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Abstract

Let A be a noetherian Auslander regular ring and ! the canonical dimension function on
A-modules, which is de!ned as !(M) = d − j(M) where d is the global dimension of A and
j(M) is the grade of M: An A-module is s-pure if !(N ) = s for all its non-zero noetherian
submodules N , and is essentially s-pure if it contains an essential submodule which is s-pure.
Consider a minimal injective resolution of A as an A-module

0→ A→ I 0 → I 1 → · · · → Id → 0:

We say A has a pure (resp. essentially pure) injective resolution if I i is (d − i)-pure (resp.
essentially (d − i)-pure). We show that several classes of Auslander regular rings with global
dimension at most 4 have pure or essentially pure injective resolutions. c© 1999 Elsevier Science
B.V. All rights reserved.

MSC: 16E10; 18G10

0. Introduction

The initial motivation for this work came from [1] where the purity of resolution
was used in a crucial way to answer a question of M. Artin on the residue complex
for quantum planes. Recently, Yekutieli [17] has incorporated the purity property in
his proposed de!nition for the residue complex of a non-commutative graded ring.
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It is well known that if 0→ R→ I• is a minimal injective resolution of a commu-
tative noetherian ring R, then

I i∼=
⊕

p∈Spec R
E(R=p)"i(p);

where E(−) denotes an injective hull, k(p) denotes the residue !eld at p; and the
multiplicity "i(p)=dimk(p) ExtiRp

(k(p); Rp): If injdim R¡∞, then every E(R=p) occurs
somewhere in the resolution. If R is local and Gorenstein, then "i(p) is 1 if heightp=i,
and is zero otherwise; so each R=p appears exactly once in the injective resolution,
and I i is the direct sum of the injective hulls of R=p where p runs through the set
of prime ideals of height i. Thus there is a certain homogeneity to I i which we refer
to as purity: every non-zero !nitely generated submodule of I i has Krull dimension
equal to (K dim R − i). There is a similar notion of purity for noncommutative rings
(which we de!ne below), and one can ask if a minimal injective resolution of an
Auslander–Gorenstein ring is pure. In [2, 4.2] we showed that an Auslander–Gorenstein,
grade-symmetric ring satisfying a polynomial identity has a pure injective resolution.
On the other hand, M. Artin and J. T. Sta"ord gave examples of Auslander regular
rings which do not have essentially pure injective resolution [2, 5.2 and 5.3]. In this
paper we show that minimal injective resolutions of some noncommutative rings of
low global dimension (≤ 4) are pure or essentially pure.

De!nition 0.1. Let A be a ring. The grade of an A-module M is

j(M):=min{i |ExtiA(M;A) &=0}

or ∞ if no such i exists.

De!nition 0.2. We say that a ring A

• is quasi-Frobenius (QF) if it is left and right artinian and left and right self-injective;
• satis!es the Auslander condition if for every noetherian A-module M and for all
i ≥ 0; j(N ) ≥ i for all submodules N ⊂Exti(M;A);

• is Auslander–Gorenstein (AG) if A is left and right noetherian, satis!es the Aus-
lander condition, and has !nite left and right injective dimension;

• is Auslander regular if it is Auslander–Gorenstein, and has !nite global dimension.

Let @ be a dimension function on A-modules, in the sense of [11, 6.8.4]. Recall that
@ is called exact if @(M)=sup{@(N ); @(M=N )} whenever N is a submodule of M . Krull
dimension (Kdim) in the sense of Rentschler–Gabriel is always, and Gelfand–Kirillov
dimension (GKdim) is often, exact.
By [18, Lemma A], the injective dimension of the module AA is equal to the injective

dimension of the module AA if both are !nite. If A has injective dimension d¡∞, we
de!ne !(M)=d− j(M) for all A-modules M . Note that ! is not a dimension function
in general. It is a simple observation that for any ring A, and any A-module M ,
j(M) ≥ inf{j(N ); j(M=N )} whenever N is a submodule of M: Therefore, for any ring



K. Ajitabh et al. / Journal of Pure and Applied Algebra 140 (1999) 1–21 3

A of !nite injective dimension, the inequality !(M)≤ sup{!(N ); !(M=N )} always holds,
whenever N is a submodule of M: It follows that ! is automatically exact whenever
it is a dimension function. If A is AG, then ! is known to be an exact dimension
function, by [9, 4.5], [4, 1.8]; we call it the canonical dimension function.

De!nition 0.3. Let A be a noetherian ring with !nite injective dimension. We say that
a module M is

• s-pure if !(N ) = s for all non-zero noetherian submodules N ⊂M ;
• essentially s-pure if it contains an essential submodule which is s-pure;
• s-critical if it is s-pure and !(M=N )¡s for all non-zero submodules N ⊂M .
Let

0→ A→ I 0 → · · · → Id → 0 (0.1)

be a minimal injective resolution of A as a right A-module. We say this resolution is

• pure if each I i is (d− i)-pure.
• essentially pure if each I i is essentially (d− i)-pure.

De!nition 0.4. We say that A is Cohen–Macaulay with respect to a dimension func-
tion @ (or, @-CM, in short) if

j(M) + @(M) = @(A)¡∞

for every non-zero noetherian A-module M . When we say A is Cohen–Macaulay (CM)
without reference to any dimension function, we mean A is Cohen–Macaulay with
respect to GKdim (assuming tacitly that A is an algebra over a !eld).

Note the following simple facts. Trivially, an AG ring is CM with respect to the
canonical dimension function !. If a ring A is CM with respect to a dimension function
@, then @ is automatically exact. If A is a ring with !nite injective dimension, then
A is CM with respect to some dimension function @ if and only if ! is a dimension
function; indeed, then @(M) = !(M) + (@(A)− d): Our main results are the following.

Proposition A. 1. If A is a domain of GK-dimension 2; generated by two elements
subject to a quadratic relation; then A has a pure injective resolution.
2. The enveloping algebra of a Lie algebra of dimension ≤ 3 has an essentially

pure injective resolution.

For graded algebras, we prove the following results, the !rst of which extends
[1, 3.2].

Theorem B. Every Artin–Schelter graded regular ring of dimension 3; generated by
three elements of degree 1; has a pure graded injective resolution.
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Theorem C. 1. The homogenization of the universal enveloping algebra of a three-
dimensional Lie algebra has an essentially pure graded injective resolution.
2. The four-dimensional Sklyanin algebra has an essentially pure graded injective

resolution.
3. The four-dimensional Sklyanin algebra has a pure graded injective resolution if

and only if it satis!es a polynomial identity.

The organization of the paper is as follows. Sections 1 and 2 contain preparatory
results. In Section 1 we examine the e"ect of localization on injective dimension and in-
jective resolutions. Generally, injective dimension does not behave well under arbitrary
localizations, but the situation is good when localizing at normal elements (Proposition
1.3). The rings we examine later (in Sections 3 and 4) tend to be Auslander–Gorenstein
and=or Cohen–Macaulay, and Section 2 contains some general results about localiza-
tions of such rings. For example, the Auslander–Gorenstein condition is preserved under
arbitrary localizations, and the Cohen–Macaulay condition is preserved under certain
kinds of localization. In Sections 3 and 4, we study the purity of resolutions for un-
graded and graded algebras, respectively, and prove our main results. The !nal result
in the paper deals with the purity of four-dimensional Sklyanin algebras. The main
step is a computation of Ext1A(L; N ) where L is a line module and N a point mod-
ule. This computation is of independent interest. Indeed, it is important to compute all
ExtiA(L; N ) when L and N are linear modules over a quantum polynomial ring A.

1. Preliminaries

We begin by examining the behavior of injective dimension under localization. If S
is a multiplicatively closed Ore set of regular elements in a right noetherian ring A,
then injdim AS−1≤ injdim A because every !nitely generated right AS−1-module is of
the form MS−1, and

ExtiAS−1 (MS−1; AS−1)∼=AS−1 ⊗A ExtiA(M;A); (1.1)

where we have used the fact that AS−1 is a #at A-module. Despite this, the injective
dimension of a module does not always behave well under localization because a
localization of an injective need not be injective. In [5,6] Goodearl and Jordan showed
that one must localize at normal elements for injective dimension to behave well.
Let A be noetherian, and S a multiplicatively closed Ore set of regular normal

elements. If E is an injective A-module, then ES−1 is an injective AS−1-module [5,
Theorem 1:3] and, if L⊂M is an essential extension of A-modules, then LS−1⊂MS−1
is an essential extension of AS−1-modules [5]. It follows that if 0 → M → E• is
a minimal injective resolution of an A-module M , then 0 → MS−1 → E•S−1 is a
minimal injective resolution of the AS−1-module MS−1: Therefore

injdimMS−1 = min{n |EnS−1 = 0}≤ injdimM: (1.2)
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Proposition 1.3 describes more precisely the relation between these two injective di-
mensions. First we recall the following version of the well-known Rees’ Lemma.

Lemma 1.1. Let M and N be A-modules. Let g be a non-unit regular normal element
of A; acting faithfully on M; and annihilating N . Then

ExtiA=(g)(N;M=Mg)∼=Exti+1A (N;M):

Proof. This follows from the collapsing of the spectral sequence

ExtpA=(g)(N;Ext
q
A(A=(g); M))⇒ ExtnA(N;M):

The isomorphism in Lemma 1.1 is as abelian groups, but there is a stronger isomor-
phism when M is the ring itself. Given an automorphism # of A, and a right A-module
M , de!ne the twisted module M # by m ∗ a = m#(a) for all m∈M and a∈A. Then
M -→ M # is an automorphism of the category of right A-modules. If M is a bimodule,
so is M #, and the corresponding functor is an automorphism of the bimodule category.

Lemma 1.2. Let g be a regular normal element of A and # the automorphism deter-
mined by ag=g#(a) for all a∈A. If N is a right A=(g)-module; then there are natural
left A=(g)-module isomorphisms

ExtiA=(g)(N; A=(g))∼=Exti+1A (N; A#
−1
)∼=Exti+1A (N #; A)

for all i ≥ 0:

Proposition 1.3. Let S be a multiplicatively closed Ore set of regular normal elements
in a noetherian ring A. If M is a right A-module on which each g∈ S acts faithfully;
then

injdimM =max{injdimAS−1 MS−1; injdimA=(g) (M=Mg) + 1 | g∈ S}: (1.3)

Proof. If g∈ S, then injdimA=(g)M=Mg≤ injdimM − 1 by Lemma 1.1. Combining this
with (1.2), we have

injdimM ≥ max{injdimMS−1; injdim (M=Mg) + 1 | g∈ S}:

Let 0 → M → E0 → · · · be a minimal injective resolution of M , and de!ne
$i:=ker(Ei → Ei+1). Let d≤ injdimM . If EdS−1 = 0, then Ed contains a non-zero
submodule N such that Ng = 0 for some g∈ S. Replacing N by N ∩ $d &=0, there is
a non-split extension 0→ $d−1 → E → N → 0, whence

0 &=Ext1A(N;$d−1)∼=Ext2A(N;$d−2)∼= · · · ∼=ExtdA(N;M)∼=Extd−1A=(g)(N;M=Mg);

whence 1 + injdimA=(g)M=Mg ≥ d. On the other hand, if EdS−1 &=0 for d≤ injdimM ,
then injdimMS−1 ≥ d because E•S−1 is a minimal resolution for MS−1. Thus the
reverse inequality also holds, hence the result.
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Proposition 1.3 is used in Sections 3 and 4 in the following way: the rings there
have su$ciently many normal elements, so to a large extent questions about A can be
reduced to questions about A=(g) which has lower injective dimension.
Write $s for the image of the boundary map I s−1 → I s in (0.1). Thus $0 = A, and

there are exact sequences

0 −→ $s−1 −→ I s−1 −→ $s −→ 0

for all s=1; : : : ; d, with each I s an essential extension of $s: Recall the following basic
facts.

Proposition 1.4 (Ajitabh et al. [2, 2.4 and 2.5]). Let A be a right noetherian ring with
injdim AA = d; and let N be a noetherian right A-module.
1: If N embeds in $i ; then Exti(N; A) &=0; whence j(N )≤ i.
2: If every non-zero submodule of N is (d− i)-critical; then N embeds in $i.
3: I 0 is essentially d-pure (and d-pure if ! is exact).
4: If A has a QF quotient ring Q; then I 0∼=Q is d-pure and every torsion module

M (i.e.; a module such that M ⊗A Q = 0) has j(M) ≥ 1: As a consequence; $1 is
(d− 1)-pure; and I 1 is essentially (d− 1)-pure. Furthermore; if A is semiprime and !
is exact; then I 1 is (d− 1)-pure.
5: If A is AG; then Id is a direct sum of injective hulls of 0-critical modules; hence

is essentially 0-pure.

2. Localization of Auslander–Gorenstein and Cohen–Macaulay rings

In this section, we study localizations of Auslander–Gorenstein and Cohen–Macaulay
rings. The !nal result shows that the Cohen–Macaulay condition implies the Auslander–
Gorenstein condition if injdim A≤ 3:
Note that if S is a multiplicatively closed Ore set of regular elements in a right

noetherian ring A, and M is a right noetherian A-module, then it follows from (1.1)
that

j(MA)≤ j(MS−1AS−1 ): (2.1)

Levasseur [9] notes that the Auslander–Gorenstein property is preserved when factor-
ing out by a normal regular element; it is also preserved under arbitrary localizations.

Proposition 2.1. Let A be an AG ring. If S is a multiplicatively closed Ore set of
regular elements in A; then AS−1 is AG; and if g is a regular normal element of A;
then A=(g) is AG.

Proof. By (1.1), for any AS−1-submodule L of Exti(MS−1; AS−1); there is a submodule
K of Exti(M;A) such that L=S−1K . For all j¡i, Ext j(L; AS−1)=Ext j(K; A)⊗AS−1=0
by the Auslander condition for A, so AS−1 is AG.
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Let M be a right A=(g)-module. For every left A=(g)-module N ⊂ExtiA=(g)(M;A=(g))∼=
Exti+1A (M #; A), we have

Ext j+1A (#N; A)∼=Ext j+1(N;#
−1
A)∼=Ext j+1(N; A) = 0

for all j¡i, by the Auslander condition on A. By Rees’ Lemma, Ext jA=(g)(N; A=(g))=0
for j¡i; so A=(g) is AG.

Lemma 2.2. Let A be AG and S a multiplicatively closed subset of regular normal
elements.
1: If every simple A-module M with j(M) = injdim A is S-torsion (equivalently;

Mg= 0 for some g∈ S); then injdim AS−1¡injdim A.
2: If M is a noetherian S-torsion-free critical A-module; then j(MS−1) = j(M).

Proof. 2. Write s=j(M); by Proposition 1:4:2, there is an injective map M → $s, hence
an injective map MS−1 → $sS−1. By Proposition 1.4.1 applied to MS−1, j(MS−1)≤ s=
j(M), so we obtain equality by (2.1).
1. If d= injdim A, then injdim AS−1≤d by (1.2). Since AS−1 is AG, it su$ces to

show that j(H)¡d for all non-zero AS−1-modules H . Suppose to the contrary that
j(H) = d. By [2, 1.3], H is artinian, so we may assume that H is simple. If M is
a !nitely generated critical A-submodule of H , then H =MS−1 because H is simple.
By Proposition 1.3, j(M) = j(H) = d, so M is artinian by [2, 1.3]. Therefore the
hypotheses ensure that Mg = 0 for some g∈ S, whence 0 = MS−1 = H , which is a
contradiction.

Next, we show that the CM condition is preserved under certain kinds of normal
localizations. A !nite dimensional subspace W ⊂A is a subframe if 1∈W . We say
x∈A is a local normal element if for every subframe W ⊂A, there is a subframe
W ′ ⊃W such that xW ′ = W ′x [8, p. 209]. Trivially, every central element is local.
By [8, Theorem 2], a multiplicatively closed subset S of A, consisting of regular local
normal elements, is Ore and GK dim(AS−1) = GK dim A. The next lemma says that
this statement is also true for modules.

Lemma 2.3. Let S be a multiplicatively closed subset of A consisting of regular local
normal elements. If M is an A-submodule of an AS−1-module N such that N =MS−1;
then GK dim(NAS−1 ) = GK dimNA =GK dimMA.

Proof. Since we are working with GK dim, we may assume that both M and N are
!nitely generated. Let V ⊂M be a generating set of M as an A-module (so it is also
a generating set of N as an AS−1-module). Every subframe of AS−1 is generated by
W ∪ {t−1|t ∈T} where W is a subframe of A and where T is a !nite subset of S.
Let x =

∏

t∈T t (so x∈ S). Let W ′ be a subframe of A containing W and x such that
xW ′ =W ′x. Every subframe of AS−1 is generated by W ′ ∪ {x−1}. Hence

GK dim(N ) = sup
W;x

lim
n→∞

logn {dim(V (W ∪ {x−1})n)}
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and

GK dimM = sup
W

lim
n→∞

logn {dim(VWn)};

where x∈ S and W is a subframe of A such that xW =Wx. Note that the dimension
of a vector space over k is always denoted by dim. It is clear that GK dim(NAS−1 ) ≥
GK dimMA. By direct computation, we have

V (W ∪ {x−1})n · xn⊂VW 2n:

Hence GK dim(NAS−1 )≤GK dimMA.

Theorem 2.4. Let A be an AG ring; and S a multiplicatively closed set of local nor-
mal elements in A: If A is CM; so is AS−1.

Proof. Since A is CM, GK-dimension di"ers from the canonical dimension by a
constant, so is exact and !nitely partitive on A-modules, and is therefore exact and
!nitely partitive on AS−1-modules by Lemma 2.3. By the noetherian hypothesis, to
prove that AS−1 is CM, i.e., GK dimN + j(N ) = GK dim AS−1 for all noetherian
AS−1-modules N , it su$ces to show this equality for some non-zero AS−1-submodule
N ′ ⊂N . Let M be a critical A-submodule of N . Then j(M)= j(MS−1) by Lemma 2.2,
and GK dimM =GK dimMS−1 by Lemma 2.3. Let N ′ =MS−1; we have

GK dimN ′ + j(N ′) = GK dimM + j(M) = GK dim A=GK dimAS−1:

Therefore AS−1 is CM.

Theorem 2.5 (Ajitabh et al. [2, 6.2]). A noetherian CM ring with !nite injective di-
mension has a QF quotient ring.

We !nish this section by showing that the CM property implies the AG property
in low dimensions. We will use Ischebeck’s spectral sequence: if A is noetherian with
injdim A=d, and M a noetherian right A-module, there is a convergent spectral sequence

Epq2 = ExtpA(Ext
q
A(M;A); A)⇒ Hp−q(M):=

{

0 if p &= q;

M if p= q:
(2.2)

Thus, on the E∞-page only the diagonal terms can be non-zero. To simplify notation
later, we have used a non-standard indexing of Epq2 ; with our indexing, the boundary
maps on the E2-page are E

pq
2 → Ep+2; q+12 .

Proposition 2.6. Let A be a noetherian ring which is CM with respect to some di-
mension function. Then A is AG if
1: injdim A≤ 2; or
2: injdim A= 3 and A has a QF quotient ring.
3: injdim A= 3 and A is CM (with respect to GKdim).
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Proof. First, recall that if A is CM with respect to a dimension function @; then @ and
! are both exact and di"er by a constant.
1. For injdim A¡2, the proof is easy, so we assume that injdim A=2. By the spectral

sequence (2.2), the E2 table for M is

E00 E10 E20

E01 E11 E21

E02 E12 E22

with E12=E02=E10=E20=0 and E01 ,→ E22 and E00 ! E21. Hence !(Ext2(M;A))≤ 0
for all M . Since ! is a dimension function, !(N )≤ 0 for all N ⊂Ext2(M;A). Now E01 is
a submodule of E22 and !(E22)≤ 0; hence !(E01)≤ 0. If E01 &=0, then Ext2(E01; A) &=0.
But this contradicts the fact E20(Ext1(M;A))=0. Hence E01=0 and !(Ext1(M;A))≤ 1.
Since ! is a dimension function, !(N )≤ 1 for all N ⊂Ext1(M;A). Therefore A is AG.
2. By the spectral sequence (2.2), the E2 table for M now looks like

E00 E10 E20 E30

E01 E11 E21 E31

E02 E12 E22 E32

E03 E13 E23 E33

with E13 = E03 = E30 = E20 = 0, E02 ! E23, and E12 ,→ E33. Since Q = Fract A is
self-injective, Exti(M;A) ⊗A Q = Exti(M ⊗ Q;Q) = 0 if i¿0. Hence, by Proposition
1:4:4, E0i:=Hom(Exti(M;A); A) = 0 if i¿0. Therefore E23 = 0 and it follows that
!(E3(M))≤ 0, whence !(E12)≤ 0. If E12 &=0, then E312:=Ext3(E12; A) &=0; but E312 =
E31(Ext2(M;A))∼=E10(Ext2(M;A)) = Ext1(E02; A) = 0, a contradiction. Hence E12 = 0.
Combining all these, we have proved that !(Exti(M;A))≤ 3− i for all i: Since ! is a
dimension function, we also have !(N )≤ 3 − i for every submodule N ⊂Exti(M;A),
so A is AG.
3. Follows from part 2 and Theorem 2.5.

3. Purity for ungraded algebras

In this section we examine purity questions for some noetherian domains having
injective dimension ≤ 3. First, we recall the following result.

Theorem 3.1 (Ajitabh et al. [2, 4.2]). An Auslander–Gorenstein; Cohen–Macaulay
ring satisfying a polynomial identity; has a pure injective resolution.

By Proposition 1.4, every AG ring of injective dimension ≤ 1 has an essentially
pure injective resolution.
We now consider what happens for injective dimension 2. As [2, 5.5] shows, there

are noetherian domains of injective dimension 2 which do not have a pure injective
resolution. But we do not know if every noetherian domain with gldim A=GK dim A=2
has a pure injective resolution.
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Proposition 3.2. Let A be an AG ring with injdim A=2. If A has a QF quotient ring;
then A has an essentially pure injective resolution.

Proof. By Proposition 1.4, I 0 is essentially 2-pure, I 1 is essentially 1-pure, and I 2 is
essentially 0-pure.

Next, we show that this ‘essential purity’ result can be improved to a purity result
when there is a plentiful supply of normal elements.
Let A be a noetherian domain. Two normal elements g1; g2 are equivalent if there is

a unit u∈A such that g1 = ug2. A normal element g∈A is completely prime if A=(g)
is a domain.

Notational Remark. Whenever Sg = A − gA is a right and left Ore set of regular
elements we write

A(g):=AS−1g = S−1g A;

we will drop the subscript g from Sg if there is no confusion. If N is a set of normal
regular elements, then there is an Ore set consisting of 1 and the products of the
elements of N ; by abuse of notation we denote the localization of A with respect to
this set by AN−1: Notice that A is a subring of A(g) and AN−1:

Lemma 3.3. Let A be a noetherian domain and write Q = Fract A.
1: For every completely prime normal element g; Sg = A − gA is an Ore set and

A(g) is a local algebra with gldim A(g) = 1.
2: Let N ⊂A be a set of inequivalent completely prime normal elements; and write

B=AN−1. Let @ be an exact dimension function on A-modules. Then there is an exact
sequence

0→ A→ Q → Q=B
⊕ ⊕

g∈N
Q=A(g) → E → 0; (3.1)

where E is a module with @(M)≤ @(A)−2 for all !nitely generated submodules M ⊂E.

Remark. The graded version of Lemma 3.3 also holds. In fact, [1, Section 2] proved
the following: let A be a connected graded noetherian domain and let g∈A be a com-
pletely prime homogeneous element of positive degree; then the set S of homogeneous
elements in A−gA is an Ore set, and A(g):=S−1A is a Z-graded local ring with graded
global dimension 1. There is also a graded version of part 2.

Proof. 1. The proof in [1, Section 2] works in the ungraded case.
2. To prove that (3.1) is exact, it su$ces to show that B ∩g∈N A(g)⊂A. For every

y∈B∩g∈N A(g), we can write y=ag−11 · · · g−1n where a∈A and gi ∈N ; we may assume
that a &∈ g1A by assuming n is minimal. Since y∈A(g1), we can write y as s−1b where
b∈A and s∈A−g1A. Hence sa=bgn · · · g1 ∈ g1A, which contradicts the fact that A=g1A
is a domain, unless n= 0 and y = a∈A: Hence (3.1) is exact.
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Now we prove the last statement in part 2. Denote by Nq (q ≥ 0) the set consisting
of products of q elements of N , where we also put N 0 = {1}: Observe that every
element x∈A can be written as x = yz where y∈Nq (for a unique value of q) and
z ∈ ∩g∈N Sg: This and the fact that elements of N are completely prime imply that
(Q=A(g)) ⊗A B = 0 and (Q=B) ⊗A A(g) = 0 for all g∈N; and (Q=A(g)) ⊗A A(g′) = 0 for
two inequivalent elements g; g′ ∈N: Now tensoring the exact sequence (3.1) with B
and A(g); we see that E⊗A B=E⊗A A(g) = 0 for all g∈N: For every !nitely generated
submodule M of E, M⊗AB=0. Hence there is a y∈Nq such that My=0. By replacing
M by its Kdim-critical subquotients, we may assume that Mg=0 for some g∈N . But
M ⊗ A(g) = 0 implies that Ms = 0 for some s∈A − gA. Hence M is a quotient of
A=(gA+ sA) which has @-dimension at most @(A)− 2.

As a consequence of Lemma 3.3, we obtain the following.

Proposition 3.4. Let A be an AG domain of injdim A=2; and suppose that every sim-
ple module M with !(M)=0 is annihilated by some completely prime normal element
of A: Then A has a pure injective resolution.

Proof. Let 0 → A → I 0 → I 1 → I 2 → 0 be a minimal injective resolution. By
Proposition 1.4, I 0 and I 1 are pure and I 2 is essentially pure, so it remains to show
that I 2 is pure, or equivalently, !(M)=0 for all !nitely generated M ⊂ I 2. Let N be the
set of all non-equivalent completely prime normal elements. By Lemma 2.2, B=AN−1

has injective dimension ≤ 1. By Lemma 3.3, injdim A(g) = 1 whenever g∈N: Hence
Q=B and Q=A(g) are injective modules over B and A(g) respectively. By [7, 9.16], these
are injective A-modules, so

0→ A→ Q → Q=B
⊕ ⊕

g∈N
Q=A(g) → I 2 → 0

is an injective resolution of A. Thus E∼= I 2 (see (3.1)), and purity follows from Lemma
3.3.

Next, we describe some domains to which Proposition 3.4 applies. Let A be a domain,
generated by two elements x; y subject to a relation of degree two, say ax2+bxy+cyx+
dy2 + ex+fy+ g= 0, with (a; b; c; d) &=(0; 0; 0; 0). We assume that k is algebraically
closed from now until Corollary 3.6. By changing variables, the relation can be put in
one of the following forms:
(1) xy − qyx, where q &=0,
(2) xy − qyx − 1, where q &=0,
(3) xy − yx − x2,
(4) xy − yx − x2 − 1,
(5) xy − yx − x.
We denote by Ri the algebra subject to the relation (i). If q = 1, then R1 is the

commutative polynomial ring and R2 is the !rst Weyl algebra, both of which have
pure injective resolutions by Theorem 3.1 and Proposition 1.4. So we further assume
that q &=1 in cases 1 and 2.
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Proposition 3.5. Ri is Auslander regular; CM; and has a pure injective resolution
(i = 1; : : : ; 5):

Proof. If we !lter Ri in the obvious way by de!ning deg x = 1 and deg y = 2 then
the associated graded algebra is isomorphic to either kq[x; y] or k[x; y]. Therefore, by
[16, 4.4], Ri is an Auslander regular, Cohen–Macaulay, noetherian domain of GK dim 2.

If Ri satis!es a polynomial identity the result is given by Theorem 3.1. So suppose
Ri is not PI: thus, in cases (1) and (2) we assume q is not a root of 1, and in cases
(3)–(5) we assume that char k = 0. We will show that Ri has at most two completely
prime normal elements, and every simple Ri-module of GK dim 0 is annihilated by
one of them; the result will then follow from Proposition 3.4. Because the annihilator
of a GK dim-zero simple module is a non-zero prime ideal it su$ces to show that
every non-zero prime ideal contains a completely prime normal element. We proceed
case-by-case.
Case 1: R1=k〈x; y〉=(xy−qyx). It is easy to see that x and y are the only completely

prime normal elements of R1. We will show that every non-zero prime ideal contains
either x or y. Suppose I is a non-zero prime ideal of R1 such that I does not contain x
and y. Consider the conjugation by x (i.e., the map a -→ xax−1), which is determined
by x -→ x and y -→ qy. Let f(x; y) be an element in I with minimal degree in
y. Then xf(x; qy) = f(x; y)x∈ I . Since x is normal and x &∈ I , f(x; qy)∈ I . Hence
f(x; qy)− qdf(x; y) (where d= degy(f(x; y))) has lower degree in y. By the choice
of f(x; y), f(x; qy) = qdf(x; y) which implies that f(x; y) is of the form g(x)yd. If
d &=0, then g(x)∈ I because y &∈ I and I is prime. Repeating the same argument for
g(x); this time using conjugation by y; we obtain that g(qx) = qdg(x) if g(x) has a
minimal degree in x among all such elements in I . Hence g(x) = cxd. But x is normal
and I is prime, thus x∈ I; which is a contradiction. As a consequence, note that every
non-zero ideal of Ri contains xiyj for some i; j.
Case 2: The only completely prime normal element in R2 is g := xy − yx. We will

prove that every non-zero prime ideal contains g. The subalgebras B1 = k〈x; g〉 and
B2 = k〈y; g〉 are skew polynomial rings of the type examined in Case 1. The algebra
R2 is Z-graded if deg(x) = 1 and deg(y) = −1. Let I be a non-zero prime ideal of
R2 which does not contain g. Since gai = qiaig, for all ai of degree i, I is graded.
Hence I ∩B1 is not zero. By Case 1, every non-zero ideal of B1 contains xigj for some
i; j. Hence I contains xi because g &∈ I and I is prime. By the induction on i and the
relation xy − qyx = 1, we obtain 1∈ I , so I = R2. This is a contradiction.
Cases 3,4,5: We consider the algebra R=k〈x; y〉=(yx−xy−r(x)) for some polynomial

r(x). Since k is algebraically closed, r(x)=
∏

i (x− ai)ti . It is easy to check that x− ai
are completely prime normal elements. We claim that every non-zero prime ideal I of
R contains some x− ai. If not, then conjugating by x− ai, we can show (as we did in
Case 1) that I contains a polynomial f(x). Hence I contains yf(x)−f(x)y=f′(x)r(x).
Since r(x) is normal in R and I contains no x− ai; I contains f′(x). By induction on
degf(x), we obtain I = R; a contradiction.
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Corollary 3.6. The enveloping algebra of a two-dimensional Lie algebra over an al-
gebraically closed !eld has a pure injective resolution.

Proof. Such a Lie algebra is either abelian or solvable, so its enveloping algebra is
isomorphic to either R1 (with q= 1) or R5.

Next we study algebras with injective dimension 3. First we need a lemma.

Lemma 3.7. Let A be a right noetherian ring with injdim AA = d; and let M be a
!nitely generated uniform module. Then M embeds in $i if and only if for every
0 &=N ⊂M; the natural map Exti(M;A) → Exti(N; A) is non-zero. In particular; M
does not embed in I i if and only if limN ⊂M Exti(N; A) = 0.

Proof. (⇒) This is trivially true if i=0, so suppose that i¿0. By [2, 2.1.1], Exti(M;A)=
Ext1(M;$i−1). If M embeds in $i, then there is a nonsplit exact sequence

0 −→ $i−1 −→ E −→ M −→ 0: (3.2)

Let 0 &=f∈Ext1(M;$i−1) correspond to this extension. If 0 &=N ⊂M , and E′ ⊂E
is the preimage of N under (3.2), then the image of f under that natural map
Exti(M;A)→ Exti(N; A) corresponds to the extension 0 −→ $i−1 −→ E′ −→ N −→ 0:
This is still non-split since $i−1 is essential in E, and hence in E′. Therefore
Exti(M;A)→ Exti(N; A) is non-zero.
(⇐) Conversely if M does not embed in $i, then every map from M to $i has

a non-zero kernel. By [2, 2.2], there exist f1; : : : ; fn ∈Hom(M;$i) and submodule
N := ∩ ker(fj)⊂M such that the natural map Exti(M;A) → Exti(N; A) is zero. But
each ker(fj) is non-zero and M is uniform, so N = ∩ ker(fj) is non-zero.

Proposition 3.8. Let A be an AG ring; and let N be a set of regular normal elements
in A. Then A has an essentially pure injective resolution if and only if AN−1 and
A=(g); for all g∈N; do.

Proof. (⇐) We suppose that I i is not essentially (d−i)-pure, and seek a contradiction.
By Proposition 1:4:1, I i contains a critical submodule M with !(M)¿d− i or j(M)¡i.
If MN−1 &=0, then MN−1 is a submodule of I iN−1, and j(MN−1)=j(M)¡i by Lemma
2:2:2, so AN−1 does not have an essentially pure injective resolution, a contradiction.
If MN−1 = 0, then Lg = 0 for some g∈N and some 0 &=L⊂M ; since g is regular,
!(L)¡d; so j(LA)¿0; by Lemma 3.7 and Proposition 1.3,

lim
N ⊂ L

Exti−1A=(g)(N; A=(g))∼= lim
N ⊂ L

ExtiA(N; A) &=0:

So, by Lemma 3.7 again, LA=(g) is contained in the I i−1-term of a minimal injective
resolution of A=(g): But j(LA=(g))=j(LA)−1¡i−1, so A=(g) does not have an essentially
pure injective resolution, a contradiction.
(⇒) The proof of the converse also splits into two cases: either AN−1 does not

have an essentially pure injective resolution, or some A=(g) does not have an essentially
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pure injective resolution. In each case, the argument in the previous paragraph works
in the reverse direction.

Proposition 3.9. Let A be an AG domain with injdim A = 3. Suppose every simple
module of grade 3 is annihilated by a non-zero completely prime normal element.
Then A has an essentially pure injective resolution.

Proof. Let N be the set of all inequivalent completely prime normal elements of A: By
Lemma 2:2:1, and Proposition 1.3, AN−1 and A=(g) (g∈N ) have injective dimension
¡3. Since AN−1 and A=(g) are AG domains they have essentially pure injective
resolutions by Proposition 3.2, so the result follows from Proposition 3.8.

Proposition 3.9 applies to enveloping algebras of three-dimensional Lie algebras
over an algebraically closed !eld k: Such a Lie algebra L is isomorphic to one of the
following:
(1) L1 = Lab = kx + ky + kz with [Lab; Lab] = 0.
(2) L2 = sl2 = ke + kf + kh with [e; f] = h; [h; e] = 2e; [h; f] =−2f.
(3) L3 = kx + ky + kz with [x; y] = z; [x; z] = [y; z] = 0.
(4) L4 = kx + ky + kz with [x; y] = y; [x; z] = [y; z] = 0.
(5) L5 = kx + ky + kz with [x; y] = 0; [x; z] = bx; [y; z] = y; where b &=0.
(6) L6 = kx + ky + kz with [x; y] = 0; [x; z] = x + y; [y; z] = y.

Lemma 3.10. Let k be an algebraically closed !eld with char k=0; and A a k-algebra.
1: If g is a central element of A; then for every !nite-dimensional simple A-module

M; there is an a∈ k such that M (g− a) = 0.
2: If y∈A is normal and yz − zy = y for some z ∈A; then y annihilates every

!nite-dimensional simple A-module.

Proof. Let M be a !nite-dimensional simple A-module.
1: Consider g as a k-linear map of M . By the Cayley–Hamilton theorem there is a

polynomial f such that Mf(g) = 0. But k is algebraically closed, so M (g− a) = 0 for
some a∈ k.
2: There is a polynomial f (and we can assume that the degree of f is minimal)

such that Mf(y) = 0. Then M (f(y)z− zf(y)) = 0, and fz− zf= yf′(y). Since y is
normal, Mf′(y) &=0, and M is simple, therefore Mf′(y) =M: Then My=Mf′(y)y=
Myf′(y) = 0:

Theorem 3.11. Over an algebraically closed !eld; the enveloping algebra of a three-
dimensional Lie algebra has an essentially pure injective resolution.

Proof. If char k¿0, then U (L) satis!es a polynomial identity, so has pure injective
resolution by Theorem 3.1. We now assume that char k = 0.
We check that U (Li) satis!es the conditions in Proposition 3.9. The universal en-

veloping algebras are known to be Auslander regular and CM. Hence GK dimM=!(M)
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for all !nitely generated modules. Now to verify the last condition in Proposition 3.9,
it is su$cient (in view of Lemma 3.10) to check that, in A=U (Li); there is a central
element g such that A=(g− a) is a domain for all a∈ k, or there is a completely prime
normal element y and an element z such that yz−zy=y. We check case-by-case. Case 1
is trivial, since then U (L) is a commutative polynomial ring. In case 2, U (sl2)=($−a)
is a domain, where $ is the Casimir element. In case 3, z is central element and
U (L3)=(z− a) is either the !rst Weyl algebra or the polynomial ring, hence a domain.
In case 4, z is central and U (L4)=(z−a) is isomorphic to the algebra R5 in the previous
section, which is a domain. In cases 5 and 6, y is a completely prime normal element
and satis!es the condition yz − zy = y:

4. Purity for graded algebras

We now study the purity of the minimal graded injective resolution for some con-
nected graded algebras of injective dimension ≤ 4. Unless otherwise speci!ed, all mod-
ules, rings, and operations are graded and homomorphisms preserve the degree.
There are graded versions of the concepts and results appearing in Sections 1 and 2

for ungraded rings and modules; for the most part these are obvious, and can be ob-
tained by adding the word ‘graded’ in the appropriate places. There is a notion of
minimal graded injective resolution of A, and we still denote it by (0.1). By [9, 3.3],
for a connected algebra, the graded injective and global dimensions equal the ungraded
injective and global dimensions, respectively. When A is graded, and M and N are
graded modules with M !nitely generated, ExtiA(M;N ) has a natural grading; and in
this case we denote it by ExtiA(M;N ).
We recall the basic facts. Let A be a connected graded k-algebra. The linear dual

A∗ :=
⊕

n Homk(A−n; k) is an injective hull of the trivial module k. We say that an
A-module M is m-torsion (where m=

⊕

i¿0 Ai), if M is a union of !nite-dimensional
submodules. We use M [l] to denote the shift of M by degree l; thus, M [l] = M as
an A-module, but the grading is de!ned by M [l]i = Ml+i. Every m-torsion injective
module is a (possibly in!nite) direct sum of shifts of A∗. As a consequence, an es-
sential extension of an m-torsion module is m-torsion. If A is connected and AG with
injdim A= d, then by [9, 6.3] A is Artin–Schelter–Gorenstein, and by [20, 0.3(3)], Id

is isomorphic to A∗[l] for some l∈Z. In particular, Id is 0-pure.
The GK-dimension of a module over a CM ring is an integer. By [9, 3.1], if A is

graded AG, then A is ungraded AG. Also, by [9, 5.8], if A is graded AG and CM
then A is ungraded CM. Finally, note that if A is CM with GK dim A= injdim A; then
GK dimM = !(M) for all !nitely generated modules M .

Proposition 4.1. Let A be a connected graded CM algebra with GK dim A = injdim
A= 2: Then A is AG and has a pure graded injective resolution.

Proof. By the graded version of Proposition 2:6:1, A is graded AG. Hence, by [9, 3.1
and 5.8], A is AG and CM as an ungraded ring. Let 0 −→ A −→ I 0 −→ I 1 −→ I 2 −→ 0
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be the minimal graded injective resolution of A. By Proposition 1.4, I 0 is 2-pure, and I 1

is essentially 1-pure; so it su$ces to show that GK dim I 1≤ 1: By Theorem 2.5, A has
a QF quotient ring Q, and I 0 is the graded quotient ring of A, which embeds in Q, so
GK dim I 0=A≤GK dimQ=A≤ 1. Thus GK dim I 1 = max{GK dim I 0=A;GK dim I 2}≤ 1.

Theorem 4.2. 1: Let A be a connected graded CM algebra with GK dim A = injdim
A= 3. Suppose that A contains a homogeneous regular normal element g of positive
degree.
(a): A is AG and has an essentially pure graded injective resolution.
(b): If A=(g) is a domain; then A has a pure graded injective resolution if and only

if A[g−1] does.
2: The three-dimensional Artin–Schelter regular algebras which are generated by

three elements of degree one over an algebraically closed !eld have pure graded
injective resolutions.

Proof. 1(a). By Proposition 2:6:3, A is AG. By [9, 5.10], A=(g) is AG and CM of
injective dimension 2. By Proposition 4.1, A=(g) has a pure graded injective resolution.
By Theorem 2.5, A has a QF quotient ring, say Q. Note that Q=Fract A[g−1] too. By
a graded version of Lemma 2:6:1, injdim A[g−1]≤ 2, and by Proposition 2:5, A[g−1]
is AG. By a graded version of Proposition 3.2, A[g−1] has an essentially pure graded
injective resolution. Thus, by a graded version of Proposition 3.8, A has an essentially
pure graded injective resolution.
1(b). Since A=(g) is a domain and g is regular, A is a domain. Write Qgr for the

graded ring of fractions of A. By part 1(a), the minimal graded injective resolution of
A is essentially pure; let

0 −→ A −→ Qgr −→ I 1 −→ I 2 −→ I 3 −→ 0

be this resolution. The last term I 3 is A∗[l] which is pure of GK dim zero. Since
I 1⊗A Qgr = 0; GK dim I 1≤ 2, so I 1 is pure. Hence A has a pure injective resolution if
and only if GK dim I 2≤ 1.
The graded minimal injective resolution of A[g−1] is

0 −→ A[g−1] −→ Qgr −→ I 1[g−1] −→ I 2[g−1] −→ 0 (4.1)

and this is essentially pure by the proof of part 1(a). Since g is a homogeneous
normal element and A is locally !nite, g is local normal, whence A[g−1] is AG and
CM (Theorem 2.4). Therefore GK dim I 1[g−1] = 2: Now, I 2[g−1] is the injective hull
of a module having GK-dimension one. Thus A[g−1] has a pure injective resolution if
and only if GK dim I 2[g−1] = 1.
Since I i[g−1] is an injective A[g−1]-module, it is an injective A-module. There-

fore, I 1[g−1] is the injective hull of Qgr=A[g−1] both as an A[g−1]-module and as an
A-module. By Lemma 3:3:1, gldim A(g)=1, so Qgr=A(g) is a graded injective A(g)-module,
and hence a graded injective A-module. By the graded version of Lemma 3.3, there is
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an exact sequence

0 −→ A −→ Qgr −→ Qgr=A[g−1]
⊕

Qgr=A(g) −→ E −→ 0: (4.2)

Thus I 1∼=Qgr=A(g) ⊕ I 1[g−1]: Lemma 3.3 also gives GK dim E≤ 1.
Consider the cosyzygy modules $s=ker(I s → I s+1). From (4.1) and (4.2) we obtain

an exact sequence 0→ E → $2 → I 2[g−1]→ 0: Now,

GK dim I 2 =max{GK dim$2;GK dim I 3}=GK dim$2
=max{GK dim E;GK dim I 2[g−1]}:

Thus GK dim I 2≤ 1 if and only if GK dim I 2[g−1]≤ 1, from which the result follows.
2. If A is PI, it has a pure graded injective resolution by Theorem 3.1. Suppose

A is not PI. If A is an elliptic algebra, the result is proved in [1, 3.2]. If A is not
elliptic, then there is a completely prime normal element g∈A1 by [ATV]. By [19,
2.12], replacing A by a suitable twist by an automorphism, g becomes central. Since
twisting is a category equivalence [19, 3.1], twisting preserves the minimal injective
resolution. By [19, 5.7] twisting preserves GK-dimension, and hence the purity of the
injective resolution A: Hence we may assume that g is central. Since A is generated
by three elements in degree 1 and is de!ned by three relations of degree 2, A[g−1] is
isomorphic to B0[g; g−1] where B0 is a domain generated by two elements and de!ned
by one relation. By Proposition 3.5 and the discussion prior to it, B0 has a pure
injective resolution. By adjoining [g; g−1] we obtain a pure graded injective resolution
of A[g−1] = B0[g; g−1]. By part 1(b), A has a pure graded injective resolution.

By homogenizing U (sl2)=($) in [2, 5.5], we obtain a connected, graded AG and
CM ring A; with GK dim A=injdim A=3; which does not have a pure graded injective
resolution. We conjecture that every connected graded algebra of global dimension 3
has a pure graded injective resolution. For four-dimensional regular algebras we do not
have purity in general, because the homogenization of U (sl2) is not pure [1, Exam-
ple after Proposition 2:5]. Next, we prove that some familiar four-dimensional regular
algebras have essentially pure injective resolutions.

Lemma 4.3. Let A=⊕n∈Z An be a strongly graded algebra.
1: Let M be a noetherian graded A-module and M0 the degree zero part of M .

Then j(M) = j(M0). As a consequence; A is graded AG if and only if A0 is AG.
2: A has a pure (respectively; essentially pure) graded minimal injective resolution if

and only if A0 has a pure (respectively; essentially pure) minimal injective resolution.

Proof. By the category equivalence (−)0 from graded modules over A to modules over
A0 [12, A.I.3.4], we have ExtiA(M;A)0∼=ExtiA0 (M0; A0) for every graded A-module M .
A graded A-module L is zero if and only if L0 =0. Hence j(M)= j(M0). Again by the
equivalence, j(N ) = j(N0) for all N ⊂Exti(M;A). Hence A is graded AG if and only
if A0 is AG. Part 2 follows from the category equivalence and part 1.
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By [14], the four-dimensional Sklyanin algebra is AG and CM. By standard results on
Rees rings, the homogenized universal enveloping algebra H (L) of a !nite-dimensional
Lie algebra L is AG and CM.

Theorem 4.4. Let k be an algebraically closed !eld.
1: The four-dimensional Sklyanin algebra has an essentially pure graded injective

resolution.
2: The homogenized universal enveloping algebra H (L) of a three-dimensional Lie

algebra L has an essentially pure graded injective resolutions.

Proof. 1. Let A denote the four-dimensional Sklyanin algebra. By [15], there are central
elements $1;$2 ∈A2 such that {$1;$2} is a regular sequence. It follows that A=(a$2+
b$2) is a domain for all a; b∈ k. In particular, A=($1) is a graded domain having a
regular central element $2. By Theorem 4:2:1, A=($1) has a graded essentially pure
injective resolution. By a graded version of Proposition 3.8, it remains to show that
B= A[$−1

1 ] has a graded essentially pure injective resolution.
Now B is strongly Z-graded, and AG by Proposition 2.1, so B0 is AG by Lemma

4:3:1. By Lemma 4:3:2, it su$ces to show that B0 has an essentially pure injective
resolution. Note that g :=$−1

1 $2 is a central element in B0. For every a∈ k; g −
a = $−1

1 ($2 − a$1) so B0=(g − a) embeds in the ring of fractions of A=($2 − a$1);
thus B0=(g − a) is a domain. By Lemma 3.10, for every !nite-dimensional simple
B0-module M , M (g − a) = 0 for some a∈ k. Write N = {g − a | a∈ k}. By Lemma
2:2:1, injdim B0=gr:injdim B≤ injdim A−1≤ 3, and injdim(B0N−1)≤ injdim B0−1≤ 2:
By Proposition 1.3, injdim(B0=(g − a))≤ injdim(B0) − 1≤ 2. Therefore by a
graded version of Proposition 3.2, B0N−1 and B0=(g − a) have essentially pure in-
jective resolutions. Hence by Proposition 3.8, B0 has an essentially pure injective
resolution.
2. There is a central element t in H (L) such that H (L)=(t)∼= k[x1; x2; x3] and H (L)

[t−1]∼=U (L)[t; t−1]. By Theorem 3.11, U (L) has an essentially pure injective reso-
lution, and so does U (L)[t; t−1]. Since k[x1; x2; x3] also has a pure graded injective
resolution, therefore H (L) has an essentially pure graded injective resolution by Propo-
sition 3.8.

Proposition 4.5. The minimal graded injective resolution of the four-dimensional
Sklyanin algebra A(E; %) is pure if and only if the ring is PI.

Proof. The Sklyanin algebra is AG and CM, so Theorem 3.1 gives purity in the PI
case. Therefore, we will show here that purity fails in the non-PI case.
The failure of purity will be proved by constructing an extension of the form 0 →

N [−1]→ X → M (l)→ 0 where N is a suitable point module, M (l) is a suitable line
module and X contains N [− 1] as an essential submodule. By [10] a point module is
pure of GK-dimension 1 and a line module is pure of GK-dimension 2, so the injective
envelope of N , which appears in the minimal graded injective resolution of A by a



K. Ajitabh et al. / Journal of Pure and Applied Algebra 140 (1999) 1–21 19

graded version of [2, 2.3.2], has !nitely generated submodules of GK-dimension ≥ 2,
whence purity fails.
Let A be the four-dimensional Sklyanin algebra. Fix a line module M (l) and a point

module M (p). The minimal projective resolution of M (l) looks like

0 −→ A[− 2] (a b)−→A[− 1]A[− 1]
( cd)−→A −→ M (l) −→ 0;

where a; b; c; d∈A1 are such that V(c; d)=l and V(a; b)=l′ where l′ is a line in P(A∗1)
which corresponds to some line module. Thus Ext1A(M (l); M (p))j is the homology of

M (p)[2]j
!1←−M (p)[1]jM (p)[1]j

!0←−M (p)j:

where !1(m′; m′′) = am′ + bm′′ and !0(m) = (cm; dm). Recall that, for i ≥ 0, M (p)≥i
is again a shift of a point module; for brevity we write pi for the point satisfying
M (pi)[− i]∼=M (p)≥i. Also remember that if 0 &=m∈M (p)0 and x∈A1, then xm= 0
if and only if p∈V(x). Therefore,

dim (ker !1)j =















0 if j¡− 1;

1 if pj+1 &∈ l′ and j ≥ −1;

2 if pj+1 ∈ l′ and j ≥ −1;

dim (Im !0)j =

{

0 if pj ∈ l or j¡0;

1 if pj &∈ l and j ≥ 0;

so

dim Ext1A(M (l); M (p))j =







































0 if pj &∈ l and pj+1 &∈ l′and j ≥ 0;

or j¡− 1;

2 if pj ∈ l and pj+1 ∈ l′and j ≥ 0;

or pj+1 ∈ l′ and j =−1;

1 otherwise:

We adopt the usual conventions and notations (see for example [10,15]). Thus A=
A(E; %) is determined by the elliptic curve E and the point %∈E. We can write l= rs,
the secant line to E spanned by r; s∈E. Hence by [10, Proposition 4.4], l′=r + % s+ %.
The point modules are of two types:

• the ‘standard’ ones, those of the form M (p); p∈E, and
• the ‘exceptional’ ones, of which there are four, one corresponding to each 2-torsion
point !∈E, say M (e!), where e! ∈P(A∗1) is the singular point of the cone which
is the union of the secant lines {rs | r + s= !}.
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If p∈E, then pi =p− i%, whereas for the exceptional ones (e!)i = e!. Therefore, for
the standard point modules we have

dim Ext1A(M (l); M (p))j =























































0 if p− j% &∈ {r; s; r + 2%; s+ 2%}

and j ≥ 0; or j¡− 1;

2 if p− j%∈ {r; s} ∩ {r + 2%; s+ 2%}

and j ≥ 0; or p∈ {r + %; s+ %}

and j =−1;

1 otherwise

and for the exceptional point modules we have

dim Ext1A(M (l); M (e!))j =







































0 if ! &∈ {r + s; r + s+ 2%} and j ≥ 0;

or j¡− 1;

2 if != r + s= r + s+ 2% and j ≥ 0;

or != r + s+ 2% and j =−1;

1 otherwise:

Note the di"erent behavior of the two kinds of point modules when % has in!nite
order: Ext1A(M (l); N ) is !nite-dimensional if N is a standard point module, but may
be in!nite dimensional when N is exceptional.
Recall that A satis!es a polynomial identity if and only if % is of !nite order,

so suppose % is not of !nite order. Fix a 2-torsion point !, and !x r; s∈E such that
r+s+2%=!; write N=M (e!)[−1]; then Ext1A(M (rs); N )0=Ext1A(M (rs); M (e!))−1∼= k2;
so we may choose a non-split extension

0→ N → X → M (rs)→ 0

in which the maps are of degree zero. Let &∈Ext1A(M (rs); N )0 represent the extension.
To show that N is essential as a graded submodule of X , it su$ces to show that the
sequence

0→ N → N + Ax → Ax → 0 (4.3)

is non-split whenever x is a homogeneous element of X not in N ; here x denotes the
image of x in M (rs). If Q =M (rs)=Ax, then there is an exact sequence

HomA(Ax; N )→ Ext1A(Q;N )→ Ext1A(M (rs); N )→ Ext1A(Ax; N );

so it su$ces to show that & does not lie in the image of Ext1(Q;N )0, because then its
image in Ext1A(Ax; N ) is non-zero.
By [15, 4.4], since r+ s=!−2%, Q has a !nite !ltration by graded submodules, the

successive quotients of which are either !nite-dimensional or shifts of point modules;
moreover, using the fact that r+ s=!− 2%, it follows from [10, Section 5] that these
point modules are standard ones. Since N is exceptional, HomA(Ax; N ) = 0.
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There are two linearly independent central elements in A2, say $1 and $2; every
standard point module is annihilated by $1 and $2, but an exceptional point mod-
ule is not. Hence, there is a homogeneous central element c such that cQ = 0, but
cN &=0. It follows that c acts faithfully on N . By a graded version of Rees’ lemma,
Ext1A(Q;N )∼=HomA=(c)(Q;N=cN )[d], where d=deg c. But Q is a cyclic module gener-
ated in degree zero, and the degree d component of N=cN is one-dimensional (because
N is generated in degree 1), so HomA=(c)(Q;N=cN )d∼= k. Thus the image of Ext1A(Q;N )0
in Ext1A(M (rs); N )0 is a one-dimensional subspace of this two-dimensional space. As
x varies, so does Q, and the various Q obtained form an inverse system. Hence the
Ext1A(Q;N )0 form a directed system, so their union is a one-dimensional subspace of
Ext1A(M (rs); N )0. By choosing & not in this union, we ensure that (4.3) does not split.
This completes the proof that the minimal resolution is not pure.
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