CURVES, DIFFERENTIAL OPERATORS AND FINITE DIMENSIONAL

ALGEBRAS

S.P.SMITH Mathematics Institute University of Warwick Coventry CV4 7AL England

§ 1. INTRODUCTION.

This talk is mainly a report on some joint work with J.T.Stafford which appears in [6]. That paper examines the structure of $\mathcal{D}(X)$, the ring of differential operators on an irreducible affine curve X, defined over an algebraically closed field k of characteristic zero. When X is non-singular the structure of $\mathcal{D}(X)$ is well understood, and is but a particular case of a structure theory which applies to non-singular affine varieties X of any dimension. However, when X is singular the structure of $\mathcal{D}(X)$ is not well understood, and [6] examines the easiest case viz. X is a (singular) curve. In all that follows X will denote an irreducible affine curve defined over an algebraically closed field k of characteristic zero.

This paper begins by recalling in § 2 some of the main results of [6] concerning the structure of $\mathcal{D}(X)$. On the positive side, $\mathcal{D}(X)$ is a finitely generated k-algebra and right and left noetherian. However, in contrast to the non-singular case, $\mathscr{D}(X)$ need not be a simple ring if X is singular. In Theorem 2.3 it is seen that the simplicity of $\mathcal{D}(X)$ is equivalent to a number of other properties. In particular, $\mathscr{D}(\mathtt{X})$ is simple if and only if the natural projection $\pi: \widetilde{X} \rightarrow X$ from the normalisation is bijective. When $\mathscr{D}(X)$ is not simple, there is a unique minimal non-zero ideal J(X), and $H(X) := \mathcal{D}(X)/J(X)$ is a finite dimensional k-algebra. The ring of reqular functions $\mathscr{O}(X)$ need not be a simple $\mathscr{D}(X)$ -module, but it has a unique simple submodule $J(X) \cdot O(X)$, and $C(X) := O(X) / J(X) \cdot O(X)$ is a finite dimensional k-algebra. Both H(X) and C(X) split as a direct sum of finite dimensional algebras, ${\tt H}_{_{\mathbf{X}}}$ and ${\tt C}_{_{\mathbf{X}}}$, one for each singular point $x \in Sing X$. The algebras H_x and C_x depend only on the local ring $O_{X,X}$, and § 3 examines how the structure of H_x and C_x depends on that of $\mathcal{O}_{X,x}$. We have no general theorem, and it is clearly a key question to understand how the nature of the singularity at x is reflected in the structure of ${\rm H}_{\rm x}$ and ${\rm C}_{\rm x}$.

In Section 4 we provide some light relief and show how some of the results in § 2 may be used to describe the space of polynomial solutions of a (very restricted) class of differential equations. For example, if $D = \partial_y^2 - \partial_x^3$ is viewed as a differential operator on k[x,y] and $S = \{i \in k[x,y] | D(f) = 0\}$ we show that S is a simple $\mathcal{O}(X)$ -module where X is the curve in \mathbb{A}^2 defined by $y^2 = x^3$. Knowing generators of $\mathcal{O}(X)$ as a k-algebra, allows one to produce a basis for S in an extremely simple way.

Section 5, shows how the results of § 2 may be used when $\pi : \widetilde{X} \to X$ is injective to solve the following problem. Let R = k[x,y] be the polynomial ring in two variables, and let $0 \neq f \in R$ be an irreducable polynomial defining the curve C. It is well known that the $\mathcal{D}(R)$ -action on R extends to the localisation R_f , and that R_f/R is a $\mathcal{D}(R)$ -module of finite length with a unique simple submodule. When C is non-singular, it is not hard to show that R_f/R is itself a simple $\mathcal{D}(R)$ -module (the proof of this is given in § 5); this is well-known, but when C is singular it is difficult to describe the simple submodule of R_f/R . We prove that when $\pi : \widetilde{C} \to C$ is injective then R_f/R is a simple $\mathcal{D}(R)$ -module.

§ 2. STRUCTURE OF $\mathcal{D}(X)$.

Let A be a commutative k-algebra and let M and N be A-modules. The space $\mathscr{D}_A(M,N)$ of k-linear differential operators from M to N is defined to be $\mathscr{D}_A(M,N) =$

 $\cup_{n=0}^{\infty} \{\Theta \in \operatorname{Hom}_{k}(M,N) \mid [a_{n}[\ldots[a_{1} \ a_{0},\Theta]]\ldots]] = O \text{ for all } a_{0},a_{1},\ldots,a_{n} \in \mathbb{A} \}$ where $[a,\Theta] = a\Theta - \Theta a$.

We are interested in $\mathscr{D}(A) = \mathscr{D}_A(A, A)$, the ring of differential operators on A, when A is either $\mathscr{O}(X)$, the co-ordinate ring of the curve X, or $\mathscr{O}_{X,X}$, the local ring at the point $x \in X$. We denote $\mathscr{D}(A)$ by $\mathscr{D}(X)$ and $\mathscr{D}_{X,X}$ in these two cases.

When X is a non-singular curve , $\mathcal{D}(X)$ is a finitely generated k-algebra, (right and left) noetherian [4, § 6], and a simple ring of global homological dimension 1. For non-singular X , $\mathcal{D}(X)$ is generated by $\mathcal{O}(X)$ and $\text{Der}_k X$, the module of k-linear derivations on $\mathcal{O}(X)$. Unfortunately when X is singular this is not true.

EXAMPLE 1. Let X be the curve in A^3 defined by $x^5 = y^3$, $x^7 = z^3$. There is a unique singular point at (0,0,0). The normalisation \widetilde{X} , is isomorphic to A^1 and the natural projection $\pi : \widetilde{X} \to X$ is given by $\pi(\alpha) = (\alpha^3, \alpha^5, \alpha^7)$. Write $\mathcal{O}(\widetilde{X}) = k[t]$ and $\mathcal{O}(X) = k[t^3, t^5, t^7]$. Since Der \widetilde{X} is the free k[t]-module generated by $\vartheta = d/dt$, and any derivation on $\mathcal{O}(X)$ extends to $\mathcal{O}(\widetilde{X})$ [5], it is easy to see that Der X is the subspace of $k[t]\vartheta$ with basis $\{t\vartheta, t^3\vartheta\}$ U $\{t^n\vartheta|n>4\}$. Set $D = t^{-1}(t\vartheta - 2)(t\vartheta - 7)\vartheta$. This is a differential operator on k(t), and it leaves $\mathcal{O}(X)$ stable. Hence $D \in \mathscr{D}(X)$, but D is not in the subalgebra of End_1 , $\mathcal{O}(X)$ generated by $\mathcal{O}(X)$ and Der X.

This example illustrates the difficulty in trying to decide whether $\mathscr{D}(X)$ is a finitely generated k-algebra. In fact, if one takes Z to be the surface in \mathbb{C}^3 defined by $X_1^3 + X_2^3 + X_3^3 = 0$, then $\mathscr{D}(Z)$ is not finitely generated [2]. However, for curves one has the following.

THEOREM 2 [6]. Let X be a curve. Then $\mathscr{D}(X)$ is a finitely generated k-algebra and is right and left nonetherian.

Although $\mathscr{D}(X)$ need not be a simple ring we have the following (recall that $\pi: \widetilde{X} \to X$ is the natural projection from the normalisation).

```
THEOREM 3 [6]. The following are equivalent :

(a) \mathcal{D}(X) is a simple ring ;

(b) \pi : \widetilde{X} \to X is bijection ;

(c) \mathcal{O}(X) is a simple \mathcal{D}(X)-module ;

(d) gl.dim \mathcal{D}(X) = 1 ;

(e) \mathcal{D}(X) is Morita equivalent to \mathcal{D}(\widetilde{X}).
```

As, perhaps, suggested by (e), the key to understanding $\mathcal{D}(A)$ for $A = \mathcal{O}(X)$, or $A = \mathcal{O}_{X,X}$ is to compare $\mathcal{D}(A)$ and $\mathcal{D}(\overline{A})$ where \overline{A} denotes the integral closure of A in Fract A, its field of fractions. Define

 $\mathcal{D}(\overline{A}, A) = \{ D \in \mathcal{D}(\overline{A}) \mid D(f) \in A \text{ for all } f \in \overline{A} \}$.

This is a non-zero right ideal of $\mathcal{D}(\bar{A})$ and a left ideal of $\mathcal{D}(A)$. Since $\mathcal{D}(A)$ is a simple, hereditary ring $\mathcal{D}(\bar{A},A)$ is necessarily a progenerator in Mod - $\mathcal{D}(\bar{A})$. Thus we have $\mathcal{D}(A) \subseteq \operatorname{End}_{\mathcal{D}}(\bar{A},A) = T$, where T is Morita equivalent to $\mathcal{D}(\bar{A})$. The relation between $\mathcal{D}(A)$ and T depends on the fact that they have a common left ideal, namely $\mathcal{D}(\bar{A},A)$. A key lemma is that $\mathcal{D}(A) = T$ if and only if $\mathcal{D}(\bar{A},A) \star \bar{A} = A$, where $\mathscr{D}(\overline{A},A) \star \overline{A}$ denotes the linear span of all D(f) such that $D \in \mathscr{D}(\overline{A},A)$ and $f \in \overline{A}$. It is these observations which are exploited to obtain the above results.

Through part (e) of Theorem 3 we can, in a sense, say that we understand $\mathscr{D}(X)$ completely when $\mathscr{D}(X)$ is simple. So from now on we concentrate on what happens when $\mathscr{D}(X)$ is not simple. However, there is one question still of interest when $\mathscr{D}(X)$ is simple; give a procedure for obtaining generators for $\mathscr{D}(X)$, or find the least n such that $\mathscr{D}(X)$ is generated by differential operators of order $\leq n$.

To understand $\mathscr{D}(X)$ when Π : $\stackrel{\sim}{X} \to X$ is not injective one is led to prove.

THEOREM 4 [6]. $\mathcal{D}(X)$ constains a unique minimal non-zero ideal J(X). The factor H(X) := $\mathcal{D}(X)/J(X)$ is a finite dimensional k-algebra, and H(X) = $\Phi_{x} \in \operatorname{Singx}^{H_{x}}$ is a direct sum of algebras H_{x} one for each singular point x. The structure of H_{x} depends only on the local ring $\Theta_{X,x}$. In fact $\mathcal{D}_{X,x}$ has a unique minimal non-zero ideal $J_{X,x}$ and $H_{x} = \mathcal{D}_{X,x}/J_{X,x}$.

The relationship between the ideal structure of $\mathscr{D}(X)$ and the submodule structure of $\mathscr{O}(X)$ is illustrated by

THEOREM 5 [6]. Consider $\mathscr{O}(X)$ as a $\mathscr{D}(X)$ -module. Then (a) $\mathscr{O}(X)$ has finite length ;

(b) $\mathcal{O}(X)$ has a unique simple submodule, namely

 $J(X) \cdot \mathcal{O}(X) = \mathcal{O}(\widetilde{X}, X) \star \mathcal{O}(\widetilde{X}) ;$

(c) If $C(X) = \mathcal{O}(X) / J(X)$. $\mathcal{O}(X)$ then C(X) is a faithful H(X)-module; (d) $C(X) \approx \bigoplus_{X \text{ Sing} X^{C} X}$ is a direct sum of local algebras, one for each singular point of X;

(e)
$$C_{\chi} \simeq \Theta_{\chi,\chi}^{\prime}/J_{\chi,\chi}^{\prime}$$
. $\Theta_{\chi,\chi}^{\prime}$ and is a faithful H_{χ} -module.

Clearly one would like to understand the structure of the finite dimensional algebras H_x and C_x , and so H(X) and C(X). First note that, since H_x and C_x depend only on $\mathscr{O}'_{X,X}$, it will follow from Theorem 3 that H_x and C_x are zero precisely when $\# \pi^{-1}(x)=1$. It is not difficult to observe that if $\mathscr{O}(X) = k[t_1, \dots, t_n] / (f_1, \dots, f_r)$ then C(X) is a homomorphic image of

 $k[t_1, \ldots, t_n] / (f_1, \ldots, f_r, \partial f_i / \partial t_j)$ because $J(X) \cdot \mathcal{O}(X)$ contains the conductor of $\mathcal{O}(X)$ in $\mathcal{O}(\tilde{X})$ and the image of each $\partial f_i / \partial t_j$ belongs to the conductor

§ 3. THE ALGEBRAS H AND C.

In this section X is a curve with a unique singular point x, and we set A = $\mathcal{O}_{X,X}$ and B = \overline{A} . This section is a collection of examples illustrating some of the possibilities for H_x and C_x. We will give examples where H_x may be either 0, or M_n(k), the ring of n × n matrices over k, or $\binom{k \ 0}{k \ k}$ the ring of lower triangular 2 × 2 matrices, or $\binom{k \ 0}{k^2 \ k}$. In these examples C_x is respectively 0, k[t]/(tⁿ), k[t]/(t²), and k[s,t]/(s,t)². We have no general result, but these examples do give some clues as to what should be expected in general.

We denote the maximal ideal of A by <u>m</u>. B is a semi-local ring with Jacobson radical denoted <u>r</u>. The maximal ideals of B correspond to the points $\pi^{-1}(x)$. Since $H_x = 0$ if and only if $\# \pi^{-1}(x) = 1$, we may rephrase this as

PROPOSITION 1. $H_x = 0$ if and only if $\bar{\Theta}_{X,x}$ is a local ring.

By [5, § 7.4] there exists $t \in \underline{r}$ and $\partial \in \text{Der}_k^B$ such that $\partial(t) = 1$. It is an easy exercise to see that this forces $\text{Der}_k^B = B\partial$, and $\underline{r} = Bt$. If $b \in B$ we shall write $b' = \partial(b)$.

We shall assume in all the examples we construct that Π : $\widetilde{X} \rightarrow X$ is unramified at all points. The reason for this restriction is because we can make use of the following result to simplify the calculations.

THEOREM 2 (W.C.Brown [3]). If $\Pi : \widetilde{X} \to X$ is unramified at all points then $\mathscr{D}(X) \subseteq \mathscr{D}(\widetilde{X})$

Thus we have , locally $\mathcal{O}(A) \subseteq \mathcal{O}(B) = B[\partial]$. First we construct examples where $H_{\mathbf{x}} \simeq M_{\mathbf{n}}(k)$. The easiest case is $\mathbf{n} = 1$.

PROPOSITION 3. Suppose that $\# \pi^{-1}(x) > 1$. Let I denote the conductor of $\partial_{X,x}$ in $\bar{\partial}_{X,x}$ If I is a maximal ideal of $\partial_{X,x}'$, then $H_x \neq k$.

<u>Proof</u>. Since # $\Pi^{-1}(\mathbf{x}) \neq 1$, $\mathcal{D}(A)$ and $\mathcal{D}(B)$ are not Morita equivalent, so $\mathcal{D}(B,A) \star B \neq A$. However, $I \subseteq \mathcal{D}(B,A)$ whence $I = \mathcal{D}(B,A) \star B$. But k = A/I is now a faithful $H_{\mathbf{x}}$ -module. Hence $H_{\mathbf{x}} \approx k$. This explains [6, Theorem 4.4] since under the hypotheses of that theorem one must have I a maximal ideal of $\mathscr{O}_{X,X}$, since $\mathscr{O}_{X,X}/I$ is a local ring contained in $\overline{\mathscr{O}}_{X,X}/I$ which is a product of fields.

It is possible for H_x to equal k without the hypothesis of Proposition 3 being satisfied. Indeed, if $\mathcal{D}(B,A) \star B$ is a maximal ideal of A then $H_x \approx k$. This is illustrated by the following :

EXAMPLE 4 [6, § 5.7] Take $\tilde{X} = A^1$, and $\mathscr{O}(\tilde{X}) = k[t]$. Define X by $\mathscr{O}(X) = k + \bar{k}t^2(t-1) + t^4(t-1)k[t]$. The conductor is $t^4(t-1)k[t]$ which is not a maximal ideal of $\mathscr{O}(X)$. It is shown in [6] that $\mathscr{D}(B,A) \star B = \underline{m}$, the unique maximal ideal of $\mathscr{O}_{X,X}$ (here x is the unique singular point of X). Again $A/\mathscr{D}(B,A) \star B$ is a faithful H_{x} -module so $H_{x} \simeq k$.

This example may be understood as follows. Let X' be the curve with $\mathcal{O}(X') = k + t^2k[t]$. We have a factorisation of Π as $\widetilde{X} \xrightarrow{\psi} X' \xrightarrow{\varphi} X$ with $\Pi = \varphi \psi$ and ψ injective. Hence $\mathcal{D}(\widetilde{X}, X') \star \mathcal{O}(\widetilde{X}) = \mathcal{O}(X')$. However, $\mathcal{O}(X) = k + t^2(t-1) \mathcal{O}(X')$ and $\mathcal{D}(X', X) \xrightarrow{\supset} t^2(t-1) \mathcal{D}(X')$. Thus $\mathcal{D}(\widetilde{X}, X) \xrightarrow{\supset} \mathcal{D}(X', X) \mathcal{D}(\widetilde{X}, X') \xrightarrow{\supset} t^2(t-1) \mathcal{D}(\widetilde{X}, X')$. Hence $\mathcal{D}(\widetilde{X}, X) \star \mathcal{O}(\widetilde{X}) \xrightarrow{\supset} t^2(t-1) \mathcal{O}(X') = \underline{m}$. The point is that ψ is injective, and the conductor of $\mathcal{O}(X)$ in $\mathcal{O}(X')$ is a maximal ideal of $\mathcal{O}(X)$.

PROPOSITION 5. Suppose that $\# \Pi^{-1}(x) > 1$. Suppose that the Jacobson radical of $\overline{\Theta}_{X,x}$ is $t \overline{\Theta}_{X,x}$, and that $\Theta_{X,x} = k+kt+\ldots+kt^n+t^{n+1}\overline{\Theta}_{X,x}$. Then $H_x \simeq M_{n+1}(k)$.

<u>Proof</u>. Let <u>m</u> be the maximal ideal of $A = \mathcal{O}_{X,X}^{\circ}$. Then <u>m</u>B = tB, and by Theorem 2, $\mathscr{P}(A) \subseteq \mathscr{P}(B)$. The same argument as [6, Lemma 5.3] shows that $\mathscr{P}(B,A) = t^{n+1}\mathscr{P}(B)$, whence $C_X = A/t^{n+1}B$ is a faithful H_X -module. Thus, the result will follow if we can show that $A/t^{n+1}B$ is a simple H_X -module, or equivalently is a simple $\mathscr{P}(A)$ -module. Notice that $A/t^{n+1}B$ is generated by 1, and that kt^n is an essential A-submodule. Thus, to show $A/t^{n+1}B$ is a simple $\mathscr{P}(A)$ -module it will suffice to show that there exists $D \in \mathscr{P}(A)$ such that $D(t^n) = 1$. We proceed to show that $D := (t\partial - 1) \dots (t\partial - n)\partial^n$ belongs to $\mathscr{P}(A)$; since $(-1)^n (n!)^{-2} D(t^n) = 1$ this will complete the proof of the Proposition.

Since $\mathscr{D}(B) = B[\partial]$ we have $D \in \mathscr{D}(B)$. The action of D on A annihilates $k + kt + \ldots + kt^{n-1}$, so it remains to show that $D \star (Bt^{n+1}) \subseteq Bt^{n+1}$. First, notice that $\partial^n \star (Bt^{n+1}) \subseteq Bt$. Secondly, notice that, for all $j \in \mathbb{N}$, $(t\partial -j) \star (Bt^j) \subseteq Bt^{j+1}$. Hence $(t\partial - n) \ldots (t\partial -1) \star (Bt) \subseteq Bt^{n+1}$ and thus $D \star (Bt^{n+1}) \subseteq Bt^{n+1}$ and $D \in \mathscr{D}(A)$, as required.

PROPOSITION 6. Suppose that $\# \Pi^{-1}(x) > 1$. Suppose that the Jacobson radical of $\overline{\mathcal{O}}_{X,x}$ is $t \overline{\mathcal{O}}_{X,x}$, and that $\mathcal{O}_{X,x} = k + kt + ty \overline{\mathcal{O}}_{X,x}$ where $y \in \overline{\mathcal{O}}_{X,x} \setminus t \overline{\mathcal{O}}_{X,x}$, and y is not a unit. Then $H_x \simeq \begin{pmatrix} k & o \\ k & k \end{pmatrix}$.

<u>Proof</u>. The same arguments as usual show that $\mathcal{D}(B,A) = ty \mathcal{D}(B)$ and hence $C_x = A/tyB$. Since dim $C_x = 2$ and C_x is a faithful H_x -module, H_x embeds in $M_2(k)$. The hypothesis implies that $t \in yB$ (just use the fact that $\mathcal{O}_{X,X}$ is a ring, so contains t^2). Note that $t \partial \in \text{Der}_k A$. It is now easy to show that the images of 1,t,t ∂ are linearly independent in $H_x = \mathcal{D}(A) / \mathcal{D}(B,A)$.

Now $\mathscr{D}(A) \subseteq \Pi(\mathscr{D}(B,A))$ the idealiser of $\mathscr{D}(B,A)$ in $\mathscr{D}(B)$. Since $\Pi(ty \mathscr{D}(B))/ty \mathscr{D}(B) \simeq End_{\mathscr{D}(B)}(\mathscr{D}(B)/ty \mathscr{D}(B))$ it is straightforward (after decomposing as a sum of simple modules) to see that $\dim_k(\Pi(ty \mathscr{D}(B))/ty \mathscr{D}(B)) = \dim_k(B/tB) + 3 \dim_k(B/yB)$. The next step is to explicitly describe $\Pi(ty \mathscr{D}(B))$.

Write t = yz. Notice that $zy' = 1 \pmod{yB}$. It follows that both y' and zy' + 1 are units modulo yB. Thus there exists $b \in B$ such that $2y' - b(zy'+1) \in yB$. Now one computes to check that $(t\partial - bz)\partial \in \Pi(ty \mathcal{D}(B))$. Thus $\Pi(ty \mathcal{D}(B))$ contains $B + Bt\partial + B(t\partial - bz)\partial + ty \mathcal{D}(B)$. It is straightforward to compute the dimension of this modulo $ty \mathcal{D}(B)$, and check that it is equal to $\dim_k(B/tB) + 3 \dim_k(B/yB)$. It follows from the previous paragraph that this subspace is in fact equal to $\Pi(ty \mathcal{D}(B))$.

Recall that $\mathscr{D}(A) \subseteq \Pi(ty \mathcal{D}(B))$. To show that $\mathscr{D}(A) = k + kt + kt\partial + ty \mathscr{D}(B)$, it is enough to show that if $u, v \in B$ with $D = ut\partial + v(t\partial - bz)\partial$ is an element of $\mathscr{D}(A)$ then one must have $D \in k + kt + kt\partial + ty \mathscr{D}(B)$. To see this first observe that $D \star A \subseteq k + tB$, and evaluating D on t this gives $vbz \in k + tB$. However, vbz cannot be a unit since z is not (because $y \notin tB$). Thus $vbz \in tB$ and $vb \in yB$. But b is a unit modulo yB, so $v \in yB$. Thus D is a derivation modulo $ty \mathscr{D}(B)$. But $Der_k(A) = kt\partial + tyB\partial$, hence $D \in k + kt + kt\partial + ty \mathscr{D}(B)$.

Thus the images of 1,t,t ∂ span H_x , and therefore $H_k \approx \binom{k \ o}{k \ k}$. PROPOSITION 7. Suppose that $\# \Pi^{-1}(x) > 1$. Suppose that the Jacobson radical of $\overline{\Theta}_{X,x}$ is $t\overline{\Theta}_{X,x}$, and that $\Theta_{X,x} = k + kt + kty + t^2\overline{\Theta}_{X,x}$ where $y \in \overline{\Theta}_{X,x} \setminus t\overline{\Theta}_{X,x}$, and y is not a unit. Then $H_x \approx \binom{k \ o}{k^2 \ k}$. <u>Proof</u>. The argument is very similar to that in Proposition 6. One computes $\mathbf{II}(t^2B) = B + Bt\partial + B(t\partial - 1)\partial + t^2 \mathcal{D}(B)$, checks that l,t,ty,t $\partial \in D(A)$ and that their images in H_x are linearly independent. And finally one shows that if $D = v(y\partial - 1)\partial + ut\partial$ belongs to $\mathcal{D}(A)$ with $u, v \in B$, then $D \in kt\partial + t^2 \mathcal{D}(B)$; where H_x is spanned by l,t,ty,t ∂ and the result follows by considering the action of these elements on A/t^2B .

This completes the list of examples stated at the beginning of this section. Notice in the examples where H_x is $M_2(k)$, and H_x is $\binom{k \ 0}{k \ k}$, that C_x is isomorphic to $k[t]/(t^2)$ in both cases, and $C_x \simeq \partial_{X,x}/I$ where I is the conductor of $\partial_{X,x}$. In particular, knowing C_x and $\partial_{X,x}/I$ does not determine H_x .

In the above examples H_x is always an indecomposable algebra, in the sense that H_x cannot be written a direct product of two non-zero subalgebras. More generally we have

PROPOSITION 8. For any X, and any $x \in X$, H_x is an indecomposable algebra.

<u>Proof</u>. Suppose H_x is a direct product of non-zero subalgebras. Then there exist non-zero central orthogonal idempotents $e, f \in H_x$ with 1 = e + f. Then $C_x = H_x e C_x \oplus H_x f C_x$. However, this decomposition of C_x as a $\mathcal{D}_{X,x}$ -module is also a decomposition of C_x as an $\mathcal{O}_{X,x}$ -module, and hence as a C_x -module . But C_x is a local algebra, hence indecomposable. Hence either $e C_x = 0$ or $f C_x = 0$. But, either possibility contradicts the fact that C_x is a faithful H_x -module.

§ 4.CONSTANT COEFFICIENT DIFFERENTIAL OPERATORS AND THE SPACE OF POLYNOMIAL SOLUTIONS.

Let $R = \mathbb{C}[x,y]$ be the polynomial ring in two variables, and $\mathcal{D} = \mathcal{D}(R) = C[x,y,\partial_x,\partial_y]$ the ring of differential operators on R. Let $D \in \mathcal{D}$ and set $S = \{f \in R \mid D(f) = 0\}$, the space of polynomial solutions. Observe that if $P,Q \in \mathcal{D}$ with DP = QD, and $f \in S$ then $P(f) \in S$ also. Define, the <u>idealiser</u> of $\mathcal{D}D$, $\Pi(\mathcal{D}D) = \{P \in \mathcal{D} \mid DP \in \mathcal{P}D\}$. This is a subring of \mathcal{D} , containing $\mathcal{D}D$ as a two sided ideal. The above observation says that S is a left $\Pi(\mathcal{D}D)$ -module. Furthermore it is annihilated by $\mathcal{D}D$, so S is a left $\Pi(\mathcal{D}D)/\mathcal{D}D$ -module. Let $\sigma: \mathcal{D} \rightarrow \mathcal{D}$ be the anti-automorphism given by

 $\sigma(\mathbf{x}) = \partial_{\mathbf{x}}$, $\sigma(\partial_{\mathbf{x}}) = \mathbf{x}$, $\sigma(\mathbf{y}) = \partial_{\mathbf{y}}$, $\sigma(\partial_{\mathbf{y}}) = \mathbf{y}$.

Setting $\sigma(D) = D^{\sigma}$, we have $\sigma(\mathcal{D}D) = D^{\sigma}\mathcal{D}$, and $\sigma(\Pi(\mathcal{D}D)) = \Pi(D^{\sigma}\mathcal{D})$. Thus S can be given the structure of right $\Pi(D^{\sigma}\mathcal{D})/D^{\sigma}\mathcal{D}$ -module by defining f.Q' = Q(f) for $Q' \in \Pi(D^{\sigma}\mathcal{D})$ where $Q = \sigma(Q')$.

Now consider for example, the case where $D = \partial_y^2 - \partial_x^3$ (resp. $D = \partial_y^2 - \partial_x^3 + \partial_x$). Then $D^\sigma = y^2 - x^3$ (resp. $D^\sigma = y^2 - x^3 + x$) and the space of polynomial solutions is a right $II(g\mathfrak{B})/g\mathfrak{D}$ -module where $g = y^2 - x^3$ (resp. $g = y^2 - x^3 + x$). But by [6, § 1.6], $II(g\mathfrak{D})/g\mathfrak{D} \cong \mathfrak{D}(R/gR) = \mathfrak{D}(C)$ where $C \subseteq A^2$ is the curve defined by $g \in \mathbb{C}[x, y]$. Thus S is a right $\mathfrak{D}(C)$ -module. We will show below (for both the given examples, and more generally whenever $\Pi : \widetilde{C} + C$ is injective) that S is a simple right $\mathfrak{D}(C)$ -module. Thus to describe all of S we need know only one non-zero element of S and the action of $\mathfrak{D}(C)$ on S. In the given examples it is clear that $1 \in S$, whence S = 1. $\mathfrak{D}(C)$. So the problem of describing all polynomial solutions of the differential equation D(f) = 0 leads us naturally to ask for a description of $\mathfrak{D}(C)$ (for example, once we know by Theorem 2.2, that $\mathfrak{D}(C)$ is finitely generated, we want to know the generators) and a description of the action of $\mathfrak{D}(C)$ on S.

The procedure we shall adopt in order to describe all of S, will be to first describe $\mathscr{D}(C)$ (through its relationship with $\mathscr{D}(\vec{C})$ as outlined in Theorem 2.3) and thence to obtain a description of $I\!I(\mathscr{D}D)/\mathscr{D}D$ and so act on S. For example in the case $D = \partial_y^2 - \partial_x^3$, we have $\mathscr{O}(C) = \mathbb{C}[t^2, t^3]$ and as in [6, Remark 3.12], $\mathscr{D}(C) = \mathbb{C}[t^2, t^3, t\partial, t^2\partial, (t\partial - 1)\partial, t^{-1}(t\partial - 2)\partial]$ and (after the detailed considerations below), $t^2\partial$ gives rise to the element $Q = 2x\partial_y + 3y\partial_x^2 \in I\!I(\mathscr{D}D)$, and $t^{-1}(t\partial - 2)\partial$ gives rise to the element $P = 4x^2\partial_x + 12xy\partial_y + 9y^2\partial_x^2 - 2x \in I\!I(\mathscr{D}D)$. It will be shown that S = C[P].1 + QC[P].1 and thus we obtain all elements of S by starting with $1 \in S$ and acting by Q,P as follows. The diagram indicates how solutions are obtained from previous ones by applying P and Q (we ignore scalar multiples, so although $Q(x^3 + 3y^2) = 24xy$ we just write $x^3 + 3y^2 \xrightarrow{Q} xy$).

One can continue to apply P and Q to obtain more solutions, and Proposition 6 below shows that one will in this way obtain a basis for $\{f \in \mathfrak{C}[x,y] \mid (\partial_y^2 - \partial_y^3)(f) = 0\}$.

Two points should be observed. First , to find elements such as $P, Q \in I\!I(\mathcal{D}D)$ simply by computing inside \mathcal{D} seems an impossibly difficult task . Even if one can find elements of $I\!I(\mathcal{D}D)$ one needs to know whether one has found enough elements to generate all of $I\!I(\mathcal{D}D)/\mathcal{D}D$ (hence the importance of Theorem 2.2 saying that $\mathcal{D}(C)$ is finitely generated , and hence the importance of trying to obtain a procedure to find generators of $\mathcal{D}(C)$). Secondly, to know that all polynomial solutions belong to $1.\mathcal{D}(C)$ (in the case when $II: \widetilde{C} \to C$ is injective) one needs to show (as we do below) that S is a simple right $\mathcal{D}(C)$ -module .

It is no problem to extend the above analysis to the more general situation described in the following Proposition. First note that there is a natural anti-automorphism σ on the ring $\mathscr{D}(A^n) = \mathbb{C}[t_1, \ldots, t_n, \partial_1, \ldots, \partial_n]$ where $\partial_j = \partial/\partial t_j$, given by $\sigma(t_j) = \partial_j$, $\sigma(\partial_j) = t_j$ for all j.

$$\Phi : \Pi(\sigma(J\mathcal{B})) / \sigma(J\mathcal{B}) \longrightarrow \Pi(J\mathcal{B}) / J\mathcal{D} \simeq \mathcal{D}(A)$$

and thus S may be given the structure of a right $\mathcal{D}(A)$ -module. As a right $\mathcal{D}(A)$ -module, S is isomorphic to $\mathcal{D}(A, A/m)$.

<u>Proof</u>. It is straightforward computation to see that S is an $\mathbb{I}(\sigma(J\mathcal{P}))$ -submodule of R, annihilated by $\sigma(J\mathcal{P})$. The anti-isomorphism Φ is of course induced by σ , and the fact that $\mathcal{D}(A) \simeq \mathbb{I}(J\mathcal{P})/J\mathcal{P}$ is just [6, § 1.6]. Thus it remains to prove the final asertion.

Apply the left exact functor $\mathscr{P}_{R}(-, R/(t_{1}, \dots, t_{n}))$ to the short exact sequence of R-modules $0 \rightarrow J \rightarrow R \rightarrow A \rightarrow 0$ to obtain the exact sequence $0 \longrightarrow \mathscr{P}_{R}(A, R/(t_{1}, \dots, t_{n})) \longrightarrow \mathscr{P}_{R}(R, R/(t_{1}, \dots, t_{n})) \longrightarrow \mathscr{P}_{R}(J, R/(t_{1}, \dots, t_{n})).$ Thus $\mathscr{D}_{n}(A, A/\underline{m}) = \mathscr{D}_{p}(A, R/(t_{1}, \dots, t_{n})) = \{Q \in \mathscr{D}/t_{1} \mathscr{D} + \dots + t_{n} \mathscr{D} | Q \star J = 0\}$ $= \{ \Omega \in \mathcal{D} \mid QJ \subset t_1 \mathcal{D} + \ldots + t_n \mathcal{D} \} / t_1 \mathcal{D} + \ldots + t_n \mathcal{D} .$

Now consider $S \subseteq R \simeq \mathcal{D}/\mathcal{D}\partial_1 + \ldots + \mathcal{D}\partial_n$. By definition $\mathbf{S} = \{ \mathbf{P} \in \mathcal{D} | \mathbf{u} (\mathbf{J} \mathcal{D}) \mathbf{P} \subseteq \mathcal{D} \partial_1 + \ldots + \mathcal{D} \partial_n \} / \mathcal{D} \partial_1 + \ldots + \mathcal{D} \partial_n .$

Through the anti-isomorphism $\, \, ^{\scriptscriptstyle (\!\Lambda\!)}$, S is made into a right $\, \, {\mathfrak G} \, (\Lambda
angle \, {
m module} \, .$ Let Ψ : S $\rightarrow \mathcal{D}_{A}(A, A/\underline{m})$ be defined by

$$\Psi([P + \mathcal{D}\partial_1 + \ldots + \mathcal{D}\partial_n]) = [\sigma(P) + t_1 \mathcal{D} + \ldots + t_n \mathcal{D}].$$

It is clear that $\, \Psi \,$ is a vector space isomorphism. To see that $\, \Psi \,$ is a right $\mathscr{D}(A)$ -module map , let $s \in S$, and $d \in \mathscr{D}(A)$. Suppose that $s = [P + \mathcal{D}\partial_1 + \ldots + \mathcal{D}\partial_n]$, and $d = [\sigma(e) + J\mathcal{D}]$ for $e \in \Pi (\sigma(J \mathcal{D}))$. Then $s.d = [P + \mathcal{D}\partial_1 + \ldots + \mathcal{D}\partial_n] \cdot [\sigma(e) + J\mathcal{D}] \approx [eP + \mathcal{D}\partial_1 + \ldots + \mathcal{D}\partial_n] \text{ and } \Psi(s.d) =$ $[\sigma(\mathbf{P})\sigma(\mathbf{e}) + \mathbf{t}_1 \mathcal{Y} + \ldots + \mathbf{t}_n \mathcal{P}] = [\sigma(\mathbf{P}) + \mathbf{t}_1 \mathcal{Y} + \ldots + \mathbf{t}_n \mathcal{P}] \cdot [\sigma(\mathbf{e}) + \mathbf{J} \mathcal{P}] = \Psi(\mathbf{s}) \mathcal{A}.$ Thus $S \simeq \mathcal{D}_{A}(A, A/\underline{m})$ as required.

<u>Remark</u>. It is easier to consider S as a left $\mathcal{D}(A)^{op}$ -module, and this is what we shall do in practice. That is , $\mathcal{D}(A)^{\operatorname{Op}}$ will be identified with $I(\sigma(J\mathcal{D}))/\sigma(J\mathcal{D})$ and the action of this ring on S will be obtained through the restriction of the usual action of differential operators on R = C[x,y].

PROPOSITION 2. Let C be an irreducible affine curve, such that Π : $\check{C} \rightarrow C$ is injective. Let \underline{m} be a maximal ideal of $A = \mathcal{O}(C)$. Then $\mathcal{D}(A, A/\underline{m})$ is a simple right $\mathcal{D}(A)$ -module.

 \underline{Proof} . Let \bar{A} denote the integral closure of A in Fract A . By Theorem 2.3 , ${\mathfrak D}({
m A})$ and ${\mathcal D}({
m ar A})$ are Morita equivalent. The progenerators giving the Morita equivalence are $\mathscr{D}(ar{\mathtt{A}},\mathtt{A})$ and $\mathfrak{D}(\mathtt{A},ar{\mathtt{A}})$. Consider the following natural maps obtained by taking composition of differential operators :

$$\mathcal{P}_{A}(A, A/\underline{m}) \circ_{\mathcal{D}(\bar{A})} \mathcal{P}_{A}(A, \bar{A}) \circ_{\mathcal{D}(A)} \mathcal{P}_{A}(\bar{A}, A) \longrightarrow \mathcal{D}(A, A/\underline{m}) \circ_{\mathcal{D}(A)} \mathcal{P}_{A}(\bar{A}, A) \longrightarrow \mathcal{P}_{A}(\bar{A}, A/\underline{m}) .$$

Since $\mathcal{P}(A,\bar{A}) \otimes_{\mathcal{P}(A)} \mathcal{D}(\bar{A},A) \rightarrow \mathcal{D}(\bar{A})$ given by composition is an isomorphism, the above map is also an isomorphism. In particular, $\mathcal{P}(A,A/\underline{m})$ corresponds to $\mathcal{D}(\bar{A},A/\underline{m})$ under the Morita equivalence. Hence to prove the result, it is enough to show that $\mathcal{D}_{A}(\bar{A},A/\underline{m})$ is a simple right $\mathcal{D}(\bar{A})$ -module.

However, by Proposition 4 below, $\mathscr{P}_{A}(\bar{A}, A/\underline{m}) \simeq \mathscr{P}_{\overline{A}}(\bar{A}, \overline{A}/\underline{m}')$ where \underline{m}' is the unique maximal ideal of \bar{A} containing \underline{m} . By [6, § 1.3e], $\mathscr{D}(\overline{A}, \overline{A}/\underline{m}') \simeq \mathscr{D}(\overline{A})/\underline{m}' \mathscr{D}(\overline{A})$, and this is a simple right $\mathscr{D}(\overline{A})$ -module [6, §1.4g]. Hence the result.

The next two results are required to complete the proof of Proposition 4.2.

LEMMA 3. Let $A = \hat{\sigma}(X)$ be the co-ordinate ring of an affine irreducible variety X. Let M and N be A-modules, and m a maximal ideal of A. If $\underline{m}N = 0$, then for all n

$$\mathscr{B}_{\lambda}^{n}(\mathsf{M},\mathsf{N}) = \{ \Theta \in \operatorname{Hom}_{k}(\mathsf{M},\mathsf{N}) \mid \Theta(\underline{\mathsf{m}}^{n+1}\mathsf{M}) = 0 \}.$$

<u>Proof</u>. Write $J = \ker(\mu : A \otimes_k A \to A)$ where μ is the multiplication map. As $A = k \oplus \underline{m}$, A is generated as a k-algebra by elements of \underline{m} . Hence J is generated as an ideal by $\{1 \otimes a - a \otimes 1 \mid a \in \underline{m}\}$. In particular, $J \subseteq A \otimes \underline{m} + \underline{m} \otimes A$, and also $A \otimes \underline{m} \in \underline{m} \otimes A + J$. Thus $J^n \subseteq A \otimes \underline{m}^n + \underline{m} \otimes A$ and $A \otimes \underline{m}^n \subseteq \underline{m} \otimes A + J^n$.

As $\underline{m}N = 0$, if $\theta \in \operatorname{Hom}_{k}(M,N)$ then $(\underline{m} \otimes A) \cdot \theta = 0$. Thus $J^{n} \cdot \theta(M) \subseteq (A \otimes \underline{m}^{n}) \cdot \theta(M) = A \Theta(\underline{m}^{n}M)$, and also $A \Theta(\underline{m}^{n}M) \subseteq J^{n} \cdot \theta(M)$. Thus $\theta(\underline{m}^{n+1}M) = 0$ if and only if $J^{n+1} \cdot \theta = 0$, which is precisely the condition that $\theta \in \mathcal{D}_{\lambda}^{n}(M,N)$.

PROPOSITION 4. Let $A = \theta(C)$ be the co-ordinate ring of an affine irreducible curve C, and set $B = \theta(\widetilde{C})$. Let <u>m</u> be a maximal ideal of A, and $\{\underline{m}_{\lambda} | \lambda \in \Lambda\}$ the maximal ideals of B containing <u>m</u>. Then there is an isomorphism of right $\theta(B)$ -modules

 $\Phi : \oplus_{\lambda} \ \mathscr{D}_{\mathbf{B}}(\mathsf{B}\,,\mathsf{B}/\underline{\mathfrak{m}}_{\lambda}) \to \mathscr{D}_{\mathbf{A}}(\mathsf{B}\,,\mathsf{A}/\underline{\mathfrak{m}}) \ .$

<u>Proof</u>. For each λ , fix an A-module isomorphism φ_{λ} : $\mathbb{B}/\underline{m}_{\lambda} \to \mathbb{A}/\underline{m}$. If, for each λ , $\Theta_{\lambda} \in \mathscr{P}_{B}(\mathbb{B},\mathbb{B}/\underline{m}_{\lambda})$ then write $\Sigma_{\lambda} \Theta_{\lambda}$ for the element in the direct sum. Define $\Phi(\Sigma_{\lambda} \Theta_{\lambda}) = \Sigma_{\lambda} \varphi_{\lambda} \Theta_{\lambda}$. First Φ is a map to $\mathcal{P}_A(B,A/\underline{m})$ because each $\Theta_\lambda \in \mathcal{D}_B(B,B/\underline{m}_\lambda) \subseteq \mathcal{P}_A(B,B/\underline{m}_\lambda)$ whence $\varphi_\lambda \ \Theta_\lambda \in \mathcal{P}_A(B,A/\underline{m})$. It is clear that Φ is a right $\mathcal{D}(B)$ -module map. However, a word of warning is required : $\mathcal{D}(B)$ means $\mathcal{P}_B(B,B)$ not $\mathcal{P}_A(B,B)$, and one must observe that $\mathcal{P}_B(B,B) \subseteq \mathcal{P}_A(B,B)$ so $\mathcal{P}_A(B,A/\underline{m})$ really is a right $\mathcal{D}(B)$ -module.

To see that Φ is injective, first observe that $\bigoplus_{\lambda} \mathscr{D}_{\mathbf{B}}(\mathsf{B},\mathsf{B}/\underline{\mathsf{m}}_{\lambda})$ is a direct sum of non-isomorphic simple right $\mathscr{D}(\mathsf{B})$ -modules [6,Corollary 4.3 and § 1.4g]. Hence if ker $\Phi \neq 0$ then some $\mathscr{D}_{\mathbf{B}}(\mathsf{B},\mathsf{B}/\underline{\mathsf{m}}_{\lambda})$ is contained in ker Φ . But if $\Theta_{\lambda} \in \ker \Phi$ then $\varphi_{\lambda} \Theta_{\lambda} = 0$, which implies $\Theta_{\lambda} = 0$ since φ_{λ} is an isomorphism. Hence ker $\Phi = 0$.

It remains to show that Φ is surjective. Choose $\Theta \in \mathscr{D}_{A}(B, A/\underline{m})$. By Lemma 4.3 this forces $\Theta(\underline{m}^{n}B) = 0$ for some n > 0. But for r > 0, $(\prod_{\lambda} \underline{m}_{\lambda})^{r} \subseteq \underline{m}^{n} B$. But B is a Dedekind domain so $(\prod_{\lambda} \underline{m}_{\lambda})^{r} = \bigcap_{\lambda} \underline{m}^{r}_{\lambda}$ Thus $\Theta(\bigcap_{\lambda} \underline{m}^{r}_{\lambda}) = 0$ for some r > 0. Denote by $\overline{\Theta}$ the map induced by Θ , $\overline{\Theta} : B / \bigcap_{\lambda} \underline{m}^{r}_{\lambda} + A/\underline{m}$. However, $B / \bigcap_{\lambda} \underline{m}^{r}_{\lambda} \simeq \bigoplus_{\lambda} B/\underline{m}^{r}_{\lambda}$ and hence there are maps $\overline{\Theta}_{\lambda} : B/\underline{m}^{r}_{\lambda} \to A/\underline{m}$ for each λ . Now define $\Theta_{\lambda} : B + A/\underline{m}$ by $\Theta_{\lambda}(b) = \overline{\Theta}_{\lambda}([b + \underline{m}^{r}_{\lambda}])$. Finally, consider $\varphi_{\lambda}^{-1}\Theta_{\lambda} : B + B/\underline{m}_{\lambda}$. By construction, $\varphi_{\lambda}^{-1} \Theta_{\lambda} \in \mathscr{D}_{B}(B, B/\underline{m})$. It is clear that $\Phi(\Sigma_{\lambda}\varphi_{\lambda}^{-1}\Theta_{\lambda}) = \Sigma_{\lambda}\Theta_{\lambda} = \Theta$. So Φ is surjective.

This completes the proof of Proposition 4.2. The module $\mathcal{P}_{A}(A,A/\underline{m})$ seems to play a rather special role (when \underline{m} is the maximal ideal corresponding to a singular point on the curve). For example, it plays a key role in the results in [8]. Also the following is an interesting consequence of Lemma 3.

COROLLARY 5. Let $A = \mathcal{O}(X)$ be the co-ordinate ring of an irreducible affine variety X. Let <u>m</u> be a maximal ideal of A. Then as a right A-module $\mathcal{D}_{A}(A,A/\underline{m}) \simeq E_{A}(A/\underline{m})$, the injective hull of A/\underline{m} .

Proof. Lemma 3 shows that

 $\mathcal{D}_{A}(A, A/\underline{m}) = \{ \theta \in \operatorname{Hom}_{\mathcal{V}}(A, A/\underline{m}) \mid \theta (\underline{m}^{n}) = 0 \text{ for } n >> 0 \}.$

That this is now the injective envelope of $A/\underline{m} \simeq \operatorname{Hom}_{A}(A, A/\underline{m}) = \mathcal{D}_{A}^{O}(A, A/\underline{m})$ follows from [Bourbaki, Algèbre Homologique, § 1, Ex. 29-32]. That an earlier proof of this result could be replaced by this reference was pointed out in [8].

We now return to the examples at the beginning of this section. In fact we will first discuss the example where $D = \partial_y^2 - \partial_x^3$ (the other example is somewhat simpler since the corresponding curve is non-singular, and we shall comment on that in the remarks at the end of this section).

Set
$$P = 4x^2 \partial_x + 12xy \partial_y + 9y^2 \partial_x^3 - 2x$$
 and $Q = 2x \partial_y + 3y \partial_x^2$.

PROPOSITION 3. Set $D = \partial_y^2 - \partial_x^3$ and $S = \{f \in \mathbb{C}[x,y] | D(f) = 0\}$. Then $S = C[P] \cdot 1 + Q\mathbb{C}[P] \cdot 1$.

<u>Proof</u>. Set $g = y^2 - x^3$, so $g = \sigma(D)$, and let $A = C[x,y]/g\mathbb{C}[x,y]$. By Proposition 1, the structure of S as a left $II(\mathcal{D}D)/\mathcal{D}D$ -module transfers to make S a right $\mathcal{D}(A)$ -module isomorphic to $\mathcal{D}(A, A/\underline{m})$ where $\underline{m} = Ax + Ay$. A careful analysis of the proof of Proposition 1 shows that $1 \in S$ corresponds to the natural algebra map $\varepsilon : A \to A/\underline{m}$ which is an element of $\mathcal{D}(A, A/\underline{m})$.

Set $\hat{P} = t^{-1}(t\partial - 2)\partial$, $\hat{Q} = t^2\partial$. We view \hat{P}, \hat{Q} as elements of $\mathcal{D}(A)$ with $A = \mathbb{C}[t^2, t^3] \subseteq \mathbb{C}[t]$. Since $\mathcal{D}(A) \approx \mathbb{I}(g\mathcal{D})/g\mathcal{D}$ we can find elements $P', Q' \in \mathbb{I}(g\mathcal{D})$ which map to \hat{P} and \hat{Q} respectively. Such elements are

$$P' = 4x \partial_x^2 + 12y\partial_x\partial_y + 9x^2\partial_y^2 - 2\partial_x$$
$$Q' = 2y\partial_x + 3x^2\partial_y .$$

Notice that $P = \sigma(P')$, $Q = \sigma(Q')$.

Hence to prove the Proposition it is sufficient to show $\mathcal{P}(A, A/\underline{m}) = \varepsilon \cdot \mathbf{C}[\hat{P}] + \varepsilon \cdot \mathbf{C}[\hat{P}]\hat{Q}$. Recall that

$$\begin{aligned} & \mathcal{P}(\mathbf{A},\mathbf{A}/\underline{\mathbf{m}}) = \cup_{n=0}^{\infty} \mathcal{D}_{\mathbf{A}}^{n}(\mathbf{A},\mathbf{A}/\underline{\mathbf{m}}) = \cup_{n=0}^{\infty} \{\Theta \in \operatorname{Hom}_{\mathbb{C}}(\mathbf{A},\mathbf{A}/\underline{\mathbf{m}}) \mid \Theta(\underline{\mathbf{m}}^{n+1}) = 0\} . \end{aligned} \\ & \text{We identify } \mathcal{D}_{\mathbf{A}}^{n}(\mathbf{A},\mathbf{A}/\underline{\mathbf{m}}) \text{ with } \operatorname{Hom}_{\mathbb{C}}(\mathbf{A}/\underline{\mathbf{m}}^{n+1},\mathbf{A}/\underline{\mathbf{m}}) . \text{ Set} \\ & \mathcal{B} = \{t^{j} \mid 0 \leq j \leq 2n+1, j \neq 1\} . \text{ This is a basis for } \mathbf{A}/\underline{\mathbf{m}}^{n+1} . \text{ Set} \\ & \mathcal{P}' = \{\varepsilon \widehat{\mathbf{P}}^{j} \mid 0 \leq j \leq n\} \cup \{\varepsilon \widehat{\mathbf{P}}^{j} \widehat{\mathbf{Q}} \mid 2 \leq j \leq n+1\} . \text{ Check that } (up \text{ to a non-zero} \text{ scalar multiple}) \quad \varepsilon \widehat{\mathbf{P}}^{k}(t^{j}) = \delta_{2k,j} \text{ and } \varepsilon \widehat{\mathbf{P}}^{k} \widehat{\mathbf{Q}}(t^{j}) = \delta_{2k-1,j} . \text{ Hence} \\ & \mathcal{P}' \subseteq \operatorname{Hom}_{\mathbb{C}}(\mathbf{A}/\underline{\mathbf{m}}^{n+1},\mathbf{A}/\underline{\mathbf{m}}) \text{ is } (up \text{ to non-zero scalar multiples) the dual} \\ & \text{basis to } \mathcal{P}. \text{ In particular, it follows that} \end{aligned}$$

$$\mathcal{D}$$
 (A, A/m) = $\varepsilon \cdot \mathbf{C}[\hat{P}] + \varepsilon \cdot \mathbf{C}[\hat{P}]\hat{Q}$.

۵

<u>Remarks</u> (1). Proposition 6 allows one to routinely produce a basis for S ; in fact the proof essentially shows that $\{P^{j}(1) | j \ge 0\} \cup \{QP^{j}(1) | j \ge 2\}$ gives a basis for S ; this verifies the claims made at the start of this section.

(2). The elements P' and Q' of the proof are obtained as follows. We have in A = $\mathbb{C}[t^2, t^3]$ that $y = t^3$, $x = t^2$. Now the follows. We have in A = $\mathbb{C}[t^2, t^3]$ that $y = t^3$, $x = t^2$. Now the follows are the first of the first that the first the first that $y^2 = x^2$. Since $t = yx^{-1}$, $t^2\theta$ "lifts" to $yx^{-1}(3y\theta_y + 2x\theta_x) = 3x^2\theta_y + 2y\theta_x$ (using the fact that in A, $y^2 = x^3$), this gives Q'. To obtain P', rewrite $P = t^{-2}(t\theta - 3)(t\theta)$, and this "lifts" to $x^{-1}(3y\theta_y + 2x\theta_x - 3)(3y\theta_y + 2x\theta_x)$. Expanding this, using the fact that $y^2 = x^3$ in A, gives P'.

(3). The other example was to describe S, the space of polynomial solutions to $D = \partial_y^2 - \partial_x^3 + \partial_x$. Here $g = \sigma(D) = y^2 - x^3 + x$ defines a non-singular curve $C \subseteq \mathbb{A}^2$. Thus $\mathcal{D}(C)$ is generated by $\mathcal{O}(C)$ and Der C. It is easy to compute that Der C is free on δ defined by $\delta(x) = 2y$, $\delta(y) = 3x^2 - 1$. Lifting δ back to Der $\mathbb{C}[x,y]$ we have $\delta = 2y\partial_x + (3x^2 - 1)\partial_y$. Applying σ , we have $P = \sigma(\delta) = 2x\partial_y + 3y\partial_x^2 - y$. Since $\sigma(x) = \partial_x$, $\sigma(y) = \partial_y$ the earlier analysis shows that $S = \mathbb{C}[\partial_x, \partial_y, P].1$. In fact the analogue of Proposition 6 gives $S = \mathbb{C}[P].1$. The action of P on 1 is as follows : $1 \xrightarrow{P} y \xrightarrow{P} 2x - y^2 \xrightarrow{P} - 6 \propto y + y^3 \xrightarrow{P} - 12x^2 + y^4 \xrightarrow{P} 60x^2y - 20xy^3 - 48y + y^5 \xrightarrow{P} \dots$ and one continues applying P to obtain a basis for S.

§ 5. ON THE $\mathcal{D}(\mathbb{A}^2)$ -MODULE $\mathcal{O}(\mathbb{A}^2)_{f}$.

Let $R = \mathfrak{C}[x,y] = \mathcal{O}(\mathbb{A}^2)$, and let $O \neq f \in R$ be an irreducible polynomial defining a curve $C \subseteq \mathbb{A}^2$. By a celebrated theorem of Bernstein [1], $R_f = \mathcal{O}(\mathbb{A}^2 \setminus \mathbb{C})$ is a $\mathcal{D}(\mathbb{A}^2)$ -module of finite length. It is not difficult to show that R_f/R contains a unique simple $\mathcal{D}(\mathbb{A}^2)$ -module (we give the proof below). The problem we consider here is that of determining this simple submodule. We will show that if C is a non-singular curve then R_f/R is a simple $\mathcal{D}(\mathbb{A}^2)$ -module. This is not difficult and is well known. It will be clear from the proof that a new idea is required to cope with the case when C is singular. The reason

is that the proof relies on the fact that, if C is non-singular, then the ideal of R generated by f, $\partial f / \partial x$, $\partial f / \partial y$ equals R itself. The main result in § 5 is to show that if $\Pi : \widetilde{C} \rightarrow C$ is injective, then R_f/R is a simple $\mathcal{D}(\mathbb{A}^2)$ - module. The details of the proof will appear elsewhere [7] and we only give a rough outline.

The reason for the interest in determining the simple submodule of R_f/R is as follows. Let X be a non-singular variety and $Y \subset X$ a closed irreducible subvariety (possibly singular) of codimension 1 in X, defined by $0 \neq f \in \mathcal{O}(X)$. Then $\mathcal{O}(X \setminus Y) / \mathcal{O}(X) = \mathcal{O}(X)_f / \mathcal{O}(X)$ has a unique simple $\mathcal{O}(X)$ -submodule, which we denote by f(Y,X). Under the equivalence of categories between regular holonomic \mathcal{O}_X -modules, and the category of perverse sheaves on X, f(Y,X) (which is regular holonomic) corresponds to IC.(Y) the intersection homology complex associated to $Y \subset X$.

The main result in this section, namely Theorem 4, can be proved in a quite different (and less algebraic way) through using the Riemann-Hilbert correspondence. I would like to thank J.-L.Brylinski for showing me how to do this.

PROPOSITION 1. The $\mathcal{O}(\mathbb{A}^2)$ -module $M = \mathcal{O}(\mathbb{A}^2)_f / \mathcal{O}(\mathbb{A}^2)$ has a unique simple submodule, for any $0 \neq f \in \mathcal{O}(\mathbb{A}^2)$.

<u>Proof</u>. Observe that if $N_1, N_2 \subseteq M$ are non-zero $\mathcal{O}(\mathbb{A}^2)$ -submodules then $N_1 \cap N_2 \neq 0$. It follows that the same is true of any two nonzero $\mathcal{D}(\mathbb{A}^2)$ -submodules. Because M is of finite length as a $\mathcal{D}(\mathbb{A}^2)$ module it contains some simple submodule S, say. By the first observation, S must be contained in every non-zero $\mathcal{D}(\mathbb{A}^2)$ -submodule of M. Hence the conclusion.

We will next show that when C , the curve defined by an irreducible $f \in \mathcal{O}(\mathbb{A}^2)$, is non-singular, the module $\mathcal{O}(\mathbb{A}^2)_f / \mathcal{O}(\mathbb{A}^2)$ is simple (this is certainly well known, but we cannot find a proof to refer the reader to) . To do this, first observe that $f^{-1}\mathbb{R}/\mathbb{R} \subseteq \mathbb{R}$ is an $\mathbb{I}(\mathcal{D}f)$ -submodule, is annihilated by $\mathcal{D}f$, and is therefore an $\mathbb{I}(\mathcal{D}f)/\mathcal{D}f$ -module. However, there is an isomorphism of k-algebras $\mathbb{I}(\mathcal{D}f) / \mathcal{D}f \simeq \mathbb{I}(f\mathcal{D}) / f\mathcal{D}$; this isomorphism is obtained from $\psi: \mathbb{I}(\mathcal{D}f) \Rightarrow \mathbb{I}(f\mathcal{D})$ given by $\psi(D) = D'$ where $D \in \mathcal{D}$ is the unique element satisfying fD = D'f for $D \in \mathbb{I}(\mathcal{D}f)$. Thus, as $\mathbb{I}(f\mathcal{D}) / f\mathcal{P} \simeq \mathcal{D}(C)$ by [6, § 1.6], it follows that $f^{-1}\mathbb{R}/\mathbb{R}$ is a left $\mathcal{D}(C)$ -module. The point is

PROPOSITION 2. As a left $\mathcal{P}(C)$ -module $f^{-1}R/R$ is isomorphic to $\mathcal{O}(C) = R/fR$ with its natural $\mathcal{P}(C)$ -module structure.

Proof. Easy.

THEOREM 3. Let $0 \neq f \in \mathcal{O}(\mathbb{A}^2)$ be an irreducible polynomial defining a curve C. If C is non-singular then $\mathcal{O}(\mathbb{A}^2)_f / \mathcal{O}(\mathbb{A}^2)$ is a simple $\mathcal{D}(\mathbb{A}^2)$ -module.

<u>Proof</u>. First we show that $M = \mathcal{O}(A^2)_f / \mathcal{O}(A^2)$ is generated by f^{-1} . Clearly $\mathcal{P}(A^2) \cdot f^{-1}$ contains $\partial_x(f^{-1}) = -f_x f^{-2}$, $\partial_y(f^{-1}) = -f_y f^{-2}$ and $f^{-1} = ff^{-2}$. Since C is non-singular, $1 \in \mathcal{O}(A^2)f_x + \mathcal{O}(A^2)f_y + \mathcal{O}(A^2)f$. Thus we obtain $f^{-2} \in \mathcal{P}(A^2) \cdot f^{-1}$. An induction argument applying ∂_x and ∂_y to f^{-n} for each n > 0 completes the proof of the fact that $\mathcal{P}(A^2) \cdot f^{-1} = M$.

Now to see that M is simple, we need only show that every non-zero submodule of M contains f^{-1} . Pick $O \neq m \in M$, and consider $\mathscr{P}(A^2) \cdot m$. Clearly this contains an element of the form af^{-1} with $a \in \mathscr{O}(A^2) \setminus \mathscr{O}(A^2)_f$. Thus $O \neq af^{-1} \in f^{-1} \mathscr{O}(A^2) / \mathscr{O}(A^2)$. Consider $f^{-1} \mathscr{O}(A^2) / \mathscr{O}(A^2)$ as a left $\mathscr{P}(C)$ -module. As such it is isomorphic to $\mathscr{O}(C)$. However, $\mathscr{O}(C)$ is a simple $\mathscr{P}(C)$ -module because C is non-singular. Therefore $f^{-1} \in \mathscr{P}(A^2) \cdot af^{-1}$.

<u>Remark</u>. (1) The above proof gives a very explicit argument as to why f⁻¹ generates $\partial(A^2)_f / \partial(A^2)$. Later we shall show that $\partial(A^2)_f / \partial(A^2)$ is a simple $\partial(A^2)$ -module whenever $\Pi : \tilde{C} + C$ is injective. Hence in that case also f⁻¹ generates $\partial(A^2)_f / \partial(A^2)$. However, our proof will not explain in such an explicit manner, why f⁻ⁿ $\in \partial(A^2).f^{-1}$. Hence it is an interesting question (interesting for this author, anyway) to find in some explicit cases (for example, f = y² - x³) operators D_n such $D_n.f^{-1} = f^{-n}$ in $\partial(A^2)_f / \partial(A^2)$.

(2) It is clear that all the above arguments work in greater generality. That is, if X is a non-singular variety and $0 \neq f \in \mathcal{O}(X)$ an irreducible polynomial defining a hypersurface $Y \subset X$, then similar considerations (to the above) apply to $\mathcal{O}(X)_f / \mathcal{O}(X)$ as a $\mathcal{D}(X)$ -module.

D

THEOREM 4. Let $0 \neq f \in \mathcal{O}(\mathbb{A}^2)$ be an irreducible polynomial defining a curve C. Suppose that $\Pi : \widetilde{C} \neq C$ is injective. Then $\mathcal{O}(\mathbb{A}^2)_f / \mathcal{O}(\mathbb{A}^2)$ is a simple $\mathcal{D}(\mathbb{A}^2)$ -module.

<u>Sketch of Proof</u>. The goal is to show that each $f^{-n}R/R$, $R = \mathcal{O}(\mathbb{A}^2)$, is a simple left $\mathbb{II}(\mathcal{D}f^n)$ -module, where $\mathcal{D} = \mathcal{D}(\mathbb{A}^2)$. It will then follow at once that R_f/R is a simple left \mathcal{D} -module.

It is clear that for $n \in \mathbb{N}$, $f^{-n} \mathbb{R}/\mathbb{R}$ is a left $\mathbb{I}(\mathscr{D} f^n) / \mathscr{D} f^n$ -module. However, $\mathbb{I}(\mathscr{D} f^n) / \mathscr{D} f^n \simeq \mathscr{D}(\mathbb{R}/f^n \mathbb{R})$, the ring of differential operators on $\mathbb{R}/f^n \mathbb{R}$, and it is easy to see that as a left $\mathscr{D}(\mathbb{R}/f^n \mathbb{R})$ -module, $f^{-n} \mathbb{R}/\mathbb{R}$ is isomorphic to $\mathbb{R}/f^n \mathbb{R}$. Hence the aim is to show that $\mathbb{R}/f^n \mathbb{R}$ is a simple $\mathscr{D}(\mathbb{D}/f^n \mathbb{R})$ -module for all $n \in \mathbb{N}$. The case n = 1 is precisely Theorem 2.3 above. For n > 1 we must extend the results in [6]. This is done in [7], and here we just sketch the main steps of the argument.

There is an inclusion of algebras

 $R/f^{n}R \subseteq R/fR_{k}k[z]/(z^{n}) = \Theta(C)_{k}k[z]/(z^{n}) \subseteq \Theta(\widetilde{C})_{k}k[z]/(z^{n}) \subseteq \operatorname{Fract}(R/f^{n}R),$ such that $R/f^{n}R$ is of finite codimension in $\Theta(\widetilde{C})_{k}k[z]/(z^{n})$, and the induced map on the spectra is bijective. One observes that

$$\mathcal{D}(\mathcal{O}(\widetilde{c}) \otimes_k \mathbb{k}[z] / (z^n)) \simeq \mathcal{D}(\widetilde{c}) \otimes_k \mathcal{D}(\mathbb{k}[z] / (z^n)) \simeq \mathcal{D}(\widetilde{c}) \otimes_k \mathbb{M}_n(\mathbb{k}) \ ,$$

and this latter algebra is Morita equivalent to $\mathscr{D}(\widetilde{C})$. One therefore can apply the same ideas as in [6 , §§2,3] to show that, if

(+)
$$\mathscr{D}(\mathscr{O}(\widetilde{C}) \otimes_{k} k[z]/(z^{n}), R/f^{n}R) * (\mathscr{O}(\widetilde{C}) \otimes_{k} k[z]/(z^{n})) = R/f^{n}R$$

then $\mathscr{D}(\mathbb{R}/f^n\mathbb{R})$ is Morita equivalent to $\mathscr{D}(\mathscr{O}(\widetilde{C}) \otimes \mathbb{k}[z]/(z^n))$. Because of the bijectivity of the map on the spectra , (†) can be established by imitating the proof of [6, Theorem 3.4]. Then, from the Morita equivalence it follows that $\mathscr{D}(\mathbb{R}/f^n\mathbb{R})$ is a simple ring, and hence $\mathbb{R}/f^n\mathbb{R}$ is a simple $\mathscr{D}(\mathbb{R}/f^n\mathbb{R})$ -module.

Theorem 4 has been obtained independently by van Doorn and van den Essen [8].

REFERENCES

- [1] I.N. BERNSTEIN. Analytic continuation of generalized functions with respect oa parameter, <u>Functional Analysis and its</u> <u>Applications</u>, 6, 1972, 26-40.
- [2] I.N. BERNSTEIN, I.M. GELFAND and S.I. GELFAND. Differential Operators on the Cubic Cone, <u>Russian Math. Surveys</u>, 27, 1972, 169-174.
- [3] W.C. BROWN. A note on higher derivations and ordinary points of curves, Rocky Mountain J. Math., 14, 1984, 397-402.
- [4] A. GROTHENDIECK. <u>Eléments de Géométrie Algébrique IV</u>, Inst.des Hautes Etudes Sci., Publ. Math., n° 32, 1967.
- [5] A. SEIDENBERG. Derivations and Integral Closure, <u>Pacific J. Math.</u>, 16, 1966, 167-173.
- [6] S.P. SMITH and J.T. STAFFORD. Differential Operators on an Affine Curve, University of Warwick, preprint, 1985.
- [7] S.P. SMITH. The simple D-module associated to the intersection homology complex for a class of plane curves, University of Warwick, preprint, 1986.
- [8] A.van den ESSEN and R.van DOORN. \mathcal{P}_n -modules with support on a curve, University of Nijmegen, preprint, 1986.