ALGEBRAS

S.P.SMITH
Mathematics Institute University of Warwick Coventry CV4 7AL England

§ 1. INTRODUCTION.

This talk is mainly a report on some joint work with J. T. Stafford which appears in :6]. That paper examines the structure of $\mathscr{D}(\mathrm{X})$, the ring of differential operators on an irreducible affine curve X, defined over an algebraically closed field k of characteristic zero. When X is non-singular the structure of $\mathscr{D}(X)$ is well understood, and is but a particular case of a structure theory which applies to non-singular affine varieties X of any dimension. However, when X is singular the structure of $\mathscr{D}(X)$ is not well understood, and [6] examines the easiest case viz. X is a (singular) curve. In all that follows X will denote an irreducible affine curve defined over an algebraically closed field k of characteristic zero.

This paper begins by recalling in $\S 2$ some of the main results of $[6]$ concerning the structure of $\mathscr{D}(X)$. On the positive side, $\mathcal{D}(X)$ is a finitely generated k-algebra and right and left noetherian. However, in contrast to the non-singular case, $\mathscr{D}(X)$ need not be a simple ring if \mathbb{X} is singular. In Theorem 2.3 it is seen that the simplicity of $\mathscr{D}(\mathrm{X})$ is equivalent to a number of other properties. In particular, $\mathscr{D}(\mathrm{X})$ is simple if and only if the natural projection $\pi: \tilde{\mathrm{X}} \rightarrow \mathrm{X}$ from the normalisation is bijective. When $\mathscr{S}(\mathrm{X})$ is not simple, there is a unique minimal non-zero ideal $J(X)$, and $H(X):=\mathscr{D}(X) / J(X)$ is a finite dimensional k-algebra. The ring of regular functions $\theta(X)$ need not be a simple $\mathscr{D}(X)$-module, but it has a unique simple submodule $J(X) \cdot \theta(X)$, and $c(X):=\theta(X) / J(X) \cdot \theta(X)$ is a finite dimensional k-algebra. Both $H(X)$ and $C(X)$ split as a direct sum of finite dimensional algebras, H_{x} and C_{x}, one for each singular point $x \in$ Sing X. The algebras H_{X} and C_{X} depend only on the local ring $O_{X, x}$, and $\S 3$ examines how the structure of H_{X} and C_{X} depends on that of $\theta_{X, x}$. We have no general theorem, and it is clearly a key question to understand how the nature of the singularity at x is reflected in the structure of H_{x} and C_{x}.

In section 4 we provide some light relief and show how some of the results in $\S 2$ may be used to describe the space of polynomial solutions of a (very restricted) class of differential equations. For example, if $D=\partial_{Y}^{2}-\partial_{X}^{3}$ is viewed as a differential operator on $k[x, y]$ and $S=\{i \in k[x, y] \mid D(f)=0\}$ we show that S is a simple $\Phi(x)$-module where x is the curve in \mathbb{A}^{2} defined by $y^{2}=x^{3}$. Knowing generators of $\mathscr{D}(\mathrm{X})$ as a k-algebra, allows one to produce a basis for S in an extremely simple way.

Section 5, shows how the results of $\S 2$ may be used when $\pi: \widetilde{\mathrm{X}} \rightarrow \mathrm{X}$ is injective to solve the following problem. Let $R=k[x, y]$ be the polynomial ring in two variables, and let $0 \neq f \in \mathbb{R}$ be an irreducible polynomial defining the curve C. It is well known that the $\mathscr{D}(\mathrm{R})$-action on R extends to the localisation R_{f}, and that R_{f} / R is a $\mathscr{D}(R)$-module of finite length with a unique simple submodule. When C is non-singular, it is not hard to show that R_{f} / R is itself a simple $\mathscr{D}(\mathrm{R})$-module (the proof of this is given in $\S 5$) ; this is well-known, but when C is singular it is difficult to describe the simple submodule of R_{f} / R. We prove that when $\pi: \widetilde{C} \rightarrow C$ is injective then R_{f} / R is a simple $\varnothing(R)$-module.
\S 2. STRUCTURE OF $\mathscr{(X)}$.
Let A be a commutative k-algebra and let M and N be A-modules. The space $\mathscr{D}_{A}(M, N)$ of k-linear differential operators from M to N is defined to be $\mathcal{D}_{A}(M, N)=$

$$
\left.U_{n=0}^{\infty}\left\{\theta \in \operatorname{Hom}_{k}(M, N) \mid\left[a_{n}\left[\ldots\left[a_{1}, a_{o}, \theta\right]\right] \ldots\right]\right]=0 \text { for all } a_{o}, a_{1}, \ldots, a_{n} \in A\right\}
$$

where $[a, \theta]=a \theta-\theta a$.
We are interested in $\mathscr{D}(A)=\mathscr{D}_{A}(A, A)$, the ring of differential operators on A, when A is either $\theta(X)$, the co-ordinate ring of the curve X , or $\theta_{\mathrm{X}, \mathrm{x}}$, the local ring at the point $\mathrm{x} \in \mathrm{X}$. We denote $\mathscr{D}(A)$ by $\mathscr{D}(x)$ and $\mathscr{D}_{X, x}$ in these two cases.

When X is a non-singular curve , $\mathcal{D}(X)$ is a finitely generated k-algebra, (right and left) noetherian [4, § 6], and a simple ring of global homological dimension 1. For non-singular $x, \mathscr{D}(x)$ is generated by $\theta(x)$ and $\operatorname{Der}_{\mathrm{k}} \mathrm{X}$, the module of k -linear derivations on $\theta(x)$. Unfortunately when X is singular this is not true.

EXAMPLE 1. Let x be the curve in A^{3} defined by $x^{5}=y^{3}, x^{7}=z^{3}$. There is a unique singular point at $(0,0,0)$. The normalisation \widetilde{X}, is isomorphic to \mathbb{A}^{1} and the natural projection $\pi: \widetilde{X} \rightarrow X$ is given by $\pi(\alpha)=\left(\alpha^{3}, \alpha^{5}, \alpha^{7}\right)$. Write $\theta(\tilde{x})=k[t]$ and $\theta(x)=k\left[t^{3}, t^{5}, t^{7}\right]$. Since Der \tilde{x} is the free $k[t]$-module generated by $a=d / d t$, and any derivation on $\theta(X)$ extends to $\theta(\tilde{X})$ [5], it is easy to see that Der X is the subspace of $k[t] \partial$ with basis $\left\{t \partial, t^{3} \partial\right\} u\left\{t^{n} \partial \mid n>4\right\}$. Set $D=t^{-1}(t 2-2)(t a-7) a$. This is a differential operator on $k(t)$, and it leaves $\theta(X)$ stable. Hence $D \in \mathscr{D}(X)$, but D is not in the subalgebra of $E_{k} \theta(x)$ generated by $\theta(x)$ and Der X.

This example illustrates the difficulty in trying to decide whether $\mathscr{D}(\mathrm{X})$ is a finitely generated k-algebra. In fact, if one takes z to be the surface in \mathbb{C}^{3} defined by $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=0$, then $\mathscr{P}(z)$ is not finitely generated [2]. However, for curves one has the following.

THEOREM 2 [6] . Let X be a curve. Then $\varnothing(X)$ is a finitely generated k-algebra and is right and left noetherian.

Although $\mathscr{D}(x)$ need not be a simple ring we have the following (recall that $\pi: \widetilde{X} \rightarrow X$ is the natural projection from the normalisation).

THEOREM 3 [6]. The following are equivalent :
(a) $\operatorname{D}(\mathrm{X})$ is a simple ring ;
(b) $\pi: \tilde{X} \rightarrow X$ isbijection ;
(c) $\theta(X)$ is a simple $\mathscr{D}(\mathrm{X})$-module ;
(d) $\mathrm{gl} . \operatorname{dim} \mathscr{D}(\mathrm{X})=1$;
(e) $\mathscr{D}(\mathrm{X})$ is Morita equivalent to $\mathscr{D}(\tilde{X})$.

As, perhaps, suggested by (e), the key to understanding $\mathcal{D}(A)$ for $A=\theta(X)$, or $A=\theta_{X, X}$ is to compare $\mathscr{D}(A)$ and $\mathscr{D}(\bar{A})$ where \bar{A} denotes the integral closure of A in Fract A, its field of fractions. Define

$$
\mathscr{D}(\overline{\mathrm{A}}, \mathrm{~A})=\{D \in \mathscr{P}(\overline{\mathrm{~A}}) \mid \mathrm{D}(\mathrm{f}) \in \mathrm{A} \text { for all } \mathrm{f} \in \overline{\mathrm{~A}}\}
$$

This is a non-zero right ideal of $D(\bar{A})$ and a left ideal of $\mathscr{D}(A)$. Since $\mathscr{D}(\mathrm{A})$ is a simple, hereditary ring $\mathscr{D}(\overline{\mathrm{A}}, \mathrm{A})$ is necessarily a progenerator in Mod- $D(\bar{A})$. Thus we have $\mathscr{D}(A) \subseteq$ End $\mathscr{D}(\bar{A})^{\mathscr{D}}(\bar{A}, A)=T$, where T is Morita equivalent to $\mathscr{D}(\bar{A})$. The relation between $\mathscr{D}(A)$ and T depends on the fact that they have a common left ideal, namely $D(\bar{A}, A)$. A key lemma is that $\mathscr{D}(A)=T$ if and only if $\mathscr{D}(\bar{A}, A) * \bar{A}=A$,
where $\mathscr{D}(\bar{A}, A) \star \bar{A}$ denotes the linear span of all $D(f)$ such that $D \in \mathscr{D}(\overline{\mathrm{~A}}, \mathrm{~A})$ and $\mathrm{f} \in \overline{\mathrm{A}}$. It is these observations which are exploited to obtain the above results.

Through part (e) of Theorem 3 we can, in a sense, say that we understand $\mathscr{D}(\mathrm{X})$ completely when $\mathscr{D}(\mathrm{X})$ is simple. So from now on we concentrate on what happens when $\mathscr{D}(X)$ is not simple. However, there is one question still of interest when $\mathscr{D}(\mathrm{X})$ is simple ; give a procedure for obtaining generators for $\mathscr{D}(x)$, or find the least n such that $\mathscr{D}(\mathrm{X})$ is generated by differential operators of order $\leq n$.

To understand $\mathscr{D}(\mathrm{X})$ when $\pi: \widetilde{\mathrm{X}} \rightarrow \mathrm{X}$ is not injective one is led to prove.

Theorem $4[6] . \mathscr{D}(x)$ constains a unique minimal non-zero ideal $J(X)$. The factor $H(X):=\mathscr{D}(X) / J(X)$ is a finite dimensional k-algebra, and $H(X)=\oplus_{x \in S i n g} X^{H} x$ is a direct sum of algebras H_{x} one for each singular point x. The structure of H_{x} depends only on the local ring $\theta_{X, x}$. In fact $D_{X, X}$ has a unique minimal non-zero ideal $J_{X, X}$ and $H_{X}=D_{X, X} / J_{X, X}$.

The relationship between the ideal structure of $\mathscr{D}(\mathrm{X})$ and the submodule structure of $\theta(x)$ is illustrated by

THEOREM 5 [6]. Consider $\theta(x)$ as a $D(x)$-module. Then
(a) $\theta(x)$ has finite length ;
(b) $\theta(X)$ has a unigue simple submodule, namely

$$
J(x) \cdot \theta(x)=\mathscr{D}(\tilde{x}, x) \star \theta(\tilde{x})
$$

(c) If $C(X)=\theta(X) / J(X) \cdot \theta(X)$ then $C(X)$ is a faithful $H(X)$-module;
(d) $C(X) \simeq \oplus_{x}$ sing $X^{C} x$ is a direct sum of local algebras, one for each singular point of X;
(e) $C_{X} \simeq \theta_{X, X} / J_{X, X} \cdot \theta_{X, X}$ and is a faithful H_{X}-module.

Clearly one would like to understand the structure of the finite dimensional algebras H_{x} and C_{x}, and so $H(X)$ and $C(X)$. First note that, since H_{x} and C_{x} depend only on $\theta_{X, x}$, it will follow from Theorem 3 that ${ }^{H} x$ and C_{x} are zero precisely when $\# \pi^{-1}(x)=1$. It is not difficult to observe that if $\theta(X)=k\left[t_{1}, \ldots, t_{n}\right] /\left(f_{1}, \ldots, f_{r}\right)$ then $C(X)$ is a homomorphic imace of $k\left[t_{1}, \ldots, t_{n}\right] /\left(f_{1}, \ldots, f_{r}, \partial f_{i} / \partial t_{j}\right)$ because $J(X) \cdot \theta(X)$ contains the conductor of $\theta(x)$ in $\theta(\tilde{X})$ and the image of each $\partial f_{i} / \partial t_{j}$ belongs to the conductor
§ 3. THE ALGEBRAS H_{x} AND C_{x}.

In this section X is a curve with a unique singular point x, and we set $A=\theta_{X, X}$ and $B=\bar{A}$. This section is a collection of examples illustrating some of the possibilities for H_{x} and C_{x}. We will give examples where H_{x} may be either O, or ${ }_{M}{ }_{n}(k)$, the ring of $n \times n$ matrices over k, or $\left(\begin{array}{ll}k & 0 \\ k & k\end{array}\right)$ the ring of lower triangular 2×2 matrices, or $\left(\begin{array}{ll}k & 0 \\ k^{2} & k\end{array}\right)$. In these examples C_{x} is respectively $0, k[t] /\left(t^{n}\right), k[t] /\left(t^{2}\right)$, and $k[s, t] /(s, t)^{2}$. We have no general result, but these examples do give some clues as to what should be expected in general.

We denote the maximal ideal of A by \underline{m}. B is a semi-local ring with Jacobson radical denoted \underline{r}. The maximal ideals of B correspond to the points $\Pi^{-1}(x)$. Since $H_{x}=0 \quad i f$ and only if $\# \pi^{-1}(x)=1$, we may rephrase this as

PROPOSITION 1. $H_{x}=0$ if and only if $\bar{\theta}_{x, x}$ is a local ring.

By $[6, \S 7.4]$ there exists $t \in \underline{r}$ and $\hat{0} \in \operatorname{Der}_{k} B$ such that $\partial(t)=1$. It is an easy exercise to see that this forces $\operatorname{Der}_{k} B=B \partial$, and $\underline{r}=B t$. If $b \in B$ we shall write $b^{\prime}=a(b)$.

We shall assume in all the examples we construct that $\pi: \tilde{X} \rightarrow X$ is unramified at all points. The reason for this restriction is because we can make use of the following result to simplify the calculations.

THEOREM 2 (W.C.Brown [3]) . If $\Pi: \widetilde{X} \rightarrow X$ is unramified at all points then $\mathscr{D}(\mathrm{X}) \subseteq \mathscr{D}(\tilde{\mathrm{X}})$

Thus we have, locally $\mathscr{D}(A) \subseteq \mathscr{D}(B)=B[\partial]$. First we construct examples where $H_{X} \simeq M_{n}(k)$. The easiest case is $n=1$.

PROPOSITION 3. Suppose that $\# \pi^{-1}(x)>1$. Let I denote the conductor of $\theta_{X, X}$ in $\bar{\theta}_{X, x}$ If I is a maximal ideal of $\theta_{X, x}$, then $H_{x} \approx k$.

Proof. Since $\# \Pi^{-1}(x) \neq 1, \mathscr{A}(A)$ and $\mathscr{D}(B)$ are not Morita equivalent, so $\mathscr{D}(B, A) \star B \neq A$. However, $I \subseteq \mathscr{D}(B, A)$ whence $I=\mathscr{D}(B, A) \star B$. But $k=A / I$ is now a faithful H_{x}-module. Hence $\mathrm{H}_{\mathrm{X}} \simeq \mathrm{k}$.

This explains [6, Theorem 4.4] since under the hypotheses of that theorem one must have I a maximal ideal of $\theta_{X, X}$, since $\theta_{X, X} / I$ is a local ring contained in $\bar{\theta}_{X, X} / I$ which is a product of fields.

It is possible for H_{x} to equal k without the hypothesis of Proposition 3 being satisfied. Indeed, if $\varnothing(B, A) * B$ is a maximal ideal of A then $H_{x} \simeq k$. This is illustrated by the following :

EXAMPLE $4[6, \S 5.7]$ Take $\tilde{X}=A^{1}$, and $\theta(\tilde{X})=k[t]$. Define X by $\theta(x)=k+k t^{2}(t-1)+t^{4}(t-1) k[t]$. The conductor is $t^{4}(t-1) k[t]$ which is not a maximal ideal of $\theta(X)$. It is shown in [6] that $\mathscr{D}(B, A) * B=\underline{m}$, the unique maximal ideal of $\theta_{X, X}$ (here x is the unique singular point of $X)$. Again $A / \Phi(B, A) * B$ is a faithful H_{X}-module so $\mathrm{H}_{\mathrm{X}} \simeq \mathrm{k}$.

This example may be understood as follows. Let X^{\prime} be the curve with $\theta\left(X^{\prime}\right)=k+t^{2} k[t]$. We have a factorisation of Π as $\widetilde{X} \xrightarrow{\psi} X, \xrightarrow{\varphi} X$ with $\pi=\varphi \psi$ and ψ injective. Hence $\mathscr{D}\left(\tilde{X}, x^{\prime}\right) \star \theta(\tilde{x})=\theta\left(x^{\prime}\right)$. However, $\theta(x)=k+t^{2}(t-1) \theta\left(x^{\prime}\right)$ and
 Hence $\mathscr{D}(\ddot{x}, \bar{x}) \star \theta(\widetilde{x}) \supseteq t^{2}(t-1) \theta\left(x^{\prime}\right)=\underline{m}$. The point is that ψ is injective, and the conductor of $\theta(\mathrm{x})$ in $\theta\left(\mathrm{x}^{\prime}\right)$ is a maximal ideal of $\theta(\mathrm{x})$.

PROPOSITION 5. Suppose that $\# \Pi^{-1}(x)>1$. Suppose that the Jacobson radical of $\bar{\theta}_{x, x}$ is $t \bar{\theta}_{X, x}$, and that $\theta_{X, x}=k+k t+\ldots+k t^{n}+t^{n+1} \bar{\theta}_{X, x}$. Then $H_{x} \simeq M_{n+1}(k)$.

Proof. Let \underline{m} be the maximal ideal of $A=\theta_{X, x}$. Then $m B=t B$, and by Theorem $2, \mathscr{A}(A) \subseteq \mathscr{D}(B)$. The same argument as $[6$, Lemma 5.3] shows that $\mathscr{D}(B, A)=t^{n+1} \mathscr{D}(B)$, whence $C_{x}=A / t^{n+1} B$ is a faithful H_{x} module. Thus , the result will follow if we can show that $A / t^{n+1} B$ is a simple H_{x}-module, or equivalently is a simple $\mathscr{D}(A)$-module. Notice that $A / t^{n+1} B$ is generated by 1 , and that $k t^{n}$ is an essential A-submodule. Thus, to show $A / t^{n+1} B$ is a simple $\mathscr{D}(A)$-module it will suffice to show that there exists $D \in \mathscr{D}(A)$ such that $D\left(t^{n}\right)=1$. We proceed to show that $D:=\left(t^{2}-1\right) \ldots\left(t^{2}-n\right) 2^{n}$ belongs to $\mathscr{D}(\mathrm{A})$; since $(-1)^{n}(n!)^{-2} D\left(t^{n}\right)=1$ this will complete the proof of the Proposition.

Since $\mathscr{O}(B)=B[\partial]$ we have $D \in \mathscr{D}(B)$. The action of D on A annihilates $k+k t+\ldots+k t^{n-1}$, so it remains to show that $D \star\left(B t^{n+1}\right) \subseteq B t^{n+1}$. First, notice that $a^{n} \star\left(B t^{n+1}\right) \subseteq B t$. Secondly, notice that, for all $j \in \mathbb{N}$, $(t \partial-j) *\left(B t^{j}\right) \subseteq B t^{j+1}$. Hence $(t \partial-n) \ldots(t \partial-l) \star(B t) \subseteq B t^{n+1}$ and thus $D *\left(B t^{n+1}\right) \subseteq B t^{\bar{n}+1}$ and $D \in \mathscr{D}(A)$, as required.

PROPOSITION 6 . Suppose that $\# \Pi^{-1}(x)>1$. Suppose that the Jacobson radical of $\bar{\theta}_{X, x}$ is $t \bar{\theta}_{X, x}$, and that $\bar{\theta}_{X, x}=k+k t+t_{y} \bar{\theta}_{X, x}$ where $y \in \bar{\theta}_{x, x} \backslash t \bar{\theta}_{x, x}$, and y is not a unit. Then $H_{x} \simeq\binom{k}{k}$.

Proof. The same arguments as usual show that $\mathscr{D}(B, A)=t y \mathscr{D}(B)$ and hence $C_{X}=A / t y B$. Since $\operatorname{dim} C_{X}=2$ and C_{X} is a faithful H_{x}-module, H_{x} embeds in $M_{2}(k)$. The hypothesis implies that $t \in y B$ (just use the fact that $\theta_{X, x}$ is a ring, so contains t^{2}). Note that $t \partial \in \operatorname{Der}_{k} A$. It is now easy to show that the images of $l, t, t a$ are linearly independent in $H_{x}=\mathscr{D}(\mathrm{A}) / \mathscr{D}(\mathrm{B}, \mathrm{A})$.

Now $\mathscr{D}(\mathrm{A}) \subseteq \mathbb{I I}(\mathscr{D}(\mathrm{B}, \mathrm{A}))$ the idealiser of $\mathscr{D}(\mathrm{B}, \mathrm{A})$ in $\mathscr{D}(\mathrm{B})$. Since II $($ ty $\mathscr{D}(B)) /$ ty $\mathscr{D}(B) \simeq$ End $\mathscr{D}(B)(D(B) /$ ty $\mathscr{D}(B))$ it is straightforward (after decomposing as a sum of simple modules) to see that $\operatorname{dim}_{k}(I I(t y \mathscr{O}(B)) /$ ty $\mathscr{D}(B))=\operatorname{dim}_{k}(B / t B)+3 \operatorname{dim}_{k}(B / y B)$. The next step is to explicitly describe II (ty $\mathscr{D}(B))$.

Write $t=y z$. Notice that $z y^{\prime}=1(\bmod y B)$. It follows that both y^{\prime} and $z y^{\prime}+1$ are units modulo $y B$. Thus there exists $b \in B$ such that $2 y^{\prime}-b\left(z y^{\prime}+1\right) \in y B$. Now one computes to check that ($\mathrm{t} \partial-\mathrm{bz}) \partial \in \mathbb{I}(\mathrm{ty} \mathscr{D}(\mathrm{B}))$. Thus $\mathbb{I}(\mathrm{ty} \boldsymbol{\theta}(\mathrm{B}))$ contains $B+B t a+B(t \partial-b z) \partial+t y \mathscr{D}(B)$. It is straightforward to compute the dimension of this modulo ty $\mathscr{D}(B)$, and check that it is equal to $\operatorname{dim}_{k}(B / t B)+3 \operatorname{dim}_{k}(B / Y B)$. It follows from the previous paragraph that this subspace is in fact equal to $I I(t y D(B))$.

Recall that $\mathscr{D}(\mathrm{A}) \subseteq$ II(ty $D(\mathrm{~B}))$. To show that
$\mathscr{D}(A)=k+k t+k t a{ }^{-}+t y \mathscr{D}(B)$, it is enough to show that if $u, v \in B$ with $D=u t a+v(t a-b z) \partial$ is an element of $\mathscr{D}(A)$ then one must have $D \in k+k t+k t a+t y \mathscr{D}(B)$. To see this first observe that $D \star A \subseteq k+t B$, and evaluating D on t this gives $v b z \in k+t B$. However, vbz cannot be a unit since z is not (because $y \notin t B$). Thus $v b z \in t B$ and $v b \in y B$. But b is a unit modulo $y B$, so $v \in y B$. Thus D is a derivation modulo ty $\mathscr{D}(B)$. But $\operatorname{Der}_{k}(A)=k t \partial+t y B \partial$, hence $D \in k+k t+k t \partial+t y \mathscr{D}(B)$.

Thus the images of $1, t, t \partial \operatorname{span} H_{x}$, and therefore $H_{k} \simeq\left(\begin{array}{ll}k & 0 \\ k\end{array}\right)$. a PROPOSITION 7. Suppose that $\# \Pi^{-1}(x)>1$. Suppose that the Jacobson radical of $\bar{\sigma}_{\mathrm{X}, \mathrm{x}}$ is $\mathrm{t} \bar{\theta}_{\mathrm{X}, \mathrm{x}}$, and that $\theta_{\mathrm{x}, \mathrm{x}}=\mathrm{k}+\mathrm{kt}+\mathrm{kty}+\mathrm{t}^{2} \bar{\theta}_{\mathrm{X}, \mathrm{x}}$ where $y \in \bar{\theta}_{x, x} \backslash t \bar{\theta}_{x, x}$, and y is not a unit. Then $H_{x} \simeq\binom{k}{k^{2} k_{k}}$.

Proof. The argument is very similar to that in Proposition 6. One computes $I I\left(t^{2} B\right)=B+B t \partial+B(t \partial-1) \partial+t^{2} O(B)$, checks that $l, t, t y, t a \in D(A)$ and that their images in H_{x} are linearly independent. And finally one shows that if $D=v(y \partial-1) d+u t d$ belongs to $\mathscr{D}(A)$ with $u, v \in B$, then $D \in k t \partial+t^{2} \mathscr{D}(B)$; where H_{x} is spanned by l,t,ty,ta and the result follows by considering the action of these elements on $A / t^{2} B$.

This completes the list of examples stated at the beginning of this section. Notice in the examples where H_{x} is $M_{2}(k)$, and H_{x} is $\left(\begin{array}{ll}k & 0 \\ k & k\end{array}\right)$, that C_{x} is isomorphic to $k[t] /\left(t^{2}\right)$ in both cases, and $c_{X}=\theta_{X, X} / I$ where I is the conductor of $\theta_{X, X}$. In particular, knowing C_{X} and $\theta_{X, X} / I$ does not determine H_{X}.

In the above examples H_{x} is always an indecomposable algebra, in the sense that H_{x} cannot be written a direct product of two non-zero subalgebras. More generally we have

PROPOSITION 8. For any X, and any $x \in X, H_{x}$ is an indecomposable algebra.

Proof. Suppose H_{x} is a direct product of non-zero subalgebras. Then there exist non-zero central orthogonal idempotents $e, f \in H_{x}$ with $1=e+f$. Then $C_{x}=H_{x} e_{x} \oplus H_{x} f_{x}$. However, this decomposition of C_{X} as a $\mathcal{D}_{X, X}$ module is also a decomposition of C_{X} as an $\theta_{X, X}$-module, and hence as a C_{X}-module . But C_{X} is a local algebra, hence indecomposable. Hence either $\mathrm{eC}_{\mathrm{x}}=0$ or $\mathrm{fC}_{\mathrm{x}}=0$. But, either possibility contradicts the fact that C_{X} is a faithful H_{x} module. 0
§ 4.CONSTANT COEFFICIENT DIFFERENTIAL OPERATORS AND THE SPACE OF POLYNOMIAL SOLUTIONS.

Let $R=\mathbb{C}[x, y]$ be the polynomial ring in two variables, and $\mathscr{D}=\mathscr{D}(R)=C\left[x, y, \partial_{x}, \partial_{y}\right]$ the ring of differential operators on R. Let $D \in \mathscr{D}$ and set $S=\{f \in R \mid D(f)=0\}$, the space of polynomial solutions. Observe that if $P, Q \in \mathscr{D}$ with $D P=Q D$, and $f \in S$ then $P(f) \in S$ also. Define, the idealiser of $D D, I I(\mathscr{D})=\{P \in \mathscr{D} \mid D P \in \mathscr{D}\}$. This is a subring of \mathscr{A}, containing $\mathscr{D} D$ as a two sided ideal. The above observation says that S is a left $I I(\mathscr{D})$-module. Furthermore it is annihilated by \mathscr{D} D , so s is a left $I(\mathscr{D}) / \mathscr{D}$-module.

Let $\sigma: \mathscr{D} \rightarrow \mathscr{D}$ be the anti-automorphism given by

$$
\sigma(\mathrm{x})=\partial_{\mathrm{x}}, \sigma\left(\partial_{\mathrm{x}}\right)=\mathrm{x}, \sigma(\mathrm{y})=\partial_{\mathrm{y}}, \sigma\left(\partial_{\mathrm{y}}\right)=\mathrm{y} .
$$

Setting $\sigma(\mathrm{D})=\mathrm{D}^{\sigma}$, we have $\sigma(\mathscr{D})=\mathrm{D}^{\sigma} \mathscr{D}$, and $\sigma(I I(\mathscr{D}))=$ II ($\left.\mathrm{D}^{\sigma} \mathscr{D}\right)$. Thus S can be given the structure of right $I\left(D^{\sigma} \mathscr{D}\right) / D^{\sigma} \mathscr{D}$-module by defining $f \cdot Q^{\prime}=Q(f)$ for $Q^{\prime} \in \quad I I\left(D^{\sigma} D\right)$ where $Q=\sigma\left(Q^{\prime}\right)$.

Now consider for example, the case where $D=\partial_{Y}^{2}-\partial_{X}^{3}$ (resp. $D=\partial_{y}^{2}-\partial_{x}^{3}+\partial_{x}$). Then $D^{\sigma}=y^{2}-x^{3}$ (resp. $D^{\sigma}=y^{2}-x^{3}+x$) and the space of polynomial solutions is a right $I I(g \Phi) / g \varnothing$-module where $g=y^{2}-x^{3}$ (resp. $g=y^{2}-x^{3}+x$). But by [6, § 1.6], II $(g \mathscr{D}) / g \mathscr{D} \simeq \mathscr{D}(R / g R)=\mathscr{D}(C)$ where $C \subseteq \mathbb{A}^{2}$ is the curve defined by $g \in \mathbb{C}[x, y]$. Thus s is a right $\mathscr{D}(\mathrm{C})$-module. We will show below (for both the given examples, and more generally whenever $\Pi: \tilde{C} \rightarrow C$ is injective) that S is a simple right $\mathscr{D}(C)$-module. Thus to describe all of S we need know only one non-zero element of S and the action of $\mathscr{D}(C)$ on S. In the given examples it is clear that $1 \in S$, whence $S=1 . \mathscr{(C)}$. So the problem of describing all polynomial solutions of the differential equation $D(f)=0$ leads us naturally to ask for a description of $\mathscr{D}(\mathrm{C})$ (for example, once we know by Theorem 2.2 , that $\mathscr{D}(\mathrm{C})$ is finitely generated, we want to know the generators) and a description of the action of $\mathscr{D}(C)$ on s.

The procedure we shall adopt in order to describe all of S, will be to first describe $\mathscr{D}(\mathrm{C})$ (through its relationship with $\mathscr{D}(\widetilde{\mathrm{C}})$ as outlined in Theorem 2.3) and thence to obtain a description of II $(\mathscr{D}) / \mathscr{D}$ and so act on S. For example in the case $D=\partial_{y}{ }^{2}-\partial_{x}{ }^{3}$, we have $\theta(C)=\mathbb{T}\left[t^{2}, t^{3}\right]$ and as in [6, Remark 3.12], $\mathscr{D}(C)=\mathbb{C}\left[t^{2}, t^{3}, t \partial, t^{2} \partial,(t \partial-1) \partial, t^{-1}(t \partial-2) \partial\right]$ and (after the detailed considerations below), $t^{2} a$ gives rise to the element $Q=2 x \partial y+3 y \partial_{x}^{2} \in I I(2 D)$, and $t^{-1}(t \partial-2) \partial$ gives rise to the element $P=4 x^{2} \partial_{x}+12 x y \partial_{y}+9 y^{2} \partial_{x}^{2}-2 x \in I(D D)$. It will be shown that $S=\mathbb{C}[P] \cdot 1+\mathbb{Q}[P] \cdot 1$ and thus we obtain all elements of S by starting with $1 \in S$ and acting by Q, P as follows. The diagram indicates how solutions are obtained from previous ones by applying P and Q (we ignore scalar multiples, so although $Q\left(x^{3}+3 y^{2}\right)=24 x y$ we just write $x^{3}+3 y^{2} \Omega x y$).

One can continue to apply P and Q to obtain more solutions, and Proposition 6 below shows that one will in this way obtain a basis for $\left\{f \in \mathbb{C}[x, y] \mid\left(\partial_{Y}^{2}-\partial_{X}^{3}\right)(f)=0\right\}$.

Two points should be observed. First, to find elements such as $\mathrm{P}, Q \in \mathrm{I}(\mathscr{D} \mathrm{D})$ simply by computing inside \mathscr{D} seems an impossibly difficult task. Even if one can find elements of $I(\mathscr{D} D)$ one needs to know whether one has found enough elements to generate all of
II $(\mathscr{D}) / \mathscr{D}$ (hence the importance of Theorem 2.2 saying that $\mathscr{D}(\mathrm{C})$ is finitely generated, and hence the importance of trying to obtain a procedure to find generators of $\mathscr{D}(C)$) . Secondly, to know that all polynomial solutions belong to $1 . \mathscr{D}(\mathrm{C})$ (in the case when $\mathrm{I}: \widetilde{\mathbb{C}} \rightarrow C$ is injective) one needs to show (as we do below) that S is a simple right $\mathscr{A}(C)$-module .

It is no problem to extend the above analysis to the more general situation described in the following Proposition. First note that there is a natural anti-automorphism σ on the ring $\mathscr{D}\left(A^{n}\right)=\mathbb{d}\left[t_{1}, \ldots, t_{n}, \partial_{1}, \ldots, \partial_{n}\right]$ where $\partial_{j}=\partial / \partial t_{j}$, given by $\sigma\left(t_{j}\right)=\partial_{j}, \quad \sigma\left(\partial_{j}\right)=t_{j}$ for all j.

PROPOSITION 1 . Let $R=\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$, and let J be an ideal of R contained in $\left(t_{1}, \ldots, t_{n}\right)$. Set $A=R / J$, and $\quad \underline{m}=\left(t_{1}, \ldots, t_{n}\right) / J$. Set $\mathscr{D}=\mathscr{D}(\mathrm{R})$ and let $\sigma: \mathscr{D} \rightarrow \mathscr{D}$ be the above anti-automorphism. Consider R as a left \varnothing-module and define $S=\{f \in R \mid D(f)=0$ for all $D \in \sigma(J \mathscr{D})\}$. Then S is a left $I I(\sigma(J \mathscr{D}))$-submodule annihilated by $\sigma(J \mathscr{D})$. There is an anti-automorphism

$$
\Phi: I I(\sigma(J \mathscr{D})) / \sigma(J \mathscr{D}) \rightarrow \Pi(J \mathscr{D}) / J D \simeq \mathscr{D}(\mathrm{~A})
$$

and thus S may be given the structure of a right $\mathscr{D}(A)$-module. As a right $\phi(A)$ module, S is isomorphic to $D(A, A / m)$.

Proof. It is straightforward computation to see that S is an II $(\sigma(J \varnothing))$-submodule of R, annihilated by $\sigma(J \mathscr{D})$. The anti-isonorphism Φ is of course induced by σ, and the fact that
$\mathscr{O}(\mathrm{A})=\Pi(J D) / J \mathscr{D}$ is just $[6, \S 1.6]$. Thus it remains to prove the final asertion.

Apply the left exact functor $\mathscr{H}_{R}\left(-, R /\left(t_{1}, \ldots, t_{n}\right)\right)$ to the short exact sequence of R-modules $0 \rightarrow J \rightarrow R \rightarrow A \rightarrow 0$ to obtain the exact sequence
$0 \rightarrow D_{R}\left(A, R /\left(t_{1}, \ldots, t_{n}\right)\right) \rightarrow D_{R}\left(R, R /\left(t_{1}, \ldots, t_{n}\right)\right) \rightarrow D_{R}\left(J, R /\left(t_{1}, \ldots, t_{n}\right)\right)$.

Thus $\mathscr{D}_{A}(A, A / \underline{m})=\mathscr{D}_{R}\left(A, R /\left(t_{1}, \ldots, t_{n}\right)\right)=\left\{Q \in \mathscr{D} / t_{1} \mathcal{D}_{\mathrm{D}}+\ldots+t_{n} \mathscr{D} \mid \varrho \star J=0\right\}$

$$
=\left\{Q \in \mathscr{D} \mid Q J \subseteq t_{1} \oplus+\ldots+t_{n} D\right\} / t_{1} \mathscr{D}+\ldots+t_{n} D
$$

$$
\begin{aligned}
& \text { Now consider } S \subseteq R \simeq \mathscr{D} \mathscr{D} \partial_{1}+\ldots+D \partial_{n} \text {. By definition } \\
& S=\left\{P \in D \mid \sigma(J \mathscr{D}) P \subseteq \mathscr{D} \partial_{1}+\ldots+\mathscr{D} \partial_{n}\right\} / D \partial_{1}+\ldots+\mathscr{D} \partial_{n} .
\end{aligned}
$$

Through the anti-isomorphism $\phi, 5$ is made into a right $D(A r m o d u l e$. Let $\Psi: S \rightarrow D_{A}(A, A / m)$ be defined by

$$
\Psi\left(\left[P+D \partial_{1}+\ldots+\Phi \partial_{n}\right]\right)=\left[\sigma(P)+t_{1} \mathscr{\mathscr { L }}+\ldots+t_{n} \mathscr{D}\right]
$$

It is clear that Ψ is a vector space isomorphism. To see that Ψ is a right $\mathscr{A}(A)$-module map, let $\$ \in S$, and $d \in \mathscr{D}(A)$. Suppose that $s=\left[P+\mathscr{D} \partial_{1}+\ldots+\mathscr{O} \partial_{n}\right]$, and $d=[\sigma(e)+J \mathscr{D}]$ for $e \in \pi(\sigma(J \mathscr{Q}))$. Then
$s \cdot d=\left[P+\mathscr{D} \partial_{1}+\ldots+\mathscr{D} \partial_{n}\right] \cdot[\sigma(e)+J \mathscr{D}]=\left[e P+\mathscr{D} \partial_{1}+\ldots+D \partial_{n}\right]$ and $\Psi(s \cdot d)=$
$\left.\left[\sigma(P) \sigma(e)+t_{1} \mathscr{V}+\ldots+t_{n} D\right]=10(P)+t_{1} \mathscr{D}+\ldots+t_{n} \mathscr{D}\right] \cdot[\sigma(e)+J \mathscr{D}]=\Psi(s) d$.

Thus $S=\mathscr{D}_{A}(\mathrm{~A}, \mathrm{~A} / \mathrm{m})$ as required.
-

Remark. It is easier to consider S as a left $\mathscr{D}(A)^{\circ}{ }^{\text {P-module, }}$ and this is what we shall do in practice. That is , $\mathscr{D}(\mathrm{A})$ op will be identified with $\Pi(\sigma(J \mathscr{D})) / \sigma(J \mathscr{P})$ and the action of this ring on S will be obtained through the restriction of the usual action of differential operators on $R=\mathbb{C}[x, y]$.

PROPOSITION 2. Let C be an irreducible affine curve, such that $\pi: \tilde{C} \rightarrow C$ is injective. Let m be a maximal ideal of $A=\theta(C)$. Then $\mathscr{O}(\mathrm{A}, \mathrm{A} / \mathrm{m})$ is a simple right $\mathscr{D}(\mathrm{A})$-module.

Proof. Let \vec{A} denote the integral closure of A in Fract A. By Theorem $2.3, \mathscr{D}(A)$ and $\mathscr{D}(\bar{A})$ are Morita equivalent. The progenerators giving the Morita equivalence are $\mathscr{D}(\bar{A}, A)$ and $\mathscr{D}(\bar{A}, \bar{A})$. Consider the following natural maps obtained by taking composition of differential operators :

$$
\mathscr{D}_{A}(\bar{A}, A / \underline{m}) \Theta_{\mathscr{D}}(\bar{A})_{A}(A, \bar{A}) \otimes_{D(A)} \mathscr{D}_{A}(\bar{A}, A) \rightarrow \mathscr{A}(\bar{A}, A / \underline{m}) \otimes_{\mathscr{D}}(A) \mathscr{D}_{A}(\bar{A}, A) \cdot \mathscr{D}_{A}(\bar{A}, A / \underline{m})
$$

Since $\mathscr{D}(A, \bar{A}) \otimes_{\mathscr{D}(A)} D(\bar{A}, A) \rightarrow \mathscr{D}(\bar{A})$ given by composition is an isomorphism, the above map is also an isomorphism. In particular, $\mathscr{D}(\mathrm{A}, \mathrm{A} / \mathrm{m})$ corresponds to $\mathscr{D}(\overline{\mathrm{A}}, \mathrm{A} / \underline{m})$ under the Morita equivalence. Hence to prove the result, it is enough to show that $\mathscr{D}_{A}(\bar{A}, A / \underline{m})$ is a simple right $\mathscr{D}(\overline{\mathrm{A}})$-module.

However, by Proposition 4 below, $\mathscr{D}_{A}(\bar{A}, \bar{A} / \underline{m}) \simeq \mathscr{D}_{\bar{A}}\left(\bar{A}, \bar{A} / \underline{m}^{\prime}\right)$ where \underline{m}^{\prime} is the unique maximal ideal of \bar{A} containing m. By $[6, \S 1.3 e]$, $\mathscr{D}\left(\overline{\mathrm{A}}, \overline{\mathrm{A}} / \underline{m}^{\prime}\right) \simeq \mathscr{D}(\overline{\mathrm{A}}) / \underline{m}^{\prime} \mathscr{D}(\overline{\mathrm{A}})$, and this is a simple right $\mathscr{D}(\overline{\mathrm{A}})$-module $[6$, $\S 1.4 \mathrm{~g}]$. Hence the result.

The next two results are required to complete the proof of Proposition 4.2.

LEMMA 3. Let $A=\theta(X)$ be the co-ordinate ring of an affine irreducible variety X. Let M and N be A-modules, and m a maximal ideal of A. If $\underline{m N}=0$, then for all n

$$
\mathscr{D}_{A}^{n}(M, N)=\left\{0 \in \operatorname{Hom}_{k}(M, N) \mid \theta\left(\underline{m}^{n+1} M\right)=0\right\}
$$

Proof. Write $J=\operatorname{ker}\left(\mu: A \otimes_{k} A \rightarrow A\right)$ where μ is the multiplication map. As $A=k \oplus \underline{m}$, A is generated as a k-algebra by elements of m. Hence J is generated as an ideal by $\{1 \otimes a-a \otimes 1 \mid a \in \underline{m}\}$. In particular, $J \subseteq A \otimes \underline{m}+\underline{m} \otimes A$, and also $A \bullet \underline{m} \subseteq \underline{m} A+J$. Thus $J^{n} \underline{C} A \underline{m}^{n}+\underline{m} A$ and $A \otimes \underline{m}^{n} \subseteq \underline{m} A+J^{n}$.

As $\underline{m N}=0$, if $\theta \in \operatorname{Hom}_{k}(M, N)$ then $(\underline{m} \otimes A) \cdot \theta=0$. Thus $J^{n} \cdot \theta(M) \subseteq\left(A \otimes \underline{m}^{n}\right) \cdot \theta(M)=A \theta\left(\underline{m}^{n} M\right)$, and also $A \theta\left(\underline{\underline{m}}^{n} M\right) \subseteq J^{n} \cdot \theta(M)$. Thus $\theta\left(\underline{m}^{n+1} M\right)=0$ if and only if $J^{n+1} \cdot \theta=0$, which is precisely the condition that $\theta \in \mathscr{D}_{A}{ }^{n}(M, N)$.

PROPOSITION 4. Let $A=\theta(C)$ be the co-ordinate ring of an affine irreducible curve C, and set $B=\theta(\tilde{C})$. Let \underline{m} be a maximal ideal of A, and $\left\{\underline{m}_{\lambda} \mid \lambda \in \Lambda\right\}$ the maximal ideals of B containing \underline{m}. Then there is an isomorphism of right $\mathscr{D}(B)$-modules

$$
\Phi: \oplus_{\lambda} \mathscr{D}_{B}\left(B, B / \underline{m}_{\lambda}\right) \rightarrow D_{A}(B, A / \underline{m})
$$

Proof. For each λ, fix an A-module isomorphism $\varphi_{\lambda}: B / \underline{m}_{\lambda} \rightarrow A / \underline{m}$. If, for each $\lambda, \theta_{\lambda} \in \mathscr{D}_{B}\left(B, B / \underline{m}_{\lambda}\right)$ then write $\Sigma_{\lambda} \theta_{\lambda}$ for the element in the direct sum. Define $\Phi\left(\Sigma_{\lambda} O_{\lambda}\right)=\Sigma_{\lambda} \varphi_{\lambda} \theta_{\lambda}$.

First Φ is a map to $\mathscr{D}_{A}(B, A / m)$ because each
$\theta_{\lambda} \in \mathscr{D}_{B}\left(B, B / \underline{m}_{\lambda}\right) \subseteq \mathscr{D}_{A}\left(B, B / \underline{m}_{\lambda}\right)$ whence $\varphi_{\lambda} \theta_{\lambda} \in \mathscr{D}_{A}(B, A / m)$. It is clear that Φ is a right $\varnothing(B)$-module map. However, a word of warning is required : $\mathscr{D}(B)$ means $\mathscr{D}_{B}(B, B)$ not $\mathscr{D}_{A}(B, B)$, and one must observe that $\mathscr{D}_{B}(B, B) \subseteq \mathscr{D}_{A}(B, B)$ so $\mathscr{D}_{A}(B, A / \underline{m})$ really is a right $\mathscr{D}(B)$-module.

To see that Φ is injective, first observe that $\omega_{\lambda} \mathscr{D}_{B}\left(B, B / \underline{m}_{\lambda}\right)$ is a direct sum of non-isomorphic simple right $\mathscr{D}(B)$-modules [6, Corollary 4.3 and $\S 1.4 \mathrm{~g}]$. Hence if $\operatorname{ker} \Phi \neq 0$ then some $\mathscr{\theta}_{B}(B, B / \underline{m} \lambda)$ is contained in ker Φ. But if $\theta_{\lambda} \in \operatorname{ker} \Phi$ then $\varphi_{\lambda} \theta_{\lambda}=0$, which implies $\theta_{\lambda}=O$ since φ_{λ} is an isomorphism. Hence ker $\Phi=0$.

It remains to show that Φ is surjective. Choose $\theta \in \mathscr{D}_{A}(B, A / m)$. By Lemma 4.3 this forces $\theta\left(\underline{m}^{n} B\right)=0$ for some $n>0$. But for $r \gg 0$, $\left(\prod_{\lambda} \underline{m}_{\lambda}\right)^{r} \subseteq \underline{m}^{n} B$. But B is a Dedekind domain so $\left(\prod_{\lambda} \underline{m}_{\lambda}\right)^{r}=n_{\lambda} \underline{m}_{\lambda}^{r}$ Thus $\left.\theta(\cap) \underline{m}^{r}{ }_{\lambda}\right)=0$ for some $r \gg 0$. Denote by $\bar{\theta}$ the map induced by $\theta, \bar{\Theta}: B / \cap \lambda \underline{m}^{r} \lambda^{\rightarrow} A / \underline{m}$. However, $B / \cap \underline{m}^{r}{ }^{r} \simeq \oplus{ }_{\lambda} B / \underline{m}^{r} \lambda$ and hence there are maps $\bar{\theta}_{\lambda}: B / \underline{m}_{\lambda}{ }^{r} \rightarrow A / \underline{m}$ for each λ. Now define $\theta_{\lambda}: B \rightarrow A / m$ by $\theta_{\lambda}(b)=\bar{\theta}_{\lambda}\left(\left[b+{m^{r}}_{\lambda}^{-}\right]\right)$. Finally, consider $\varphi_{\lambda}{ }^{-1} \theta_{\lambda}: B \rightarrow B / \underline{m}_{\lambda}$. $B y$ construction, $\varphi_{\lambda}{ }^{-1} \theta_{\lambda} \in \mathscr{D}_{B}(B, B / \underline{m})$. It is clear that $\Phi\left(\Sigma_{\lambda}{ }^{\varphi}{ }^{-1} \theta_{\lambda}\right)=\Sigma_{\lambda} \theta_{\lambda}=\theta$. So Φ is surjective.

This completes the proof of Proposition 4.2. The module $\mathscr{D}_{A}(A, A / m)$ seems to play a rather special role (when m is the maximal ideal corresponding to a singular point on the curve). For example, it plays a key role in the results in [8]. Also the following is an interesting consequence of Lemma 3 .

COROLLARY 5. Let $A=\theta(x)$ be the co-ordinate ring of an irreducible affine variety X. Let m be a maximal ideal of A. Then as a right A-module $D_{A}(A, A / m) \approx E_{A}(A / m)$, the injective hull of A / m.

Proof. Lemma 3 shows that

$$
\mathcal{D}_{A}(A, A / \underline{m})=\left\{\theta \in \operatorname{Hom}_{k}(A, A / \underline{m}) \mid \theta\left(\underline{m}^{n}\right)=0 \quad \text { for } \quad n \gg 0\right\}
$$

That this is now the injective envelope of
$A / \underline{m} \simeq \operatorname{Hom}_{A}(A, A / m)=\mathscr{D}_{A}^{O}(A, A / m)$ follows from [Bourbaki, Algèbre Homologique, § l, Ex. 29-32]. That an earlier proof of this result could
be replaced by this reference was pointed out in [8].

We now return to the examples at the beginning of this section. In fact we will first discuss the example where $D=\partial_{y}^{2}-\partial_{x}^{3}$ (the other example is somewhat simpler since the corresponding curve is non-singular, and we shall comment on that in the remarks at the end of this section) .

$$
\text { Set } P=4 x^{2} \partial \partial_{x}+12 x y \partial y+9 y^{2} \partial_{x}^{3}-2 x \text { and } Q=2 x \partial y+3 y \partial x^{2}
$$

PROPOSITION 3. Set $D=\partial_{y}^{2}-\partial_{x}{ }^{3}$ and $S=\{f \in \mathbb{C}[x, y] \mid D(f)=0\}$. Then $S=C[P] .1+Q \mathbb{C}[P] .1$.

Proof. Set $g=y^{2}-x^{3}$, so $g=\sigma(D)$, and let
$A=C[x, y] / g \mathbb{C}[x, y]$. By Proposition 1 , the structune of S as a left II ($\mathscr{D}) / \varnothing D$-module transfers to make S a right $\varnothing(A)$-module isomorphic to $\mathscr{D}(A, A / \underline{m})$ where $\underline{m}=A x+A y$. A careful analysis of the proof of Proposition l shows that $l \in S$ corresponds to the natural algebra $\operatorname{map} \varepsilon: A \rightarrow A / \underline{m}$ which is an element of $\mathscr{D}(A, A / \underline{m})$.

$$
\text { Set } \hat{P}=t^{-1}(t \partial-2) \partial, \hat{Q}=t^{2} \partial \text {. We view } \hat{P}, \hat{Q} \text { as elements of }
$$

$\mathscr{D}(A)$ with $A=\mathbb{C}\left[t^{2}, t^{3}\right] \subseteq \mathbb{C}[t]$. Since $\mathscr{D}(A) \simeq I(g \mathscr{I}) / g \nsubseteq$ we can find elements $P^{\prime}, Q^{\prime} \in$ II $(g \mathscr{D})$ which map to \bar{P} and \bar{Q} respectively. Such elements are

$$
\begin{aligned}
& P^{\prime}=4 x \partial_{x}^{2}+12 y \partial x^{\partial} y+9 x^{2} \partial y^{2}-2 \partial x \\
& Q^{\prime}=2 y \partial x^{2}+3 x^{2} \partial y
\end{aligned}
$$

Notice that $P=\sigma\left(P^{\prime}\right), Q=\sigma\left(Q^{\prime}\right)$.
Hence to prove the Proposition it is sufficient to show $\mathscr{D}(\mathrm{A}, \mathrm{A} / \underline{m})=\varepsilon \cdot \mathbb{C}[\hat{\mathrm{P}}]+\varepsilon \cdot \mathbb{I}[\hat{\mathrm{P}}] \hat{\mathrm{Q}}$. Recall that

$$
\mathscr{D}(A, A / \underline{m})=U_{n=0}^{\infty} \mathscr{D}_{A}^{n}(A, A / \underline{m})=U_{n=0}^{\infty}\left\{\theta \in \operatorname{Hom}_{\mathbb{C}}(A, A / \underline{m}) \mid \theta\left(\underline{m}^{n+1}\right)=0\right\}
$$

We identify $\mathscr{D}_{A}^{n}(A, A / \underline{m})$ with $\operatorname{Hom}_{\mathbb{C}}\left(A / \underline{m}^{n+1}, A / \underline{m}\right)$. Set
$B=\left\{t^{j} \mid O \leqslant j \leqslant 2 n+1, j \neq 1\right\}$. This is a basis for A / \underline{m}^{n+1}. Set $\mathcal{B}^{\prime}=\left\{\varepsilon \hat{P}^{\mathrm{j}} \mid 0 \leq j \leq n\right\} \cup\{\varepsilon \hat{\mathrm{P}} \hat{\mathrm{Q}} \mid 2 \leq j \leq n+1\}$. Check that (up to a non-zero scalar multiple) $\varepsilon \hat{P}^{k}\left(t^{j}\right)=\delta_{2 k, j}$ and $\varepsilon \hat{\mathrm{P}}^{k} \hat{Q}\left(t^{j}\right)=\delta_{2 k-1, j}$. Hence $B^{\prime} \subseteq \operatorname{Hom}_{\mathbb{C}}\left(A / \underline{m}^{n+1}, A / \underline{m}\right)$ is (up to non-zero scalar multiples) the dual basis to B. In particular, it follows that

$$
\mathscr{D}(A, A / \underline{m})=\varepsilon \cdot \mathbb{C}[\hat{P}]+\varepsilon \cdot \mathbb{C}[\hat{P}] \hat{Q} .
$$

Remarks (1). Proposition 6 allows one to routinely produce a basis for S; in fact the proof essentially shows that
$\left\{P^{j}(1) \mid j \geq 0\right\} \cup\left\{Q P^{j}(1) \mid j \geq 2\right\}$ gives a basis for s; this verifies the claims made at the start of this section.
(2). The elements P^{\prime} and Q^{\prime} of the proof are obtained as follows. We have in $A=\mathbb{C}\left[t^{2}, t^{3}\right]$ that $y=t^{3}, x=t^{2}$. Now t $\partial \in \mathscr{D}(A)$ satisfies $(t \partial)(y)=3 y,(t \partial)(x)=2 x$. The derivation on $\mathbb{C}[x, y]$ that has this effect is precisely $3 y \partial y+2 x \partial x$. So ta $\in \mathscr{D}(A)$ "lifts" to $3 y{ }_{y}+2 x \partial_{x} \in \mathscr{D}$. Since $t=y x^{-1}, t^{2} \partial$ "lifts" to $y x^{-1}\left(3 y \partial_{y}+2 x \partial_{x}\right)=3 x^{2} \partial y+2 y \partial_{x}$ (using the fact that in $A, y^{2}=x^{3}$), this gives Q^{\prime}. To obtain P^{\prime}, re-write $P=t^{-2}(t a-3)(t a)$, and this "lifts" to $x^{-1}\left(3 y \partial y+2 x \partial_{x}-3\right)\left(3 y \partial y+2 x \partial_{x}\right)$. Expanding this, using the fact that $y^{2}=x^{3}$ in A, gives P^{\prime}.
(3). The other example was to describe S, the space of polynomial solutions to $D=\partial_{y}^{2}-\partial_{x}{ }^{3}+\partial_{x}$. Here $g=\sigma(D)=y^{2}-x^{3}+x$ defines a non-singular curve $C \subseteq A^{2}$. Thus $D(C)$ is generated by
$\theta(C)$ and Der C. It is easy to compute that Der C is free on δ defined by $\delta(x)=2 y, \delta(y)=3 x^{2}-1$. Lifting δ back to Der $\mathbb{C}[x, y]$ we have $\delta=2 y \partial x+\left(3 x^{2}-1\right) \partial y$. Applying σ, we have $P=\sigma(\delta)=2 x \partial_{y}+3 y \partial_{x}^{2}-y$. Since $\sigma(x)=\partial_{x}, \sigma(y)=\partial_{y}$ the earlier analysis shows that $S=\mathbb{T}\left[\partial_{x}, \partial_{y}, P\right] .1$. In fact the analogue of Proposition 6 gives $S=\mathbb{C}[P] .1$. The action of P on 1 is as follows : $1 \xrightarrow{\mathrm{P}} y \xrightarrow{\mathrm{P}} 2 x-y^{2} \xrightarrow{\mathrm{P}}-6 x y+y^{3} \xrightarrow{\mathrm{P}}-12 x^{2}+y^{4} \xrightarrow{\mathrm{P}} 60 x^{2} y-20 x y^{3}-48 y+y^{5} \xrightarrow{P} \ldots .$. and one continues applying P to obtain a basis for S.
\S 5. ON THE $D\left(\mathrm{~A}^{2}\right)$-MODULE $\theta\left(\mathrm{A}^{2}\right)_{\mathrm{f}}$.
Let $R=0[x, y]=\theta\left(A^{2}\right)$, and let $O \neq f \in R$ be an irreducible polynomial defining a curve $C \subseteq A^{2}$. By a celebrated theorem of Bernstein [1], $R_{f}=\theta\left(A^{2} \backslash c\right)$ is a $D\left(A^{2}\right)$-module of finite length. It is not difficult to show that R_{f} / R contains a unique simple $D\left(A^{2}\right)$ module (we give the proof below). The problem we consider here is that of determining this simple submodule. We will show that if C is a non-singular curve then \mathbb{R}_{f} / R is a simple $\mathscr{D}\left(\mathbb{A}^{2}\right)$-module. This is not difficult and is well known. It will be clear from the proof that a new idea is required to cope with the case when C is singular. The reason
is that the proof relies on the fact that, if C is non-singular, then the ideal of R generated by $f, \partial f / \partial x, \partial f / \partial y$ equals R itself. The main result in $\S 5$ is to show that if $\Pi: \widetilde{C} \rightarrow C$ is injective, then R_{f} / R is a simple $D\left(A^{2}\right)$ - module. The details of the proof will appear elsewhere [7] and we only give a rough outline.

The reason for the interest in determining the simple submodule of R_{f} / R is as follows. Let X be a non-singular variety and $Y \subset X$ a closed irreducible subvariety (possibly singular) of codimension 1 in X, defined by $0 \neq f \in \theta(X)$. Then $\theta(X \backslash Y) / \theta(X)=\theta(X)_{f} / \theta(X)$ has a unique simple $\mathscr{\rho}(\mathrm{X})$-submodule, which we denote by $\mathcal{L}(Y, X)$. Under the equivalence of categories between regular holonomic \mathscr{D}_{X} modules, and the category of perverse sheaves on $X, \mathcal{L}(Y, X)$ (which is regular hoIonomic) corresponds to IC.(Y) the intersection homology complex associated to $Y \subset X$.

The main result in this section, namely Theorem 4, can be proved in a quite different (and less algebraic way) through using the Riemann-Hilbert correspondence. I would like to thank J.-I.Brylinski for showing me how to do this.

PROPOSITION 1. The $\theta\left(\mathbb{A}^{2}\right)$-module $M=\theta\left(\mathbb{A}^{2}\right)_{f} / \theta\left(\mathbb{A}^{2}\right)$ has a unique simple submodule, for any $0 \neq f \in \theta\left(\mathbb{A}^{2}\right)$.

Proof. Observe that if $N_{1}, N_{2} \subseteq M$ are non-zero $\theta\left(A^{2}\right)$-submodules then $N_{1} \cap N_{2} \neq 0$. It follows that the same is true of any two nonzero $\mathscr{D}\left(\mathbb{A}^{2}\right)$-submodules. Because M is of finite length as a $\mathscr{D}\left(A^{2}\right)-$ module it contains some simple submodule S, say. By the first observation, S must be contained in every non-zero $\mathscr{D}\left(A^{2}\right)$-submodule of M. Hence the conclusion.

We will next show that when C, the curve defined by an irreducible $f \in \theta\left(A^{2}\right)$, is non-singular, the module $\theta\left(A^{2}\right)_{f} / \theta\left(A^{2}\right)$ is simple (this is certainly well known, but we cannot find a proof to refer the reader to) . To do this, first observe that $f^{-1} R / R \subseteq R$ is an III (θ f) submodule, is annihilated by \mathscr{D}, and is therefore an II ($\because f$) $/ \mathscr{O f}-$ module. However, there is an isomorphism of k-algebras正 (Df)/Df \simeq II ($\mathrm{f} D) / \mathrm{f} D$; this isomorphism is obtained from $\psi: ~ I I(D) \rightarrow$ II $(f D)$ given by $\psi(D)=D^{\prime}$ where $D \in \mathscr{D}$ is the unique element satisfying $f D=D^{\prime} f$ for $D \in \Pi I(\mathscr{H})$. Thus, as $\Pi(f D) / f \mathscr{A} \mathscr{D}(C)$ by $[6, \S 1.6]$, it follows that $f^{-1} R / R$ is a left $D(C)$-module. The point is

PROPOSITION 2. As a left $\mathscr{D}(\mathrm{C})$-module $\mathrm{f}^{-1} \mathrm{R} / \mathrm{R}$ is isomorphic to $\theta(C)=R / f R$ with its natural $\mathscr{D}(\mathrm{C})$-module structure.

Proof. Easy.
THEOREM 3. Let $O \neq f \in \theta\left(\mathbb{A}^{2}\right)$ be an irreducible polynomial defining $\frac{\text { a curve }}{\mathscr{D}\left(\mathrm{A}^{2}\right) \text {-module. }} \mathrm{If}$ is non-singular then $\theta\left(A^{2}\right)_{f} / \theta\left(A^{2}\right)$ is a simple

Proof. First we show that $M=\theta\left(A^{2}\right)_{f} / \theta\left(A^{2}\right)$ is generated by f^{-1}. Clearly $\mathscr{D}\left(A^{2}\right) . f^{-1}$ contains $\partial_{X}\left(f^{-1}\right)=-f_{x} f^{-2}, \partial_{y}\left(f^{-1}\right)=-f_{y^{\prime}} f^{-2}$ and $f^{-1}=f f^{-2}$. Since C is non-singular, $1 \in \theta\left(A^{2}\right) f_{x}+\theta\left(A^{2}\right) f_{y}+\theta\left(A^{2}\right) f$. Thus we obtain $f^{-2} \in \mathscr{D}\left(A^{2}\right) \cdot f^{-1}$. An induction argument applying ∂_{x} and ∂_{y} to f^{-n} for each $n>0$ completes the proof of the fact that $\mathscr{D}\left(A^{2}\right) \cdot \mathrm{f}^{-1}=\mathrm{M}$.

Now to see that M is simple, we need only show that every nonzero submodule of M contains f^{-1}. Pick $0 \neq m \in M$, and consider $\mathscr{D}\left(A^{2}\right) \cdot m$. Clearly this contains an element of the form $a f^{-1}$ with $a \in \theta\left(A^{2}\right) \backslash \theta\left(A^{2}\right)_{f}$. Thus $0 \neq a f^{-1} \in f^{-1} \theta\left(A^{2}\right) / \theta\left(A^{2}\right)$. Consider $\mathrm{f}^{-1} \theta\left(\mathrm{~A}^{2}\right) / \theta\left(\mathrm{A}^{2}\right)$ as a left $\mathscr{D}(\mathrm{C})$-module. As such it is isomorphic to $\theta(C)$. However, $\theta(C)$ is a simple $\mathscr{D}(C)$-module because C is non-singular. Therefore $f^{-1} \in \mathscr{D}\left(\mathrm{~A}^{2}\right) \cdot a f^{-1}$.

Remark. (1) The above proof gives a very explicit argument as to why f^{-1} generates $\theta\left(\mathrm{A}^{2}\right)_{\mathrm{f}} / \theta\left(\mathrm{A}^{2}\right)$. Later we shall show that $\theta\left(A^{2}\right)_{f} / \theta\left(A^{2}\right)$ is a simple $\mathscr{D}\left(A^{2}\right)$-module whenever $\Pi: \widetilde{C} \rightarrow C$ is injective. Hence in that case also f^{-1} generates $\theta\left(\mathrm{A}^{2}\right)_{\mathrm{f}} / \theta\left(\mathrm{A}^{2}\right)$. However, our proof will not explain in such an explicit manner, why $\left.\mathrm{f}^{-\mathrm{n}} \in \mathscr{(} \mathrm{A}^{2}\right) \cdot \mathrm{f}^{-1}$. Hence it is an interesting question (interesting for this author, anyway) to find in some explicit cases (for example , $f=y^{2}-x^{3}$, operators D_{n} such $D_{n} \cdot f^{-1}=f^{-n}$ in $\theta\left(A^{2}\right)_{f} / \theta\left(A^{2}\right)$.
(2) It is clear that all the above arguments work in greater generality. That is, if X is a non-singular variety and $0 \neq f \in \theta(X)$ an irreducible polynomial defining a hypersurface $Y \subset X$, then similar considerations (to the above) apply to $\theta(\mathrm{X})_{f} / \theta(\mathrm{X})$ as a $\mathscr{D}(\mathrm{x})$-module.

THEOREM 4. Let $0 \neq f \in \theta\left(A^{2}\right)$ be an irreducible polynomial defining a curve C. Suppose that $\Pi: \widetilde{C} \rightarrow C$ is injective. Then $\theta\left(\mathbb{A}^{2}\right)_{\mathrm{f}} / \theta\left(\mathbb{A}^{2}\right)$ is a simple $\mathscr{D}\left(\mathbb{A}^{2}\right)$-module.

Sketch of Proof. The goal is to show that each $f^{-n} R / R, R=\theta\left(A^{2}\right)$, is a simple left $I\left(\theta \mathrm{f}^{\mathrm{n}}\right)$-module, where $\theta=\theta\left(\mathrm{A}^{2}\right)$. It will then follow at once that R_{f} / R is a simple left D-module.

It is clear that for $n \in \mathbb{N}, f^{-n} R / R$ is a left II $\left(\mathscr{P} f^{n}\right) / \mathscr{D} f^{n}$-module. However, $I I\left(\mathscr{A} f^{n}\right) / \mathscr{A} f^{n} \simeq \mathscr{D}\left(R / f^{n} R\right)$, the ring of differential operators on $R / f^{n} R$, and it is easy to see that as a left $\mathcal{P}\left(R / f^{n_{R}}\right)$-module, $f^{-n_{R} / R}$ is isomorphic to $R / f^{n} R$. Hence the aim is to show that $R / f^{n_{R}}$ is a simple $\mathcal{D}\left(D / f^{n_{R}}\right)$-module for all $n \in \mathbb{N}$. The case $n=1$ is precisely Theorem 2.3 above. For $n>1$ we must extend the results in [6]. This is done in [7], and here we just sketch the main steps of the argument.

There is an inclusion of algebras
$R / f^{n} R \subseteq R / f R \theta_{k} k[z] /\left(z^{n}\right)=\theta(C) \theta_{k} k[z] /\left(z^{n}\right) \subseteq \theta(\widetilde{C}) \otimes_{k} k[z] /\left(z^{n}\right) \subseteq \operatorname{Fract}\left(R / f^{n} R\right)$, such that $R / f^{n} R$ is of finite codimension in $\theta(\mathbb{C}) \otimes_{k} k[z] /\left(z^{n}\right)$, and the induced map on the spectra is bijective. One observes that

$$
D\left(\theta(\widetilde{C}) \theta_{k} k[z] /\left(z^{n}\right)\right) \simeq \mathscr{D}(\widetilde{C}) \otimes_{k} \mathscr{D}\left(k[z] /\left(z^{n}\right)\right) \simeq \mathscr{D}(\widetilde{C}) \otimes_{k} M_{n}(k)
$$

and this latter algebra is Morita equivalent to $\mathscr{D}(\widetilde{\mathrm{C}})$. One therefore can apply the same ideas as in $[6, \S \S 2,3]$ to show that, if

$$
\begin{equation*}
\mathscr{D}\left(\theta(\widetilde{\mathrm{C}}) \otimes_{k} k[z] /\left(z^{\mathrm{n}}\right), R / f^{\mathrm{n}} \mathrm{R}\right) *\left(\theta(\widetilde{\mathrm{C}}) o_{k} k[z] /\left(z^{n}\right)\right)=\mathrm{R} / \mathrm{f}^{\mathrm{n}_{\mathrm{R}}} \tag{+}
\end{equation*}
$$

then $D\left(R / f^{n} R\right)$ is Morita equivalent to $\phi\left(\theta(\tilde{C}) \otimes k[z] /\left(z^{n}\right)\right)$. Because of the bijectivity of the map on the spectra, (+) can be established by imitating the proof of [6 , Theorem 3.4] . Then, from the Morita equivalence it follows that $\mathscr{D}\left(R / f^{n} R\right)$ is a simple ring, and hence $R / f^{n} R$ is a simple $\mathscr{D}\left(R / f^{n} R\right)$-module.

Theorem 4 has been obtained independently by van Doorn and van den Essen [8].

REFERENCES

[1] I.N. BERNSTEIN. - Analytic continuation of generalized functions with respect to a parameter, Functional Analysis and its Applications, 6, 1972, 26-40.
[2] I.N. BERNSTEIN, I.M. GELFAND and S.I. GELFAND. - Differential Operators on the Cubic Cone, Russian Math. Surveys, 27, 1972, 169-174.
[3] W.C. BROWN. - A note on higher derivations and ordinary points of curves, Rocky Mountain J. Math., 14, 1984, 397-402.
[4] A. GROTHENDIECK. - Eléments de Géométrie Algébrique IV, Inst.des Hautes Etudes Sci., Publ. Math., $\mathrm{n}^{\circ} 32,1967$.
[5] A. SEIDENBERG. - Derivations and Integral Closure, Pacific J. Math., 16, 1966, 167-173.
[6] S.P. SMIIH and J.T. STAFFORD. - Differential Operators on an Affine Curve, University of Warwick, preprint, 1985.
[7] S.P. SMITH. - The simple \mathscr{D}-module associated to the intersection homology complex for a class of plane curves, University of Warwick, preprint, 1986.
[8] A.van den ESSEN and R.van DOORN. - \mathcal{D}_{n}-modules with support on a curve, University of Nijmegen, preprint, 1986.

