 0-pure and hence Id(L)  = es E(S)'s by C M o .  
The multiplicity can easily be seen to be 1s = dim Extd(s,  L)/dim Hom(S,S). Since Extl(S, A )  
is finite dimensional by C M o  ( i n  fact, the only nonzero Ext is Extd(s,  A ) ) ,  Exti(S, M) is finite 
dimensional for all i and M, by induction on pdim M. Therefore 1s is finite. 0 

4. Purity 

It is well-known that a commutative noetherian ring of finite injective dimension is AG, and 
has a pure injective resolution. The PI (polynomial identity) rings will be the next natural 
cases to analyze. But we do not know whether an AG, PI ring has a pure injective resolution. 
Nevertheless, we prove that an AG, PI, grade-symmetric ring has a pure injective resolution, part 
of which is a generalization of [SfZ, 6.41. 

Lemma 4.1. Suppose AA and A A  have essentially pure injective resolutions with respect to 6 .  
Then A has a pure injective resolution if and only if every essential eztension of a module of 
gmde s has grade 2 s. 
Proof. Suppose that A has a pure injective resolution, and let M be a module of grade s .  Then 
M is an essential extension of a direct sum of uniform modules, each of which has grade > s. By 
Theorem 2.3, each of these uniform modules embeds in It for an appropriate t > s, hence M,  and 
therefore any essential extension of it, embeds in a finite direct sum of copies of various It with 
t > s. By hypothesis every non-zero finitely generated submodule of It  has grade t ;  therefore 
every non-zero finitely generated submodule of this direct sum of various It also has grade 2 s; 
i n  particular, every finitely generated essential extension of M has grade > s. The converse is 
trivial. 0 

Theorem 4.2. Suppose that A is AG, and satisfies a polynomial identtty. 
1. If A is grade-symmetric, i.e.,  AM) = j ( M a )  for every noetherian A-bimodule M ,  then 

gmde is constant on the.cligues of A ,  and 
a A has a pure injective resolution. 

2. If A is C M  with respect to GK-dimension or Krull dimension, then A is gmde-symmetric. 
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2170 AJITABH, SMITH, AND ZHANG 

Proof. 1. If there is a link Q - P ,  then there is an AIQ-A/P bimodule, B say, finitely generated 
and torsion-free on both sides; since 6 is a dimension function and AIQB is torsion-free, j(A/Q) = 
j (AB);  similarly, ~ ( B A )  = j (A/P) ;  by hypothesis, ~ ( A B )  = ~ ( B A ) ,  so j(A/Q) = j (A/P).  Hence, 
by induction, grade is constant on cliques. 

Next we show that A has an essentially pure injective resolution. It suffices to show that if 
M is a critical submodule of R,, then j ( M )  = i .  Since M is critical it is uniform, so embeds in 
A I P  where P = Ann M is a prime ideal of A. Therefore, by [Br, 2.31, since M embeds in I ' ,  
Ext'(A/PA, A) is not torsion as a right AIP-module. By [SfZ, 3.51, EX~'(A/PA, A) is a noetherian 
right A/P-module. Hence, by [SfZ, 3.101, j ( ~ x t ' ( ~ / p A ,  A)) = j (A/P)  as a right A-module. By 
the Auslander condition j ( E x t i ( ~ / p A ,  A)) >_ i as a left A-module, and hence as a right module 
by the hypothesis on bimodules. Thus j(A/P) i as  a right A-module, whence j ( M )  2 i; the 
reverse inequality is given by Proposition 2.4.1, so j{M) = i. 

Finally, we show that an essential extension of a module of grade s has grade 2 s. As in 
the proof of Lemma 4.1, we need only prove this for a uniform module. Suppose that M is an 
essential extension of a uniform module U. Then M has a unique associated prime, P := Ann U. 
Since A is a PI ring, it satisfies the strong second layer condition so, by [GW, 11.41, there is a 
chain of submodules 0 = Mo C . . . C M,, = M such that the annihilators of the various Mi/M,-l 
are primes ideals, say Pi, belonging to the clique containing P ;  moreover, each Mi/Mi-1 is a 
torsion-free Alp,-module, so j(Mi/Mi-1) = j(A/P,) = j(A/P). Thus j (M)  = j (A/P) = j(U). 

The last two paragraphs allow u s  to apply Lemma 4.1  to conclude that A has a pure injective 
resolution. 

2. Since GK-dimension [MR, 8.3.141 and Krull dimension [MR, 6.4.131 are symmetric for 
noetherian A-bimodules (the latter because A is a PI ring), A is grade-symmetric by the CM 
property. 0 

Remark: If A is a noetherian PI ring of injective dimension d and AA has an essentially pure 
injective resolution with respect to a dimension function 0 ,  then I' = $PEP where P runs over 
all primes with B(R/P) = d - i, where E p  is the injective hull of a non-zero uniform right ideal 
of R I P  and N p  is a positive integer. The proof of this is the same a s  the second part of the 
proof of [SfZ, 3.151. This remark applies to the rings in Theorem 4.2. 

Example 5.4.2 in the next section shows that there is an AG, PI, but not grade-symmetric, 
ring of global dimension 1 which has a pure injective resolution. 

Next we show that if A has an essentially pure injective resolution with respect to 0 and 6 is 
exact, then 8 is essentially the canonical dimension 6 and A is AG. 

Proposition 4.3. Let A be a noetherian ring with finite injective dimension d and suppose that 
An has an essentially pure injective resolution with respect to an exact dimension function 8 and 
that 6 is exact. Then 

a ( M )  = 6(M) + a(A) - d 

for all noetherian right A-modules M. In particular, 6 is a dimension function. 

Proof. Replacing I3 by the function M ct 0(M)+d-d(A)  we can, and do, assume that a(A) = d. 
By exactness and the noetherian property, it suffices to show a ( N )  = 6(N)  for some nonzero 

submodule N C M. By Theorem 2.3.1, there is a non-zero submodule M' C M which embeds 
in some R i  and by purity, there is a nonzero submodule N C M' C R, which is (d - i)-pure 
with respect to 13. By purity of the injective resolution, Hom(N, I * )  = 0 for all s < i ,  whence 
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AUSLANDER-GORENSTEIN RINGS 2171 

j ( N )  2 i .  By Proposition 2.4.1, j (N)  5 i. Hence j (N)  = i and 6(N) = d - i = 8(N) .  Therefore 
the results follows. 0 

Theorem 4.4. Let A be a noetherian ring with finite injective dimension d. Suppose that AA 
and * A  have essentially pure injective resolutions with respect to exact dimension Junction 8 and 
that 6 is ezact.  Then A is AG. 

Remark: In Theorem 4.4 the condition that 6 is exact is necessary a s  Example 5.4.1 shows. 

Proof. By Proposition 4.3, we may assume 8 = 6. Recall that the exactness of 6 can be expressed 
by j (M) = min{j(N), j(M/N)} whenever N is a submodule of M,  and we simply say that j is 
exact when this condition is satisfied. Because j is exact, to prove that A is AG we need only 
show that j (EaM) 2 s for all s and all M. This is true if s = d + 1, so we fix s, and suppose 
inductively that ~ ( E ' M )  2 i for all i > s and all M. 

If j ( M )  > s ,  then j (EaM)  = w > s, so we will argue by downward induction on j (M) .  We 
treat the case j ( M )  = s .  

. . .  The Ez-page of the double-Ext spectral sequence for M lives i n  rows s ,  s + 1 , .  d and, by 
the induction hypothesis for i > s ,  looks like 

. . .  In row s ,  EO'M = E1'M = = ES-26M = 0, since all these terms survive to the E, page 
which is zero off the main diagonal. Hence we must show that Em-'  "M = 0. 

Because it is an off diagonal term, E;laM = 0. Hence, because of the zeroes i n  rows 
0,. . . .  s - 1, there is a finite filtration 

with embeddings of the factors 

for r 2 2; however, the right hand term in (4-2) is a subquotient of E;+~-' M,  so has grade 
> s + r - 1 2 s + 1 by the induction hypothesis; by exactness of j, so does the left hand term in 
(4-2), and from the filtration (4-I), it follows that j(E,"-ISM) 2 s + 1 also. 

Write N = E S M  and t = j(Ea-IN) 2 s + 1 .  We have already shown that j ( N )  > s - 1, so 
the Ez-page of the double-Ext spectral sequence for N lives in rows s - 1, s ,  . . . .  d and looks like 

If  q > t ,  then E z - l N  = 0 because it is not on the diagonal, so there is a finite filtration 

with embeddings of the factors 
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2172 AJITABH, SMITH, AND ZHANG 

for r 2 2 ;  by the induction hypothesis the successive factors in the filtration (4-3) have grade 
2 q + r 2 t + 2 ,  whence j (~ ,P ' - l  N) 2 t + 2. Thus j (~ ,P ' - l  N )  2 t + 2 for all q; therefore, by the 
induction hypothesis for i > s ,  j(Ep(Eqd-I N)) 2 t + 2  for all p and q. Hence by the convergence 
of the double-Ext spectral sequence for Em-IN, j (Ea-IN)  1 t f 2. But this contradicts the 
fact that j(Ed-IN) = t unless t = m, so we conclude that E p l N  = 0 as required; that is, 
Ed-I'M = 0, whence j (EdM)  2 s whenever j ( M )  = s .  

Finally, to prove that j (ESM) 2 s for a general M,  we argue by induction on Kdim M; 
so suppose that Kdim M = p and that the result is true for modules having Kdim < p. By 
noetherian property and the exactness of j, we may assume that M is Kdim-critical and pure 
and embeds in Ri for some i [Theorem 2.3.11. By Proposition 2.4.1, j (M)  i and hence j (M)  = i, 
since A has essentially pure injective resolution. We may assume i < s because the result has been 
proved for j ( M )  2 s. Let f l ,  . . . , f,, E Hom(M,R,) be as in Lemma 2.2, and set L = n;=, kerf,; 
thus there is a surjection En(M/L) -t E'M. By hypothesis R, is an essential extension of a pure 
module of grade s ;  since M is pure of grade < s it does not embed in R,. Hence ker fj  # 0 for 
all j ,  whence L # 0 because M is uniform. But M is Kdim-critical so Kdim(M/L) < Kdim M,  
whence j(Ed(M/L)) 2 s by the induction hypothesis. Since E d M  is a quotient of Ed(M/L), it 
too has grade 2 s. 0 

Corollary 4.5. If * A  and AA have essentially pure injective resolutions with respect to some 
(not necessarily ezact) dimension function 8 and i f 6  is exact, then A is AC. 

Proof. Let 8 denote the dimension function. By [MR, 6.8.91, there is an exact dimension function 
a* such that 8(M) = 8'(M) for pure modules M. Then AA and have essentially pure injective 
resolution with respect to the exact dimension function a*, so the result follows from Theorem 
4.4. 

5. Examples 

We first give examples constructed by M. Artin and J.  T. Stafford, which show that the 
converse of Theorem 4 .4  does not hold in general: not every AG ring has an essentially pure 
injective resolution. 

Lemma 5 .1 .  (Artan) Let A be an AG ring and 0 -+ AA + Jo + . . * + I d  -+ 0 a minimal 
injective resolution of A.  Let M be a non-zero finitely generated right A-module, and assume 
that M has no submodule N with j (N)  = d.  If Hom*(M, I ~ )  iC: 0, then HomA(M, I d - I )  # 0. 

Proof. By hypothesis, Fd M = 0 and by Proposition 2.5.2, E X ~ ~ ( M ,  A )  = 0. Since 1 3 x t d ( ~ ,  A )  Z 
Hom(M, ~~) / am(Hom(M,  I ~ - ' ) )  and by hypothesis Hom(M, I ~ )  # 0, Hom(M, Id-') # 0. 0 

Let k be a field of characteristic zero and 812 the special linear Lie algebra over k.  Consider 
A := U ( B I ~ ) ~ P @  U(el2), which is isomorphic to the universal enveloping algebra U(d2 $d2) Let 
B = U(s[z)/(R), where R denotes the Casimir element. It is standard that B has exactly one 
non-zero ideal P, the augmentation ideal, and that B I P  Y k. Thus, as a right A-module, B is 
non-split of length two, with factor module finite dimensional and submodule of GK-dimension 
two. Now, a s  is standard, A is Auslander-regular and CM with injective dimension 6 . We may 
apply Lemma 5.1 to this example with M = B to conclude HomA(B, 15) # 0. Since non-zero 
finite dimensional modules have-grade 6, I5 contains no non-zero finite dimensional submodules, 
whence B in fact embeds into 15. Since j (B)  = 6 - GKdim(B) = 4 < 5, we conclude: 

Example 5 .2 .  (Stafford) The universal enveloping algebra U(s[2 $el2) does not have an essen- 
tially pure injective resolution. I3 
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AUSLANDER-GORENSTEIN RINGS 2173 

We may obtain a comparable example for the homogenized universal enveloping algebra 
H(slz$eIz) of the Lie algebra d2@$12. Let L be any finite dimensional Lie algebra over k. 
Then H(L) is the subring of U(L)[t] generated by {t} U {tL). With degt = 1, H(L)  is a con- 
nected graded Auslander regular and CM algebra of global dimension dim L $ 1. It is easy to 
see that H(L)  contains a special central element t such that H(L)[t-'1 = U(L)[t,t-'1 and that 
H(L)/(t) is the commutative polynomial ring k[L]. By a graded version of [ASZ, 3.71, H(L) 
has an essentially pure graded injective resolution if and only if U(L) has an essentially pure 
(ungraded) injective resolution. By Example 5.2, we get: 

Example 6.3. (Staford) The homogenized enveloping algebra H ( S [ ~ @ S [ ~ )  does not have an 
essentially pure graded minimal injectiue resolution. 

As a graded ring H ( d 2  $9L2) has injective dimension 7, and I6 is essentially pure, but 15 is 
not. 

Second we give examples showing that (a) the hypothesis of 6 being exact is necessary in 
Theorem 4.4, (b) an AG ring need not be grade-symmetric, and (c) the artinian quotient ring of 
an AG ring A (if it exists) may not be QF, and in particular, need not be isomorphic to I O .  

Example 5.4. 1. There is a noetherian ring A of global dimension 1 such that 
(a)  6 is not exact and hence A is not AC, 
(b) the injective hulls of of AA and AA are different, whence there is no bimodule resolution 

which is a minimal injective resolution of A on both left and right sides, and 
(c)  A A  and *A have pure injective resolutions with respect to some dimension function. 

2. There is an AG ring A of global dimension 1 such that 
(a)  A is its own left and right ring of fractions, which is not injective on either side, and 
(6) A has a minimal prime such that 6((A/P)*) = 6(A) and 6 ( ~ ( A / p ) )  < 6(A), i .e . ,  A is not 

grade-symmetric. 

Fix a field k,  an integer n > 0, and let V, 2! kn. Define 

Since A is artinian, it is its own ring of fractions. By [MR, 7.5.11, gldim A = 1. The simple right 
A-modules are S1 = (0, k) and Sz = (k,O). It is clear that S1 is a direct summand of A, so is 
projective and j(S1) = 0. It is easy to see that Sz does not embed in A, so j ( S z )  = 1. 

We may view A as a subring of the matrix ring B = M,+] (k) via the embedding 

where cn kn is the column space ( k , k , . .  . ,k)', and r ,  %! kn is the row space ( k , k . . .  , k ) .  
With this point of view, S1 is isomorphic to ((0,O..  . ,O), k) and S2 is isomorphic to (e,k, 0) = 
( (0 ,0 , .  . . , k, . . . , 0) ,  0) for all i .  The minimal injective resolution of S 1  is 

0 --+ S I  -+ R = (r,, k )  + S; 4 0 

If n > 1, then Hom(R, A) = 0, so j ( R )  = 1 > j(Sl) = 0. Thus 6 is not a dimension function and 
hence A is not AG. This proves l (a ) .  

Since A is non-singular on both sides the injective envelope of A on either side has a natural 
ring structure extending that on A; hence the injective envelopes are bimodules, and it is natural 
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2174 AJITABH, SMITH. AND ZHANG 

to ask whether this bimodule structure makes the injective envelope an injective envelope on both 
sides simultaneously. This question is natural given that the ring of fractions of a semi-prime 
noetherian ring is simultaneously the left and right injective envelope of the ring. In any case, 
for this A the answer is no. The minimal injective resolution of AA is 

but A B  is not injective if n > 1. This proves l(b). 
To prove l(c)  we define b,(M) = max{6(N) I N C M )  for every noetherian module M. Then 

6,(M) = 1 for a right A-module if and only if there is a subquotient of M isomorphic to S1. 
Since 6,(M) is either 0 or 1, 6,(M) = max{6,(N),Gm(M/N)) for every submodule N. Other 
axioms of a dimension function (see [MR, 6.8.41) can be checked trivially and hence 6, is an 
exact dimension function. It is easy to see that (B)A)A is isomorphic to s~"'+"-" . Thus AA 
has a pure injective resolution with respect to 6,. Similarly AA has a pure injective resolution 
with respect to  6,; therefore l(c). 

Now assume n = 1. Then AA and aA have the same injective hull and the same minimal 
injective resolution, namely 

It is easy to check that A is AG. Notice that the canonical dimension 6 is not equal to ei- 
ther GKdim or Kdim (but equal to 6,). Finally, if P = ( t). then 6((A/P)*) = 1 and 

~ ( A ( A / P ) )  = 0, proving 2(b). By l(c) A has a pure injective resolution. 0 
Our last example shows that even a nice AG ring can only have an essentially pure but not a 

pure injective resolution. 

Example 5.5. Let R be the Casimir element in the enveloping algebra U(slz) over a field of 
characteristic zero. We show that U(slz)/(R) has an essentially pure but not a pure injective 
resolution. 

As is standard, U(fit~)/(R) is an AG and CM domain of injective dimension two, and hence 
has an essentially pure injective resolution [Propositions 2.4.4 and 2.5.11. By Lemma 4.1, we only 
need to show that U(sl2)/(R) has a module of GK-dimension zero having an essential extension 
of GK-dimension 2 1. 

The following construction is well-known. Let A, = k [ x , 0 ]  be the first Weyl algebra with 
relation Ox - z0 = 1. There is an algebra homomorphism p : U(sl2) + B = k [ a , x B , x 2 0 ]  
determined by 

p : e I-+ 0 ,  h +-+ - 2 2 0 ,  f +-+ - z 2 0 ,  

where e, h, f have the usual meaning for slz . By a direct computation, 0 = e f + f e  + $h2 is in 
the kernel of cp, so there is a surjection U(s12)/(R) + B; but both are domains of GK-dimension 
2 ,  so U(slz)/(R) % B. There is a natural action of Al on k[x] defined by 

x *  f ( x ) = x f ( x ) ,  and a . f ( x ) =  f l (x)  

for f ( z )  E k [ z ] .  It is easy to see that k  is the only proper B-submodule of k [ x ] ,  so k [ z ]  is an 
essential extension of k, whence B does not have a pure injective resolution. 0 
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6. Localization 

In this section we prove that, under some extra hypotheses such as grade-symmetric, an AG 
ring has a QF quotient ring. As a consequence an Auslander regular, grade-symmetric algebra 
is semiprime. Example 5.4.2 shows that the quotient ring (if it exists) may not be self-injective 
if the hypotheses fail. 

Suppose that A is AG, and let N be its prime radical. Then N' = 0 for some s; because 6 is 
exact 

6(A) = r n a x { 6 ( ~ ' / ~ ' + ' )  I 1 5 i 5 s - 1 )  = 6(AIN). 

We say that N is right weakly invariant with respect to 6, if 6 (M @A N) < 6(A/N) = 6(A) 
whenever MA is finitely generated and 6(M) < 6(A) [MR, 6.8.131. By [Le, 5.31, an AG and CM 
ring has a left and right artinian quotient ring; theCM hypothesis ensures that GK-dimension 
is exact. The next result shows that the CM hypothesis can be weakened; the symmetry of 
GK-dimension can be replaced by the hypothesis (+) below. 

Theorem 6.1. Let A be a noetherian ring of finite injective dimension, with N as its prime 
mdical, satisfying the following conditions: 

0 6 is an exact dimension function, i.e., A is  CM with respect to some 
dimension Junction; 

for every bimodule subquotient L of N ,  j (LA) = 0 if and only i, j(AL) = 0; 
i/P is a minimal prime, then j ( (A/P)a)  = 0 if and only if j(A(A1P)) = 0. 

Then 
1. N is weakly invariant; 
2, if P is a minimal prime of A, then j(A/P) = 0;  
3. A has a left and right artinian quotient ring Q; 
4. Q is self-injective and hence QF. 

Remark: If A is AG and grade-symmetric, then the hypotheses in Theorem 6.1 hold. 

Pmof. Let d = injdim A. 
1. We will prove that if B is a bimodule subquotient of N and MA is noetherian with 

6(M)  < d,  then 6(M B) < d. Since 6 is exact, we may assume that M is cyclic and 
critical, and that B is critical as a bimodule; hence the ideals P = ann(MA),  R = ann(Ba) 
and L = ann(AB)  are all prime, and B is a fully faithful (AIL, AIR)-bimodule. We are done if 
~ ( ( A / R ) A )  < d because M B A  B is a right AIR-module. So suppose now that 6((A/R)*) = d. 
By (*), ~ ( A ( A / L ) )  = ~ ( A B )  = 6(BA) = d. If P P L, then P B  is non-zero subbimodule of B, so 

Now suppose that P C L; since ~ ( A ( A / L ) )  = d, L is a minimal prime; whence P = L. By (r) ,  
6((A/P)A)  = G(*(A/P)) = d. Since 6(M) < 6(A/P),  M is a factor module of A'/xA1 where 
A' = A / P  and x is a regular element of A'. Since ArB is fully faithful, x is a non-zero-divisor 
on B and hence B l x B  is a torsion AIR-module. By [MR, 6.8.4(iii)], 6(B/xB) < 6(A/R) = d. 
Therefore 

6(M g B) 5 6 ( A 1 / x ~ ' B  B) = 6(B/xB) < d, 

which proves that N is weakly invariant. 
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2176 AJITABH, SMITH, AND ZHANG 

2 and 3. By [MR, 6.8.151 and part 1, A has a left and right artinian quotient ring Q, whence 
C(0) = C(N) by [MR, 4.1.41, where C(I) denotes the set of regular elements in R/ I .  Let P be a 
minimal prime ideal of A. If 6(A/P) < d ,  then PnC(0)  # 0 by [MR, 6.8.141; but N contains 
the product of the minimal primes, so P n C ( N )  = 0, so we conclude that 6(A/P) = d and 
j (A/P)  = 0. 

4. Since Q I Q N  Z Fract(A/N), every prime ideal of Q is minimal and of the form PQ for some 
minimal prime P C A.  By part 2 ,  j (A/P)  = 0 for every such P, so 0 = j ( A / P B A Q )  = j (&/PQ) .  
Since every prime factor of Q has grade zero, every non-zero Q-module has grade zero. If 
d' := injdim Q # 0, we pick a noetherian Q-module M such that E X ~ ~ ' ( M , Q )  # 0. Hence the 
grade of E X ~ $ ( M ,  Q)  is zero. But (0-2) implies that H O ~ ~ ( E X ~ $ ( M , Q ) ,  Q) = 0, a contradiction. 
Therefore d' = 0 and Q is self-injective. 0 

It is easy to produce some corollaries by checking, in certain cases, that 6(LA) = d if and only 
if ~ ( A L )  = d for every noetherian bimodule L. One such case occurred in [SfZ] where A is FBN 
and 6 equals the Krull dimension. Another such case occurs when A is AG of injective dimension 
1 and CM with respect to Krull dimension: by Lenagan's lemma [GW, 7.101, Kdim(LA) = 0 if 
and only if Kdim(AL) = 0, whence Kdim(LA) = 1 if and only if Kdim(AL) = 1, so Theorem 6.1 
applies. Here are some other special cases. 

Corollary 6.2. Let A be a noetherian ring with finite injective dimension. Then A has a QF 
quotient ring if 

I .  A is CM, or 
2. A is commutative, or 
3. A is an AG ring with finite GK-dimension and A has a unique minimal pnme ideal. 

Proof. 1. This is a consequence of Theorem 6.1 and the fact that GKdim is symmetric on 
noetherian bimodules (see [Le, 5.31). 

2. A commutative noetherian ring is AG if and only if it has finite injective dimension. If A 
is commutative, (*) in Theorem 6.1 holds trivially. 

3. By Theorem 6.1, it is enough to show that 6(LA) = d if and only if ~ ( A L )  = d for 
all noetherian bimodules L.  Let N be the unique minimal prime ideal of A.  Then N is the 
prime radical, and C(A/N) = 6(A). Since 6 is exact, we may assume that L is a critical fully 
faithful (AIP, A/Q)-bimodule with P , Q  prime ideals of A. By [GW, 7.11,  LA) = h((A/Q)n) 
and 6(aL) = 6(A(A/P)) .  Therefore, it suffices to show that P = Q = N .  If &(LA) = d, then 
S((A/Q)A) = d and then Q is a minimal prime of A, namely, Q = N. I t  remains to prove that 
P = N. Suppose not, then P is a prime ideal containing N. Modulo N ,  we may assume that A is 
prime and P i s  a non-zero prime ideal of A and L is a critical and fully faithful (AIP, A)-bimodule, 
If GKdim A is finite this can not happen. 0 

Another immediate consequence is the following. 

Corollary 6.3. Let A be as in Theorem 6.1  and suppose A has finite global dimension (e.g. ,  A 
is Auslander regular and gmde-symmetric). Then A is semiprime. 

Pmof. By Theorem 6.1, A has a QF quotient ring, say Q.  Since A has finite global dimension, so 
has Q and hence Q has global dimension zero, because Q has injective dimension zero. Therefore 
Q is semisimple artinian. By Goldie's theorem, A is semiprime. 0 

For other basic properties about localization of AG rings see [ASZ, $21. 
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7. Dualities on E x t  

Another type of duality between left and right modules can be introduced by using an idea 
similar to the Yoneda product. Let k be a field, and A a CMa k-algebra of global dimension d. If S 
is a finite dimensional right A-module, then j (M)  = d. By (0-2) we have Exti(Extd(s, A), A) = 0 
if i # d, and Extd(Extd(s, A), A) Y S .  Consequently, j (Extd(s,  A)) = d and hence Extd(S, A) is 
finite dimensional. We have seen (in section 1) that M o  and M o o  are in duality via the functors 
~ x t ~ ( - ~ ,  A) and  EX^^(^-, A). For a right A-module M I  since pd(M) 5 d, E x t d ( ~ ,  -) is a right 
exact covariant functor from M to mod - k. Recall that M "  = Homb(M, k). 

Proposition 7.1. Let A be a CMO noetherian k-algebm with gldim A = d. Let S be a finite 
dimensional right A-module and N a noetherian right A-module. Then 

1. Exti(s ,  N) and EX~'(N, S) are finite dimensional for all i, and 
2. Extd-'(s, N)' p! ex ti(^, S t )  for all i ,  whem S' = Extd(s, A)*. 

Prwf. 1. Computing ex ti(^, S )  by using a finite free resolution of N ,  we see that Extt(N, S) 
is finite dimensional for all i. Since A is CMo, Extl(S, A) = 0 for all i < d and EX~*(S,  A) is 
finite dimensional. Hence if N = A then Extl(S, N )  is finite dimensional for all i. Since every 
finitely generated projective module is a summand of a finite free module, the statement holds 
for projective modules N .  By induction on the projective dimension of N ,  the statement follows. 

2. First we prove that ~ x t ~ ( S ,  N)' E Hom(N,S1). Since Extd(s, -)* is a left exact and con- 
travariant functor from M to mod - k, by Watts' theorem [Ro, 3.361, Extd(s,  -)* CY Horn(-, s ' )  
where S' = E X ~ ~ ( S ,  A)'. Part 2 follows because {EX~~-'(S, - ) *  [ i )  and {~xt'(-,s ') ( i )  are 
universal &functors, by the CMo condition (see [Ha, pp 205-2061 for the definition of &functor). 
0 

When L is a semisimple Lie algebra, S' S S (see Remark after Corollary 3.4), so we have the 
following. 

Corollary 7.2. Let S be a finite dimensional simple module over a d-dimensional semisimple 
Lie algebm. Then Extd-'(s, N)* 2 EX~'(N, S )  for all i and all modules N. 0 

Next is a dual version of Proposition 2.5.3. 

Corollary 7.3. Let A be an Auslander regular and CMo noetherian k-  algebm with gldim A = d, 
and M a finitely genemted right A-module. Then injdim M = d if and only iJ M has a factor 
module M/N with 6(M/N) = 0. 

Proof. If injdim M = d, then E x t d ( ~ ,  M )  # 0 for some L. By Proposition 2.5.3, E ~ ( N ,  M)  = 0 
if N contains no finite dimensional module. Hence Extd(S, M) # 0 for some finite dimensional 
module S. By Proposition 7.1.2, Hom(M,S1) # 0 and hence M has a finite dimensional factor 
module. The converse is similar to prove. 0 

For a finite dimensional right A-module S and a finitely generated right A-module N, we 
define 

v s ( N )  = (no, n ~ ,  . . . , nd) E pid+' and c s ( N )  = x ( - l ) ' n ,  E Z 

where ni = dim Ext'(S, N) .  For every v = (no,nl , .  . . , nd) E Nd+', uT denotes the vector 
( w , .  . a , n ~ ,  no). 
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2178 AJITABH, SMITH. AND ZHANG 

Proposition 7.4. Let A be a CMo noetherian k-algebm with gldim A = d. Then 
I .  vs(A) = (0,0,. . . ,dim SV) and cs(A) = ( - I ) ~  dim SV. 
2. If N is also finite dimensional, then vs(N)' = UN(S') and cs (N)  = ( - l ) d ~ ~ ( S ' ) .  
3. Suppose that the Gruthendieck group Ko of A is Z .  For every finitely generated right 

A-module N ,  cs(A) divides cs (N) .  
4. Suppose that the Grothendieck gruup Ko oJ A is Z ,  d > 0, and that A has an artinian 

quotient ring. For every finite dimensional module S ,  c s ( N )  = 0 if and only if N is torsion. 

Proof. Part 1 follows from the definitions. Part 2 follows from the definitions and Proposition 
7.1.2. 

3. By the long exact sequence for Ext*(S, -), we see that cs(-) is additive on exact sequences. 
Since KO is trivial, every finitely generated module N has a finite free resolution of finite length 

where Pi = Aek* .  By additivity, cs(N) = (xi(-l) 'ki)cs(A), which is divisible by cs(A). 
4. Let Q be the artinian quotient ring of A. Tensoring (7-1) with Q, we obtain an exact 

sequence 
O - - ~ ~ ~ @ A Q + . * . - - ~ P ~ @ ~ Q + P ~ @ A Q + N @ A Q + O .  

Since the length over Q is exact, N @ A  Q = 0 if and only if C , ( - l ) 'k ,  = 0. Hence N is torsion 
if and only if cs (N)  = (C,(-l) 'ki)cs(A) = 0. 13 

As an application of Proposition 7.4, we study the minimal injective resolution of finite di- 
mensional simple modules over U(91z). 

Proposition 7.5. Let $Iz be the special linear Lie algebm over the Eeld k = @. The minimal 
injective resolution of a finite dimensional simple module S over U(al2) is of the form 

where 
I = @ E(N)dimExl'(S,N) 

N 

where N rutw over all infinite dimensional simple modules. 

Pruof. Let S and T be two finite dimensional simple modules. Since sl2 is simple, ~ x t ' ( T ,  S) = 0. 
If S 9 T, then EX~O(T,S) = 0. By the Remark after Corollary 3.4, S' % S for all finite 
dimensional simple modules S. By Proposition 7.1.2, ExtZ(T, S )  3 E X ~ ~ - ~ ( S ,  T) = 0 for all S 
and T, and E X ~ ~ ( T ,  S )  = ExtO(s, T )  = 0 if S T.  Therefore EX~'(T, S )  = 0 for all i if S $2 T,  
and EX~'(S, S )  = k if i = 0,3 and Ext'(S, S)  = 0 if i = 1,2.  Consider the minimal injective 
resolution of S ,  say 

o --+ s -+ IO + I' -+ I* --+ I~ ---+ 0. (7-2) 
Then I0 = E ( S ) .  By [Da], I0 is locally artinian and hence 10/S is locally artinian. By [Da], 
the essential extension I' is locally artinian. Similarly, I '  is locally artinian for all i. Since 
EX~'(T,  S )  = 0 for all T for i = 1,2 ,  I' and I' contain no finite dimensional submodules; since 
E x t 3 ( ~ ,  S )  = 0 if T S and Ext3(s,  S )  = k, the only finite dimensional simple submodule of I3 
is S, whence I 3  CS E(S)  $ J3 where J3 contains no finite dimensional modules. By Theorem 3.5, 
J3 = 0 and hence 13 = E(S) .  Now let N be an infinite dimensional simple module. Since N is 
a torsion module and Hom(S, N) = Ext3(.S, N )  = 0, by Proposition 7.4.4, 
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AUSLANDER-GORENSTEIN RINGS 2179 

dim Extl(S, N)  = dim EX~'(S, N). (7-3) 
Then by Corollary 7.2, we also have Hom(N,S) = Ext3(N,S) = 0, and dim E X ~ ' ( N , S )  = 
dim E x t 2 ( ~ ,  S ) .  Since k = 42 is uncountable, Hom(N, N) 2 k, so 

Hence (7-2) is of the form claimed. 0 

The previous result is analogous to what happens for connected graded rings of global dimen- 
sion 3. 

Let N be an infinite dimensional simple U(s12)-module. By Corollary 7.3, injdim N 5 2. 
Suppose the minimal injective resolution of N is 

By [Da], I' is locally artinian for i = 1 ,2 .  By (7-3), dim ~ x t ' ( S ,  N)  = dim ~ x t ' ( ~ ,  N)  for every 
finite dimensional module S .  There is a choice of infinite dimensional simple module N such that 
EX~'(S, N) = 0 for all finite dimensional S ;  for such an N, Extl(S, N) = 0 for all i ;  thus u s ( N )  
may be zero for all finite dimensional simple modules S even when N is non-zero. 

We can also apply these methods to rings of global dimension 2. For example, we leave the 
reader to explore what happens when A is AG, CM and gldim A = 2 and Ko(A) 2 Z. 

If A is commutative we can prove a version of Proposition 7.1 without the CMo condition (es- 
sentially because a mmmutative noetherian ring of finite global dimension is Auslander regular). 
Recall that M I  = {M E M I 6(M) 5 i} is a dense subcategory of M for all i .  

Lemma 7.8. Let A be a commutative noetherian ring of global dimension d .  If M E M I ,  then 
for every noethen'an module N,  ExtJ(M, N)  and Exta(N, M) are in M ,  for all s .  

Proof. We may assume that M is critical and cyclic, hence isomorphic to A/P for some prime 
ideal P with 6 ( A / P )  5 i. Therefore Extn(M, N) and Exta(N, M) are finitely generated A/P- 
modules, and hence in M i .  0 

Proposition 7.7. Let A be commutative noetherian with gldim A = d, and let M be a finitely 
genemted A-module such that j (M)  = s = pd(M). Then 

1. Exta(Ext"(M, N),A) Z Hom(N, M)  for all finitely genemted A-modules N; 
2, in the quotient category M 1 Md-a-l, there are isomorphisms 

Exta(Extn-'(MI N),  A) Ext1(N, M) 

for all finitely genemted N and all i 2 0 ;  
3. i f 8  = d ,  then the isomorphism in part 2 is as A-modules. 

Proof. The proof is similar to that of Proposition 7.1 and we leave it to the interested reader. 0 

Acknowledgement: We would like to thank M. Artin and J .  T. Stafford for allowing us to 
include their examples in this paper and for their comments on the subject. We also thank A.  
~ek;tieli for suggesting the terms 'essentially pure' and 'canonical dimension function'. 
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