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I Introduction 

The class o f  3-dimensional Artin-Schelter regular algebras was introduced by 
M. Artin and W. Schelter [2] in 1987. Subsequent papers by M. Artin, J. 
Tate and M. van den Bergh [3], [4] showed that these algebras had some 
extremely interesting properties, not least of  which was the delicate inter- 
play between the representation theory o f  the algebra, and the geometry o f  
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an associated cubic divisor in IP 2. This theme was further developed in 
[17], [8], [18] for a class of algebras discovered by E.K. Sklyanin. These 
Sklyanin algebras are examples of 4-dimensional Artin-Schelter regular alge- 
bras. It is our intention here to examine another large class of  4-dimensional 
Artin-Schelter regular algebras, namely algebras D with the property that D 
has a central regular element z of degree 1 such that A := D/(z) is a 3- 
dimensional Artin-Schelter regular algebra. We call D a central extension 
of  A. 

All the algebras under discussion are graded algebras, generated over a 
field k by their degree 1 component. The 3-dimensional Artin-Schelter reg- 
ular algebras are either generated by two elements, or by three elements. 
We restrict our attention to those having three generators. Let A be such an 
algebra. We briefly recall some properties of A. Firstly A is a quadratic algebra, 
meaning that A has a presentation A = T(V) / (R)  where R C V ® V. Secondly 
A has excellent homological properties: for example, A is a Koszul algebra, 
meaning that Ext](k,k) ~ A ! where k ----A/A + is the trivial left A-module and 
A ! := T(V*) / (R  ± ) is the dual quadratic algebra. The Hilbert series of A is 
HA(t) = (1 - t) -3. There are two important classes of  graded A-modules, the 
point modules and line modules (see [4] for definitions and basic properties). 
The point modules are parametrized by either a degree 3 divisor in IP 2, or 
by IP 2 itself, and the line modules are naturally in bijection with the lines 
in ]1 ) 2  . 

Section 2 contains some results about when a central extension of a Koszul 
algebra is again a Koszul algebra. In fact, we work in the following more 
general context. Let D be a quadratic algebra with a normal element z E D1, and 
suppose that D/(z) is a Koszul algebra. Theorem 2.6 gives precise conditions 
for D to be a Koszul algebra. This result should be useful in situations other 
than that considered here. In particular it may be used to recover Sridharan's 
classification of  filtered algebras whose associated graded ring is a polynomial 
ring [ 19]. 

Section 3 classifies the central extensions of generic 3-dimensional Artin- 
Schelter regular algebras. 

Section 4 determines the point modules for these central extensions, and 
Sect. 5 determines the line modules. 

Typical examples for our results are the central extensions of generic Type 
A algebras (or three dimensional Sklyanin algebras, see [2] or [13][14] for 
precise definitions). In this case the defining relations for D are given by 
Theorem 3.2.6: 

CX21 + ax2x3 + bx3x2 + ltlXlZ + ll2x2z +/13x3 z + oqz 2 = 0 
cx 2 + ax3xl + bxjx3 + 121xjz + 122x2z + 123x3z + ct2 z2 = 0 
cx 2 q- axlx2 q-- bX2Xl -4- 131XlZ q- 132x2z + 133x3z + ct3 z2 -- 0 (1.1) 

zxi - xiz = O i =  1 ,2 ,3 .  

Here (lij)O C Ma(k) is a symmetric matrix and a,b,c, cq,72,~3 E k. If  we allow 
for isomorphism then we obtain a 7-dimensional family of algebras. 
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Let D be an algebra having equations as in (1.1). Assume furthermore that 
all the scalars are generic. In that case, the points of IP(D~') that correspond 
to point modules (see Sects. 4 and 5 for definitions) form a smooth elliptic 
curve in ~V~(z) (say E)  together with eight special points, not lying in ~/f(z) 
(Proposition 4.3.9). The lines in IP(D~) that correspond to line modules come 
in two families (Example 5.2.5): (1) the lines in ~/r(z), and (2) for each point 
p of E a pair of lines going through p, continuously varying with p. In some 
cases the lines in the line pair coincide and they may also lie in ~U(z), in 
which case they also belong to the first family. This gives rise to some special 
case analysis, which is preformed in Sect. 5. 

It is perhaps interesting to compare this example with that of  the 4- 
dimensional Sklyanin algebra [8]. There the point modules are parametrized 
by an elliptic curve of  degree four  (three in our example) together with four  
special points. Passing through a general point of P(D T) there are two lines 
corresponding to line modules, whereas in our example, usually, there are none. 

If  the scalars are generic, or if we look at central extensions of other Artin- 
Schelter-regular algebras, different phenomena may occur. We can still classify 
the line modules (Theorems 5.1.6 and 5.1.11). However, the description of  
the point modules, while possible in principle (Theorem 4.2.2, Corollary 4.2.3) 
falls apart in many special cases, and we do not undertake an exhaustive anal- 
ysis. Nevertheless we study sufficiently many cases that the general phenomena 
become apparent (e.g. Propositions 4.3.7 and 4.3.9). 

Unless stated otherwise, k is an arbitrary field in Sect. 2 and Sect. 3.1. In 
Sect. 3.2 and subsequent sections we assume k to be algebraically closed of 
characteristic zero. 

2 Koszul properties 

As explained in the introduction this section concerns a quadratic algebra D 
having a normal element z E Dl such that A := D/(z  I is a Koszul algebra. 
Theorem 2.6 gives precise conditions for D to be a Koszul algebra also. Finally 
in Corollary 2.7 we specialize to the situation where A is a 3-dimensional 
Artin-Schelter-regular algebra, and explain how good homological properties 
of A ensure that D also has good homological properties. 

We will always work with algebras over a fixed base field k. 
First we consider the Koszul property. If A is a quadratic algebra with 

defining relations RA C A1 ®A1, then the dual algebra is A ! := T(A~) / (R~) .  Fix 
a basis {Xm} forA1 and let {~m} be the dual basis. Define eA := EmXmQ~m E 
A ®k A !. The Koszul  complex for A is the complex of free left A-modules 

• ..  -~ A ® (A!n) * - -~ . ' .  --* A ® (A])* --~ A ® (Ao)* ~ Ak --~ 0 

where the differential is right multiplication by cA. It will be denoted by K.(A). 
I fK. (A)  is exact then A is called a Koszul  algebra. See for example [12] which 
proves a number of fundamental properties of  Koszul algebras. 
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A homogeneous element z o f  a graded algebra D is said to be n-regular if 
both right and left multiplication by z is injective on Di for all i <= n. 

The proof o f  the next result is similar to the proof o f  [17, Theorem 5.4]. 

Theorem 2.1 Let  D be a finitely generated quadratic k-algebra with a normal 
1-regular element z E Dl,  and define A = D/(z).  Suppose that 

1. A is a Koszul algebra, 
2. Ho,( t )  = (1 + t)HA~(t ), and 
3. A Go K°(D)  is exact in degree >_ 3, namely 

• .- ~ A ®D K, (D)  --+ . . . . . .  ~ A @D K2(D) 
is exact. 

Then D is also a Koszul algebra, and z is a regular element o f  D. 

Proo f  The Koszul complex for D in degree n is a direct sum of  bounded 
complexes o f  finite dimensional vector spaces, namely 

0 --~ Do ® (D')* - * . . .  ~ Dn ® (Do)* ~ Dk'b,o --+ O. 
I . Write Pij for the homology group o f  this complex at Di ® ( D ) ) ,  and 

pij = dim(~j ) .  Write di = dim(D/) and bj = dim(D~.)*. Then 

dobn - dlbn-1 + ".. + ( -1)"dnbo  = POn -- PJ,n--I + ' ' "  + (--1)npno 

+ ( - 1 ) n 6 , o .  

Define integers cm :=  dim(Ao + . . .  +Am). Thus ~m>o Cmtm= (1 -- t ) - lH~( t ) .  
Because A is Koszul HA(t) • HA~(--t) = 1. Therefore, hypothesis 2 implies 

Cmt m • Ho~( - t  ) = (1 - t ) - )H~( t )HD~(- t )  = HA( t )HA!( - t )  = 1 . 

In particular, cob, - cl 6,-1 + . . .  + ( -  1)%,6o = ( -  1 )"6,0. Hence 

(do - Co)gin - ( d ~ - c l )6 , -1  + . . .  + ( - 1 ) ' ( d ,  - c, )6o 

= Pon - Pl,n-1 + " "  + ( - 1 ) " p , 0  • 

Although we will not use this fact, it is easy to show that z is regular on 
D 0 + D I + . . - + D , - ~  if and only if  d o - c o = d t - c )  . . . . .  d , - c , = O .  
Write W m =  {x E D,,Izx = 0} and w,, = dim(W,,). The regularity o f  z is 
equivalent to w m =  0 for all m. 

Claim 1 I f  j > 2 then pi - l , j  = wi = 0 :=~ Pij = O. 

Proo f  Let d denote the differential on the Koszul complex for D. Let u 
Oi @ (Dj)* be such that d(u)  = 0. We must show that u is in the image 
of  d. Since A ®D (D !)* is exact at A ® (D))* by Hypothesis 3, there exists 
V E Di -1  ® (Dj.)* and v ~ E Di-1 ® (D)+I)* such that u = zv + d(v') .  Clearly 
z .  d (v )  = 0 so d(v )  E Wi ® (D)_l)*.  But this is zero by hypothesis, so 
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d(v) = 0 i.e. v gives a class in Pi-l , j  = 0. Thus v E im(d) ,  and it follows that 
u is also in the image o f  d. 

Cla im 2 For  a l l i  and for a l l j  > 2 w e h a v e  p i o = p i l  = P o j = P l j = O .  

Proof The first two are zero s imply because the fight hand end o f  the Koszul 
complex for D, namely D ® (D~)* ~ D ® (D!l)* --~ D ® (Do)* --~ Dk ~ O, is 
exact. To prove the other two homology groups are zero we use the previous 
claim. Since z is 1-regular, w0 = wl --  0. Since p- l , j  --  0 the previous claim 
gives Poj --- 0. Now Poj = w~ = 0 allows us to use the previous claim again, 
to conclude that p | j  = O. 

The theorem will now be proved by  induction. We will say that H(n) is 
true if  

d 0 - c o = d l - c l  . . . . .  d n - l - c n - t  = 0  

and 

and 

W 0 " ~  W 1 ~ -  " ' "  ~ W n -  2 --~ 0 

Poj = Plj . . . . .  Pn-2,j = 0 for all j >_- 2 .  

We have already seen that H(n) is true for n < 2. So suppose that n >__ 2 and 
that H(n) is true. We will prove that H(n + 1 ) is true. By the first paragraph 
o f  the proof, and the induction hypothesis 

( - 1 ) n ( d n  - cn )fio = pon - pt,n-I + ' ' "  + (--1)npn 0 = ( - - 1 ) n  P n _  2,2 

whence d ,  - cn --- pn-2,2. The map 'mult iplication by  z '  yields an exact 
sequence 0 --* W , - i  ~ D,,-1 --~ D,  --* An ~ 0. Hence wn-1 = dn-1 - dn + 
(c,  - c , - l ) .  But d n - l  - - c n - l  = 0 by the induction hypothesis,  so wn-I  = 
- ( d , -  e , )  and pn-2,2 = - w n - 1 .  Both P,-z,2 and w , - i  are non-negative since 
they are dimensions o f  vector spaces, so Pn-2,2 -~ W n - 1  ---- O. It follows that 
dn - cn = 0 also. Finally, for all j > 2 we have Pn--Z,j = Wn--I = 0 SO by 
Claim 1 it follows that p , _ l , j  = 0. Hence H(n + 1) is true. 

In particular, all the homology groups Pii are zero and z is regular. [] 

Remark 2.2 Let D be as in Theorem 2.1, but suppose now that z ~ D2. If  
Hypotheses 1 and 3 are the same, and Hypothesis  2 is replaced by  the hypoth- 
esis that HD~(t ) = (1 -- t2)HAr(t)  then an almost identical p roof  will  show that 
D is a Koszul algebra, and z is regular. 

By combining the previous Theorem with the results in [11] and [7] we have 
the following consequences. The definition o f  an Auslander-regular  algebra and 
the Cohen-Macaulay  property can be found in [7]. 

Corollary 2.3 I f  the hypotheses o f  the previous Theorem apply, then 

1. D is noetherian i f  and only i f  A is noetherian; 
2. D is a domain if  and only i f  A is a domain; 
3. D is Auslander-regular i f  and only i f  A is Auslander-regular; 
4. D satisfies the Cohen-Macaulay property i f  and only i f  A does. 
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We now seek conditions on D which ensure that the hypotheses of  
Theorem 2.1 hold. 

Let D be a finitely generated quadratic algebra over  the field k, and suppose 
that z E DI is a 1-regular normal element. Since z is normal there is a linear 
map ~b E End(Dl ) with the property that zd = c~(d)z for all d E D~. Since z is 
1-regular there is only one such map and it is bijective. We will also assume 
that ~b extends to an algebra automorphism of  D. Define 4)! E End(D~) by the 
requirement that (q~!(fl),4)(d)) = - ( f l ,  d) for all fl E D~" and all d E D. It is 
clear that 4)! extends to an algebra automorphism of  D ! because 4) is assumed 
to preserve the relations in D. Since 4)(z) = z it follows that 4)(z ± )  = z ±. 

Define A := D/(z) .  Since 4)(zD) C zD, it follows that 4) induces an auto- 
morphism o f  A; we will still write 4) for this automorphism. Similarly there 
is an induced automorphism 4)! o f  A !. The natural map A~' ~ D~' induces an 
algebra homomorphism ~ : A  ! --, D ! such that q~(A !) = k[z± ], the subalgebra 
o f  D ! generated by z ±. It is easy, but important to observe that • is injective 
in degrees 1 and 2. Finally, we note that the automorphisms 4)~ of  A ! and 4)~ 
of  D ! are compatible with ~ in the sense that ~ o 4)A = 4)~ o ~. 

Proposit ion 2.4 Let  D be a finitely generated quadratic algebra, and suppose 
that z E Dl is a 1-regular normal element. Fix 09 E D~ such that og(z) -- 1. 
Then 

I. 09 is 1-regular; 
2. the defining relations for  D ! consist o f  

(i) the relations for  A!; 
(ii) {o9fl - 4)!(fl)o9 + ~k~l fl E z ± , and certain ~b~ E (z±)2}; 

(iii) o91 -- ogv - q~ where v E z ±  satisfies 4)!(v - ~o) = o9 and (p is some 
element o f  (z ± )2; 

3. D~ = og(z± ) k - l  + (z± )  k = (z± )k-lo9 + (Z± ) k for  all k > 1. 

Proo f  We have 

Dl ®02  = k ( z ® z ) ® ( z ® o 9 ± ) O ( o 9  ±  ® z ) O ( o 9  ±  ®o9± ) 

D~ ® D~ = k(o9 ® o9) G (o9 ® z t )  @ (z ±  ® o9) • (z ±  ® z ± ) .  

The relations in D are of  two types. Those in Ro I-1 ((z ® 093-) ® (kz ® 
z) E3 (o9± ® z) )  are o f  the form z ® d - ~b(d) ® z where d E og_L. Modulo 
these the other relations are o f  the form f ~  + z ® v~ + ct~z ® z for various 
f,~ E o9± ® o9±, v~ E o9±, ~ E k where 2 E A some index set. Further- 
more, we may  assume that { f ; [ 2  6 A} is linearly independent (because the 
l-regularity o f  z ensures that there is no relation o f  the form z ® v + ~z ® z 
with v + ~z 4:0). 

Let fl E D~'. I f  ogfl = 0 then o9 ® fl vanishes on all the relations for D 
and in particular on all the relations o f  the first type. Hence fl(d) = 0 for all 
d E DI,  so fl = 0. Similarly, i f  fig9 = 0 then fl = 0, so o9 is l-regular. 

Now we show that O92 E Og(Z ± ) "~ (Z ± )2. First define v E D~' by requiring 
that v(z) = 0 and v(d)  = -o9(4)(d))  for all d E o9±. Now let q~ E z ± ® z ± be 
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such that tp(fx)  = c~ - v(vx) for all 2 E A. It is straightforward to check that 
(to ® to - to ® v - q~)(RD) = 0 and hence to2 = toy + q~ E to(z ± )  + (z± )  2. A 
similar argmnent shows that to2 E (z ±)to + (z± )  2. 

Now we show that to(z ± )  c (z ±)to + (z ±)2. Let ~ E z ±. Choose ~O/~ E z ± 
®z ± such that ~k/~(fa) = - f l (va )  for all 2 E A. Then (to ® / / -  q~!(//) ® to + ~a) 
(Ro)  = 0 so in D ! we have to/1 = ~b!(//)to- ~/,/~. Thus to(z ± )  C (z±)to + (z± )  2 
and a similar argument also proves that (z ±)to C to(z ± )  + (z ± )2. 

An easy induction argument proves that D~ = to(z±) k- I  + ( z± )  k = 
( z ± ) k - l t o + ( z ± )  k for all k > 1. 

It remains to show that 4~! (v-  to) = to. By definition {qS!(v),~b(d)) = 
- ( v , d )  = - ( to ,  q~(d)} for all d E to*, so (qg(v)- to ,  c,b(to*)) = 0. Also (~b~(v) - 
to, z) = (c~!(v),gg(z))-  (to, z) = ( v , z ) -  (to, z) = - 1 .  But {4~'(to),q~(to±)) = 0 
and (qg(to),z) = - 1  also. Hence ~b!(v) - to = ~b!(to) as required. [] 

Proposi t ion 2.5 Let  D be a finitely generated quadratic algebra, and suppose 
that z E D1 is a 1-regular normal element. F ix  o9 E D~ such that to(z) = 1. 
Define A = D/Dz. Suppose that the induced map A~ ~ O~ is injective. Then 

1. the map A ! --* D ! is injective, and A ! ~ k[z±]; 
2. D ! = 09,4 ! G,4 ! = A ! t o O A  ! and D ! is a f ree  right (and left) A!-module 

with basis {1,to}; 
3. the hypotheses o f  Theorem 2.1 and its Corollary hold, so that D is a 

Koszul algebra i f  A is. 

Proo f  Since the image o f  tO : A ! --~ D ! is k[z ± ] and D ! = k[z±][to], it fol- 
lows that there is a surjective algebra homomorphism A ! LIk k[X] --~ D ! from 
the coproduct o f  A ! and the polynomial ring k[X], which sends X to to. By 
Proposition 2.4, the kernel o f  this map is the ideal generated by 
{x/ / -  q, el/  ~ A~'} U {X 2 - X v -  (/9} where ~be, v and tp are defined in 
Proposition 2.4. 

We first consider the quotient o f  A ! [I k[X] by the ideal generated by all 
but the last of  these elements. Define 6 :A] + A~ by 

a(/~) = to/~ - ~ ! ( / / ) t o .  

Although the computation on the right hand side takes place in D !, it is equal 
to (the image of)  -~O# which is in ( z± )  2 which is identified with A~ through 
to. Hence 6 is well-defined. We will show that 6 extends to a ~b!-derivation 
o f  A !. To do this it suffices to prove that i f / / i ,  Ti E A] satisfy Ei[3i7i = 0 in 
A ~, then Y]i((~(//i)~i Jr ~)!(fli)f~(])i) ) is zero in A 3. Since the map A~ ---, D~ is 
injective, it is enough to show that this expression is zero in D !. However,  this 
expression equals 

(~o//,~,~ - 4, t ( / / , ) tor ,  + 4 ( / / , ) a m  - 4 , ' ( / / O ~ ( r ~ ) t o )  = - ~  ~ ( /~ )~b~(e , ) to  
i i 

which is zero because th ! is an algebra homomorphism. 
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Hence A ! I I k [ X ] / ( X B - ¢ t ( f l ) X - O ~ l f l  e A~) ~- A![X; ¢!, 6] the Ore extension 
with respect to (¢! ,6) .  This Ore extension is a free A!-module (on both the 
fight and the left) with basis 1,X, X2, . . . .  

Our next goal is to prove that X 2 - X v - q ~  is a normal element in A ! [X; ¢!, 6]. 
Some preliminary calculations are required. 

O a i m  1 ¢!(~o)  = q~ + 6(v).  

P r o o f  Applying ¢! to the relation 09(09 - v) - q~ = 0 in D ! and using Pro- 
position 2.4 we have 0 = - ¢ ! ( 0 9 ) c o -  ¢!(q~) = ( 0 9 -  ¢ ! ( v ) ) 0 9 -  ¢!(~p) -- 
tnv 4- q~ - ¢!(v)09 - ¢7(q~) __ 6(v) + ~o - ¢!(q~) as required. 

Claim 2 For all fl E z ± , ( 6 ¢  ! 4- ¢!6)(f l)  = ¢!(vfl  - ¢!(fl)v). 

P r o o f  The fight hand side o f  this expression equals (09 + ¢ ! ( 0 9 ) ) ¢ ! ( f l ) -  
¢!2(fl)(09 % ¢!(09)) -- 09¢!(fl) - Cm(fl)09 q_ ¢!(09fl _ ¢!(fl)09) which is precisely 
the left hand expression in the claim. 

Claim 3 If  fl • A~ then (X 2 - Xv - q~)fl - ¢!2(fl)(X2 - Xv  - tp) • A~. 

P r o o f  Using 1,X,X 2 . . . .  as a basis for A![X;¢ ! , 6 ]  as a left A ! module we 
must show that the components in A ~ X  2 and A'~X are both zero. Since X~ = 
6(c~) + ¢!(ct)X for all ct E A], the coefficient o f  X 2 is zero. The coefficient of  
X is (6¢  ! + ¢!6)(f l )  - ¢!(vfl) + ¢!2(fl)¢!(v) = 0 by Claim 2. 

Claim 4 (X  2 - Xv  - q) ) X  - ( X  + ¢!2(v) - ¢ ! (v ) ) (X 2 - Xv  - q) ) E A~. 

P r o o f  As in Claim 3 we want  to show that the coefficients o f  X, X 2 , X  3 are 
all zero. It is easy to see that the coefficient o f  X 3 is zero. The coefficient 
of  X 2 is - ¢ ! ( v )  - (¢!2(v) - ¢!(v))  4- era(v) = 0. The coefficient o f  X is 
- 6 ( v )  - tp -I- ( 6¢  ! + ¢!6)(v)  4- (¢!2(v) - ¢ ! (v) )¢! (v)  + ¢!(~0). This is zero by 
Claim 1, and Claim 2 (with fl = v). 

Claim 5 ¢! extends to an automorphism of  A ! [ X ; ¢ ! , 6 ]  with ¢ ! ( X ) =  - X  + 
¢'(v). 
Proof.  It suffices to prove that the relation X f l - 6 ( f l ) - ¢ ! ( f l ) X  = 0 for fl C A!l 
is preserved by  ¢!. However  applying ¢! to this gives ( - X  + ¢! (v) )¢! ( f l )  - 
¢!6(fl)  - ¢ ! 2 ( f l ) ( - X  4- ¢!(v)) .  By Claim 2 this is zero. 

Claim 6 X ~ - X v  - q~ is a normal element of  A![X;  ¢!, 6]. 

P r o o f  We have just shown that (X 2 - X v  - q))~ - ¢!2(~)(X2 - X v  - ~0) ¢ 
A~ for  all ~t E A~ @ kX. However,  this element clearly maps to zero in 
D ! = A![X; ¢!,6]/(09 2 - t o y  - q~), Since the map  A~ ~ D~ is assumed to be 
injective it follows that (X 2 - X v  - q~)~ = ¢!2(~)(X2 - X v  - q~) as required. 

Hence A![X;  ¢! ,6 ] / (X  2 - Xv  - ¢} is a free fight and left At-module with 
basis { I ,X}.  This proves both the first and the second claim. 

It is now immediate that Ho~(t) -- (1 +t)HA~(t).  Furthermore, A ® o K . ( D )  = 
A ® D ! =  (A ® 09A !) @ (A ® A  !) and the induced differential is given by right 
multiplication by el) :=  z ® co + ~ x i  ® ¢i where xi is a basis for 09± and ¢i 
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is the dual basis for z ±. However, since z annihilates A, eD acts just as right 
multiplication by eA := EXi ® ~i where xi and ~ are dual bases for A~ and 
A~ respectively. Thus A Go K,(D) is just a direct sum of two copies of the 
Koszul complex for A, one of which is shifted in degree. Hence the second 
and third hypotheses of Theorem 2.1 hold. [] 

Theorem 2.6 Let D be a finitely generated quadratic algebra. Suppose that 

• there is a 1-regular normal element z E D1, and ~p E Aut(D) such that 
zd = ~p(d)z for all d E D; 

• A := D/(z) is a Koszul algebra. 

Then 

1. 
2. 
3. 
4. 
5. 

is (A1 

the following are equivalent: 

D is a Koszul algebra and z is regular; 
Ho,(t ) = (1 + t)HA~(t); 
the natural map A ! ~ D ~ is injective; 
the natural map A~ --~ D~ is injective; 
the image o f  (Dj ® RD)n (Ro ®D1 ) under the natural map D~ 3 --+ A~ 3 
@RA)A(RA®AI ) .  

Proof Proposition 2.5 proved that (4) implies (1), (2) and (3). Obviously (3) 
implies (4), so these conditions are equivalent. 

Notice that (4) and (5) are equivalent. First observe that 

D~ = (D~)®3/R2 D ® D~ 4- D; ® R~D =- (D~ 3 )*/(RD ® DI f3 D, @ RD) ±  

(Ro ® DI f~DI ORD)* • 

Similarly 
A~ ~ (RA ®A1 MAI • RA)* • 

Since the map A~ ~ D~ is induced by the map (A~3) * ---* (D~3) * which is 
dual to the natural map D1 °3 -~ A~ 3, the equivalence of (4) and (5) follows. 

Suppose that (2) holds. Then dim(O~)= dim(A~)+ dim(A2). However, by 
Proposition 2.4, there is a surjective linear map A~ OA~ --~ D~. Hence this map 
must be an isomorphism, and its restriction A~ --~ D~ is injective. Hence (4) 
holds. We have shown that (2), (3), (4) and (5) are equivalent. 

Finally, suppose that (1) holds. Since z is regular HA(t) = (1 - t ) H o ( t ) .  
Thus (2) follows from the functional equation for Koszul algebras, [] 

Corollary 2.7 Let D be a finitely generated quadratic algebra. Suppose that 

• there is a l-regular normal element z E Dl, and 4) E Aut(D) such that 
zd = (p(d)z for  all d E D; 

• A := D/(z) is an Artin-Scheher regular algebra [2] with Hilbert series 
HA(t) = (1 - t)-3; 

• the image of  (Dl ® RD)N (RD ® DL ) under the natural map D~ 3 --~ A~ 3 is 
(A1 ® RA ) f3 (RA ® A1). 
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Then D is a noetherian domain with Hilbert series Ho( t ) = (1 - t) -4, and D 
is an Auslander-regular, Koszul algebra with the Cohen-Macaulay property. 

Remark 2,8 Consider a quadratic algebra D with a normal element 04:z E DI 
and A :-- D/(z). In the previous Corollary the hypotheses that z is 1-regular, 
and the existence of ~b, are easily checked if D is given in terms of  gen- 
erators and relations. However, if one knows in advance that z is regular 
then (as T. Levasseur kindly pointed out to us) the proof in [15] adapts to 
the non-commutative case, and D is Koszul if  and only if A is Koszul. In 
particular, if D is Koszul with Hilbert series (1 - t) -n then A is Koszul 
with Hilbert series (1 - t )  -(n-I). If D is given by generators and rela- 
tions, then it may be very difficult to decide if z E Dl is regular; how- 
ever, sometimes one might be able to use the Diamond Lemma to check this 
easily. 

Remark 2.9 From Theorem 2.6 we may recover Sridharan's classification [19] 
of  filtered algebras whose associated graded ring is a polynomial algebra. 

3 Central extensions of three dimensional Artin-Schelter regular algebras 

3.1 Generalities 

Definition 3.1.1 A central extension of  a graded algebra A is a graded algebra 
D with a central element z E D1 such that z is (left and right) regular and 
A D/(z). 

I f  A is a 3-dimensional Artin-Schelter regular algebra then a regular 
central extension of  A is a four dimensional Artin-Schelter regular algebra 
D which is a central extension of A. 

Notice that there is nothing to be gained by letting z be normal since a 
normal regular element of degree one may always be turned into a central one 
via a twist (see [4, Section 8]). 

Let A be a three dimensional Artin-Schelter regular k-algebra with Hilbert 
series (1 - t) -3, as classified in [3][2]. Our aim is .to classify regular central 
extensions of  A. To be more precise, for a given A we wilt classify pairs 
(D, 0) where D is a four dimensional Artin-Schelter regular algebra and 0 
is a surjective graded k-algebra map D --* A, whose kernel is generated by a 
central element in degree one. Two such pairs (D, 0) and (D ~, 0 t) will be called 
equivalent if there is an isomorphism of graded k-algebras ~ : D ---, D t such 
that 0 = 0'~b. Note that equivalence is stronger than just isomorphism of D 
and D t. 

Remark 3.1.2 It follows from Remark 2.8 that i f D  is a Koszul algebra with 
Hilbert series HD(t) = (1 - t) -4 and z C Dl is a regular central regular 
element, then D/(z) is a Koszul algebra with Hilbert series (1 - t) -3. Thus 
D is a central extension of an Artin-Schelter regular algebra. Hence after this 
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paper, attention should probably be focused on those 4-dimensional Artin- 
Schelter regular Koszul algebras having no normal elements in degree one 
(except 0). 

According to [2] we can, for fixed generators xl,x2,x3 of A, choose a basis 
of the 3-dimensional vector space of quadratic relations say f l , f 2 , f s  such 
that there is a 3 x 3 matrix M with entries in A and a matrix Q E GLs(k) 
such that the relations f l ,  f2 ,  f3 may be written as f - Mx and xtM = (Qf ) t  
where f = ( f l , f 2 , f 3 )  t, and x = (xbx2,x3) t. These are equations in matrices 
over the free algebra k(xl,x2,x3). Associated to this presentation of A there 
is an element w E A~ s such that w = xtMx = x t f  = f t ( Q t x ) .  Clearly w E 
RA ®A l NA 1 ®RA. Furthermore it is proved in [2] that dim(RA ®At f~A1 ®R~) = 1 
whence w is uniquely determined (up to a scalar multiple) by A. We also 
introduce the element x* = • • • t atx. Thus (XI,X2,X 3 ) E A~ defined by x* = 
x t f  ---- fiX*. 

Now suppose that D is a central extension of A. Choose representatives for 
xl,x2,x3 in D1. We will also denote these by xl,x2,x3 and will consider their 
span in D~ as being a copy of Ai. The defining equations for D will therefore 
be of the form 

gj := j~ + zlj + Tjz 2 = 0 j =  1 . . . . .  3 

ZXi--Xiz=O i =  1 .. . .  ,3 (3.1) 

where f l , f 2 , f 3  E A1 ®A1 are defining equations for A, and 11,12,13 E AI 
and cq, ~2,~3 E k. Two such sets of  equations will describe equivalent central 
extensions if they may be transformed into each other via substitutions of the 
form xi ~ xi + uiz, z ~ vz for scalars (ui)i, v. 

Theorem 3.1.3 The equations (3.1) define a four dimensional regular algebra 
i f  and only i f  there exist (Tj)j E k that form a solution to the following 
system of  linear equations in A~2,A1 and k. 

J J 

J J 

yj~j = 0.  (3.2) 
J 

I f  such (Tj)j exist, then they are uniquely determined by (lj)j. 

Proof By Theorem 2.6 equations (3.1) define a regular algebra with z a non- 
zero divisor if and only if there exists w ~ E D1 ® RD fq RD ® Di, mapping to 
w. Let w ~ be such an element. Then it may be written as 

w' = ~ aj ( f j  + ljz + ~jz 2) - ~ bi(zxi - x i z )  (3.3) 
j i 
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for some aj, bi E D~, and as 

W ! = ~_~(fj "-~ l j z  "~ O~jZ2)Cj --  Z ( Z X i  --  Xiz)d i 
j i 

(3.4) 

for some cj, di E Dj.  
Write aj = a~. 1) + a~2)z, cj = c~ 1) + e~2)z with uj-(l), 41) E E kXi, and a (2), 

c~ -2) E k. By reduction mod(z) we find that a~.') = xj, b~. ~) : x; (up to a scalar 
multiple which does not matter). Comparing (3.3) and (3.4) we now find the 
following identity in D1 ~3. 

x j(  Oz + ~,z 2 ) + ~ a~ 2)~(fj + #~ + ~'jz ~ ) - ~ b,(zx, - x,z) 
j j i 

= E ( t j  + ~,z2)x7 + E¢~2)( f j  + tjz + ~jz2)z - Z ( z x ,  - x,z)a, (3.5) 
J J i 

Conversely w' will exist if there exist a~ 2), c~ 2), bi, di such that (3.5) 
holds. Now let T --- k(xl,x2,x3)[z]. The existence of a~. 2), c~2),bi, di such 
that (3.5) holds is equivalent with the existence of _(2) 42) uj , C k such 
that 

~ xj( l jz  + ~iz 2) + ~. a~Z)z(fj + ljz + ~jz 2) = ~ (ljz + o~izZ)x] 
J J J 

+ ~c~.2)(fj  + ljz + ~jz2)z (3.6) 
J 

in T3. 
Define Vj -- c~ z) - a~ 2). Now (3.2) is obtained by comparing terms in (3.6) 

with the same z-degree. 
Since the (J))j are linearly independent in A~ 2, the first of these three 

equations shows that the (Vj)j are uniquely determined by the lj. [] 

Remark  3.1.4 Equations (3.2) may be rewritten as (with 7 = (75, ~2, 73) t) 

g t x  * --~ (X - -  z T ) t  g 

in k(Xl,X2,X3)[z], which is perhaps more elegant. 

Lemma 3.1.5 I f  we make a substitution x ~ x + uz and z ~ vz where 
U -~- ( U b U 2 ,  U3)  t, then 

__ 9f j  

~j ~ v2~j + vb(u)  + f A u )  

~ v? + (u* - u) (3.7) 

where u* = Qtu. 
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Proof  I f  we use the notation 3~(x) and l j(x) to emphasize the dependency of 
j~ and lj on x, then there are linear forms e~ in x such that 

cV) 2 f a x  + ut) = L ( x )  + ~u;-~--~ + fAu ) z  . 
i UXi 

Similarly lj(x + uz) = lj(x) + lj(u)z. It follows at once from this that lj and 
~j are transformed as in (3.7). To see that Vj is transformed into vvj + u7 - u j  
requires more work. First, as remarked before, ?j is completely determined by 
lj. Hence it suffices to check that (v7j + u~ - u j ) j  is a solution to (3.2) for the 
transformed l and ~. To do so involves some tedious calculations using the 
fact that x t f  = r tx  * and that ~,i u'ofj ' ' ex; = fj(U,X) + fj(x, U) (we are viewing f j  
as a bilinear form in the obvious way). [] 

We are now in a position to draw a first conclusion from what we have 
done so far. We can describe those sets of  equations (3.1) having no linear 
terms (ly = 0 for all j )  which give rise to a regular algebra. 

Theorem 3.1.6 I f  there are no linear terms in equation (3.1) (i.e. lj = O f  or 
all j), then these equations define a regular algebra i f  and only i f  

( I  - Q ) ~  = 0 .  ( 3 . 8 )  

Furthermore, any equivalent algebra which also has no linear terms, will have 
the same ~ (up to a scalar multiple). 

Proof  Since the -D are linearly independent, the only possible solution to the 
first of  the three equations in (3.2) is given by Vj = 0 for all j .  But V~ = 0 
will be a solution to (3.2) if and only if ~ satisfies 

E  Axj - x ;  ) = o . 
J 

However, this is equivalent to (3.8). 
It follows from (3.7) that a substitution x ---* x + uz, z ~ uz preserving the 

property lj = 0, satisfies 

~i  ui = 0 Vj (3.9) 

Since ~-']i u 'a~ = f j ( u , x ) +  f j ( x , u )  it follows that J~(u) = 0. Therefore, ac- t ~x i 

cording to (3.7) ct will only be multiplied by the scalar v 2. [] 

3.2 Computations for  the generic three dimensional types 

In this section we compute the regular central extensions of  the generic types 
in [2]. We need the following technical notion. 

Definition 3.2.1 A solution to (3.2) will be called simple i f  ? = O. 
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The existence o f  simple solutions is o f  practical importance since ( i f  they 
exist) they depend only on Q and not on the j~, so they are easier to determine. 
Furthermore as we will see below, in some instances all solutions to (3.2) are 
equivalent to simple ones. 

Lemma 3.2.2 Define the following subspaces o f  k(Xl,X2,X3)2 : 

U = k f , + k f 2 + k f 3  

v = ~ k(xjx ,  - x ,x~) 
t,J 

W = subspace spanned by the entries o f  the vector (Q - 1 ) f .  

Then 

1. W c U N V ;  
2. every solution to (3.2) is equivalent to a simple solution i f  

W = U A Z .  (3.10) 

Proo f  1. Let u = (ui)i be arbitrary. Under the substitution x ~ x + uz (z 
central) the identity xt f = ftx* becomes (x t + utz)f(x "4- UZ) = f ( x  + uz)t(x * + 
u'z) .  Comparing the coefficients o f  z it follows that 

- - x j  -- x j - -  (U'--u*t)f = ~i bli~j Ofj Of Joxi 

But u t - u *t = u(I  - Q). Since u is arbitrary, it follows that 

((I  - Q ) f ) i  = E -ffixiXJ - XJ~x ~ J 

which proves that W C V. Hence W C U N V. 
2. Suppose that U N V = W. Let (yj)j  be a solution to (3.2). It is clear 

from (3.7) that (Tj) is equivalent to a simple one if and only if there exists u 
such that y = u* - u = (Qt _ I)u.  Since the 3~ are linearly independent this 
is equivalent to the condition that ~ y j J )  = ut(Q - l ) f  for some u. However,  
this is equivalent to the requirement that ~ j 7 j J )  E W. But Y~q VjJ~ E U N V, 
so by hypothesis it is also in W. [] 

From now on we will assume that k is an algebraically closed field of  
characteristic 0 and that Q is diagonal, say Q = diag(2b 22, 23). 

Lemma 3.2.3 

dim V = 3 + l{i[2i • 1}[ + ]{(i,J)l i . j ,  2i2j * 1}[ 

dim W = 1{i[2,* 1}[ 

It follows that dim U + dim V -  dim W < 9, so (3.10) is never excluded for 
numerical reasons. 
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Coronary  3.2.4 Assume that for all i, )~i W- 1 and for all i :l=j, )~i)Lj ~e 1. Then 
every solution to (3.2) is equivalent to a simple solution with 

( j)j = o, ( # ) j  = o, ( j)j = o .  

Proof By Lemma 3.2.3 it follows that dim V = 9 and dim W = 3. Thus 
W = U N V = U. Hence every solution is equivalent to a simple one by 
Lemma 3.2.2. Taking such a simple solution (Vj) = 0, it follows from (3.2) 
that every lj : 0 since the xixj - x j x  7 are linearly independent. Similarly all 
~tj = 0 because the xj - x ~  are linearly independent. []  

As an application o f  our results we will now analyze the generic types in 
[2, Table 3.11]. Recall that these all have the property that Q is diagonal. 

Lemma 3.2.5 I f  A is a generic Artin-Schelter regular algebra with HA(t) = 
(1 - t) -3, then every solution to (3.2) is equivalent to a simple solution. 

Proof For all the generic types o f  [2] it is somewhat tedious but uneventful 
to verify that U fq V = W. Hence Lemma 3.2.2 applies. []  

Theorem 3.2.6 Let A be a generic Artin-Schelter regular algebra with 
HA(t) : (1 - t) -3. The number of  central extensions of  A is given by Table 
3.1 below. An entry - 1  means that there exist no nontrivial D (i.e. every 
central extension o f  A is equivalent to a polynomial extension), and 0 means 
that there exists exactly one such D up to equivalence. 

Proof It follows from the previous lemma that to classify all the central exten- 
sions up to equivalence, we may (and we will) restrict ourselves to classifying 
the simple solutions to (3.2). 

In what follows ~m denotes a primitive rn th root o f  1. 

Type A Q --- I and the defining equations for A are 

f l --- cx 2 + ax2x3 q- bx3x2 

f2 = cx~ + aX3Xl -I- bXlX3 

f3 : cx~ + axlx2 + bx2xl . 

Table 3.1. Central extensions of  A 

Type (A) Number of moduli Number of moduli if l = 0 

A 5 2 
B 2 1 
E -1  - I  
H 0 0 
St -1  -1  
S~ 0 0 
S2 -1  -1  
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To find all simple extensions D, we must find all l and a such that (3.2) is 
satisfied for y = 0. First observe that x* = x since Q is the identity matrix. 
Hence i f  we write l = ( l b 1 2 , 1 3 )  t = H 3 x  for some 3 x 3-matrix //3 then the 
first equation in (3.2) says t ha t / / 3  must be symmetric. The second equation 
in (3.2) says that ~ may be chosen freely. Given such a and l (and hence 
A), by making a substitution o f  the form x --~ x + uz  we can transform A to 
an equivalent algebra in which a = 0. In general this will be possible in a 
finite number o f  ways. Since we may still perform the substitution z --* vz  we 
see that generically our equivalence classes are parametrized by projectivized 
symmetric 3 ! 3-matrices, i.e. a 5 dimensional family. I f  we now consider those 
with l = 0 then a may be arbitrary, and allowing for substitutions of  the form 
z ---* vz ,  it follows that these form a 2-dimensional family. 

Type  B Q = diag(1, 1, - 1 ) and the defining equations for A are 

f l  = x lx2  + X2Xl + X~ -- X 2 

f2  = x~ + x2xl + xlx2 - ax~ 

f3 -= x 3 x l  -- XlX3 A;- ax3x2 -- ax2x3 . 

Since we restrict ourselves to simple solutions we find from (3.2) that ~3 = 0 ,  
13 = 0, and there is a symmetric 2!2-matrix H2 such that (lz, 12) t = H z ( x l , x 2 )  t. 
We may  still perform the substitutions 

Xl ---~Xl q - U l Z  X2 " - ' ~ X 2 + U z Z  X3 --'+X3 (3.11) 

without destroying the simpleness of  our solution. We can use (3.11 ) to nor- 
malize to a = 0 in a finite number o f  ways i.e. now the equivalence classes 
are generically parametrized by projectivized symmetric 2 ! 2-matrices i.e. a 
three dimensional family. 

Type  E Q = diag((9,(4,(7)  and the defining equations are 

4 2 f l  = x3xl + ~ xlx3 + ~9 x2 
7 2 f 2  -~- XlX2 q- ¢5X2Xl + ¢9X3 

f 3  = ~9 X 2 + X2X3 + ~2 X3X2 . 

Corollary 3.2.4 applies, so D is equivalent to A[z].  

Type H Q = d i a g ( 1 , -  1, ~A) and the defining equations are 

f2 "=- XlX2 --  X2Xl -1- ~4 x2 

f 3  = xzx3 - (4x3xz . 

It follows from (3.2) that a2 = a3 = 0, 12 = 13 = 0 and Ii is a scalar multiple 
o fx l .  Making a suitable substitution x l  --~ x l  + u l z ,  x2 --+ x2, x3 ~ x3, z = vz  we 
can make ~3 = 0 also, and make this scalar equal to 0 or 1. Hence there is (up 
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to equivalence) a unique algebra D which is not o f  the form A[z]; it is given 
by a = 0, 11 = xl, 12 = 13 = 0. Finally, the extension with Ii = 12 = 13 = 0, 
a2 -- ~3 = 0 and al = 1 is not equivalent to A[z], and this algebra gives the 
unique D (up to equivalence) having no linear terms. 

Type  $1 Q = diag(ct, fl,(~tfl) -1 ) with ct and fl generic, and the defining equa- 
tions are 

f l  = x2x3 + af lx3x2 

f 2  ---- ~f3Xl ~- axlx3 

f3  = xlx2 + axZXl . 

Corollary 3.2.4 applies, so D is equivalent to A[z]. 

Type  S~ Q = diag(a ,a  - l ,  1) and the defining equations for A are 

f l  = x2x3 + a o t - l x 3 x 2  

f 2  = ~¢3Xl + aXlX3 

f3  = x z + xlx2 + ax2xl . 

This is similar to Type H. There is a unique algebra not o f  the form A[z] and 
it is equivalent to an extension with no linear term. 

Type  Sz Q = d i a g ( ~ , - a ,  ~ -2)  with ~ generic and the defining equations are 

fL = X3Xl -~- 0~-lxlx3 

f2  = x3x2 - ~- lx2x3  

f 3  = x - 

Corollary 3.2.4 applies so D is equivalent to A[z]. [] 

4 The point variety 

4.1 General  results  

Let T = k(xo . . . . .  xn) be the free algebra. I f  g is a homogeneous element of  
degree d in T then we will denote by g also, the image of  g in the commutative 
polynomial ring k[xo . . . .  ,x,] ,  i.e. g becomes a section of  (9(d) on IP = IP(T1*). 

On the other hand if 9 = E aijxixj then g (1,2) will denote the multilineariza- 
tion of  g in the sense of  [3]; that is, g (1'2) = E aijx i(l)x)(2) where (x~l))i,(x~2))i 
represent homogeneous coordinates on • corresponding to the basis (Xi) i of  
T~. Then g 0,2) defines a section of  ~(1, 1) on IP x IP. 

Suppose that D = T/(gl . . . .  , Ore) is a quadratic algebra. Then we will write 
FD for the scheme defined by (g~l'2))i=l,...,m. Thus FD C IP ! IP. Furthermore 
we define ~ o  = PrI(FD) C IP, the projection onto the first coordinate. 

Recall that a point module over D is a graded left D-module M0 ® Ml ~3--. 
generated in degree zero such that d imMl = 1 for all i >- 0. This definition 
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may, in an obvious way, be extended to families so as to define a functor 
from Sch/k to Sets (see [3]). Our definition of ~D may then be justified by 
the following specialization of a result in [3]. 

Theorem 4.1.1 Suppose that ~D = prl(FD) = pr2(FD) and that FD is the 
graph of  an automorphism aD : ~D --~ ~D. Then 

1. ~D represents the functor of point modules, and the truncation functor 
M ~-~ M>=I(1) is represented by tr -l. 

2. Every point module of  D is of  the form D/Dyl + ... + Dyn where 
(Yi)i ~ D1. The corresponding point in ~o  is given by the common zero 
of (yi)i. 

Proof 1. The first statement is given in [3, Corollary 3.13] and the remarks 
thereafter. 

2. Suppose to the contrary that M := D/Dyl + Dy2 + ... + Dyn is not 
a point module. It certainly maps onto the point module corresponding to 
~U(yl . . . . .  Yn), and hence (after shifting) has a cyclic subquotient, N say, with 
dim No = dim NI = 1 and dim N2 = 2. Choose elements eo, el, e21, e22 such that 
No = keo, N1 = kel, N2 = ke21 + ke22. Then there are points p, ql,q2 E D~ 
such that x • e0 = x(p)el and x • el = x(ql)e21 +x(q2)e22 for all x E D1. Since 
N is cyclic ql and q2 are linearly independent. Since N/ke22 and N/ke2t are 
truncated point modules of  length 3 the points (p, qt) and (p,  q2) (viewed in 
IP x IP) are both in Fo. But ql ~q2 and this contradicts the fact that FD is the 
graph of an automorphism of  ~D. [] 

I f  the hypotheses of  Theorem 4.1.1 apply (and they always will in the 
examples we consider in this paper) then we will call the pair (~D, ao)  the 
point variety of  D. I f  p E ~D then the corresponding point module will be 
denoted M(p).  Thus (4.1.1.1) says that M(p)_>_l(1) -- M(p  ~-~ ). 

Lemma 4.1.2 Suppose that (FD)red defines an isomorphism between prl(FO)red 
and pr2(FO)red. Then FD defines an isomorphism between prl(FD ) and pr2(Fo ). 

Proof This is a consequence of [3, Proposition 3.6]. I f  p E prl(FD) then 
the preimage of  p is (scheme-theoretically) a linear space, and by hypothe- 
sis is 0-dimensional. Hence the preimage consists of a single reduced point. 
Hence by the argument in [3] pr I is an isomorphism in a neighbourhood of  p. 
The same argument applies to pr 2, whence both projections are isomorphisms 
from FD. [] 

We will need the following result in the next subsection: 

Theorem 4.1.3 Suppose that D is an Artin-Schelter regular algebra with 
Hilbert series (1 - t )  -4. Suppose furthermore that (FD)red defines an isomor- 
phism between prl(FD)red and Pr2(FD)red. Then Prl(FD) = pr2(FD ) and FD 
defines an automorphism of  ~D = Prl(FD) 

Proof Let x = (xl, . . . ,x4) t be the generators of  D. It follows from the 
Gorenstein property, and the hypothesis that HD(t) = (1 -- t) -4 and that Dk 
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has a minimal resolution o f  the form 

X t 0 ,D ,D4P(X) D6Q(~D4-L~D---*k- - - ,O 

where we have written P(x),  Q(x) to emphasize the dependence on x. Hence 
RD is spanned by the entries o f  the vectors xtP and Qx. 

The fact that (FD)red defines an isomorphism means that if 0 + (  = ((l . . . . .  
(4) t E L 4 is a vector with entries in some field extension L/k then 

rkP(~)  >_- 3 and rkQ(~)  => 3 .  (4.1) 

We now show that for any local k-algebra R and any R-point (p~, p " )  o f  Fo 
there exist R-points of  the form (p, p~) and (p" ,  pro) in FD. 

Let p '  :=  x O) = (xl ~) . . . .  ,x] ' ))  E R 4, pit "= x(2) _~_ [Xl" (2),...,x4(2),) E R4" 
Then there is a complex 

e 4 P ( - ~ ) g  6 Q(x(2~)e 4 (4.2) 

However, using (4.1), we see that (4.2) is exact after restricting to the residue 
class field o f  R. Therefore (4.2) itself is split exact. Hence we may find x (°) = 

(0) (0).  x I , . . . , x  4 ) and x (3) = (x~3),..,x(4 3)) E R 4 such that 

0 --'---+ R x(°)t~ R 4 P(xO)~ ) R 6 

and 
R 6 Q ( ~ )  R 4 x (3) ----~ R ~0 

are exact and the _(0) ~(3) ~i ,~i are independent after tensoring with the residue class 
field o f  R. Putting p :=  x C°)t, pm : =  x(3)t yields the desired result. 

This shows that prl(FD ) = Pr2(Fo). The last assertion o f  the Theorem 
follows from Lemma 4.1.2. D 

4.2 Point varieties of  central extensions of three dimensional Artin-Schelter 
regular algebras 

In this section D will be a central extension o f  a three dimensional Artin-  
Schelter regular algebra A = D/(z) with Hilbert series (1 - t )  -3. We will use 
the notation o f  Section 3. 

In particular A = k(Xl,X2,X3)/(fl,f2,f3) where f = Mx. However in this 
section we will not assume that M is normalized in such a way that there 
exists a Q such that xtM = (Qf)t. The equations o f  D are 

g j ' = j ~ + z l j + o ~ j z 2 = O  j = 1,2,3 

z x i - x i z = O  i = 1 , 2 , 3  

where (lj)j,(~j)j satisfy the conditions o f  Theorem 3.1.3. 
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Recall that by [3] the equation of ~A is given by det M = 0. I f  det M is 
identically zero then one says that A is linear. Otherwise one says that A is 
elliptic because then de tM defines a divisor of  degree of 3 in ~e, i.e. a scheme 
of arithmetic genus one. 

Clearly ~A C ~ o .  Our aim will be to describe how much ~ o  differs from 
~A. To this end we have to introduce some auxilliary forms on IP(D~). 

Lemma 4.2.1 Let g = (gl,ge,g3)t,l = (ll,12,13)t,a = (al,~xe, a3) t and let Ml, 
Me,M3 be the columns o f  M, i.e. M = [MI Me M3]. Define 

h l = xl det M + z det [l Me M3] + z 2 det [~ Me M3] 

he = xe det M + z det [M1 l M3] + z e det [M1 ~ M3 ] 

h3 = x3 det M + z det [Ml Me l] + z e det [M1 Me a] 

Then hi is in the ideal generated by (gl,gz, g3). 

Proof  By definition hi = det[xlMl + zl + ~ze,Me,M3] (expand down the 
first column). Since f --- Mx = xlM1 + xeM2 + x3M3, it follows that hi = 
d e t [ f  +zl  + aze,M2,M3] also (we have just added to the first column a linear 
combination of  the other columns). But this is just hi = det[g, Me,M3] and by 
expanding down the first column, one sees that hi is in the ideal (gl,ge, g3). 
Explicitly 

hi =/~/ligl + )~'I2ig2 -}- ~13ig3 (4.3) 

where h4ij is the minor obtained by deleting the i 'th row and the j ' th  column 
from M. [] 

Theorem 4.2.2 1. The hypotheses in Theorem 4.1.1 hold for D. In particular, 
the point variety (~v,  ao) of  D exists. 

2. ~A = ~o  (3 ~U(z). On Po ;3 ~f~(z), go restricts to aA and on ~o  (3 
~'(z)C, aD is the identity. 

3. (-~D)red = (~-~A)red LJ "]/'(gl,g2, g3)red. 
4. The equations for ~n  are as follows: 

(a) On ~ D  f'] ~U~(Z) c : g l  = g2 = g3 -~ O. 
(b) On ~D fq ~ ( X i Y  : zgl = zg2 = zg3 = hi = O. 

5. Suppose that A is linear. Then there is a vector # (unique up to 
scalar multiples) o f  independent linear forms such that #tM = O. Define 
q :=  pt(l + az). Then the equations of  ~D are 

z q : z g l  : z g z = z g 3 = O .  

Furthermore q, gl, ge, g3 are related by the identity: 

zq = #tO. (4.4) 
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Proof The defining equations o f  Fo are 

MO)x (2) + I(1)z(2) + o~zO)z(2) = 0 (4.5) 

zO)x (2) - xO)z (2) = 0 (4.6) 

with the obvious notation. Because o f  (4.6) one can replace the lO)z (2) term in 
(4.5) by zO)l (2). It follows from these equations that ~D N 3V'(z (1)) is given by 
the equation de tM (l) = 0 which is the defining equation o f  ~A. On ~DN~U(z) c 
we can take z O) = 1, and it then follows from these equations that this part 
o f  ~D is defined by 9 °)  = 0. Thus (3) holds. Consequently the hypotheses 
for Theorem 4.1.3 hold. From this theorem we then deduce (1). The fact that 
Cz~ exists implies that ~A = ~D ~3 ~U(z) and that crD restricts to ~rA. It follows 
directly from (4.5) and (4.6) that crD is the identity on ~Dk'f/ '(z). Hence (2) 
is true. It remains to prove (4) and (5). 

Fix a point p E (~O)red with coordinates (xo,zo). Let (p,  pP) be the closed 
point o f  FD projecting to p. Write (xP,z p) for the coordinates o f  p'. We want 
to determine the equations in (x(l),z I1)) (locally around p)  such that there is 
a non-trivial solution to equations (4.5) and (4.6). 

Suppose that z0 4=0. Then z~4= 0 for otherwise (4.6) forces x p = 0 whence 
pP = (0,0)  which is absurd. Hence we may assume that z (1) = z (2) = 1 locally 
on FD around (p, pt). Then by (4.6) x (21 = x 0). Substituting this in (4.5) we 
get g(l) = 0, i.e. gl : g 2  ----- g3 = 0. This proves (4a). 

Suppose that (xo)l 4=0. Then we may assume that x~ I) = 1 locally around p. 
From (4.6) we deduce that z (2) = zO)x~ 2) on FD around (p, pP). By resubsti- 
tuting in (4.6) this gives z(1)(x(k2) -Xl(2)xk(l)) = 0 for all k. I f  p4=p' we may 
proceed as follows. As p 4= p' ~(2) ,.(2),.(1) some ~k -~1 ~, will be invertible in a neigh- 
bourhood of  (p, pP). Hence locally around (p, p') we must have z 0) = 0 and 
therefore FD has equations z (1) = z (2) ----M(l)x (2) = 0 around (p,  pP). As x (2) 
cannot be the zero vector, this implies that ~D has defining equations 

z O) = 0, de tM O) = 0 (4.7) 

around p. These equations clearly imply the equations o f  (4b). Conversely, as 
p 4= pP, p cannot be a common zero o f  the gi. So locally some g; is invertible 
giving z = 0 whence (4.7). This proves 4b when p4= pP. 

Suppose that p = pP. If  z 0 + 0  then as before gl = 92 = g3 = 0 whence 
also hi = 0 by the foregoing lemma. Hence the difficult case is when z0 = 0. 

So assume z0 = z p = 0 and x~ I) = x] 2) = 1 locally around (p, f f ) .  As 
before we have z (1) = z (2) and z(l)(x (2) - x  (1)) = 0 around (p ,p ' ) .  Define 
ek = x~ 2) - x~l); notice in particular that el = 0 in a neighbourhood of  (p, pt). 
The defining equations for Fo can be rewritten as 

M(l)x(l) + MO)e + lO)z(l) + ~(~)2 = 0 (4.8) 

zO)e = 0 (4.9) 

where e = (O, ez, e3) t. At p, the columns M~ I) and M~ 3) are linearly indepen- 
dent for otherwise MO)x (2) = 0 would have another solution with x~ 2) = 0 
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(contradicting the fact that p'  = p) .  So some 2 x 2 minor of  [M~I),M~ 1)] is 
invertible in a neighbourhood of p. Hence we can pick two equations of (4.8) 
and solve for e2,e3; substituting these in the other equation of  (4.8) yields the 
equations in (4b). 

For example suppose that M31 = m12m23 --m22m13 is invertible around 
p (we will drop the superscripts (1) temporarily). Then the first two equa- 
tions of (4.8) can be solved locally and give us formulas for e2 and e3 
viz. 

/~if3ZXl --/~31X2 -t" Z32z n t- K32 Z2 

M33x1 -- ~'/31x3 Jr- £332 -1- K332"2 

where L = [I, M2,M3], K = [e, M2,M3] and [~ij 
Substituting these values in the third equation of 

(m31/~(31 if- m32/~t32 + m33/~33)xl if- (/3/1~31 

= ~/3t e2 (4.10) 

= )~31/33 (4.11) 

and /(';j denote the minors. 
(4.8) gives 

q- m32L32 q- m33L33)z 

-i-(0~3/~/31 -I- m32/~32 -t- m33/~33)2 '2 = 0 .  

But this expression is simply det(M)Xl + det(L)z + det(K)z 2 = hi so hi = 0 
around p. If (4.8) is multiplied by z (z) and (4.9) is substituted, then one ob- 
tains zo O) = 0. This shows that the equations in (4b) do indeed vanish in a 
neighbourhood of p. 

Now assume that A is linear. Then ¢aA = IP(A~') -~ IP 2. We will write a for 
the linear automorphism of  Al which induces aa. We transfer this automor- 
phism to A1 by defining x~(p )  = x i (p  ~) where xbx2,x3 is the basis for Al. 
Because ira is the graph of a, it follows that f fM = 0 where 

j.LI ff--I ~7--1 o.-1 =(xt ,x2 ,x3 ). 

The uniqueness of # follows from the fact that rank M = 2 at all points of ~2. 
Since detM = 0 we also have(JF4[i,h)12i,iQ3i)M = 0. Since rankM = 2 at 
all points it follows that (Mli,  M2i,M3i) --- yl 2t for some linear form y. Pick a 
point p such that x i (p )  = 0. Suppose that { i , j , k}  = {1,2,3}. It follows that 
columns j and k of M are dependent at p~-l and hgnce that )(41i,Mzi and A?/3i 
all vanish at p~-l .  Thus these minors vanish along the line where x~' vanishes. 
Therefore 

(1~¢1i,1~12i,1~[3i ) t = X~ /2 (4.12) 

up to a scalar multiple. From the definition of q we have 

z q  = ~ t ( I z  At- 0t.Z 2) ~--- /.lt(g -- f )  = #t(g _ Mx)  =- #tg 

as claimed. By Lemma 4.2.1 we have 

hi =/~ / l ig l  -t-/~2i~2 -t-/~f3i~3 = xTlAtg ~ xTzq  . 

Using (4.4),(4.12) and (4.3) one deduces (5) from (4). [] 
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This theorem can be understood through its ensuing corollary: 

Corollary 4.2.3 Let 

f ~ (g l ,gz ,  g3) i fA  is elliptic 
Y 

I U(q, gi,g2,g3) i fA  is linear. 

Then there is an exact sequence 

0--~ (9r ( -1)  ~ 02o o (9~A ~ 0 (4.13) 

where 0 is the restriction map and q~ is induced by multiplication by z : 
r~U,(D~)(-- 1 ) ~ (gF(D~). 

Proof  If A is linear this follows directly from Theorem 4.2.2.5. If A is not 
linear then we may check the existence and exactness of (4.13) locally. Of 
course we use the open cover in Theorem 4.2.2.4. Notice that in the elliptic 
case, the fact that det M 4: 0, is used crucially on ~(xi)C. The result now follows 
from (4.2.2.4) and Lemma 4.2.1. [] 

Hence in a certain sense ~D is the union of ~A and the (scheme-theoretic) 
base locus of three or four quadrics. 

Remark 4.2.4 1. If  A is elliptic then Y represents the functor of  non-trivial 
one-dimensional representations of D, so it has a simple interpretation. The 
appearance of q in the linear case seems harder to understand. In the case 
of homogenizations of enveloping algebras of three dimensional Lie algebras 
~/'(q) was seen to represent codimension one Lie algebras [9] [10]. However 
it is not clear to us whether, in general, ~ ( q )  or ~/'(q, gl,g2,g3) represents a 
similar, easy to understand functor. 

2. Unlike the 3-dimensional case, the point variety may have embedded 
components. For example, if ~e~(gl, 92, g3) contains a zero dimensional compo- 
nent lying in ~e'(z). 

3. One of  the conclusions of Theorem 4.2.2 (through Theorem 4.1.1), 
namely that point modules for D are of the form D/Du + Dv + Dw, u, v, 
w E Da was proved in greater generality in [8]. In our case (i.e. for central 
extensions of  three dimensional Artin-Schelter regular algebras) it can also be 
easily proved directly. 

4. Theorem 4.2.2 seems to load to two different descriptions of  ~Dn~(xi)CN 
~(xj)~. It is a pleasant exercise, left to the reader, to check that these descrip- 
tions are the same. 

The defining relations for a 3-dimensional Artin-Schelter regular algebra 
can be described in geometric terms [3]: a tensor f E A1 ®A1 belongs to Ra if 
and only if  f vanishes on FA C ~72 x ~2. The next result shows that a similar 
result is true for D (at least when A is elliptic). 

Proposition 4.2.5 Suppose that D is a central extension o f  a three dimensional 
elliptic regular algebra A = D/(z)  with Hilbert series (1 - t )  -3. Then a tensor 
9 E D1 ® D1 belongs to Ro i f  and only i f  9 vanishes on Fo. 
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Proof I f  g E RD then g(FD) = 0 by definition. Conversely, suppose that 
g E Dl ® D1 and g(Fo) = 0. Write 

g = f  + l ® z + ~ z ® z ,  f EA I®A 1 ,  l E A 1 .  

In particular g vanishes on FA = FoNpr~ I(u/'(z))Npr~-l(~U(z)) whence f ERA. 
Hence after adding a suitable linear combination of the relations gl, g2, g3 to g 
we may assume that f = 0. Thus (l O) + ~zO))z (2) vanishes on Fo. 

The proof of  (4.2.2.4) showed that z (1) = z (2) on Fo. Thus (l O) + ~zO))z (1) 
vanishes on Fo and hence on ~D. We may drop the superscripts and say that 
( l + ~ z ) z  vanishes on ~D. By the short exact sequence (4.13) this implies that 
l+~z  vanishes on the subscheme Y = ~/r(gl,g2,g3). However, by Lemma 4.2.6 
below this scheme is not contained in a plane, so l + ~z = 0. Therefore the 
original g belongs to Ro. [] 

Lemma 4.2.6 The scheme-theoretic intersection of  three quadrics, gl, g2, (J3 
in IP 3, is not contained in a plane. 

Proof Suppose that the lemma is false. We may, without loss of  generality, 
assume that the three quadrics are independent. 

By assumption there is a linear form l such that ~V(gl,g2, g3) C ~/'(l). I f  
C(g l ,  g2, g3 ) is zero-dimensional then ~ ( g l ,  g2, g3 ) = ~U(gi, g2, g3 )n  ~ ' ( l )  can- 
not consist of  eight points (with multiplicity counted) since it is the intersection 
of three conics in a plane. Hence C(g l ,  g2, g3) is either a non-degenerate conic 
in 3e~(l) or contains at least a IP 1. 

Suppose that the linear system spanned by gl,g2,g3 contains a pair of  
planes, say "U(gl = uv). Then ~//'(l) D ~U(uv, g2, g3 ) D ~F'(u, g2, g3 )LJ3U( v, g2, g3 ). 
Suppose that ~t~(v)+~e~(l). Then on the plane ~ ( v )  the scheme theoretic 
intersection of  the conics ~(v ,  g2) and "U(v, g3) is contained in the line V(v,  l). 
Since the scheme theoretic intersection of  two coplanar conics can not be con- 
tained in a line it follows that ~ ( v )  = ~U(l). Similarly ~F'(u) = ~U(l). Thus 
the only possible pair of  planes in this linear system is the double plane Y/'(12). 

Suppose that ~t'(gt,gz, g3) is a non-degenerate conic. Then there exists a 
degree 2 form g, and linear forms xi, such that (up to a scalar multiple) 
gi = g + lxi. But then the linear system contains l(x~ - x 2 )  and l(xt - x 3 )  
which are independent since the gi are independent: This contradicts the last 
paragraph. 

Hence ~(gl,g2,g3) contains a line L. The set of  all quadrics in IP 3 con- 
taining L forms a lP 6. The subset of  quadrics which are the union of two 
planes, one of  which contains L, forms a 4-dimensional family in F 6. By 
assumption 91,02,93 spans a lP 2 in IP 6. Hence the linear system contains a pair 
of  planes, which by the above must be ~U(12). We may assume that gl = l 2. 
Since no linear combination of  g2 and g3 contains a plane, ~ ( l ,  g2,g3) is the 
intersection of  two independent coplanar conics that have a common line L. 
Hence ~ ( l ,  g2, g3) is L together with a point (possibly embedded). Specifically 
3U(l, g2, 03) is either ~t/" ( l , x y, xz ) or ~F- ( l , x y, x 2 ) where l, x, y, z are independent 
linear forms. In both cases ~/( l  2, 02, g3 ) will be strictly bigger than ~/'(l, 02, g3 ). 
This yields a contradiction. [] 
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Remark 4.2.7 1. We think that Proposition 4.2.5 is also true when A is linear. 
This would amount to showing that the scheme ~F'(q, g~, gz, g3) is not contained 
in a plane, but we don't  see how to do this. Presumably (4.4) will be important. 

2. Lemma 4.2.6 is probably a special case of a more general result, but we 
have not found an appropriate reference. 

3. In Remark 4.3.6 below we will show that there may be tensors 
g E DI ® DI which vanish on  (FD)red but are not contained in RD. This illu- 
strates the importance of considering the full scheme FD rather than just (FD)red- 

4.3 Explicit computations in the generic cases 

This section computes (the reduced part of) the point variety ~o.  For simplicity 
we sometimes restrict attention to the case where there are no linear terms in 
the relations of  D (i.e. ll = 12 = 13 = 0 in the notation of Section 3), because 
this allows us to use a well known classification o f  pencils and nets of  conics 
in the plane [20]. By Theorem 4.2'.2.3 (,~D)red = (,~A)red (-J Yf(gl,g2,g3)red SO 
to compute (~D)rcd we must compute the (reduced) base locus of  these three 
quadrics. Usually we will denote (~O)red by ~o  and if aD is defined then we 
will denote (aD)red by ao also. 

First, a general remark. 

Lemma 4.3.1 Let D = k(Xl . . . . .  xn)/(gl,...,gm) be a quadratic algebra. Write 
JVD for the linear system of quadrics in IP(D~) spanned by the ~K(gi). There 
is a bijection between the following five sets: 

1. base points of  A~; 
2. point modules which have a non-trivial 1-dimensional quotient module; 
3. two-sided ideals J of D such that D/J is isomorphic to a polynomial 

ring in 1 indeterminate; 
4. points of ( Fo A A)red where A C IP( D~ ) ! ~(  D~ ) is the diagonal; 
5. the fixed points of ao ( i f  aD is defined). 

Proof Write I for the ideal of  D generated by the image of the skew symmetric 
tensors in D. Thus D/I is the largest commutative quotient o f  D. It is clear 
that each base point gives a point module for 19/1 which is necessarily o f  the 
form D/J for some two-sided ideal J ,  and that such a point module has a 
non-trivial 1-dimensional quotient. Conversely if M is a point module with a 
non-trivial 1-dimensional quotient, then as in [8, Proposition 5.9], M ~ D/J 
for some two sided ideal J and D/J -~ k[X]. Since D/J is commutative I C J,  
whence M corresponds to a point in the base locus of A~. Hence there is a 
bijection as claimed. 

To verify the third statement, it suffices to observe that a non-trivial 
1-dimensional module is a quotient of a point module. This is easy, and is 
proved in [16, Proposition 2.2] (also see [8, Proposition 5.9]). 

The fourth and the fifth statements are clear. [] 
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Table 4.1. Pencils of conics 

Type s d b 

3 0 4 
/~ 2 0 3 
y 2 1 2 
3 1 0 2 

1 1 1 
e oo 0 1+oo 

c~ 2 1 
r/ oo 1 oo 

Table 4.2. Nets of conics 

Type d b locus of the singular conics 

A 0 0 
B 1 0 
B* 0 1 
C 1 1 
D 2 0 
D* 0 2 
E 3 0 
E* 0 3 
F 2 1 
F* 1 2 
G 2 1 
G* 1 2 
H 1 1 
I 0% 1 
I* 1 oo 

smooth cubic 
cubic with a node dl 
cubic with a node 
cubic with a cusp dl 
conic+line intersecting in 2 dl 
conic+line intersecting twice 
triangle with vertices dl 
triangle 
line+double line containing 2 dl away from intersection 
conic+tangent line meeting in dl 
line+double line containing 2 dl including intersection 
line+double line containing dl away from intersection 
triple line containing one dl 
plane containing conic of dl 
plane containing one dl 

We will use the classification o f  pencils (i.e. 1-dimensional linear systems) 
o f  conics in 1P 2 (classical)  and nets (i.e. 2-dimensional linear systems) o f  conics 
in IP 2 (obtained by C.T.C. Wall  [20]). Tables 4.1 and 4.2 be low summarize 
the results; more details can be found in [20]. 

Penc i l s  o f  C o n i c s  Over  k there are 8 types o f  pencils o f  conics in IP 2, see e.g. 
[20, Table 0]. We will use the following notation for them (differing from that 
o f  Wal l ) :  

s is the number o f  singular conics in the pencil, 
d is the number o f  double lines in the pencil, 
b is the number o f  basepoints o f  the pencil,  
oo denotes a line. 

We remark that the base points in type fl are not collinear, and no 3 o f  the 
basepoints in type ct are collinear. 

Nets  of  Conies Over k there are 15 types [20, Table 1 and Table 2] o f  nets o f  
conics. This classification is determined by  the type o f  the discriminant curve 
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which is a divisor of  degree 3 (in all except two cases). As before d is the 
number of  double lines in the net of conics, b is the number of  basepoints of 
the net and the last column of Table 4.2 describes the discriminant locus and 
which points of  it are the double lines (our abbreviation for 'double line' is 
'dl '). We denote a conic by c~c. 

The baselocus is collinear for all nets except those of type E*. 
It seems to be a delicate problem to determine which nets of  conics can oc- 
cur as JffA for a three dimensional Artin-Schelter regular algebra A. However, 
for generic Artin-Schelter regular algebras one can use the defining equations 
(given in Section 3.2) to determine the type of JffA. First, however, we re- 
mark that if A is a generic Artin-Schelter regular algebra of type B then the 
linear system ~ is a pencil of conics (rather than a net) of  type ~. One 
obtains: 

For non-generic algebras other types of  Jff~ can occur. 

Example  4.3.2 There are 3-dimensional Artin-Schelter regular algebras A such 
that ~ has net-type A , B , D , E  and I*. 

Take for A the enveloping algebra of  a (3,3)-quadratic Lie algebra, in the 
terminology of [5]. By [5, Proposition 1.7] they are 3-dimensional Artin- 
Schelter regular and by [5, p. 163] the net-types A , B , D  and E occur. To 
be specific, let A =- IE[x, y ,z] .  If the defining relations are x y  + yx  = 
yz  + z y  = zx + xz = 0 then Type(JffA) = E. I f  the defining relations are 
x 2 - z 2 = x y  + yx  = xz + zx - 2y 2 + b x  2 = 0 then Type(~4'~) = B when b 2 = 1, 

Type(~UA ) : D when b = 0, and Type(JUA) = A when b 2 4= 0, 1. 
Now let A = ~E[x, y,z] with relations x y - 2 y x  = y z - A z y  = z x - x z -  y 2 = 0 

with 0 4= 2 E IE. It follows from the Diamond Lemma that A has Hilbert series 
(1 - t) -3, and that y is a normal 1-regular element with A/ (y )  a polynomial 
ring. Since there is a q~ E Am(A) such that yd  = q~(d)y for all d E A1, we 
may apply Theorem 2.6, to see that A is Koszul, and hence Artin-Schelter 
regular. It is clear that ~ is of  type I*. 

Now we will determine ~o  for central extensions of generic Artin-Schelter 
regular algebras with no linear terms. The first case we discuss is that of  a 
polynomial extension. 

P r o p o s i t i o n  4.3.3 Let  A be an Art in-Schel ter  regular algebra with HA(t) = 
(1 - 0 -3 ,  and let D = A[z] be the polynomial  extension o f  A. Then PD is 
the union o f  PA and the cone over the base locus o f  JVA (which lies in 3V(z)) 
with 'center'  (0, O, O, 1 ). In particular: 

o f  type A or E then ~A has no base points, so PD = 1. i f  A & generic 
PA u {(o, o, o, I)}; 

2. i f  A is generic 
union o f  P.4 and four  

o f  type B then JVA has four  base points, so PD is the 
lines through (0, O, O, 1 ). 

3. i f  A is generic o f  type H or S~ then PD is the union o f  PA and two 
lines through (0, O, O, 1 ); 
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4. if  A is generic of  type $1 or $2 then Po is the union of PA and three 
lines through (0, O, O, 1 ). 
Proof Since the extra relations for D are all of  the form az - za for a E A1 
and these all map to zero in the symmetric algebra S(D1), the equations of  
the quadrics in JV'D are the same as the equations for the conics in ~MA. Hence 
each quadric in Jffo is the cone (with center (0, 0, 0, 1 )) over the corresponding 
conic in ytrA. Hence the base locus of  ~MD is the cone over the base locus of  
JffA. Now apply the previous result. Each of  the four cases is obtained by using 
Tables 4.1 and 4.3 to compute the baselocus of  ~ .  [] 

Remark 4.3.4 By Theorem 3.2.6, i f  A is a generic 3-dimensional algebra o f  
type E, S1 or $2 then every central extension o f  A is trivial i.e. it is a polynomial 
ring D = A[z]. Hence the previous result describes the point modules for D 
when A is generic o f  type E, SI, $2. 

We now attend to the case when D is a non-trivial extension of  A having 
no linear terms in z in the defining equations (i.e. l = 0 in the notation of  
the previous section). However,  first we require the following result in order 
to compare ~Uo and JffA. 

Proposition 4.3.5 Let xo,xt,x2,z be homogeneous coordinates on IP 3. Fix 
linearly independent quadratic forms ql,q2,q3 E ll~[xo,x~,x2] and scalars 
• 1,~2,~3 E C which are not all zero. Define conics Ci = f/'(qi) in IP 2 and 
quadrics Qi = fr(qi + ~ti z2) in IP 3. Let ~ (respectively .~o) denote the 
net of  conics (respectively, quadrics) generated by C1,C2,C3 (respectively, 
Q1,Qz, Q3). Suppose that Jff~ is not of  type 1 or 1". Then 

1. the locus of  singular quadrics in ~ is a degree 4 divisor of the form 
L + A where: 

(i) L is the pencil of  quadrics in JffD which contain (0, 0, 0, 1 ); 
(ii) A is isomorphic to the locus of  singular conics in .YffA; 
2. all the quadrics in L are singular: they are the cones with center 

(0, O, O, 1 ) over the conics in a pencil L' C ~MA; 
3. i f  L' has b~ basepoints and JffA has b2 basepoints, then ~ has 2bl -b2 

basepoints; 
4. the number o f  basepoints of  ~ which do not lie in f / ( z )  is 2(hi--bE).  

Table 4.3. Net types for generic 
Axtin-Schelter regular algebras 

Type(A ) Type( ~ ) 

A A 
B 
E A 
H F* 
SI E* 
S~ D* 
$2 E* 



A r t i n - S c h e l t e r  a l g e b r a s  1 9 9  

For each pair ( ~ , L ' ) ,  Table 4.4 below gives the number of  points & the 
baselocus of ~o.  ooc denotes a plane conic and oos denotes a line pair. A 
blank entry means that the pair (JVA,L') cannot occur. 

Proof. Let M~ be the symmetric 3 x 3 matrix corresponding to the conic Ci. 
Then the symmetric 4 ! 4 matrix corresponding to the quadric Q -- ~Q1 + 
~ Q 2  + T Q 3  in YD is 

( ~/II + flM2 + TM 3 0 ) . 
0 ~1 + fl~2 + 7~3 

The singular quadrics Q c ~ are those for which the determinant of this 
matrix vanishes. This determinant is 

(~X~Xl + j~0~2 + y 0 ~ 3 )  • d e t ( ~ / l  + 13Mz + y M 3 )  

and since A is not of type I on I*, det(~Ml +/~M2 + 7343) does not vanish 
identically. The first two parts of  the proposition follow at once. 

We may choose the basis for ~h/j such that QI and Qz pass through 
(0, 0, 0, 1) and hence determine L. Then L' is the pencil spanned by Cl and 
(72. Now Q1 n Q2 consists of bl lines through (0, 0, 0, 1) and the basepoints 
of  L'. A simple calculation shows that the third quadric Q3 intersects each of 
these lines in two distinct points, neither of which lies in qr(z), unless the line 
passes through a basepoint of  JVA; in that case Q3 meets the line at a single 
point with multiplicity 2, and that point lies in C(z) .  This gives the number 
of basepoints for Aq9 and also counts those which don't lie in ~'(z). 

To illustrate how Table 4.4 is obtained we discuss the row labelled F*. 
From [20, Table 1], we may choose coordinates such that the net JVA is all 
Lv0 2 + 2/ZXoXl + v(x~ +x  2) for (2,/~, v) E IP 2. The locus of singular conics is the 
union of a conic C :-- ~/r(2v - p2) and the tangent line d := ~e-(v) to C at the 
point x0 2. The only double line in the net is x0 2. There are two basepoints, Pt 
and P2 of ~ .  The tangent line f is spanned by x~ and 2x0xl. 

T a b l e  4 . 4 .  B a s e l o c u s  o f  JVo f o r  t h e  p a i r  ( J V A , L ' )  

A 8 6 - 4 . . . .  
B 8 6 4 4 2 - - - 
B *  7 5 - 3 . . . .  
C 7 5 3 3 1 - - - 
D 8 6 4 - 2 - 2 - 
D *  6 4 - 2 - 2 + oo~ - - 
E 8 - 4 - - - 2 - 
E *  5 3 - - - 1 + c ~  - - 
F - 5 3 3 - 2 + OOs 1 - 
F *  6 4 2 . . . .  OOc 
G - 5 3 - 1 - 1 oos  
G *  - 4 2 2 - 1 + OOs - o o c  
H - - - 3 1 - - O~s 
I . . . . . .  1 oo~ 
I *  . . . . .  2 + c o  - o o  
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Now L determines, and is determined by a pencil in JffA, which we label 
L'.  There are 4 possibilities for L': (i) L'  is in general position relative to 
A = C U f;  (ii) L ~ # ~  is tangent to C; (iii) L ' # E  passes through x02; (iv) 
L' = f. In case (i) IL' n A I = 3 and L ~ has no double lines, so Type( i f )  = 
and bl = 4. In (ii) [L ~ n AI = 2 and L ~ has no double lines, so Type(L' )  = fl 
and bl -- 3. In (iii) tL'NAt = 2 and L ~ contains 1 double line, so Type( i f )  = 
and b2 = 3. In (iv) every conic in L ~ is singular and L' contains 1 double line, 
so Type(L ' )  = r/. 

Suppose that Type(L ' )  = ~. Let Pl,  P2, P3, P4 be the basepoints of  L' .  Then 
the basepoints o f  X o  consist o f  pl,p2 lying in ¢~(z), two points on the line 
through P3 and (0, 0, 0, 1 ), and two points on the line through P4 and (0, 0, 0, 1 ). 
Of  these the 4 not lying in ~ ( z )  are coplanar. This gives the entry in (F*,~).  
The cases (F*,f l )  and (F* ,v)  are similar. Now suppose that Type(L' )  = r/. 
Then JVo is spanned by  ql = Xo 2, q2 = 2XoX2 and q3 A- z 2 where q3 E C. It is 
clear that the baselocus of  ~ lies in the plane xo = 0 and is the intersection 
of  this plane with the quadric q3 -4- z 2 -~ 0. This gives the (F*,  r/) entry. [] 

Remark 4.3.6 I f  D is not o f  type (A,~),(A, fl),(B,~t),(B, fl),(B*,~),(C,~), 
(D,~),(D, fl) or (E, ct), then there are tensors in D1 ® D1 which vanish on 
(FD)red, but which do not belong to Ro. In particular, in all except the above 
nine cases, there is a linear form u such that 0 =1= uz vanishes on ¢/~(g~, g2, g3 )red, 
and hence on PP. Therefore u ® z  vanishes on (FD)red but u ®z dfRD. Contrast 
this with Proposition 4.2.5 above, which says that the defining relations of  D 
are precisely the tensors in D1 ®D1 which vanish on (the non-reduced scheme) 
FD. In Proposition 4.3.9 we prove that such situations can occur when D is a 
central extension of  a type A Artin-Schelter regular algebra, and in particular 
when A is elliptic. 

The point variety for the central extensions of  generic Artin-Schelter regular 
algebras can be determined with the help of  Table 4.4. 

Proposition 4.3.7 1. I f  A is generic of  type A and D is a generic central 
extension of . i ,  then PD is the union of  PA and eight additional points. 

2. I f  A is generic of type B, and D is a generic central extension of A, 
then PD is the union of  PA and an elliptic space curve of degree 4. 

3. I f  A is generic of type H, and D is the .unique non-trivial central 
extension of A, then Po is the union of  PA and a plane conic. 

4. I f  A is generic of  type S( and D is the unique non-trivial central ex- 
tension of A, then PD is the union of  PA, a plane conic and two additional 
points. 

Proof By Theorem 4.2.2.3, Po = PA U {basepoints o f  YD}, so we have to 
compute this base locus. 

A genetic type A algebra is a Sklyanin algebra (see below).  In Proposi- 
tion 4.3.9 we discuss the "constant" central extensions of  a Sklyanin algebra. 
We find that in type (-4, ~) there are eight additional points. Since eight is the 
maximum by Bezout ' s  theorem, a genetic central extension will  also have eight 
additional points. 
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Suppose now that A is generic of  type B. It follows from Theorem 3.2.6 
that D = k[xl,x2,x3,z] has defining relations of  the form f l  + z(bxl + cx2) + 
cq z 2, f2  + z( cx l + dx2 ) + ct2z 2, f3  where ct, b, c, d, cq, ct2 E k and f l , f 2, f3 are 
the defining relations for A given in Theorem 3.2.6. Since f3  is a symmetric 
tensor, it follows that .Aro is the pencil of  quadrics spanned by 2xlx2 + x 2 - 
x] +z(bxl + cx2) + ~lz 2 and 2xlx2 + x  2 - ax ] +z(cxl + dx2) + ct2z 2. Since the A 
and D are generic, the scalars a, b, c, d, 0q, ~z2 are in general position. It follows 
that the intersection of these two quadrics is a smooth elliptic curve (cf. [ 17, 
Proposition 2.5]). 

Now suppose that A is generic of  type H or S~. By Theorem 3.2.6, A has 
a unique non-trivial central extension and it has no linear terms in z (i.e. l = 0 
in the notation of the previous section). Hence ~ is obtained from ~ as in 
Proposition 4.3.5. One verifies that the pair ( ~ , U )  is of type (F*, q) if A has 
type H and is of  type (D*,e) if A is of type S I. One may now read off the 
description of the base locus of  ~ from Table 4.4. [] 

Recall that a three-dimensional Sklyanin algebra [13][14] is an Artin- 
Schelter regular algebra, with Hilbert series (1 - t )  -3 such that PA is a smooth 
cubic and trA is translation by a point which is not 3-torsion. We will take 
as defining equations of a Sklyanin algebra, the equations given for generic 
Type A algebras in Theorem 3.2.6. 

It is easy to see that a Sklyanin algebra is of type A and furthermore a 
type A algebra is a Sklyanin algebra if  and only if (3abc) 3 @(a 3 4- b 3 + c3) 3 
(with notation as in Theorem 3.2.6). 

Lemma 4.3.8 I f  A is a 3-dimensional Sklyanin algebra, then 

1. ~ is a basepoint free net o f  conics; 
2. JVa is either o f  type A or type E. 

Proof It follows from Lemma 4.3.1 that ~ is basepoint free, since trA does 
not have a fixed point. Hence JVa cannot be a pencil of conics. Since A has 3 
defining equations it follows that ~ is a net of  conics in IP(A~') ~ IP 2. 

A basis for ~ consists of  the conics 

ax 2 + 2gXtX2 = 0, ax~ + 2gxox2 = 0, ax2 2 + 2gxoxt = 0 

where g = !(b + c). The discriminant divisor has equation 

(a 3 + 2g3)xox,x2 -ag2 (x  3 ..t- x~ .-l-x3). 

It is an easy exercise to see that there are precisely 4 singular curves in the 
pencil of  cubics 2X0XlX2 +/~(x03 +x~ +x~)  and that these are given by/~ = 0 
and (2/#) 3 = 27. Each of these singular curves is a triangle. 

Hence, when the discriminant curve is smooth Type(Jffa) = A and when it 
is not smooth Type(JVA)= E since the net is basepoint free. [] 

Proposition 4.3.9 Let A be a 3-dimensional Sklyanin algebra and D a non- 
trivial central extension of  A having no linear terms in z. Then Po is the 
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Table 4.5. Types of ./Vo for Sklyanin algebras 

Type geometry (C + L) points 
(~1,~) 
(A,/D 
(A, 6) 
(E,(z) 
(E,y) 
(E,~) 

elliptic curve + transversal line 8 
elliptic curve + tangent in non-flex 6 
elliptic curve + tangent in flex 4vp 
triangle + line avoiding vertices 8 
triangle + line through 1 vertex 4 w 
triangle + baseline 2vp 

union o f  PA and either 2, 4, 6 or 8 additional po&ts  accordin9 to the type o f  
(JVA,L') determinin9 the net o f  quadrics ,Wo: 
Each o f  these cases does occur. 

P r o o f  By Lemma 4.3.8, JV~ is either of  type A or E. Table 4.4 then gives 
the possibilities for the type of  U. We give examples to illustrate that each 
possibility does occur. Let D be the algebra determined by the equations: 

ax~ + bx2x3 + cx3x2 + dz  2 = 0 

a x  2 + bx3xl  + CXlX3 + ez 2 = 0 

ax~ + bxlx2 + cx2xi + f z  2 = 0 

and z central. Set g : -  J(b + c) and N := a 3 + 2g 2. 

Type a b c d e f 

(A, fl) a b c Nac - 3a3g 2 Nac - 3b3g 2 Nab - 3c3g 2 
(A, 6) a b c -3ag 2 3ag 2 0 
(E,7) a b - b  1 1 0 
(E, ~) a b -b  1 0 0 

Types (A, ct) and (E,c 0 arise when d , e , f  are generic. [] 

5 The line modules 

This section classifies the line modules for central extensions of  3-dimensional 
Artin-Schelter regular algebras. Section 5.1 handles the general case, and 
Section 5.2 specializes to the extensions in which l = 0. Throughout this sec- 
tion D is a central extension of  an Artin-Schelter regular algebra A = D / ( z )  
with Hilbert series (1 - t) -3. 

The key result is Theorem 5.1.6. The statement of  the theorem involves 
certain quadrics Qp, one for each p ~ ~A. Each Qp passes through p and 
belongs to linear system JVo introduced in Section 4. The Theorem states that 
the line modules for D correspond to the lines in 3e'(z) and the lines lying 
on Qp which pass through p. The line modules of the first type are precisely 
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those line modules which are A-modules, so this is the trivial case. Hence a 
finer analysis o f  the line modules reduces to the analysis o f  the Qp e.g. its 
rank etc. 

5.1 General results 

Notation. We will just write a for the maps ffA,tTD,(ffA)red and (OD)red. 
Recall that a graded D-module M is a line module if  M is cyclic and has 

Hilbert series H~t(t) = (1 - t) -2. Obviously the best thing would be to deter- 
mine the structure o f  the scheme (a Hilbert scheme) representing the functor o f  
line modules, as we did for point modules. Unfortunately, our methods are not 
sufficient to treat this problem. Instead we classify the line modules directly. It 
will be clear that they occur in certain families, which would correspond to the 
irreducible components of  the Hilbert scheme. However, we make no attempt 
to formalize this point. 

Since D has all the good properties stated in Corollary 2.7, the results in 
[8, Sect. 2] apply. These are summarized in Proposition 5.1.1. 

Proposition 5.1.1 Let D be an Auslander regular noetherian domain with 
Hilbert series (1 - t) -4 and suppose that D also has the Cohen-Macaulay 
property. 

1. Every line module M for  D is a critical module o f  GK dim(M) = 2, 
multiplicity e ( M ) =  1 and is a Cohen-Macaulay module. 

2. Every line module is o f  the form D/Du + Dv for some u, v E D1. 
Consequently, the line modules are in bijection with certain lines ~U(u, v) in 
Ip 3 = lP( D~{ ). 

3. I f  M is a line module for  D, then there is a unique (up to scalar 
multiples) element a ® u - b ® v E Ro such that M ~ D/Du + Dr. Conversely, 
i f  RD contains such an element then D/Du + Dv is a line module. Thus there 
is a bijection between line modules for  D and the projectivized space o f  rank 
2 tensors in RD. 

Proof Most o f  this is in [8, Proposition 2.8], and all that remains to be shown 
is that the element a ® u - b ® v is unique (up to scalar multiples). Suppose 
that M ~ D/Dui + Dvi (i -~ 1,2) and that ai ® ui - bi @ vi E RD. Since 
ku~ + kvl = ku2 + kv~ it follows that a2 ® u2 - -  b2 ® v2 = a3 ® ul -- b3 ® Vl 
for some a3,b3 E D1. Hence in D we have alul = blvl and a3ul = b3Vl. I f  
al -- #a3 for some # E k then it follows that bl = pb3 also since D is a 
doma in - the  'uniqueness'  now follows. Hence the result is true if  kal = ka3 
or if kbl = kb3. 

Suppose that kal =~ka3 and kbl +kb3. By [8, Sect. 2], Ext~(M,D)(2)  is a 
right line module, and is isomorphic to D/a1D + biD and to D/a3D + b3D. 
Hence kal + kbl = ka3 + kb3 and therefore kal + ka3 = kbl + kb3. I f  we write 
W for this vector space, then Wul = Wv~. Using the fact that D is a domain, 
we may define a linear map ~k : W ~ W by wvl = ~b(w)ul. However, if 
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w is an eigenvector of  ~b then it follows that w is a zero divisor in D. This 
contradicts the fact that D is a domain. [] 

There are some obvious line modules: every line module for A = D/(z) 
is a line module for D. By [4] these line modules are in bijection with the 
lines in IP 3 = P(D~') which actually lie in q/'(z). Indeed, since a line module 
M is critical, either z .  M = 0 or z acts as a non-zero divisor on M. I f  
z • M = 0 then M is a line module for A, so it is the others which we must 
classify. These line modules are closely related to point modules over A for the 
following simple reason. I f  the line module M({ )  = D/Du + Dv corresponds 
to a line Y = "U(u,v) which does not lie in the plane ~U(z) then M/zM is a 
point module for A; that is g ~ ~ ( z )  E ~A. 

Just as line modules for D correspond to rank 2 tensors in Rm, so too do 
point modules for A correspond to rank two tensors in RA. That is, if  u,v E A1 
are linearly independent, then {p} = ~lF(u,v,z) belongs to ~A if and only if 
there exist a, b E A1 such that a ® v - b  ® u ERA. This rank 2 tensor is uniquely 
determined (up to a scalar multiple) by p; this may be proved as in (5.1.1.3) or 
as a consequence of (5.1.2.2). Define pV as ¢f(a, b,z). Clearly pV is uniquely 
determined by p. It should also be remarked that pV may be characterized by 
the fact that Ext](M(p) ,A)(2)  is the right point module corresponding to pV. 

Proposition 5.1.2 Let a ® v - b ® u ERA with ~U(u, v,z) = p. Then 

1. There is an exact sequence 

0 -* A /Aa ( - 1 )  --* A/Au --~ A/Au +Av  --~ O. 

2. I f  ~U(u,z) is contained in ~A then ~ ( a , z )  = ~U(u,z) a-1. Otherwise let 
S = 7U(u,z)M ~A. This is a scheme o f  lenqth 3 which is the direct union of  
the spectra o f  serial k-alqebras. Then ~U(a,z) is the unique line containin9 
( S -  p)~-~. Furthermore, in this case pV is the point in ~ ( a , z )  N ~A, not 
contained in (S - p)  a-l. 

3. I f  p is f ixed then a and u determine each other up to a scalar multiple. 
4. I f  A is elliptic then pV = (pn-l)~- i  where q is as defined in [4,(6.26)]. 

I f  A is linear then pV = p~-~. 
5. The map p -o pV is an automorphism of  ~A as a k-scheme. This 

automorphism commutes with ~. 

Proof 1. The existence of the complex is clear. The exactness follows from 
the fact that line modules are critical. 

2. This is [4, Prop. 6.24] translated to left modules. (Actually [4, Prop. 6.24] 
was stated for elliptic A, but the slight generalization given here is proved in 
the same way.) 

3. Clear from (2). 
4. I f  A is elliptic this follows from (2) and [4, Prop. 6.24]. I f  A is linear 

then according to (2), pV lies in ~ ( u , z )  ~-1 n V ( v , z )  ~-~ = p~-~. 
5. This follows from (4) and [4, (6.26), Lemma 5.10(ii)]. [] 
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Definition 5.1.3 Let p E ~A C :U(z). Choose a,b,u,v E A1 such that 
p = ~l/~(u,v,z) and a ® v - b ® u  ERA. Let l E At, 2 E k be such that 
a ® v - b ® u +  l ®z  + 2z®Z E RD. 

Define the scheme Qp :=  ~ ( a v  - bu + Iz + ~z 2 ) C ~(O* ). It follows from 
(5.1.1.3) that Qp is uniquely determined by p. 

Lemma 5.1.4 I f  p = pV then *i/-(z) is tangent to the scheme Qp at p. 

Proof Since p = pV, the defining equation o f  Qp is 

(~u + [3v)u + (~u + 6v)v + lz + Lz 2 = 0 

for some 1 E A1 and some ~,/3,7,6,2 E k. I f  (ccu + flv)u + (Tu + 6v)v = 0 
then the result is obvious. I f  (~u + [3v)u + (yu + 6v)v+-O then "U(z) M Qp = 
~tr((~u + ~v)u + (Tu + 6v)v) is singular (as a scheme) at ~ ( u , v , z )  = p. Since 
~/F(z) f3 Qp is singular it follows that ~U(z) is tangent to Qp at p. [] 

Lemma 5.1.5 Let p E ~A such that p~:pV. Then there is a unique (up to 
a scalar multiple) u E A1 such that p E ~U(u) and such that there is a rank 
two tensor in R,4 

(~u + ~ v ) ® v +  w ® u  (5.1) 

with p = 'U(u,v,z) ,(u,v,w) E Al, linearly independent and ~,~ E k. Subject 
to p = :U(u, v,z), v may be chosen freely. 

Let l E A l, 2 E k be such that 

(~u + f l v ) Q v +  w ® u  + l ®z  + 2z ®z  E Ro 

and write l = llu + 12v + 13w. Then 13 is uniquely determined by p and u. 

Proof Let a ® v - b ® u  ERA with p = ~U(u,v,w). I f a ( p )  = 0 then a E ku+kv. 
I f  b (p )  = 0 then we may relabel a,b,u,v so that a E ku+kv .  If  a ( p ) 4 : 0  and 
b(p)+O then for some 0~e# E k(a+#b)(p)  = 0 and ( a +# b )Qv -b ®(u +# v )  E 
RA and a+#b E k(u+#v)+kv .  Hence RA contains a tensor (~u+[3v)Qv+w®u 
with p = ~(u ,  v, w). Since ~ ( ~ u +  [3v, w,z) --- pV+_ p it follows that u, v, w are 
linearly independent. Clearly ~u +/~v is unique, up to a scalar, since it must 
be zero on p and pV. By Proposition 5.1.2.3. u is therefore unique up to a 
scalar. 

It is clear that we may substitute v --* 61v + 62u, ~ CO, without changing 
the form of  (5.1). Hence v is arbitrary. Furthermore under such a substitution 
w is transformed to a sum of  w and a linear combination o f  u and v. Hence 
the coefficient in l o f  this new w will not change. [] 

Theorem 5.1.6 Let p E ~A C ~(z ) .  A line throuoh p corresponds to a line 
module i f  and only i f  it is contained in either ~U(z) or in Qp. 

Proof Let L be a line through p, not lying in ~U(z) and corresponding to 
a line module. Choose u,v E A1 such that "U(u,v,z) = p. Then there exist 
scalars #, r/ such that L = ~U(u + pz, v + qz). Since L corresponds to a line 
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module there exist a,b E Al, ~,~ E k such that 

(a + az) ® (v + qz) - (b +/~z) ® (u + pz) E RD 

which implies that Qp = ~ ( ( a  + v.z)(v + qz) - (b + ~z)(u + pz)). Hence 
L C Q p .  

Conversely, suppose that L = q/ ' (u+pz,  v+t/z) lies in Qp and not in ~/r(z), 
and that p = q/(u,v,z).  We will show that L corresponds to a line module. 

Suppose first that p = pV. I f  Qp = IP 3 then u ® v - v ® u E R~ so 
(v + t/z) @ (u + #z) - (u + pz) ® (v + t/z) E RD whence L corresponds to a line 
module. Now suppose that Qp+]p3. Then there exist l E A~ and ~,/~,7,6,2 E k 
such that 

f'l :=(~u + [3v)®u + (Tu + fiv)@v + l ®z  + 2 z ® z  E RD . 

Hence 
Qp = 3¢~((o~u + [~v)u + (Tu + fiv)v + lz + 2z2). (5.2) 

I f  p is a smooth point of  the scheme Qp then any line on Qp passing through 
p is contained in the tangent plane to Qp at p. By Lemma 5.1.4 this tangent 
plane is ~/f(z), so L C u/'(z) which contradicts the hypotheses. Hence Qp is 
not smooth at p, from which it follows that l E ku+kv .  Thus f~ E k(u,v,w). 

Now define f~,  f~  by 
f~  : = z ® u - u ® z ,  

f~ : = z ® v - v ® z ,  
and define A' = k(u,v ,z) / ( f ' l , f ' z , f '3) .  Then A' is a 3-dimensional Artin- 
Schelter regular algebra, because A'/(z)  is 2-dimensional regular and Theo- 
rem 2.6 applies to A'. Furthermore ~ a '  C lP(A]*) is given by 

z((o~u + [3v)u + (Tu + 6v)v + lz + 2z 2) = O . 

On the other hand, L lies in Qp, given by (5.2). This means that 

A'/A'(u + pz) + A'(v + t/z) 

is a point module for A'. Consequently there exist a, b E A' 1, such that 

a ® (v + qz) - b ® (u + pz) E RA, C RD 

This shows that L determines a line module. 
Now suppose p + p V .  We may assume that u, v, #, q were chosen so that 

there is a tensor of  the form 

( o t u + [ 3 v ) ® v + w ® u + ( l l u + 1 2 v + l s w ) ® z + 2 z ® z  (5.3) 

in RD. Hence Qp = 3~((~u + [3v)v + wu + (llu + lzv + 13w)z + 2z2). Since 
L C Qp this implies that / t  = 13 and 

q ( . a  + / ~ )  - l~# - 12~ + 2 = o .  



Artin-Schelter algebras 207 

Now by adding a term of  the form h ® z - z ® h  to (5.3) we obtain that 

(O~U -1- fly + (12 -- flq)Z) @ (V "+" tlZ ) + (W q- ( li -- ~l~)Z) ® (U q- p.Z) E RD 

which shows that L represents a line module. [] 

Proposit ion 5.1.7 Let p E ~A, and assume that the equations of  D are in 
standard form (as in the previous sections) 

g := f + lz + o~z2 = O 

ZX -- XZ = 0 , 

where g = (g~,g2,g3)', l = (fi,12,13)% f = (f,,f2,f3) ~, x = (x~,x2,x3)', 
f = Mx, and xtM = (Qf)t .  

Let ~ = (~1,ff2,~3) t be the coordinates o f  p< Then Op = "t/'(~tQg). 

Proof Since the entries o f x t M  span RA there exists 7 = (71,~2,~3) t E k 3 such 
that xtMv is a rank two tensor corresponding to p. This means that p is the 
common zero of  the entries of  MT. That is M(p)7  = 0, so 7 is the coordinate 
vector of  p~, whence 7 = ~. Therefore the rank two tensor in RA corresponding 
to p is xtM~ : f tQt~,  and the corresponding tensor in RD is @tQt~. This yields 
the desired result. [] 

Remark 5.1.8 1. Notice that Qp = ]p3 if  and only if  Ro contains a tensor 
u ®  v - v ® u  with p = ~U(u,v,z) (and in this case p = pV). Otherwise Qp 
is a quadric belonging to the linear system J~zg. Sometimes Qp is uniquely 
determined by the fact that it goes through p and pV and lies in ~V'o. 

2. Suppose that JV'D is a net o f  quadrics. Then the map p ~ Qp can 
be interpreted as a map ~A --~ 1P2. By (5.1.7) this is a morphism. I f  A is 
elliptic then the image of  ~A is degree 3 curve in JV'o = IP 2. Since the locus 
o f  singular quadrics in .ArD is a degree 4 curve, in general we expect Qp to 
be singular for exactly 12 points p E ~A. The final example of  the paper 
illustrates this clearly. 

In order to give a more explicit description of  the lines on Qp which pass 
through p,  we introduce the following definitions. 

Definition 5.1.9 Let p E ~A. Let Tp be 'the' rank two tensor in RA corre- 
spondin 9 to p. Then p is 

1. of  the first kind i f  Tp may be written as 

v ® v + w ® u  

with u, v, w E A1 linearly independent. 
2. of  the second kind i f  Tp may be written as 

u ® v + w ® u  

with u, v, w E A 1 linearly independent. 
3. of  the third kind i f  p = pV. 

Note that p is always of  exactly one kind. 
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Lemma 5.1.10 I f  p ~: pV, then Qp & smooth at p. 

Proof. Let u,v E A1 be such that ~lr(u,v,z) : p. Since p:~ pV, the defining 
equation for Qp is o f  the form av + bu + lz + 2z 2 with either a(p)4:0 or 
b(p)+O for some a,b,l E Al and )~ E k. By changing the choice of  u,v we 
may assume that a(p)~O. Then the partial derivative with respect to v does 
not vanish at p,  so Qp is smooth at p. []  

Theorem 5.1.11 Assume char(k)#:2. Let p E ~A C ~tr(z). Then the nature 
of  the lines passing through p which correspond to line modules, and 
are not in ~e~(z) is given by the following table. In the table Qp is treated as a 
scheme. 

Proof. After Theorem 5.1.6 we need to describe the lines in Qp which pass 
through p. 

In Case 1, Qp = ~V'(v 2 + uw + lz + 2z 2) and obviously no lines on Qp can 
lie in ~ ( z ) .  

In Case 2, Qp = ~/'(u(v + w ) +  z(l + 2z)) and one of  the lines on Qp 
through p is ~e'(u,z). When rank (Qe)  = 3, the other line on Qp through p 
cannot lie in ~f(z) since ~/r(z) N Qp is a pair o f  lines, one o f  which does not 
pass through p. When rank(Qp) -- 2 there is only one line on Op through 
p,  namely ~tr(u,z). When rank(Qp) = 1, Qp is a pair o f  planes only one o f  
which contains p. 

Case 3. The sub-cases Qp = •3 and Qp = ~e'(z 2) are obvious so suppose 
that we are in neither o f  these cases. Therefore Qp = •(au + by + lz + az 2) 
with au+bv:~O, ka+kb = k u + k v  and ~P(u,v,z) = {p}.  I fQp is smooth at p, 
then any line on Qp through p lies in the tangent space to Qp at p. By Lemma 
5.1.4 this tangent space is ~f(z), so there are no new line modules in this case. 
Suppose that Qp is not smooth at p. In this case it follows that l E ku + kv. 
Now Qp is either a cone or a pair o f  planes (not necessarily distinct). In the 
first case there are infinitely many lines on Qp through p. In the second case 
both these planes contain p,  and at least one plane is not ~//~(z); that plane 
gives rise to infinitely many new line modules. []  

Table 5.1. Lines through p, not in ~/'(z), corresponding to line modules 

Nature of p Nature of Qp Lines through p 

1. first kind 

2. second kind 

3. third kind 

rank 3 two distinct lines 
rank 2 a double line 
rank 3 one line 
rank 2 none (double line in U'(z)) 
rank 1 a F l of lines 
Qp = F3 a ~2 of lines 
Q~=  ~(z  2) none 

4: Qp and smooth at p none 
~ (z  2) :I: Qp and non-smooth at p infinite family 
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Remark 5.1.12 A useful example to consider is that o f  'Homogenized sl(2)' 
[9]. In this case the point variety for D is ~V'(z) together with an embedded 
conic in ~//'(z) and a point not in ~//'(z). Since A = D/(z) is commutative, 
~.~ = ~/'(z) and every p E ~A is of  the third kind. Furthermore Qp is always 
a union o f  ~e'(z) and one other plane. However, p is on both these planes 
i f  and only if p lies on the embedded conic. Hence there are no extra line 
modules through p if p is not on the embedded conic, and there is a F 1 o f  
extra line modules through p if  it lies on the embedded conic. In [9] the line 
modules for D are described as the lines lying on a certain pencil of  quadrics; 
this is different from the description in this paper, and it suggests that for a 
particular D there may be a more elegant description o f  the line modules than 
that given in Theorems 5.1.6 and 5.1.11. 

P r o p o s i t i o n  5.1.13 Suppose that p E ~A. Then, to which kind p belongs, may 
be found in the rightmost column of  Table 5.2 below. The result depends on 
whether certain conditions are true or not. Y and N mean "yes' and 'no', 
and - means that the condition is irrelevant, meaningless, or follows from 
the other conditions. 

Proof  Let Tp be ' the'  rank two tensor in RA corresponding to p.  
1. Suppose to the contrary that p is of  the second kind. Then Tp = 

u ® v + w @ u. Thus ~U(u) goes through p, pV and also through p* (by 
Proposition 5.1.2.2). This contradicts the hypothesis that p, p V , p ,  are not 
collinear. 

2. In this case A is necessarily elliptic. Suppose to the contrary that 
Tp = uQV+W®U. By (5.1.2.2), ~V'(u)N~A = p +  pV+q = pV+(pV),r-l+q~ -~ 
whence p + q* = pV + q. But this is impossible since p + pV. 

3. Suppose to the contrary that Tp = v®v+wQu.  By (5.1.2.2) v vanishes on 
p, pV and also on p* by the collinearity hypothesis. However, u also vanishes 
on p and p*. Therefore ~U(u) = V(v )  contradicting the fact that u and v are 
independent. 

4. Suppose to the contrary that Tp = v ® v + w ® u. I f  p 4= p°  then we may 
continue as in 3. Assume that p = p*. Then (pV) ,  = pV (since cr commutes 
with the map p ~ pV) and hence ~ ( v )  ~ = ~/'(v) (since v(p)  = v(p v )  = 0). 
On the other hand, by (5.1.2.2), ~V'(v) * = ~V'(u). This implies ~/'(u) = ~V'(v) 
which yields a contradiction. 

5. This is by definition. [] 

Table 5.2. The kind to which a point belongs 

p = pV p = p* line through p, pV p. pV, p,  collinear 
contained in ~A 

1. N - - N 
2. N Y N 
3. N N - Y 
4. N - Y Y 
5. Y - - 

first kind 
first kind 
second kind 
second kind 
third kind 
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5.2 The constant case ( l = O) 

We now specialize the results in Section 5.1 to the case when the defining 
relations of  D are of  the form f j+o t j z  2 = z x j - x j z  = 0 (j---  1,2,3) i.e. l = 0 
in the earlier notation. 

I f  we specialize Theorem 5.1.11 to this case, then there is some simplifi- 
cation, as we now show. 

Definition 5.2.1 A point p E ~A C ~ ( z )  is special i f  there exist 04=a,b,u,v E 
A1 such that q/'(u,v,z) = p and a ® v - b ® u  E RD. 

Proposition 5.2.2 A point p E ~A is special i f  and only i f  p~ lies on the line 
~(~tx, z). 

Proof This is a direct consequence o f  Proposition 5.1.7. Let p E ~A and let 
= (~l, ~2, ~3)t be the coordinates of  p~. By definition p is special if  and only 

i f z  does not occur in the equation for Qp, but this equation is ~tQg. Therefore 
p is special if and only if  ~tQ(lz q- 0~z 2 ) = 0. But l = 0 so by Theorem 3.1.6, 
~=Q~.  [] 

It is clear that if D----A[z] then every point in ~A is special. 

Theorem 5.2.3 The lines through a point p E ~A which do not lie in V ( z )  
and which correspond to line modules, are given by the following table. 

Proof This is straightforward after (5.1.11). [] 

Remark 5.2.4 I f  . ~  is a net o f  quadrics, then for every p we have 
Qp = ~(au  + bv + az 2) with au + bv4~O. Hence if  p is o f  the third kind, 
then Qp is not smooth at p, and one obtains an infinite family of  lines through 
p which are not in ~/F(z). 

Example 5.2.5 Let A be a 3-dimensional Sklyanin algebra. That is, ~A is a 
smooth elliptic curve and cr is a translation of  the form p~ = p + z  with 3z 4: 0. 
Then pV ___ p + 2z. 

I f  2z = 0 then every point of  ~A is of  the third kind, and hence there will 
be a lot of  line modules. 

Table 5.3. Lines, not in ~(z), containing p, corresponding to 
line modules 

Nature of p Lines through p not in ~lr(z) 

1. first kind, not special 2 lines, not through (0, 0, 0,1) 
(1 in characteristic 2) 
none 
1 line through (0, 0, 0, 1 ) 
a pl of lines 
none or an infinite family 

2. second kind, not special 
3. first kind, special 
4. second kind, special 
5. third kind 
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I f  2z + 0 then there will be no point o f  the third kind. A point p will be 
o f  the second kind if and only if p, pV, pa are collinear i.e. if  and only if  
p -- - z  + ~o with 3~  --- 0. Consequently (if char. + 3 )  there will be nine points 
o f  the second kind. All the other points are o f  the first kind. 

Now suppose that l = 0, i.e. 9 = f + ~z2 in the defining equations for D. 
It follows from Theorem 3.1.6 that ct, and hence the line containing the special 
points is arbitrary. Hence generically there will be three distinct special points, 
not coinciding with any points o f  the second kind. (The 3 special points and the 
9 points o f  the second kind account for the 12 points where Qp is singular.) 
Consequently, in the generic case, there will be two continuous families o f  
lines corresponding to line modules, namely 

1. the lines in ~/r(z), and 
2. the lines on Qp passing through p. 

Clearly the lines in the second family are parametrized by some double covering 
o f  ~A. 

At a special point the two lines in the second family coincide, and at a 
point o f  the second kind they lie in ~/~(z) and hence they already belong to 
the first family. 

Now assume that D is a generic central extension of  a generic Sklyanin 
algebra, with linear terms (l 4 0) in the defining equations. Since rank(Qp) = 3 
for the points o f  the first kind when l = 0 this will still be true for almost 
all points when 14:0. Hence by Theorems 5.1.6 and 5.1.11 there will still be 
two lines through p, not in ~(z), corresponding to line modules for almost 
all p C ~A. Hence the above picture, o f  line modules, i.e. two families, one 
o f  which is parametrized by a double covering of  ~A, remains valid in the 
generic, non-constant, case. 
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